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Using LASSO penalization for explanatory IRT: An application on

instructional covariates for mathematical achievement in a large-scale

assessment

Abstract

A new combination of statistical techniques is introduced: LASSO pe-

nalization for explanatory IRT models. This was made possible by recently

released software for LASSO penalization of GLMMs, as IRT models can be

conceptualized as GLMMs. LASSO penalized IRT shows special promise for

the simultaneous consideration of high numbers of covariates for students’

achievement in large-scale educational assessments. This is illustrated with

an application of the technique on Dutch mathematical large-scale assessment

data from 1619 students, with covariates from a questionnaire filled out by

107 teachers. The various steps in applying the technique are explicated, and

educationally relevant results are discussed.

3.1 Introduction

Data with very high numbers of covariates can be analyzed using regularization

methods that place a penalty on the regression parameters to improve prediction

accuracy and interpretation, making this type of regression known as penalized re-

gression. A popular form of penalized regression is LASSO (least absolute shrinkage

and selection operator), where more and more regression parameters become zero as

the penalty increases, thereby functioning as a covariate selection tool (Tibshirani,

This chapter is currently submitted for publication as: Fagginger Auer, M. F., Hickendorff,
M., & Van Putten, C. M. (submitted). Using LASSO penalization for explanatory IRT: An
application on covariates for mathematical achievement in a large-scale assessment.

The research was made possible by the Dutch National Institute for Educational Measurement
Cito, who made the assessment data available to us.
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34 CHAPTER 3. LASSO PENALIZATION FOR EXPLANATORY IRT

1996). LASSO has so far been applied in many (generalized) linear models, but has

only recently been extended to generalized linear mixed models (GLMMs), allow-

ing for the modeling of correlated observations (Groll & Tutz, 2014; Schelldorfer,

Meier, & Bühlmann, 2014).

In the present study, we utilize this GLMM extension of LASSO to introduce

penalized regression for explanatory item response theory (IRT) models, making

use of the possibility of conducting IRT analyses with general GLMM software

demonstrated by De Boeck and Wilson (2004). This first use of LASSO penalized

explanatory IRT is demonstrated with an application to a large-scale educational

dataset, a type of data for which this technique promises to be especially useful as

it allows for the simultaneous consideration of high numbers of potentially relevant

covariates while optimally modeling achievement.

3.1.1 Explanatory IRT with LASSO penalization for large-scale

assessment data

In large-scale educational assessments, achievement in an educational domain is

assessed for a large representative sample of students to enable evaluation of the

outcomes of an educational system (often that of a country), and to make compar-

isons to past outcomes or to outcomes of other educational systems. The analysis of

achievement data from assessments usually requires the linking of different subsets

of a total item set. These can be both subsets of the large complete item set within

an assessment and item sets of successive assessments, and can be done using IRT

(e.g, Mullis, Martin, Foy, & Akora, 2012; Mullis, Martin, Foy, & Drucker, 2012;

OECD, 2013; Scheltens et al., 2013). IRT models achievement by placing persons

and items on a common latent scale, and the probability of a correct response de-

pends on the distance between the ability θp of a person p and the difficulty βi

of an item i in a logistic function: P (ypi = 1|θp) =
exp(θp−βi)

1+exp(θp−βi)
. This basic IRT

model is the Rasch model (Rasch, 1960), which can be extended in multiple ways.

One extension is to make it an explanatory model rather than just a measure-

ment model, by including explaining factors for items’ difficulty and persons’ ability

(De Boeck & Wilson, 2004). These explanatory variables can be labeled in vari-

ous ways (e.g., as predictors), but we will refer to them as covariates. Whereas

in a Rasch model a separate difficulty parameter is estimated for each item, in an

item explanatory model (e.g., the linear logistic test model (LLTM); G. H. Fischer,

1973) item covariates that differ across items but not persons (such as number of

operations required in a math item) are used to model item difficulty. Similarly,
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person covariates that vary across persons but not items (such as gender) can be

used to explain ability level, and finally, person-by-item covariates that vary across

both persons and items (such as solution strategy use) are also possible. IRT can

therefore be used not only to optimally model achievement in large-scale assess-

ments, but also to gain more insight into the factors that affect achievement (e.g.,

see Hickendorff et al., 2009).

Collection of data on such factors is a part of many assessments, as these assess-

ments include questionnaires on topics such as children’s background and attitudes,

teachers’ characteristics and instructional practices, and the conditions in schools

(Mullis, Martin, Foy, & Akora, 2012; Mullis, Martin, Foy, & Drucker, 2012; OECD,

2013; Scheltens et al., 2013). These many different factors contribute to achieve-

ment jointly, and should be considered simultaneously so that effects are evaluated

while controlling for other covariates, and so that the importance of different co-

variates relative to each other can be determined. However, analyses with very high

numbers of covariates can be challenging, especially with models that are already

complex models such as explanatory IRT models.

