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Multilevel latent class analysis for large-scale educational assessment

data: Exploring the relation between the curriculum and students’

mathematical strategies

Abstract

A first application of multilevel latent class analysis (MLCA) to educa-

tional large-scale assessment data is demonstrated. This statistical technique

addresses several of the challenges that assessment data offers. Importantly,

MLCA allows modeling of the often ignored teacher effects and of the joint

influence of teacher and student variables. Using data from the 2011 assess-

ment of Dutch primary schools’ mathematics, this study explores the relation

between the curriculum as reported by 107 teachers and the strategy choices

of their 1619 students, while controlling for student characteristics. Consider-

able teacher effects are demonstrated, as well as significant relations between

the intended as well as enacted curriculum and students’ strategy use. Im-

plications of these results for both more theoretical and practical educational

research are discussed, as are several issues in applying MLCA and possibili-

ties for applying MLCA to different types of educational data.

2.1 Introduction

Latent class analysis (LCA) is a powerful tool for classifying individuals into groups

based on their responses on a set of nominal variables (Hagenaars & McCutcheon,

This chapter has been published as: Fagginger Auer, M. F., Hickendorff, M., Van Putten, C.
M., Béguin, A. A., & Heiser, W. J. (2016). Multilevel latent class analysis for large-scale educa-
tional assessment data: Exploring the relation between the curriculum and students’ mathematical
strategies. Applied Measurement in Education.

The research was made possible by the Dutch National Institute for Educational Measurement
Cito, who made the assessment data available to us. We would also like to thank Jeroen Vermunt,
Anita van der Kooij and Zsuzsa Bakk for their statistical advice.
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12 CHAPTER 2. MLCA FOR LARGE-SCALE ASSESSMENTS

2002; McCutcheon, 1987). LC models have a categorical latent (unobserved) vari-

able, and every class or category of this latent variable has class-specific probabilities

of responses in the categories of the different observed response variables. As such,

each latent class has a specific typical response pattern where some responses have

a higher and others have a lower probability, and different response profiles of indi-

viduals may be discerned based on this. For example, for a test covering language,

mathematics and science, one latent class of students may have a high probability

of correct responses for mathematics and science items but a lower probability for

language items, while for an other latent class the probability of a correct response

is high for language items and lower for mathematics and science items. These two

classes then reflect different performance profiles.

Relatively recently, the technique of LCA has been extended to accommodate

an additional hierarchical level (Vermunt, 2003): not only the nesting of variables

within individuals is included in the model, but also the nesting of individuals

in some higher level group (e.g., students within school classes). This multilevel

LCA (MLCA) is beginning to be applied more and more in various areas, such as

psychiatry (Derks, Boks, & Vermunt, 2012), political science (Morselli & Passini,

2012), and education (Hsieh & Yang, 2012; Mutz & Daniel, 2011; Vermunt, 2003).

In the current investigation, we describe a first application of MLCA to educational

large-scale assessment data.

2.1.1 MLCA for educational large-scale assessment data

MLCA can address several of the challenges of large-scale assessment data. A

first challenge that many large-scale assessments offer is that they employ so-called

incomplete designs: the complete item set is too large to be administered in full to

students, and is therefore decomposed into smaller subsets. Relating these subsets

to each other is difficult using traditional techniques, but is possible using a latent

variable to which all items are related (Embretson & Reise, 2000; Hickendorff et al.,

2009), such as the latent class variable in LCA. No imputation of missing responses

on the items that were not administered is necessary, as the likelihood function

of the analysis is only based on cases’ observed responses (Vermunt & Magidson,

2005). A second challenge is the complexity of modeling cognitive phenomena that

are not measured on an interval but on a nominal level (such as solution strategy

use, item correctness or error types). Nominal response variables are naturally

accommodated by (M)LCA.

The third challenge that MLCA addresses is the inherent multilevel structure of
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educational data (items nested within students, who are nested within teachers and

schools). Previous applications of LCA (and also of other techniques) to students’

responses on cognitive tests have generally ignored the teacher (or school) level in

their modeling (e.g., Geiser, Lehman, & Eid, 2010; Hickendorff et al., 2009, 2010;

Lee Webb, Cohen, & Schwanenflugel, 2008; Yang, Shaftel, Glasnapp, & Poggio,

2005). Yet, the context of learning is vital to its outcomes. Zumbo et al. (2015)

recently proposed an ecological model of item responding where responses are in-

fluenced by contextual variables at various levels: characteristics of the test, of the

individual, of the teacher and school, of the family and ecology outside of school,

and of the larger community. Based on this model, the authors demonstrate eco-

logically moderated differential item functioning (DIF) where different factors in

this broader context play a role.

The consideration of a broader context fits in very well with MLCA, as its mul-

tilevel aspect makes it especially suited for the incorporation of contextual factors

in models of students’ item responses. Predictors at different hierarchical levels

can be included in the model, a feature that is naturally called for in modeling the

effects of both student and teacher characteristics on students’ item solving.

