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1

General introduction

This dissertation concerns the mathematical strategies and performance of students

and what factors affect these different aspects of problem solving. Before delving

into the research on this point, I would like to invite you to take a moment to solve

the multiplication and division problem presented below:

23× 56 544÷ 34

Were you successful in obtaining the answers? For the multiplication problem,

you should have found the answer 1288, and for the division problem the answer

16. And how did you go about obtaining the answers? Did you diligently take up

paper and pencil and perform the algorithms you were taught in primary school,

or did you perhaps take a less formal approach? Given that you are reading a

dissertation, you probably enjoyed quite some years of education or even have a

PhD, which means that according to Goodnow (1976), you are especially likely to

solve mathematical problems using a mental approach without any external aids.

In taking such an approach, you would not be alone. The line of research that

gave rise to this dissertation, comes from the observation of simultaneously declining

performance in multiplication and division at the end of Dutch primary school and

increasing amounts of problems that are answered without any calculations that

are written down (Fagginger Auer, Hickendorff, & Van Putten, 2013; Hickendorff,

Heiser, Van Putten, & Verhelst, 2009; Van Putten, 2005). In this dissertation,

factors that affect students’ solution strategy use and performance are therefore

investigated, as well as the statistical techniques that may be used to conduct

such an investigation. This introduction provides a framework for this research by

discussing solution strategies from a cognitive psychology point of view, and the

1



2 CHAPTER 1. GENERAL INTRODUCTION

place of strategies in developments in mathematics education. The introduction is

concluded with an outline of how the different chapters of this dissertation each

contribute to the larger theme.

1.1 Solution strategies in cognitive psychology

Learning and problem solving are characterized by the use of a variety of strategies

at every developmental stage (Siegler, 2007). This is already evident in children as

young as infants: for example, some infants who are in their first weeks of inde-

pendent walking use a stepping strategy, while others use a twisting strategy, and

still others a falling strategy (Snapp-Childs & Corbetta, 2009). First graders who

are asked to spell words use strategies as varied as retrieval, sounding out, drawing

analogies, relying on rules, and visual checking (Rittle-Johnson & Siegler, 1999).

Older children who solve transitive reasoning problems differ in their use of deduc-

tive and visual solution strategies (Sijtsma & Verweij, 1999). Solution strategies

of children and adults have been a topic of continued investigation for cognitive

tasks concerning diverse topics, such as mental rotation and transformation (e.g.,

Arendasy, Sommer, Hergovich, & Feldhammer, 2011), counting (e.g., Blöte, Van

Otterloo, Stevenson, & Veenman, 2004), class inclusion (e.g., Siegler & Svetina,

2006), analogical reasoning (e.g., Tunteler, Pronk, & Resing, 2008), and digital

gaming (e.g., Ott & Pozzi, 2012).

A popular topic in solution strategy research is strategy use for arithmetic prob-

lems. Many studies have been conducted on elementary addition, subtraction, mul-

tiplication and division (e.g. Barrouillet & Lépine, 2005; Barrouillet, Mignon, &

Thevenot, 2008; Beishuizen, 1993; Bjorklund, Hubertz, & Reubens, 2004; Campbell

& Fugelsang, 2001; Campbell & Xue, 2001; Carr & Davis, 2001; Davis & Carr, 2002;

Geary, Hoard, Byrd-Craven, & DeSoto, 2004; Imbo & Vandierendonck, 2007; Laski

et al., 2013; Mulligan & Mitchelmore, 1997; Van der Ven, Boom, Kroesbergen, &

Leseman, 2012), which concern operations in the number domain up to 100 that

are taught in the lower grades of primary school. However, while this elementary

arithmetic is the subject of a rich body of literature that has identified the strategies

that are used and described their characteristics, there is less research on strategy

use by higher grade students on more complex arithmetic problems (though there

is some; e.g., Hickendorff, 2013; Van Putten, Van den Brom-Snijders, & Beishuizen,

2005; Selter, 2001; Torbeyns, Ghesquière, & Verschaffel, 2009). This more advanced

arithmetic is called multidigit arithmetic, as it involves larger numbers and decimal
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numbers.