Penalized regression

A common way to deal with the challenge of high numbers of covariates is through

so-called penalized regression. As described by Tibshirani (1996), normal regression

with ordinary least squares (OLS) estimates can be improved in terms of prediction

accuracy and interpretation by penalizing regression coefficients by shrinking them

or setting some of them to zero. This can be done in various ways. One way

is subset selection, in which a model with a subset of the covariates is selected

(through forward or backward selection). Though the reduced number of covariates

in this situation facilitates interpretation, small changes in the data can lead to

the selection of very different models, creating the risk of chance capitalization

and compromising prediction accuracy. A second way, ridge regression, is more

stable as regression coefficients are shrunk in a continuous process, but is also

more complex in terms of interpretation as none of the coefficients become zero.

Tibshirani (1996) proposed a third way, LASSO regression, which seeks to combine

stability and interpretability by shrinking some regression coefficients and setting

others to zero.

Both in LASSO and ridge regression, the sum of a specific function of the

regression parameters has to be smaller than or equal to a tuning parameter t.

With ridge regression, this is the sum of the squared coefficients,
∑
j

β2
j ≤ t, and
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with LASSO regression, the sum of the absolute coefficients,
∑
j

|βj | ≤ t. With this

restriction, the sum of the squared differences between the observed and predicted

y’s,
N∑
i=1

(yi−
∑
j

βjxij)
2, is minimized. Incorporating the restriction explicitly in the

latter equation, this can be alternatively formulated as
N∑
i=1

(yi−
∑
j

βjxij)
2 +λ

∑
j

β2
j

or
N∑
i=1

(yi−
∑
j

βjxij)
2+λ

∑
j

|βj |. This whole equation is minimized, which in the case

of a λ of 0 results in ordinary regression, but with increasing values of λ in a higher

and higher penalization for the sum of the coefficients (until finally all penalized

coefficients are zero). The different restrictions on the regression coefficients in

ridge and LASSO result in shrunken coefficients in both cases, but generally, only

with LASSO coefficients are set to zero (Tibshirani, 1996).

Recently, software has become available that allows for LASSO (but as far as

we know, not ridge) penalization for GLMMs (Groll & Tutz, 2014; Schelldorfer et

al., 2014). Schelldorfer et al. (2014) implemented GLMM LASSO in an R package

entitled glmmixedLASSO, and demonstrated the efficiency and accuracy of their

algorithm using various simulations with both relatively low (e.g., 10 and 50) and

very high numbers of covariates (e.g., 500 and 1500) in logistic and Poisson models.

They note that the mixed aspect of GLMMs causes a problem for LASSO, as the

shrinkage of regression coefficients can severely bias the estimation of the variance

components. They address this issue with a two-stage approach: first the LASSO

is used as a variable selection tool, and then in a second step an unpenalized model

with the selected variables is fitted using a maximum likelihood method, to ensure

accurate estimation of the variance components.

The availability of LASSO for GLMMs makes LASSO penalization for explana-

tory IRT models possible. IRT models were not developed as a special case of

GLMMs but in a separate line of research, with specialized IRT software such as

BILOG, PARSCALE and TESTFACT (Embretson & Reise, 2000). However, more

recently, De Boeck and Wilson (2004) have described how to formulate IRT models

as GLMMs and how to estimate them using general purpose GLMM software, en-

abling a wider application of this class of models. Therefore, LASSO penalization

for explanatory IRT models is now possible, and it can be used for the simultaneous

consideration of high numbers of covariates for achievement in large-scale assess-

ment data. In the present study, we apply this new combination of techniques for

this purpose. We use it to investigate the effects of various factors on mathematical

achievement in a large-scale assessment: children’s and teachers’ characteristics, as-



3.1. INTRODUCTION 37

pects of teachers’ instruction, and the solution strategies that children use to obtain

item answers. The existing literature on the effects of these factors on achievement

will now be succinctly described.

3.1.2 Covariates for mathematical achievement

Children’s characteristics and achievement

Various characteristics of children have been found to be related to mathematical

achievement. As for other achievement measures, children with a lower socioeco-

nomic status (SES) generally perform less well in mathematics than children with

a higher SES (e.g., Sirin, 2005). Children’s general intelligence and mathematical

achievement are also positively related (e.g., Primi, Eugénia Ferrão, & Almeida,

2010). While stereotypes still suggest that girls perform less well in mathematics

than boys, no general gender differences in mathematical achievement for children

are indicated (e.g., J. S. Hyde, Lindberg, Linn, Ellis, & Williams, 2008), though

in some countries such differences do exist (e.g., the Netherlands; Scheltens et al.,

2013).

Effects of teachers on student achievement

There is large amount of research on the effects that teachers and their instruction

methods can have on achievement, in which many different aspects of the teaching

process are considered. One obvious indicator of instruction is the formal curricu-

lum provided by the mathematics textbook that is used. However, as noted by

Remillard (2005), a distinction must be made between this formal curriculum and

what actually takes place in the classroom (i.e., the intended versus the enacted

curriculum). A review of the existing research on effective programs in mathe-

matics by Slavin and Lake (2008) demonstrated very limited effects of textbooks,

but much stronger effects of programs that targeted the instructional processes in

which teachers and children interact in the classroom. Positive effects were found

of interventions that concerned classroom management, keeping children engaged,

promoting cooperation among children, and supplementary tutoring. In another

review, the Royal Netherlands Academy of Arts and Sciences (2009) similarly con-

cludes that there is little support for meaningful effects of the formal curriculum

and more for effects of the actual teaching process.