In the current investigation, we therefore demonstrate the use of MLCA for

educational large-scale assessment data, by applying it to data from the most recent

large-scale assessment of Dutch sixth graders’ mathematics. We investigate the

relation between the curriculum on the one hand and students’ use of solution

strategies on the other (while controlling for student characteristics), and describe

the technique of MLCA and some of the challenges in its application in more detail.

2.1.2 Curriculum effects on students’ mathematical

achievement and strategies

Recent reviews of research on the effects of mathematics teaching have concluded

that the influence of the intended curriculum (as it is formally laid down in cur-

riculum guides and textbooks; Remillard, 2005) on achievement is very small, while

changes in the enacted curriculum of daily teaching practices have a much larger

influence (Slavin & Lake, 2008). These findings are based mainly on small experi-

ments, and can be supplemented using large-scale assessment data, which does not

allow for causal inference but does offer much larger samples and representative

descriptions of the natural variation in daily teaching practices (Slavin, 2008).

Previous research has indicated that this variation in instruction has substan-

tial effects on students’ achievement growth (Nye, Konstantopoulos, & Hedges,
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2004; Rowan, Correnti, & Miller, 2002). In identifying the factors that determine

teachers’ influence on students’ mathematical achievement, a line of research called

’education production function research’ has focused on the effects of available re-

sources. Generally, routinely collected information on teachers’ resources (such as

their education level) has failed to show consistent, sizable effects (e.g., Jepsen,

2005; Nye et al., 2004; Wenglinsky, 2002), while more in-depth teacher resource

measurements (such as knowledge for mathematical teaching) show more consis-

tent positive effects (Hill, Rowan, & Ball, 2005; Wayne & Youngs, 2003). The more

process-focused line of ’process-product research’ has most notably found positive

effects of active teaching, which involves teachers’ direct instruction of students in

formats such as lecturing, leading discussions, and interaction during individual

work (as described by Hill et al., 2005, and Rowan et al., 2002), as contrasted

with frequent independent work of students and working on nonacademic subjects.

Also, positive effects have been found of reform-oriented classroom practice, which

involves activities such as exploring possible methods to solve a mathematical prob-

lem (Cohen & Hill, 2000).

These results all concern curriculum effects on students’ mathematical achieve-

ment, but the mathematical strategies of students that are the focus of this inves-

tigation are also of great interest. The various reforms in mathematics education

that have taken place in a number of countries in the past decades (Kilpatrick,

Swafford, & Findell, 2001) share a view on strategy use that moves away from

product-focused algorithmic approaches towards process-focused approaches with

more space for students’ own strategic explorations (Gravemeijer, 1997). Investigat-

ing which instructional practices elicit particular patterns of strategy choices may

shed light on how reforms actually affect students’ behavior. On a more theoretical

level, the literature on children’s choices between and performance with mathemati-

cal strategies has so far focused on the effects of children’s individual characteristics

and of the nature of the mathematical problems that are offered (e.g., Hickendorff

et al., 2010; Imbo & Vandierendonck, 2008; Lemaire & Lecacheur, 2011; Lemaire

& Siegler, 1995), and may therefore be extended by also exploring the effects of

instruction.

2.1.3 Multidigit multiplication and division strategies in the

Netherlands

An illustration of the connection between mathematics reforms and changes in

strategy choices is provided by previous research on multidigit multiplication and
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Table 2.1: Examples of the digit-based algorithms, whole-number-based algorithms,

and non-algorithmic strategies applied to the multiplication problem 23 × 56 and

the division problem 544÷ 34.

strategy multiplication division

digit-based algorithm 56

23×
168

1120+

1288

34/544\16

34

204

204

0

whole-number-based algorithm 56

23×
18

150

120

1000+

1288

544 : 34 =

340 - 10×
204

102 - 3×
102

102 - 3×+

0 16×
non-algorithmic written strategies 1120 + 3 × 56

1120 + 168

1288

10 × 34 = 340

13 × 34 = 442

16 × 34 = 544

division strategies in the Dutch situation (Hickendorff, 2011; J. Janssen et al., 2005).

Multidigit multiplication and division go beyond simple multiplication table facts

(such as 5×6 or 72÷8) and require operations on larger numbers or decimal numbers

(such as 56×23 or 544÷16). The Dutch mathematics education reform introduced

new algorithmic ’whole-number-based’ approaches for these multidigit operations,

where every step towards obtaining the solution requires students to understand the

magnitude of the numbers they are working with (Treffers, 1987a). This approach

deviates from the more traditional ’digit-based’ algorithms, where the numbers

are broken up into digits that can be handled without an appreciation of their

magnitude in the whole number (see Table 2.1 for examples of both algorithms).

In general, Dutch children’s learning trajectory consists of first learning the whole-

number-based multiplication and division algorithms, and later switching to the

digit-based algorithm for multiplication (and in some schools, also for division;

Buijs, 2008).