When solving mathematical problems, especially more complex multidigit prob-

lems, there is an array of possible solution strategies. Lemaire and Siegler (1995)

proposed a general framework for charting the strategy use for a given domain, con-

sisting of four aspects of strategic competence. The first aspect of the framework

is the strategy repertoire, or in other words, which strategies are used. The second

aspect concerns the frequency with which each of the strategies in that repertoire

is chosen for use. The third aspect is strategy efficiency, which describes the per-

formance of each strategy. The fourth aspect is the adaptivity of the choices that

are made between strategies, which can be judged based on task, subject and con-

text variables. Combining these different factors, Verschaffel, Luwel, Torbeyns, and

Van Dooren (2009) defined the choice for a strategy as adaptive when the chosen

strategy is most appropriate for a particular problem for a particular individual, in

a particular sociocultural context.

An important aspect of adaptivity is the degree to which choices between strate-

gies are adapted to the relative performance of those strategies. This performance

entails both accuracy and speed, which can be considered simultaneously by defin-

ing the best performing strategy as the one that results in the correct solution the

fastest (Luwel, Onghena, Torbeyns, Schillemans, & Verschaffel, 2009; Torbeyns, De

Smedt, Ghesquière, & Verschaffel, 2009; Kerkman & Siegler, 1997). Performance

depends on both the person using the strategy and on the problem the strategy

is applied to. In the Adaptive Strategy Choice Model (ASCM; Siegler & Ship-

ley, 1995), a strategy is selected for a problem using individual strategy accuracy

and speed information for both problems in general and problems with the spe-

cific features of the problem at hand. Another important aspect of adaptivity is

the degree to which strategy choices are adapted to the context in which they are

made (Verschaffel et al., 2009). Both the direct task context (e.g., demands on

working memory, time restrictions, or the characteristics of preceding items) and

the sociocultural context can be considered. Examples of influential aspects of the

sociocultural context are whether mental strategies are valued over using external

aids, whether speed or accuracy is more important, whether using conventional pro-

cedures or original approaches is preferred, and whether asking for help in problem

solving is desirable (Ellis, 1997).
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1.2 Solution strategies in mathematics education

An essential element of the context for mathematical solution strategies is of course

the educational system. The educational systems for mathematics underwent quite

some changes in the second half of the twentieth century in many Western coun-

tries, among which the Netherlands, where the research for this dissertation took

place (see descriptions by Klein, 2003, and the Royal Netherlands Academy of Arts

and Sciences, 2009). Already prior to this period, there was discontent with mathe-

matics education and its outcomes, but no real changes occurred until the U.S.S.R.

launched the first space satellite Sputnik in 1957. This caused a shock in the West-

ern world and an international conference was held in Royaumont in 1959, with the

aim of reforming education to advance economical and technological development.

Here, a radically different approach to mathematics education was envisioned with

the name of ’New Math’, which de-emphasized algorithms in light of the uprise of

computers and calculators, and focused on set theory and logic instead.

New Math was adopted in various European countries and in the U.S., and

mathematics education followed its own course of development after that in each

country. For example, in the U.S. (Klein, 2003), New Math’s scant attention for

basic skills and applications and its sometimes overly formal and abstract nature

led to criticisms, and by the early 1970s, New Math programs were discontinued

there. During the 1980s, progressivist changes to the curriculum were proposed in

the U.S., that revolved around student-centered, discovery-based learning through

’real world’ problem solving. Increased attention was prescribed for topics such

as cooperative work, mental computation and use of calculators, whereas direct

teacher instruction, algorithms (long division in particular) and paper-and-pencil

computations were to receive decreased attention (National Council of Teachers of

Mathematics, 1989). In the 1990s, these changes were implemented throughout

the country, but they also met with resistance from parents and mathematicians,

resulting in so-called ’math wars’.

In the Netherlands (Royal Netherlands Academy of Arts and Sciences, 2009),

a committee was set to work in 1961 to translate the ideas of New Math into

changes of the curriculum, which resulted in publications on a new curriculum in

the late 1970s. Though New Math was the starting point for the committee, the

end result was something quite different: basic skills remained important (though

algorithms to a lesser extent), and clever strategies, estimation, measurement, and

geometry were added to the curriculum (Freudenthal, 1973). This new curriculum

was labeled ’realistic mathematics’, because contexts familiar to students were used
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that should make mathematics meaningful. Five core principles were established

for realistic mathematics (Treffers, 1987b): students construct their own knowledge,

making students’ own strategies the starting point; models are used to advance

from informal to more formal approaches; students reflect on their own approaches;

students learn from their own and others’ approaches through interaction; and

students are stimulated find connections between what they have learned. By 2002,

there were only realistic mathematics textbooks on the market for primary schools.