However, these reviews for an important part concern studies with small sam-

ples, which could bias results as small studies with null or negative results may be
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likely to remain unpublished and therefore not included in reviews (Slavin, 2008).

Large-scale assessment data can, though correlational rather than experimental,

supplement these findings with its very large and representative samples. This

has been done for the investigation of the relation between teacher behaviors and

children’s achievement in what is called the process-product literature. Studies of

this kind have indeed shown that certain teaching practices affect children’s achieve-

ment, and have for example found a consistent positive effect of time spent on active

academic instruction rather than other activities (Hill et al., 2005). The related

notion of opportunity to learn (Carroll, 1963) posits that the assessed achievement

in a domain depends on the time students have spent in learning about that do-

main relative to the time they need to learn it. The process-product literature

can be contrasted with the educational production function literature, where not

processes but the resources of children, teachers and schools are related to student

outcomes. These can be resources such as children’s SES and teachers’ education

or their years of teaching experience. Generally, the results on the effects of such

factors have been mixed, indicating modest effects at best (Wenglinsky, 2002).

Considering these various findings, the literature seems to suggest that effects

of teachers on children’s mathematics achievement are more in the actual process

of how teachers interact with children, than in general characteristics of the teacher

or of the curriculum. This is in line with findings about children’s achievement in

general, for which a large synthesis of thousands of studies by Hattie (2003) shows

that teachers have the largest effects on children’s achievement through the teaching

behaviors of providing feedback and direct instruction, and through instructional

quality.

Solution strategies and achievement

Children’s solution strategies for mathematical items are also highly relevant to

achievement. These strategies vary from formal algorithms with a fixed notation

(such as long division), to informal approaches with a customized notation, to

approaches that only comprise mental calculation in the head (see Table 3.1 for ex-

amples). Increased attention for children’s own strategic explorations (rather than

for a prescribed set of algorithmic strategies) is an important part of the reform

in mathematics education that has taken place in various countries over the past

decades (Gravemeijer, 1997; Kilpatrick et al., 2001; Verschaffel, Luwel, Torbeyns,

& Van Dooren, 2007). As such, solution strategies are a crucial part of the instruc-

tional process, and they have received ample research attention (e.g., Barrouillet et
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Table 3.1: Examples for the multiplication and division strategy categories.

× ÷
digit-based algorithm 56

23×
168

1120+

1288

34/544\16

34

204

204

0

whole-number-based algorithm 56

23×
18

150

120

1000+

1288

544 : 34 =

340 - 10×
204

102 - 3×
102

102 - 3×+

0 16×
non-algorithmic strategies 1120 + 3 × 56

1120 + 168

1288

10 × 34 = 340

13 × 34 = 442

16 × 34 = 544

no written work 1288 544

al., 2008; Siegler & Lemaire, 1997; Torbeyns, Verschaffel, & Ghesquière, 2005).

In the present study, we therefore also devote attention to teachers’ specific

strategy instruction and to children’s strategy use. We focus on strategies for

answering multidigit multiplication and division items (items with larger or with

decimal numbers, such as 23× 56 or 31.2÷ 1.2), as strategies in this domain have

been shown to be highly relevant to achievement for the students in our sample

(Dutch sixth graders). In particular, Hickendorff et al. (2009) and Hickendorff

(2011) demonstrated a large accuracy advantage for multiplication and division

strategies that involved writing down calculations compared to strategies that did

not, and within these more accurate written strategies, a higher accuracy of the

traditional digit-based multiplication algorithm than of other written approaches

for multiplication. The accuracy advantage of written over non-written strategies

was larger for children with a lower mathematical ability than for children with a

higher ability, and girls wrote down calculations more often than boys.
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3.1.3 Present study

In the present study, we consider these various types of covariates in our demonstra-

tion of the new combination of the techniques of LASSO penalization and explana-

tory IRT. We apply the LASSO penalized IRT to a large-scale educational dataset

from the most recent (2011) national assessment of the mathematical ability of

children at the end of primary school (sixth graders) in the Netherlands, for which

no links between instruction and achievement have been investigated yet (Scheltens

et al., 2013). Data on item responses, gender, ability and SES were collected for

the children, and data on teacher characteristics and instructional practices were

collected from the children’s teachers.

Hypotheses

Based on our previous discussion of instructional effects on achievement, we expect

that covariates that concern instructional practices during mathematics lessons are

more strongly related to achievement than teacher characteristics or the mathe-

matics textbook that is used. Several particular instructional practices covered in

our covariates can be expected to have a positive relation to achievement. One is

that of time spent on group instruction and not other activities, given the positive

effect of active academic instruction from the process-product literature (Hill et al.,

2005). Another is the frequency of practices that engage children in instruction

(such as asking the class questions and letting children write out calculations on

the blackboard), given the positive effects of keeping children engaged found in the

review of effective programs in mathematics (Slavin & Lake, 2008). Another is

practices that involve extra attention for weaker students, through extra support

at or outside of school (and perhaps differentiation of instruction more broadly),

given the positive effects of supplementary tutoring (Slavin & Lake, 2008).