Using data from large-scale assessments, it was demonstrated that with grow-

ing adoption of reform-based mathematics textbooks in Dutch elementary schools,

many primary school students abandoned the digit-based algorithms for multidigit
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multiplication and division and switched to answering without writing down any

calculations (mental calculation; Hickendorff et al., 2010) instead. These mental

calculation strategies were found to be much less accurate than written strategies

(digit-based or other) (Hickendorff, 2011; Hickendorff et al., 2009), and were used

more by boys, students with low mathematical proficiency, and lower SES students.

2.1.4 The present study

In the present study, MLCA is used to investigate the relation between both the

intended and enacted curriculum and the use of solution strategies for multidigit

multiplication and division items by 1619 Dutch sixth graders (11-12-year-olds).

The intended curriculum is operationalized as the mathematics textbook and the

enacted curriculum as the self-reports on mathematics teaching practices of the stu-

dents’ 107 teachers. The data are from the most recent (2011) large-scale national

assessment of the mathematical abilities of Dutch students at the end of primary

school (Scheltens et al., 2013).

Hypotheses

Based on previous research on Dutch students’ multiplication and division strategy

use by Hickendorff (2011), we expect to find a considerable group of students who

mostly answer without written calculations (with relatively many boys, students

with low mathematical proficiency, and lower SES students), one group where stu-

dents mostly use the digit-based algorithm, and one group where students mostly

use the whole-number-based algorithm or non-algorithmic approaches. Hickendorff

(2011) considered multiplication and division in isolation, but we consider them si-

multaneously and can therefore analyze the relation between individual differences

in strategy use on multiplication and division items. For example, there may be a

group of students who prefer the digit-based algorithm for multiplication and the

whole-number-based algorithm for division, matching the most common end points

of the respective learning trajectories.

The lack of research on the effects of the curriculum on strategy use makes

it hard to make strong predictions in that area, but a tentative generalization of

curriculum effects on achievement suggests that the effects of the enacted curricu-

lum might be greater than those of the intended curriculum - though this could be

countered by the fact that the mathematics textbooks which form the intended cur-

riculum are an important direct source of strategy instruction. As for the particular
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effects of the enacted curriculum, the previously discussed achievement literature

described positive effects of direct instruction rather than independent work, so

these activities might affect choices for more accurate (written) or less accurate

(mental) strategies. Differentiated instruction might also have such effects, espe-

cially because of the association between ability and strategy choices. Furthermore,

we expect effects of teachers’ strategy instruction in algorithms, mental calculation,

and strategy flexibility, because of the apparent direct connection to students’ strat-

egy use.

Issues in applying MLCA

The application of MLCA with predictors which is the focus of the present study

comes with several practical issues that require attention. The first is the speci-

fication of the multilevel effect in the model. The common parametric approach

specifies a normal distribution for group (in our case, teacher) deviations from the

overall parameter value, but this distributional assumption is strong and the inter-

pretation of such group effects is abstract. The nonparametric approach proposed

by Vermunt (2003) instead creates a latent class variable for the groups (in addition

to the latent class variable for the individuals), requiring less strong distributional

assumptions, making computations less intensive, and allowing for easier substan-

tive interpretation. Therefore, we will use the nonparametric approach.

The second issue is the inclusion of predictors in the model, as discussed by

Bolck, Croon, and Hagenaars (2004). In the so-called one-step approach, the mea-

surement part of the model (the part of the model without predictors) and the

structural part (the predictor part) are estimated simultaneously. While this leads

to unbiased effect estimates, the number of models that needs to be fitted and com-

pared can quickly become unfeasible (all combinations of lower level and higher

level latent class structures, combined with all predictor structures). In addition,

the structural part of the model may influence the measurement part: individuals’

class membership may be different with and without predictors. These problems do

not occur in the three-step approach, where the measurement model without any

predictors is fitted first, then individual class membership predictions are computed,

and finally these class membership predictions are treated as observed variables in

an analysis with the predictors. However, this approach treats class membership

as deterministic and leads to systematic underestimation of the effects of the pre-

dictors. This can be corrected by taking into account the misclassification in the

second step during the final third step (Asparouhov & Muthén, 2014). Therefore,
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we will use this corrected three-step approach.

The third issue is the selection of the best model. This is usually done based on

information criteria that consider model fit and complexity simultaneously, such as

the popular Aikaike en Bayesian Information Criterion (AIC and BIC). However,

these criteria penalize model complexity differently and therefore often identify

different models as optimal (Burnham & Anderson, 2004). The issue is further

complicated with the introduction of a multilevel effect, because the BIC penaliza-

tion depends on sample size, and it is then unclear whether to use the number of

individuals or groups for that (Jones, 2011). Lukočienė and Vermunt (2010) inves-

tigated this issue and demonstrate optimal performance of the group-based BIC,

and underestimation of complexity by the individual-based BIC and overestimation

by the AIC. In our analyses, model selection with all three criteria is compared.