Following a talk that heavily criticized realistic mathematics at a mathematics

education conference in 2007 (Van de Craats, 2008), a national debate started.

1.2.1 Strategy use and performance

As can be seen from this short history description, solution strategies were an

important aspect of the reforms of mathematics education. Algorithms were de-

emphasized in the light of technological advances, while attention for students’

problem solving strategies increased. In realistic mathematics, the informal strate-

gies that students invent themselves are used as the building blocks for formaliza-

tion. Problems do not have a single standardized approach; instead, the multitude

of possible strategies is emphasized through interaction, and students have to make

choices between strategies when they solve a problem. This makes the adaptivity

of strategy choices highly important: selecting the best performing strategy is vital

to performance.

That students do not always choose the optimal strategy from the array at their

disposal is illustrated by Dutch students’ strategy choices for multidigit multipli-

cation and division problems. These are problems with larger or decimal numbers

(e.g., 23 × 56 or 31.2 ÷ 1.2), that were typically solved with algorithms in tra-

ditional mathematics education. Given the challenging nature of the numbers in

these problems, often a variety of informal strategies can be applied (e.g., Fagginger

Auer & Scheltens, 2012), and realistic mathematics also introduced new standard-

ized approaches (Treffers, 1987a). Whereas in the traditional algorithms numbers

are broken up into digits that can be handled without an appreciation of their

magnitude in the whole number, in these new approaches numbers are considered

as a whole. The different approaches have therefore been labeled digit-based and

whole-number-based respectively (Van den Heuvel-Panhuizen, Robitzsch, Treffers,

& Köller, 2009; see Table 1.1 for examples). For multiplication, the digit-based

algorithm is usually learned after the whole-number-based approach, but for quite

some time this was not the case for division (Buijs, 2008; J. Janssen, Van der Schoot,
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Table 1.1: Examples of written work for different multiplication and division strate-

gies for the problems 23× 56 and 544÷ 34.

digit-based

algorithm

whole-number-

based algorithm

non-algorithmic

written

no written

work

23× 56 56 56 1120 + 3× 56 1288

23 × 23 × 1120 + 168

168 18 1288

1120 + 150

1288 120

1000 +

1288

544÷ 34 34/544\16 544 : 34 = 10 × 34 = 340 16

34 340 - 10× 15 × 34 = 510

204 204 16 × 34 = 544

204 102 - 3×
0 102

102 - 3×+

0 16×

& Hemker, 2005). The newest editions of some textbooks do include digit-based

division.

The development of students’ strategy use in a context of changing mathematics

education can be followed through national large-scale assessments, of which five

have taken place in the Netherlands since the late 1980s (Wijnstra, 1988; Bokhove,

Van der Schoot, & Eggen, 1996; J. Janssen, Van der Schoot, Hemker, & Verhelst,

1999; J. Janssen et al., 2005; Scheltens, Hemker, & Vermeulen, 2013). Students

write down their calculations in the assessment booklets, and from this written work

strategy use can be inferred (Fagginger Auer, Hickendorff, & Van Putten, 2015).

Analyses of strategy use (Fagginger Auer et al., 2013; Hickendorff et al., 2009)

showed that from 1997 to 2004, the use of digit-based algorithms for multidigit

multiplication and division decreased considerably, as might be expected given the

changes in the curriculum (see Figure 1.1 for strategy use in the assessments of 1997,

2004 and 2011; Table 1.1 provides an example of each of the strategies). However,

use of the whole-number-based algorithms and more informal written approaches

did not increase accordingly; instead, there was a large increase in the number of

problems that were solved without any calculations that were written down. From

2004 to 2011 strategy use remained largely stable, with high levels of answering
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without written work. Follow-up research indicated that this answering without

any written work should be interpreted as mental calculation (Hickendorff, Van

Putten, Verhelst, & Heiser, 2010).

The accuracy of mental strategies was found to be much lower than that of writ-

ten strategies (see percentage correct rates in Figure 1.1). The increasing choices for

an inaccurate strategy rather than for the much more accurate alternatives suggest

that the important educational goal of adaptivity is not attained for a substantial

part of the students. Especially lower ability students and boys appear at risk in

this respect (Hickendorff et al., 2009). The changing strategy choices also appear to

have had considerable consequences for performance: the overall performance level

for the domain of multidigit multiplication and division decreased sharply from

1997 to 2004 (J. Janssen et al., 2005), and remained at that lower level in 2011

(Scheltens et al., 2013).