For strategies, we expect to find written strategies to be associated with higher

achievement than mental strategies, and possibly best achievement with the tra-

ditional digit-based algorithm (Hickendorff, 2011; Hickendorff et al., 2009). Ac-

cordingly, instructional practices focused on mental strategies may be negatively

related to achievement, while practices that focus on the digit-based algorithm,

or more generally, a single standardized approach rather than multiple approaches,

may be positively related to achievement. Since previous research indicates interac-

tions between strategy use and accuracy and children’s characteristics (e.g., smaller

accuracy difference between written and mental strategies for stronger students;

Hickendorff et al., 2009), these interactions were also included in the analyses.
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3.2 Method

3.2.1 Sample

Schools were selected for participation in the 2011 mathematics assessment accord-

ing to a random sampling procedure stratified by socioeconomic status, resulting

in a total number of 2548 participating sixth graders (11-12-year-olds) from 107

schools. The children were presented subsets of a large set of mathematical items

on a variety of topics, and subsets containing multidigit multiplication and division

items were presented to 1619 of the children. These children were in the classes of

107 teachers (one teacher per school), which means that an average of 15 children

per teacher participated. Of the 1619 children, 49 percent were boys and 51 percent

were girls. Fifty percent of the children had a relatively higher general scholastic

ability level, as they were to go to secondary school types after summer that would

prepare them for higher education, while the other 50 percent were to go to pre-

vocational secondary education. In terms of SES, most children (88 percent) had

at least one parent who completed at least two years of medium or higher-level

secondary school (SES not low), while 12 percent did not (SES low).

3.2.2 Materials

Multiplication and division items

The assessment contained thirteen multidigit multiplication items and eight multi-

digit division items in total. These items were administered to children according

to an incomplete design (see Hickendorff et al., 2009, for more details on such de-

signs): children were presented systematically varying subsets of either three or six

of these items. Table 3.2 provides information on the content of the items: the

numbers with which the multiplication or division operation had to be performed

and whether these numbers were presented in a realistic context describing a prob-

lem situation (such as determining how many bundles of 40 tulips can be made

from 2500 tulips) or not. The items were presented in booklets in which children

could also write down their calculations and solutions. The children were not given

any other paper to write on and were explicitly instructed that if they wanted to

write down calculations, they could use the (ample) blank space next to the items

in the booklet.

Following the assessment, these calculations were coded for strategy use. For

this, five different categories were distinguished. The first two categories are for
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algorithmic solutions: the more traditional digit-based algorithm and the newer

whole-number-based algorithm. The third category consists of written work with-

out an algorithmic notation, such as writing down only intermediate steps. Table

3.1 gives examples for multiplication and division strategies in these three cate-

gories. The two remaining categories are solutions with no written calculations,

and a small other category, consisting mostly of unanswered items.

The strategy coding was carried out by three undergraduate students and the

first and third author. Parts of the material (112 multiplication and 112 division

solutions) were coded by all coders to determine the interrater reliability. Cohen’s κ

(J. Cohen, 1960) was found to be .90 for the multiplication and .89 for the division

coding on average, which indicates high levels of interrater agreement.

Teacher questionnaire about classroom practice

The teachers of the participating children filled out a questionnaire about their

mathematics teaching. A total of 39 questions were selected from this question-

naire (see the Appendix) that were either relevant to the mathematics lessons in

general (teacher characteristics, mathematics textbook used, and general instruc-

tional practices during the mathematics lessons), or that specifically concerned

multiplication, division, or mental strategies (the latter because of the aforemen-

tioned large achievement difference between strategies with and without written

down calculations). Questions that were excluded specifically concerned mathemat-

ical domains other than multiplication or division (e.g., addition or percentages)

or concerned attitudes or opinions rather than concrete characteristics or instruc-

tional practices (e.g., opinion on class size rather than actual class size). Dummy

variables were made for questions with nominal response categories and scores were

standardized for the other questions (missing values were imputed with the variable

mode, because multiple imputation was not feasible given the complex LASSO IRT

analyses).

3.2.3 Statistical analysis

The R package glmmixedLASSO (Schelldorfer et al., 2014) was used to conduct the

LASSO penalized explanatory IRT analysis. As described by De Boeck and Wilson

(2004), the explanatory IRT model was specified by using a binomial model with

the solution accuracy (incorrect or correct) as the dependent variable, and a ran-

dom person intercept for the latent ability variable and fixed item effects for the
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Table 3.2: The content of the thirteen multidigit multiplication items and eight

multidigit division items in the assessment and the percentage of correct solutions.