2.2 Method

2.2.1 Sample

For our data from the most recent large-scale assessment of the mathematical abil-

ities of Dutch students, 107 schools from the entire country were selected according

to a random sampling procedure stratified by socioeconomic status. From a total

of 2548 participating sixth graders (11-12-year-olds) in those schools, 1619 students

from the classes of 107 teachers (one teacher per school, between 5 and 25 students

per school in most cases) solved multidigit multiplication and division problems

(because of the incomplete assessment design, not all students solved this type of

problems). Of the 1619 children, 49 percent were boys and 51 percent were girls.

Fifty percent of the children had a relatively higher general scholastic ability level,

as they were to go to secondary school types after summer that would prepare them

for higher education, while the other 50 percent were to go to vocational types of

secondary education. In terms of SES, most children (88 percent) had at least one

parent who completed at least two years of secondary school, while 12 percent did

not.

Different mathematics textbooks were used on which the children’s mathemat-

ics instruction was based. These textbooks are part of a textbook series that is

used for mathematics instruction throughout the various grades of primary school,

and are therefore not (solely) determined by the sixth grade teacher. All textbooks

in our sample could be considered reform-based, but they differ in instruction ele-

ments such as lesson structure, differentiation, and assessment. Textbooks from six
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Table 2.2: The content of the thirteen multidigit multiplication problems and eight

multidigit division problems in the assessment, and the strategy use frequency on

each item.

strategy use (percent)

problem context DA WA NA NW U O N

M01 9 × 48 = 432 yes 39 4 24 30 2 2 368

M02 23 × 56 = 1288 yes 45 6 21 17 5 6 358

M03 209 × 76 = 15884 no 49 5 24 12 7 3 344

M04 35 × 29 = 1015 yes 40 4 28 23 3 2 353

M05 35 × 29 = 1015 no 43 4 23 24 3 3 352

M06 24 × 37.50 = 900 no 39 2 31 18 6 5 352

M07 9.8 × 7.2 = 70.56 no 40 3 17 27 10 3 352

M08 8 × 194 = 1552 yes 43 3 25 27 2 1 355

M09 6 × 192 = 1152 no 33 2 33 23 4 5 352

M10 1.5 × 1.80 = 2.70 yes 1 0 13 79 3 4 353

M11 0.18 × 750 = 135 no 41 2 16 27 12 2 356

M12 6 × 14.95 = 89.70 yes 32 1 29 34 2 2 359

M13 3340 × 5.50 = 18370 yes 41 3 23 18 10 5 359

D01 544 ÷ 34 = 16 yes 18 32 5 27 10 7 368

D02 31.2 ÷ 1.2 = 26 no 9 10 6 50 18 7 369

D03 11585 ÷ 14 = 827.5 yes 17 30 4 32 10 7 345

D04 1470 ÷ 12 = 122.50 yes 19 25 11 31 12 3 350

D05 1575 ÷ 14 = 112.50 no 17 30 16 22 12 3 355

D06 47.25 ÷ 7 = 6.75 yes 17 25 10 33 10 5 352

D07 6496 ÷ 14 = 464 yes 16 24 5 36 12 7 354

D08 2500 ÷ 40 = 62 yes 12 15 11 45 6 11 359

total multiplication 37 3 24 28 5 3 4613

total division 16 24 9 35 11 6 2852

Note: Parallel versions of problems not yet released for publication are in ital-

ics. DA=digit-based algorithm, WA=whole-number-based algorithm, NA=non-

algorithmic written, NW=no written work, U=unanswered, O=other

different methods were used in our sample: Pluspunt (PP; used by 37% percent of

the teachers in our sample); Wereld in Getallen (WiG; 30%); Rekenrijk (RR; 14%);

Alles Telt (AT; 11%); Wis en Reken (6%); and Talrijk (2%).
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2.2.2 Materials

Multiplication and division problems

The assessment contained thirteen multidigit multiplication and eight division prob-

lems, of which students solved systematically varying subsets of three or six prob-

lems according to an incomplete design (see Hickendorff et al., 2009, for more de-

tails on such designs). The problems are given in Table 2.2, including whether the

problem to be solved was provided in a realistic context (such as determining how

many bundles of 40 tulips can be made from 2500 tulips). Students were allowed

to write down their calculations in the ample blank space in their test booklets,

and these calculations were coded for strategy use. Six categories were discerned:

the aforementioned digit-based and whole-number-based algorithms, written work

without an algorithmic notation (such as only writing down intermediate steps), no

written work, unanswered problems, and other (unclear) solutions (see Table 2.1

for examples). The coding was carried out by the first and third author and three

undergraduate students, and interrater agreement was high (Cohen’s κ’s (J. Cohen,

1960) of .90 for the multiplication and .89 for the division coding on average, based

on 112 multiplication and 112 division solutions categorized by all).

Teacher survey about classroom practice

The teachers of the participating students filled out a survey about their mathemat-

ics teaching practices. The 14 questions in the survey that concerned multiplication,

division, and mental calculation strategy instruction were used to create four scores

(by taking the mean of the standardized responses to the questions), as were the 10

questions that concerned instruction formats, and the 10 questions that concerned

instruction differentiation. The Appendix gives the questions that were used to

create each score.