This also raises the question of how instruction affects students’ performance. As

illustrated by the endings of the paragraphs on the history of mathematics reforms

in the U.S. and the Netherlands, this is a topic that inspires (sometimes heated)

debate. An important contribution to the discussion can be made by empirical

investigations that evaluate the actual effects that the prescribed curriculum and

different instructional practices have on performance. The existing research on the

effects of the curriculum (usually operationalized as the mathematics textbook that

is used) finds those effects to be very limited, though studies often lack proper ex-

perimental design (Royal Netherlands Academy of Arts and Sciences, 2009; Slavin

& Lake, 2008). However, there are considerable effects of teachers’ actual instruc-

tional behaviors (e.g., positive effects of cooperative learning methods and programs

targeting teachers’ skills in classroom management, motivation, and effective time

use; Slavin & Lake, 2008).

1.3 Contents of this dissertation

This dissertation is an investigation of factors that affect students’ mathemati-

cal strategy use and performance. Both instruction (in daily practice and special

interventions) and students’ and teachers’ characteristics are considered. This in-

vestigation is carried out in the context of multidigit multiplication and division at

the end of Dutch primary school. This context has special theoretical and practical

relevance: theoretical because it is an interesting case of developments in strategy

use in reform mathematics; and practical because it constitutes a direct problem in
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Figure 1.1: Use of the different multiplication and division strategies on the as-

sessments in 1997, 2004 and 2011 (percentage correct per strategy in 2011 is given

between brackets). The lines are broken because the items that are compared for

1997 and 2004 are different from those compared for 2004 and 2011.
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students’ mathematical performance that needs to be addressed. Two approaches

to investigating relations with strategy use and performance are taken: secondary

analyses of large-scale assessment data and experiments in primary schools.

The first approach is taken in Chapter 2 and Chapter 3, which contain secondary

analyses of data from the most recent Dutch large-scale assessment of mathemati-

cal ability at the end of primary school. Many of the students participating in this

assessment solved several multidigit multiplication and division problems, and the

accuracy and strategy use for each of these solutions was coded based on students’

written work. The students’ teachers filled out a questionnaire on their mathemat-

ics instruction: both on general aspects of this instruction and on multiplication and

division instruction more specifically. These teacher reports, and student character-

istics, were related to students’ strategy use (Chapter 2) and to their performance

(Chapter 3).

Investigating these relations posed several statistical challenges: how to deal

with the large number of items from the teacher questionnaire; the multilevel

structure of the data (item responses within students, who are within classes);

the nominal measurement level of the strategies; and the incomplete assessment

design, in which students do not complete all items but only systematically varying

subsets of items. These issues are addressed with latent variable models. In Chap-

ter 2, a first application of multilevel latent class analysis (MLCA) to large-scale

assessment data is demonstrated, and several issues in applying this technique are

discussed. In Chapter 3, a new combination of LASSO penalization and explana-

tory item response theory (IRT) is introduced to deal with the large number of

teacher variables.

The second approach to investigating the relation between instruction and strat-

egy use and performance is taken in Chapter 4 and Chapter 5, which describe

experiments in primary schools. Whereas analyses of large-scale assessments only

allow for the investigation of correlational relations, experiments enable causal in-

ference. The experiments in both chapters focus on mental versus written strategy

use, given the large performance difference between the two, and consider the effects

of student characteristics.

In Chapter 4, it is investigated whether instructing students to write down their

calculations actually improves their performance. In a choice/no-choice experiment

(Siegler & Lemaire, 1997), students first solved a set of division problems with free

strategy choice as usual, but this choice phase of the experiment was followed by

a no-choice phase, in which students were required to write down calculations for
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another version of the set of division problems, and to not do so for a third version.

This experimental set-up allowed for an unbiased assessment of the differences in

accuracy and speed between mental and written strategies, and for an investigation

of the adaptivity of students’ strategy choices. In Chapter 5, it is evaluated what

the effects on spontaneous strategy choices and performance are of a training pro-

gram that features instruction in writing down calculations, using a pretest-posttest

design with a control training condition and a no training condition.