item context N %

9 × 48 = 432 yes 368 76

8 × 194 = 1552 yes 355 72

6 × 192 = 1152 no 352 70

35 × 29 = 1015 yes 353 69

6 × 14.95 = 89.70 yes 359 66

1.5 × 1.80 = 2.70 yes 353 65

35 × 29 = 1015 no 352 64

23 × 56 = 1288 yes 358 58

209 × 76 = 15884 no 344 54

24 × 37.50 = 900 no 352 47

0.18 × 750 = 135 no 356 36

9.8 × 7.2 = 70.56 no 352 26

3340 × 5.50 = 18370 yes 359 21

total multiplication 4613 56

544 ÷ 34 = 16 yes 368 56

47.25 ÷ 7 = 6.75 yes 352 47

1575 ÷ 14 = 112.50 no 355 41

1470 ÷ 12 = 122.50 yes 350 40

2500 ÷ 40 = 62 yes 359 32

31.2 ÷ 1.2 = 26 no 369 30

6496 ÷ 14 = 464 yes 354 29

11585 ÷ 14 = 827.5 yes 345 26

total division 2852 38

Note: The items in italics are slightly modified parallel versions of items that have

not yet been released for publication by Cito because they may be used in subsequent

assessments.
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item easiness parameters. The person covariates that were added were children’s

gender (boy or girl), general scholastic ability level (lower or higher) and SES (not

low or low), and the questions from the teacher questionnaire. The person-by-item

covariate that was added was that for strategy use on the item (with dummy vari-

ables for the aforementioned multiplication and division strategy categories). In

addition, interactions between strategy use and the three student characteristics

(gender, ability and SES) were added. The penalization was not imposed on all

covariates: the fixed item effects were specified as unpenalized, so the IRT part of

the model remained intact regardless of the degree of penalization. The children’s

characteristics (gender, general scholastic ability level and SES) were also unpe-

nalized, so that these were always controlled for in evaluating the effects of the

instruction and strategies.

The final element of the model to be specified is the degree of penalization,

which is determined by λ (as discussed in the introduction). We did this using the

approach taken by Schelldorfer et al. (2014), the authors of the glmmixedLASSO

package: we used the Bayesian Information Criterion (BIC) to select the model

that provided the best balance between model parsimony and fit to the data. The

BIC is calculated by taking the log-likelihood (LL) of the observed data under

the model and imposing a penalty for the number of parameters (k) in the model,

weighed by the logarithm of the number of cases (N) (individuals, in our case):

−2LL + log(N) × k (and asymptotically, the BIC is equivalent to k-fold cross-

validation with some optimal k; Shao, 1997). The lower the BIC, the better the

trade-off between model fit and complexity, so the model with the lowest BIC was

selected.

As recommended by Schelldorfer et al. (2014), we then reran the model with

the selected covariates with the R package lme4 (Bates & Maechler, 2010), for an

unbiased estimation of the random effects. In this model, a random intercept was

also added for the teachers to account for the nesting of children within teachers (see

Doran, Bates, Bliese, & Dowling, 2007), which is not yet possible in glmmixedLASSO.

This model was used for final interpretation of the covariate effects.

Expressed mathematically, the explanatory model for the probability of a correct

response with J person covariates j (which can be both at the child and teacher

level) for child p with teacher t (denoted Zptj with regression parameter ζj), H

person-by-item covariates h for child p of teacher t and item i (denoted Wptih with

regression parameter δih), and I item dummy variables Xi with easiness parameter

βi, is then:
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Table 3.3: Use and (observed and estimated) accuracy of the multiplication and

division strategies.

observed estimated P (correct)

use (%) correct (%) × ÷
× ÷ × ÷ boys girls

digit-based algorithm 37 16 68 61 .76 .61 .63

number-based algorithm 3 24 68 63 .75 .65 .64

non-algorithmic strategies 24 10 59 50 .62 .51 .45

no written work 28 35 51 22 .50 .22 .16

other 8 15 2 2 .05 .05 .07

P (ypti = 1|Zpt1...ZptJ ,Wpti1...WptiH , X1...XI) =
exp(η)

1 + exp(η)
(3.1)

with

η = ΣJj=1ζjZptj + ΣHh=1δihWptih + ΣIi=1βiXi + εp + εt (3.2)

3.3 Results

3.3.1 Descriptives

Overall, 56 percent of the multiplication items was solved correctly (varying be-

tween 21 percent correct for the item 3340×5.50 and 76 percent for 9×48), and 39

percent of the division items (varying between 26 percent correct for 11585÷14 and

56 percent for 544÷34) (see Table 3.2). Multiplication items were most often solved

using the digit-based algorithm, which was also (together with the whole-number-

based algorithm) the most accurate strategy with 68 percent of correct solutions

(see Table 3.3 for strategy descriptives). Solutions without written work were also

frequent (and relatively inaccurate, with 51 percent correct solutions), as were non-

algorithmic written strategies (59 percent correct). Division items were most often

solved without written work, an approach that was very inaccurate (22 percent

correct). Application of the whole-number-based algorithm was also frequent, fol-

lowed by application of the digit-based algorithm, and both these strategies were

relatively accurate (63 and 61 percent correct respectively).
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3.3.2 Covariate selection using penalized regression

The LASSO IRT model with penalization on the teacher and strategy covariates

was estimated with different settings of λ. All penalized coefficients were shrunk

to zero for λ ≥ 240, so models with all (integer) λs from 0 (no penalization) to

240 (all penalized covariates dropped from the model) were estimated. Figure 3.1

shows the shrinking of penalized regression coefficients over this range, with each

line representing one coefficient. The optimal amount of penalization indicated

by the BICs (also see Figure 3.1) was found to be at λ = 35. The 18 penalized

covariates with non-zero regression coefficients at this λ are the questions from the

teacher questionnaire marked with asterisks in the Appendix and the multiplication

and division solution strategy use, and the interaction between division strategy use

and student gender.