2.2.3 Multilevel latent class analysis

We estimated latent classes of students reflecting particular strategy choice pro-

files using MLCA, which classifies respondents in latent classes that are each char-

acterized by a particular pattern of response probabilities for a set of problems

(Goodman, 1974; Hagenaars & McCutcheon, 2002). For our case, let Yijk denote

the strategy choice of student i of teacher j for item k. A particular strategy choice

on item k is denoted by sk. The latent class variable is denoted by Xij , a particular

latent class by t, and the number of latent classes by T . The full vector of strategy
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choices of a student is denoted by Yij and a possible strategy choice pattern by s.

This makes the model:

P (Yij = s) =

T∑
t=1

P (Xij = t)

K∏
k=1

P (Yijk = sk|Xij = t). (2.1)

In this model, the general probability of a particular pattern of strategy choices,

P (Yij = s), is decomposed into T class-dependent probabilities,
K∏
k=1

P (Yijk =

sk|Xij = t). These class-dependent probabilities are each weighted by the proba-

bility of being in that latent class, P (Xij = t). The interpretation of the nature of

the latent classes is based on the class-dependent probabilities of strategy choices

on each of the problems, P (Yijk = sk|Xij = t). The model is extended with a

multilevel component by adding a latent teacher class variable, on which students’

probability of being in each latent student class (P (Xij = t)) is dependent. Predic-

tors at the teacher and student level that influence class probabilities can also be

added, as described by Vermunt (2003, 2005). For such a multilevel model with one

teacher-level predictor Z1j and one student-level predictor Z2ij , let Wj denote the

latent teacher class that that teacher j is in, with m denoting a particular teacher

class. The model then becomes:

P (Xij = t|Wj = m) =
exp(γtm + γ1tZ1j + γ2tZ2ij)
T∑
r=1

exp(γrm + γ1rZ1j + γ2rZ2ij)

. (2.2)

See Henry and Muthén (2010) for graphical representations of this type of mod-

els.

The MLCA was conducted with version 5.0 of the Latent GOLD program

(Vermunt & Magidson, 2013). All thirteen multiplication and eight division strat-

egy choice variables were entered as observed response variables and a teacher

identifier variable as the grouping variable for the multilevel effect. Models with

latent structures with up to eight latent student classes and eleven latent teacher

classes were fitted, and the model with the optimal structure was selected using the

AIC and BICs. Using the three-step approach (Bakk, Tekle, & Vermunt, 2013),

this measurement model was then fixed and curriculum and student predictors

were added to the model in groups, because of the high number of predictors. The

successive models were compared using information criteria and the best model

was investigated in more detail by evaluating the statistical significance of each of

the predictors with a Wald test. The practical significance of the predictors was
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evaluated based on the magnitude of the changes in the probability of class mem-

berships associated with different levels of the predictors. Effect coding was used

for all predictors.

2.3 Results

2.3.1 The latent class measurement model

For the LC measurement models fitted on the strategy data, both the AIC and BICs

(see Table 2.3) show that adding a multilevel structure greatly improves model fit,

signifying a considerable within-teacher dependency of observations. While the AIC

identifies a very complex model as optimal (ten latent teacher classes and six latent

student classes), the BICs are in near agreement on a more simple model (four

latent teacher classes and three or four latent student classes). Of these simpler

models, the model with four student classes has a much clearer interpretation and

is also favored by the group-based BIC that is optimal according to Lukočienė and

Vermunt (2010). This model has an entropy R2 of .87 for the latent student classes

and .82 for the teacher classes, which both indicate a high level of classification

certainty (Dias & Vermunt, 2006).

We also estimated measurement models with a parametric rather than a non-

parametric teacher effect (see the bottom part of Table 2.3). The parametric model

with the lowest group-based BIC also had four student classes, and the class-specific

probabilities of these classes were very similar to those of the classes in the non-

parametric model (indicating very similar nature of the classes), but the classes

differed considerably in size in the two approaches (by 13, 4, 25, and 15 percentage

points respectively). Latent teacher classes cannot be compared as there are none in

the parametric approach, which also prevents later easy substantive interpretation

of the multilevel effect. The fit of the best parametric model was not better than

that of the best non-parametric model according to the information criteria, and

the entropy R2 for the student classes of the parametric model was lower (.80).