Finally, in Chapter 6, a particular aspect of the comparability of results from the

first approach in Chapters 2 and 3 and the second approach in Chapters 4 and 5 is

considered. It is investigated to which extent strategy and performance results can

be generalized from tasks that only concern one mathematical operation (typical

in experiments) to tasks in which multiple operations are mixed together (typical

in assessments and educational practice). This generalization could be hindered

by task switching costs and strategy perseveration, and the occurrence of these

phenomena is investigated with an experimental comparison of a single-task and a

mixed-task condition.
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Multilevel latent class analysis for large-scale educational assessment

data: Exploring the relation between the curriculum and students’

mathematical strategies

Abstract

A first application of multilevel latent class analysis (MLCA) to educa-

tional large-scale assessment data is demonstrated. This statistical technique

addresses several of the challenges that assessment data offers. Importantly,

MLCA allows modeling of the often ignored teacher effects and of the joint

influence of teacher and student variables. Using data from the 2011 assess-

ment of Dutch primary schools’ mathematics, this study explores the relation

between the curriculum as reported by 107 teachers and the strategy choices

of their 1619 students, while controlling for student characteristics. Consider-

able teacher effects are demonstrated, as well as significant relations between

the intended as well as enacted curriculum and students’ strategy use. Im-

plications of these results for both more theoretical and practical educational

research are discussed, as are several issues in applying MLCA and possibili-

ties for applying MLCA to different types of educational data.

2.1 Introduction

Latent class analysis (LCA) is a powerful tool for classifying individuals into groups

based on their responses on a set of nominal variables (Hagenaars & McCutcheon,

This chapter has been published as: Fagginger Auer, M. F., Hickendorff, M., Van Putten, C.
M., Béguin, A. A., & Heiser, W. J. (2016). Multilevel latent class analysis for large-scale educa-
tional assessment data: Exploring the relation between the curriculum and students’ mathematical
strategies. Applied Measurement in Education.

The research was made possible by the Dutch National Institute for Educational Measurement
Cito, who made the assessment data available to us. We would also like to thank Jeroen Vermunt,
Anita van der Kooij and Zsuzsa Bakk for their statistical advice.
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2002; McCutcheon, 1987). LC models have a categorical latent (unobserved) vari-

able, and every class or category of this latent variable has class-specific probabilities

of responses in the categories of the different observed response variables. As such,

each latent class has a specific typical response pattern where some responses have

a higher and others have a lower probability, and different response profiles of indi-

viduals may be discerned based on this. For example, for a test covering language,

mathematics and science, one latent class of students may have a high probability

of correct responses for mathematics and science items but a lower probability for

language items, while for an other latent class the probability of a correct response

is high for language items and lower for mathematics and science items. These two

classes then reflect different performance profiles.

Relatively recently, the technique of LCA has been extended to accommodate

an additional hierarchical level (Vermunt, 2003): not only the nesting of variables

within individuals is included in the model, but also the nesting of individuals

in some higher level group (e.g., students within school classes). This multilevel

LCA (MLCA) is beginning to be applied more and more in various areas, such as

psychiatry (Derks, Boks, & Vermunt, 2012), political science (Morselli & Passini,

2012), and education (Hsieh & Yang, 2012; Mutz & Daniel, 2011; Vermunt, 2003).

In the current investigation, we describe a first application of MLCA to educational

large-scale assessment data.

2.1.1 MLCA for educational large-scale assessment data

MLCA can address several of the challenges of large-scale assessment data. A

first challenge that many large-scale assessments offer is that they employ so-called

incomplete designs: the complete item set is too large to be administered in full to

students, and is therefore decomposed into smaller subsets. Relating these subsets

to each other is difficult using traditional techniques, but is possible using a latent

variable to which all items are related (Embretson & Reise, 2000; Hickendorff et al.,

2009), such as the latent class variable in LCA. No imputation of missing responses

on the items that were not administered is necessary, as the likelihood function

of the analysis is only based on cases’ observed responses (Vermunt & Magidson,

2005). A second challenge is the complexity of modeling cognitive phenomena that

are not measured on an interval but on a nominal level (such as solution strategy

use, item correctness or error types). Nominal response variables are naturally

accommodated by (M)LCA.