3.3.3 Effects in the final model

The results of running an explanatory IRT model with the unpenalized and the

selected covariates are given in Table 3.4 (the selected questions from the teacher

questionnaires are numbered as in the Appendix). Of the unpenalized covariates,

performance was found to be significantly related to children’s general scholastic

ability: higher ability children had a significantly higher probability of a correct

response (P = .58) than lower ability children (P = .33), z = 13.1, p < .001.

Gender did not have a significant effect, z = 1.1, p = .29, nor did SES, z = −1.6,

p = .10.

Of the selected teacher covariates, the strongest positive effect was of the amount

of time spent on group instruction in mathematics lessons (P = .40 for 1 SD below

the mean and P = .50 for 1 SD above the mean). The strongest negative effect was

of the amount of support at home (P = .49 for 1 SD below the mean and P = .41

for 1 SD above the mean).

There were strong effects of the employed solution strategy on the probabil-

ity of a correct response, both for multiplication and division (see Table 3.3 for the

estimated probability per strategy). The accuracy of the whole-number-based algo-

rithms was comparable to that of the digit-based algorithms, while non-algorithmic

strategies, strategies without any written work and other strategies (mostly leav-

ing items unanswered) were less accurate (with the smallest accuracy difference

for non-algorithmic strategies and the largest for other strategies). There was also

an interaction between division strategy use and student gender: most notably, the
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Figure 3.1: Penalized regression coefficients and BICs for the different settings of

λ in the LASSO penalized IRT model (dashed vertical line at optimal λ = 35).
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Table 3.4: Effects of the student characteristics and selected teacher covariates.

covariate
levels

estimate (S.E.)
reference target

student char.

gender boy girl 0.10 (0.09)

ability lower higher 1.05 (0.08)

SES not low low -0.20 (0.12)

teacher char.

1. age 0.04 (0.06)

2. gender male female -0.16 (0.10)

5. years grade 6 -0.10 (0.05)

general instr.

12. time group instr. 0.18 (0.06)

13. time indiv. instr. -0.08 (0.05)

15. ask class questions 0.01 (0.05)

16. blackboard solutions -0.05 (0.05)

18. discuss errors -0.01 (0.05)

instr. differ.

19. lesson diff. -0.09 (0.05)

22. support at home -0.17 (0.06)

23. external support -0.09 (0.05)

strategy instr.

25. division alg. 0.05 (0.05)

30. strat. multidigit ÷ one multiple -0.11 (0.10)

32. ment. mul. div. -0.07 (0.07)

35. ment. smart strat. -0.12 (0.08)

strategy use

multiplication digit.

number. -0.03 (0.24)

non-alg. -0.63 (0.11)

no writ. -1.14 (0.11)

other -4.07 (0.27)

division digit.

number. 0.19 (0.21)

non-alg. -0.40 (0.26)

no writ. -1.69 (0.18)

other -3.43 (0.33)

gender×division digit.

number. -0.14 (0.21)

non-alg. -0.34 (0.31)

no writ. -0.51 (0.21)

other 0.33 (0.41)

difference in accuracy between the digit-based algorithm and strategies without any

written work was larger for girls (P = .63 vs. P = .16) than for boys (P = .61 vs.

P = .22).
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3.4 Discussion

In the present study, we introduced LASSO penalization for explanatory IRT mod-

els. This was made possible by recently released software that allows for LASSO

penalization of GLMMs (Groll & Tutz, 2014; Schelldorfer et al., 2014), as IRT

models can be conceptualized as GLMMs (De Boeck & Wilson, 2004). We argued

that this new combination of techniques is especially useful for simultaneous con-

sideration of the effects of the high numbers of covariates for students’ achievement

that are collected in large-scale educational assessments. This was illustrated with

an application of LASSO penalized explanatory IRT to data from the most recent

national large-scale assessment of mathematics at the end of primary school in the

Netherlands. The various steps involved in applying the technique were explicated

and educationally relevant results were discussed.