Latent student classes

Overall, students solved multiplication problems most often with the digit-based

algorithm, while solutions without written work were most frequent for division (see

Table 2.2 for frequencies for each strategy). The class-dependent probabilities of

choosing each strategy in each of the four latent student classes are given in Table
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Table 2.3: Fit statistics for the non-parametric and parametric multilevel latent

class models.

latent classes BIC

teachers students LL parameters AIC individual group

1 (no multi- 2 -9801 209 20020 21146 20587

level effect) 3 -9388 314 19403 21096 20242

4 -9165 419 19169 21427 20289

5 -8964 524 18976 21800 20376

2 2 -9717 211 19856 20993 20419

3 -9253 317 19141 20849 19988

4 -8912 423 18670 20950 19800

5 -8713 529 18484 21335 19898

3 2 -9707 213 19839 20987 20408

3 -9207 320 19054 20779 19910

4 -8819 427 18491 20792 19632

5 -8614 534 18295 21173 19723

4 2 -9705 215 19840 20999 20415

3 -9178 323 19002 20743 19865

4 -8790 431 18441 20764 19593

5 -8585 539 18248 21153 19688

5 2 -9705 217 19844 21013 21965

3 -9220 326 19092 20849 19963

4 -8866 435 18257 21189 19711

5 -8584 544 18234 21167 19689

parametric 2 -9708 210 19836 20968 20397

3 -9205 316 19042 20745 19887

4 -8861 422 18566 20841 19694

5 -8661 528 18377 21223 19789

Note: The lowest BICs are bold. The lowest AIC was for 10 teacher and 6 student

classes.
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Table 2.4: The mean probabilities of choosing each of the six strategies for the

multiplication and division problems for each latent class.

strategy probability (proportion students in class)

NW class (.31) MA class (.29) NA class (.21) DA class (.20)

strategy × ÷ × ÷ × ÷ × ÷
DA .06 .01 .71 .01 .04 .03 .68 .70

WA .01 .02 .02 .54 .14 .37 .02 .01

NA .25 .03 .15 .10 .68 .21 .16 .03

NW .52 .65 .10 .24 .08 .22 .10 .17

U .13 .23 .02 .06 .03 .08 .03 .03

O .04 .05 .02 .05 .04 .10 .02 .06

Note: The highest probability per operation within a class is in boldface. MA=mixed

algorithm, see Table 2.2 for other abbreviations.

2.4, which shows that every latent student class is dominated by high probabilities

of choosing one or two strategies.

The largest student class (with a class probability of .31, i.e., containing 31

percent of students) is characterized by a high probability of answering without

written work for every item, and also a considerable probability of leaving prob-

lems unanswered (especially division problems). Because of this, we label this class

the ’no written work class’. The second largest student class (probability of .29)

is characterized by a high probability of solving multiplication problems with the

digit-based algorithm and a high probability of solving division problems with the

number-based algorithm (the ’mixed algorithm class’). The third largest student

class (probability of .21) is characterized by a high probability of solving multi-

plication problems with non-algorithmic written strategies and a mixture of the

number algorithm, non-algorithmic written strategies and no written work for the

division problems (the ’non-algorithmic written class’). The smallest student class

(probability of .20) is characterized by a high probability of solving both multiplica-

tion and division problems with digit-based algorithms (the ’digit-based algorithm

class’.)

Latent teacher classes

The latent student class probabilities (or sizes) from Table 2.4 are the mean for all

the teachers. Within the four latent teacher classes, the student class probabilities

differ greatly. As can be seen in Table 2.5, the probability of the digit algorithm
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Table 2.5: The latent student class probabilities in each of the four latent teacher

classes.

latent student class probability

latent teacher class NW MA NA DA

1 (P = .39) .27 .61 .11 .00

2 (P = .30) .38 .08 .51 .02

3 (P = .19) .23 .00 .03 .74

4 (P = .12) .34 .22 .09 .36

total .31 .29 .21 .20

Note: The highest latent student class probability within a latent teacher class is in

boldface. See Table 2.2 and 2.4 for abbreviations.

class varies most over teacher classes (between .00 and .74), followed by that of

the mixed algorithm class (between .00 and .61), and that of the non-algorithmic

written class (between .03 and .51). The probability of the no written work class

varies relatively little over teacher classes (between .23 and .38). The largest teacher

class (size of .39) is characterized by a high probability of the mixed algorithm class,

the second largest teacher class (.30) by a high probability of the non-algorithmic

written strategy class, the third largest teacher class (.19) by a high probability of

the digit-based algorithm class, and the smallest teacher class (.12) by substantial

probabilities for all classes except the non-algorithmic written class.

These insightful results on the magnitude and nature of teachers’ effects illus-

trate one of the advantages of the nonparametric specification of the multilevel

effect.

2.3.2 Adding predictors to the latent class model

Next, the structural part was added to the model: predictors for students’ prob-

ability of being in a particular latent strategy class. First the relation between

the intended and enacted curriculum(textbook and instruction) was investigated,

using a MANOVA with textbook as the between-group independent variable and

the twelve teachers’ instruction scores as the dependent variables. No significant

relation was found, Wilks′ λ = .57, F (48, 322) = 1.05, p = .39. Next, student

characteristics and intended and enacted curriculum predictors were added to the

model in a stepwise fashion. As can be seen in Table 2.6, according to both BICs

model fit is best with only the student characteristics as predictors, whereas the

AIC identifies the more complex model with all predictors as optimal. The group-
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Table 2.6: Fit statistics for the latent class models with successively added predic-

tors.