3.4.1 Substantive conclusions

A first result that was found is that the LASSO did not select formal curriculum co-

variates as important covariates for students’ achievement: at the optimal degree of

penalization, the coefficients for the textbook covariate were shrunk to zero. This

is in accordance with findings of Slavin and Lake (2008) and the Royal Nether-

lands Academy of Arts and Sciences (2009) of very limited effects of the formal

curriculum. A positive effect of the amount of time the teacher spends on group

instruction was found, concordant with the positive effect of time spent on active

academic instruction rather than other activities in the process-product literature

(Hill et al., 2005). Though we expected practices that involve extra attention for

weaker students to be beneficial because of the positive effects of supplementary

tutoring (Royal Netherlands Academy of Arts and Sciences, 2009; Slavin & Lake,

2008), the amount of support that students received at home according to their

teachers was negatively related to achievement. This could suggest that home sup-

port affects achievement negatively, but could also indicate that weaker students

receive more home support. However, the teacher reported on the amount of home

support only at the class level, and a proper investigation of this effect should be

conducted with support measures at the student level.

Children’s use of mathematical strategies was also found to play an important

role. Strategies with written work were found to be much more accurate than those

without written work, as was also found by Hickendorff et al. (2009) and Hickendorff

(2011). Within written strategies, these authors found an accuracy advantage of the
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digit-based algorithm over other written approaches, and we refined this finding by

dividing the other written approaches into the whole-number-based-algorithm and

non-algorithmic written strategies. This showed the accuracy of the whole-number-

based algorithms to be comparable to that of the digit-based-algorithms, while the

non-algorithmic approaches were less accurate. An interaction between gender and

division strategy use was also found: strategies without written work were found

to be relatively more inaccurate for girls than for boys. Fortunately, girls appear

to use strategies without written work less frequently than boys (Fagginger Auer,

Hickendorff, Van Putten, Béguin, & Heiser, in press; Hickendorff et al., 2009). It

should be noted, however, that the accuracy estimations of the strategies could be

biased by the ability of the students using the strategies and the difficulty of the

items the strategies are applied to (bias by selection effects; Siegler & Lemaire,

1997), though a statistical correction for such bias is carried out with the inclusion

of student ability and item easiness parameters in the model.

3.4.2 Limitations and future directions

The present study also has several limitations, some of which provide directions for

future investigation and development.

Mediation student and teacher effects by strategies

A first limitation is substantive in nature. We investigated the effects of student

and teacher covariates on student achievement, but some effects may have been

obscured because they occurred through strategy use. For example, we found no

significant effect of gender per se, but boys do make more use of the inaccurate strat-

egy of answering without any written work (Fagginger Auer et al., in press). As for

teacher effects, the sociocultural context is an important determinant of strategy

use (Verschaffel et al., 2009), and teacher covariates are significantly related to stu-

dents’ strategy use (Fagginger Auer et al., in press). Given the large differences in

students’ achievement with different strategies, this means that teacher covariates

can exert effects on achievement through strategy use, and these effects may go un-

detected when strategy use is also in the model. Though hard to incorporate in our

current LASSO penalized explanatory IRT analysis, a more thorough investigation

of this chain of effects could be done with a mediation analysis. However, it should

also be noted that the impact of this issue may be limited, as teachers appear to

exert relatively little influence over the strategy that has the largest negative con-
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sequences for achievement - answering without any written work (Fagginger Auer

et al., in press).

LASSO for correlated covariates

A second limitation is that when LASSO is used for covariates that are (highly)

correlated, the selection of covariates can be to some extent random: when there

is a near perfect correlation between two covariates, selection of either covariate

results in nearly equal prediction of the dependent variable. This limitation is

true for LASSO in general and not particular to our LASSO penalized explanatory

IRT. However, in their successful simulation tests of the glmmixedLASSO procedure,

Schelldorfer et al. (2014) included correlations among the covariates of up to .20,

and the vast majority (90 percent) of correlations among our teacher covariates

fell within that range. Less than one percent of the correlations was large (≥ .50),

none of which concerned covariates that were found to be significant. Therefore,

our results should not be affected too much by correlations among the covariates.

More random effects

A third limitation is that only one random effect could be specified for the LASSO

penalization. While this is enough for a basic IRT model, in an educational context

(with students nested in classes in schools) a random effect for the teacher or

school level is also called for. In addition, in some contexts it makes more sense to

model the item effects as random than as fixed - for example when items can be

considered random draws from a domain, such as the items in this study from the

domain of multidigit multiplication and division (De Boeck, 2008). A larger number

of possible random effects (e.g., as in the package lme4; Bates & Maechler, 2010)

would therefore be an important improvement for LASSO penalized explanatory

IRT.

Cross-validation

A fourth limitation is the way in which the optimal degree of LASSO penalization

was determined. We did this using the BIC (as in Schelldorfer et al., 2014), but a

more common approach is to use cross-validation (e.g., it is a standard option the R

package penalized; Goeman, 2010). With cross-validation, overfitting is prevented

through fitting the model on one part of the data, and evaluating the prediction

error of the model on another part of the data (Colby & Bair, 2013). Implement-
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ing cross-validation in LASSO GLMM packages would provide an important tool

for selecting the amount of penalization in LASSO penalized IRT. One problem

with implementing this, however, is that the LASSO penalized IRT is already very

computationally intensive with the estimation of just one model for each value of

λ, but this should be resolved with ongoing improvements in computational power.

Another problem is that cross-validation for GLMMs is not straightforward, but

several approaches have been proposed to deal with this issue (Colby & Bair, 2013).

Other IRT models

A final limitation is that not all IRT models can be specified as GLMMs (De

Boeck & Wilson, 2004), and therefore that our currently outlined procedure for

LASSO penalized explanatory IRT does not apply to all types of IRT models.

For example, models that cannot be specified as univariate GLMMs are the popu-

lar two-parameter (2PL) model (with item discrimination parameters) and models

for polytomous response data. However, there is still ample flexibility within the

current Rasch (1PL) framework, as any combination of person, item, and person-

by-item covariates that is of interest can be made (e.g., we did not include item

covariates, but LLTM-like models that include many potential sources of item diffi-

culty are possible). Therefore, with our current demonstration of LASSO penalized

explanatory IRT, we aimed to introduce a new combination of techniques that is

versatile and that can lead to insightful results regarding the factors that influence

achievement.

3.A Teacher survey questions

(when the same response options apply to multiple questions, those options are

given under the last question they apply to for brevity; and the questions selected

with the LASSO are marked with asterisks)

3.A.1 Teacher characteristics

1. ?What is your age? (. . . years)

2. ?What is your gender? (male / female)

3. From which teacher education did you graduate? (PABO (after 1985) / PA,

kweekschool or kindergarten training (before 1985) / other)

4. In which grade do you have most teaching experience? (sixth grade / other grade)
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5. ?At the end of this school year, how many successive years have you been teaching in

the sixth grade? (. . . years)

6. Have you received extra training in the past five years? (yes / no)

7. If so, in what areas have you received extra training? (optimizing the learning

opportunities of students with different backgrounds / evaluating the level of progress

of a class / school self evaluation / subject-specific / other)

3.A.2 Textbook

8. Which textbook do you use (predominantly) for mathematics instruction? (Pluspunt

/ Wereld in Getallen / Rekenrijk / Alles Telt / other)

3.A.3 General instruction

9. How many students are in your class? (. . . students)

10. How much time do you spend on mathematics lessons in an average week? (. . . hours)

11. How many minutes do you spend on multiplication and division in your mathematics

lessons in a week? (<30 minutes / 30-60 minutes / 60-90 minutes / 90-120 minutes

/ >120 minutes)

12. ?How many minutes do you on average spend on group instruction in a mathematics

lesson?

13. ?How many minutes do you on average spend on individual instruction in a

mathematics lesson?

14. How many minutes do your students on average spend on individual work in a

mathematics lesson? (<10 minutes / 10-20 minutes / 20-30 minutes / 30-40 minutes

/ >40 minutes)

15. ?How often do you ask the class questions during instruction?

16. ?How often do you let students write out calculations on the blackboard?

17. How often do you ask students how they found an answer they gave?

18. ?How often do you discuss frequent errors with the class? (less than once a month /

once a month / twice a month / once every two weeks / at least once a week)

3.A.4 Instruction differentiation

19. ?To what extent do you differentiate in your mathematics teaching by level or pace?

(generally no differentiation / differentiation in practice materials but not instruction

/ differentiation in instruction and materials for different groups / individual

instruction and selection of materials)
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20. How much extra learning time do weak students get compared to average students?

(. . . minutes per week)

21. Are there possibilities for extra individual support in mathematics for students in

your school from a remedial teacher or a mathematics specialist? (no / yes, a

remedial teacher / yes, by a care coordinator or mathematics specialist / yes, a

remedial teacher and a care coordinator or mathematics specialist)

22. ?How intensive is the support of students at home, by parents or caretakers? (no

support / little support / medium support / frequent support / permanent support)

23. ?How many students receive external support, for example in homework classes?

(. . . students)

3.A.5 Strategy instruction

24. Which multiplication algorithm reflects the practice in your class most closely?

25. ?Which division algorithm reflects the practice in your class most closely?

(whole-number-based / both / digit-based)

26. How often do you devote attention to mental calculation and estimation in your

mathematics lessons? (. . . times a week)

27. Do your students use a single or multiple strategies for mental multiplication?

28. Do your students use a single or multiple strategies for mental division?

29. Do your students use a single or multiple strategies for multidigit multiplication?

30. ?Do your students use a single or multiple strategies for multidigit division? (one

strategy / multiple strategies)

31. How much time do you devote to mental calculation and estimation per week?

(. . . minutes)

32. ?How often do you devote attention to basic skills in multiplication and division in

mental calculation and estimation?

33. How often do you devote attention to roughly estimating the solution of a problem?

34. How often do you devote attention to applying approximations, estimations and

rounding off? (never / less than once a month / once a month / twice a month / at

least once a week)

35. ?How often do you devote attention to finding and using smart number-dependent

strategies in mental calculation and estimation?

36. How often do you devote attention to letting students use multiple solution strategies

for a single problem type in mental calculation and estimation? (never / less than

once a month / once a month / twice a month / at least once a week)
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37. Are calculators or computer software used during mathematics lessons? (only

calculators / both calculators and computer software / only computer software /

neither)

38. Do you instruct your students in the multiplication function of the calculator? (yes /

no)

39. Do you instruct your students in the division function of the calculator? (yes / no)