BIC

predictors added to the model LL pars AIC individual group

none -1651 15 3333 3414 3373

student char. gender, ability, SES -1569 24 3186 3315 3250

intended curr. textbook -1550 36 3172 3366 3268

enacted curr. strategy instruction -1517 48 3129 3388 3257

instruction formats -1500 60 3120 3443 3280

instruction diff. -1479 72 3103 3491 3295

Note: The lowest information criteria are in boldface.

based BIC is nearly as low for the model with the textbook and strategy instruction

predictors added as for the model with only student predictors (3257 vs. 3250).

Since curriculum effects were our primary interest, we chose to proceed with this

more extensive model.

The statistical significance of the covariates in this model was evaluated with

Wald tests, and the magnitude of the effects is illustrated by comparisons of the

probabilities of membership of the latent student classes for individuals at the dif-

ferent levels of the predictors (see Table 2.7). These probabilities were calculated

with all of the other selected predictors in the model set at their mean. For the

interval-level instruction variables, probabilities are compared for students of teach-

ers who score one standard deviation above the mean of that variable and students

of teachers who score one standard deviation below the mean. Probabilities for the

different levels of a predictor that differ by .10 or more are discussed.

Student characteristics

Student gender had a significant effect on class probabilities, W 2 = 107.1, p < .001,

with the probability of being in the no written work class being .33 higher for boys

than for girls. The probability of being in the mixed algorithm class was .17 higher

for girls than for boys. Students’ general scholastic ability also had a significant

effect, W 2 = 53.0, p < .001, with the probability of being in the no written work

class being.25 higher for students with a lower compared to a higher ability, and

the probability of being in the non-algorithmic class .12 lower. SES also had a

significant effect, W 2 = 8.4, p = .04, but class probability differences between

children with a different SES were all smaller than .10.
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Intended curriculum

Mathematics textbook had a significant effect, W 2 = 123.6, p < .001. Students

being instructed from the Pluspunt (PP) textbook had a probability for the non-

algorithmic class that is .14 higher than than that of the total, and a .13 lower

probability for the digit-based algorithm class. Students with the Rekenrijk (RR)

textbook had a .16 lower probability for the digit algorithm class. Students with

the Alles Telt (AT) textbook had a .16 lower probability of being in the mixed

algorithm class and a .13 higher probability of being in the non-algorithmic written

class. Students with other textbooks had .14 lower probability of being in the mixed

algorithm class and a .14 higher probability of being in the digit algorithm class.

Enacted curriculum

All strategy instruction scores had significant effects. When comparing students

whose teacher scored one standard deviation above the mean in their focus on

the digit-based algorithm for multiplication to students whose teacher scored one

standard deviation below the mean (and who were thus more focused on the

whole-number-based algorithm for multiplication), their probability of being in the

mixed algorithm class was .25 higher, while their probability of being in the non-

algorithmic written class was .14 lower, W 2 = 36.6, p < .001. Students whose

teacher scored above rather than below the mean for digit-based division had a .26

higher probability of being in the digit algorithm class, and a .18 and .12 lower

probability of being in the mixed algorithm and non-algorithmic written class re-

spectively, W 2 = 100.9, p < .001 . Students whose teacher scored above rather

than below the mean in their attention to various aspects of mental calculation

had a .18 higher probability of being in the mixed algorithm class and a .15 lower

probability of being in the digit algorithm class, W 2 = 49.0, p < .001. Students

whose teachers scored above rather than below the mean for the use of multiple

strategies per operation type, had a .35 lower probability of being in the mixed

algorithm class and a .18 higher probability of being in the no written work class,

W 2 = 54.0, p < .001.

2.4 Discussion

The present study demonstrated a first application of MLCA to educational large-

scale assessment data. We argued that this technique is especially suitable for the

challenges of this type of data and for evaluating contextual effects on problem
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solving (Zumbo et al., 2015). We demonstrated the added value of adequately

modeling the multilevel structure inherent to educational data: though teacher

effects are often ignored by researchers, we found them to be considerable. Model

fit was much better with than without a multilevel structure for the teacher level,

and latent teacher groups were found with large differences in students’ probability

of having a certain strategy choice profile. Ignoring teacher effects therefore seems

to result in the omission of a crucial part of the model, and thereby in an incomplete

representation of reality. The present study also demonstrated the relevance of the

possibility of including predictors at different hierarchical levels in the model by

simultaneously controlling for student characteristics and investigating curriculum

effects, which led to interesting results relevant to both educational practice and

theory.

2.4.1 Substantive conclusions

The results with regard to strategy choice profiles (or latent classes) that were found

were largely in line with our hypotheses: there were profiles dominated by answering

without written work, by the digit-based algorithm, by non-algorithmic approaches

and the whole-number-based algorithm, and by both algorithms depending on the

operation (multiplication or division). Students’ probability of being in each of these

classes was found to depend strongly on the teacher, because it varied considerably

between latent teacher groups. The range was largest for the algorithmic classes

and smallest for the no written work class. Therefore, teachers appear to have

large effects effects on students’ strategy use, but these effects unfortunately seem

smallest for the inaccurate mental strategies without written work.

Intended and enacted curriculum predictors were added, controlling for student

characteristics. Consistent with previous research findings, boys and students who

were going to a lower secondary school level were more likely to answer without writ-

ten work. The intended curriculum and enacted curriculum were not significantly

related to each other, and were both found to be related to strategy choices, despite

the suggestion from the literature of limited effects of the intended curriculum. As

for the intended curriculum, the textbooks mostly appeared to be related to stu-

dents’ probability of using the different algorithmic and non-algorithmic written

strategies.

As for the enacted curriculum, its relation to strategy use appeared somewhat

stronger than that of the intended curriculum. Teaching digit-based algorithms

was associated with an accordingly higher use of these strategies, while teaching
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whole-number-based algorithms appeared to have the unexpected side-effect of a

higher use of non-algorithmic written strategies. Devoting more attention to men-

tal strategies was associated with higher probability of the mixed algorithm class

and lower probability of the digit-based algorithm class. Teaching more than one

strategy per operation was associated with lower probability of the mixed algorithm

class and higher probability of the no written work class. Instruction formats did

not have significant effects on strategy use, thereby not confirming our expectations

regarding the effects of direct instruction versus independent work. Instruction dif-

ferentiation also did not have a significant effect.

2.4.2 Limitations

A limitation of the present study could be the sample size, which is both relevant

for the estimation of the complex MLCA models and the generalizability of the

results. As for the sample size required for the estimation of MLCA models (or

LCA models more generally), there are no general rules of thumb. Our sample

of 1619 students with 107 teachers seems to be of a similar order of magnitude

as those in the examples used by Vermunt (2003) in his introduction of MLCA,

where applications were featured with 886 employees in 41 teams, 2156 students

in 97 schools, and 3584 respondents in 32 countries. A more precise estimate for a

specific situation can be made using Monte Carlo simulations, where factors such

as the number and type of problems, the separation of the classes and their relative

sizes (approximately equal or not) and the amount of missing data play a role

(Muthén & Muthén, 2002; Nylund, Asparouhov, & Muthén, 2007). Nylund et al.

(2007) found particular problems with information criteria when a small sample

(N = 200) was combined with unequal class sizes, as small classes then contain

very few subjects. This is not the case in our sample.

Another limitation is the correlational nature of the large-scale assessment data.

We of course had no influence on the intended or enacted curriculum, and therefore

the causal nature of the found relations between curriculum and strategy use is

uncertain and requires further (experimental) investigation. The present study does

provide a starting point for such follow-up research. It should also be noted that

the intended and enacted curriculum do not reflect (direct) effects of the teachers

in our sample to the same extent, as the enacted curriculum is in the hands of the

teacher, whereas the intended curriculum (the textbook) is determined on a school

level.
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2.4.3 Implications

The results suggest several implications (though the limited sample size should

be noted). They suggest that models for strategy choices such as the Adaptive

Strategy Choice Model (ASCM; Lemaire & Siegler, 1995) may need to be extended

to include factors beyond the student and the problem (in line with suggestions by

Verschaffel et al., 2009), and the same goes for other investigations of mathematical

strategy use that have overlooked instructional factors so far (e.g., Hickendorff et

al., 2010; Imbo & Vandierendonck, 2008; Lemaire & Lecacheur, 2011). The results

also suggest that the investigations of curriculum effects on achievement may so far

have omitted an important mediator: curriculum affects strategy use, and there are

strong performance differences between strategies (Hickendorff, 2011; Hickendorff

et al., 2009), so the curriculum may (in part) affect achievement through its effect

on strategy use.

For educational reforms, our results suggest that although positive effects on

achievement have been found of instructional practices congruent with reform ideas

(Cohen & Hill, 2000), reform-oriented instruction may also have unexpected side-

effects: teaching that is more oriented towards the whole-number-based algorithms

introduced by the Dutch mathematics education reform, is not only associated with

more use of those algorithms, but also with more use of non-algorithmic strategies

that have previously been shown to be less accurate than algorithms (Hickendorff

et al., 2009). Finally, our finding that the effects of teachers and the curriculum on

the proportion of students who mainly use mental strategies were small suggests

that it might be challenging to reduce students’ use of mental strategies through

means of regular instruction, and that perhaps special interventions are necessary

to promote their use of more accurate written strategies.

2.4.4 Conclusion

We would like to conclude by noting that our application of MLCA is relevant to

applications of this technique to educational data more generally, and that several

generalizations can be thought of: applications to other domains (e.g., strategies

in spelling or reading), other types of nominal response data (e.g., error types),

and also educational data from other sources than large-scale assessments (e.g.,

educational intervention studies with a large enough sample). With this article, we

hope to have increased the attractiveness and accessibility of MLCA for educational

researchers.