The third challenge that MLCA addresses is the inherent multilevel structure of
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educational data (items nested within students, who are nested within teachers and

schools). Previous applications of LCA (and also of other techniques) to students’

responses on cognitive tests have generally ignored the teacher (or school) level in

their modeling (e.g., Geiser, Lehman, & Eid, 2010; Hickendorff et al., 2009, 2010;

Lee Webb, Cohen, & Schwanenflugel, 2008; Yang, Shaftel, Glasnapp, & Poggio,

2005). Yet, the context of learning is vital to its outcomes. Zumbo et al. (2015)

recently proposed an ecological model of item responding where responses are in-

fluenced by contextual variables at various levels: characteristics of the test, of the

individual, of the teacher and school, of the family and ecology outside of school,

and of the larger community. Based on this model, the authors demonstrate eco-

logically moderated differential item functioning (DIF) where different factors in

this broader context play a role.

The consideration of a broader context fits in very well with MLCA, as its mul-

tilevel aspect makes it especially suited for the incorporation of contextual factors

in models of students’ item responses. Predictors at different hierarchical levels

can be included in the model, a feature that is naturally called for in modeling the

effects of both student and teacher characteristics on students’ item solving.

In the current investigation, we therefore demonstrate the use of MLCA for

educational large-scale assessment data, by applying it to data from the most recent

large-scale assessment of Dutch sixth graders’ mathematics. We investigate the

relation between the curriculum on the one hand and students’ use of solution

strategies on the other (while controlling for student characteristics), and describe

the technique of MLCA and some of the challenges in its application in more detail.

2.1.2 Curriculum effects on students’ mathematical

achievement and strategies

Recent reviews of research on the effects of mathematics teaching have concluded

that the influence of the intended curriculum (as it is formally laid down in cur-

riculum guides and textbooks; Remillard, 2005) on achievement is very small, while

changes in the enacted curriculum of daily teaching practices have a much larger

influence (Slavin & Lake, 2008). These findings are based mainly on small experi-

ments, and can be supplemented using large-scale assessment data, which does not

allow for causal inference but does offer much larger samples and representative

descriptions of the natural variation in daily teaching practices (Slavin, 2008).

Previous research has indicated that this variation in instruction has substan-

tial effects on students’ achievement growth (Nye, Konstantopoulos, & Hedges,
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2004; Rowan, Correnti, & Miller, 2002). In identifying the factors that determine

teachers’ influence on students’ mathematical achievement, a line of research called

’education production function research’ has focused on the effects of available re-

sources. Generally, routinely collected information on teachers’ resources (such as

their education level) has failed to show consistent, sizable effects (e.g., Jepsen,

2005; Nye et al., 2004; Wenglinsky, 2002), while more in-depth teacher resource

measurements (such as knowledge for mathematical teaching) show more consis-

tent positive effects (Hill, Rowan, & Ball, 2005; Wayne & Youngs, 2003). The more

process-focused line of ’process-product research’ has most notably found positive

effects of active teaching, which involves teachers’ direct instruction of students in

formats such as lecturing, leading discussions, and interaction during individual

work (as described by Hill et al., 2005, and Rowan et al., 2002), as contrasted

with frequent independent work of students and working on nonacademic subjects.

Also, positive effects have been found of reform-oriented classroom practice, which

involves activities such as exploring possible methods to solve a mathematical prob-

lem (Cohen & Hill, 2000).

These results all concern curriculum effects on students’ mathematical achieve-

ment, but the mathematical strategies of students that are the focus of this inves-

tigation are also of great interest. The various reforms in mathematics education

that have taken place in a number of countries in the past decades (Kilpatrick,

Swafford, & Findell, 2001) share a view on strategy use that moves away from

product-focused algorithmic approaches towards process-focused approaches with

more space for students’ own strategic explorations (Gravemeijer, 1997). Investigat-

ing which instructional practices elicit particular patterns of strategy choices may

shed light on how reforms actually affect students’ behavior. On a more theoretical

level, the literature on children’s choices between and performance with mathemati-

cal strategies has so far focused on the effects of children’s individual characteristics

and of the nature of the mathematical problems that are offered (e.g., Hickendorff

et al., 2010; Imbo & Vandierendonck, 2008; Lemaire & Lecacheur, 2011; Lemaire

& Siegler, 1995), and may therefore be extended by also exploring the effects of

instruction.

2.1.3 Multidigit multiplication and division strategies in the

Netherlands

An illustration of the connection between mathematics reforms and changes in

strategy choices is provided by previous research on multidigit multiplication and
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Table 2.1: Examples of the digit-based algorithms, whole-number-based algorithms,

and non-algorithmic strategies applied to the multiplication problem 23 × 56 and

the division problem 544÷ 34.

strategy multiplication division

digit-based algorithm 56

23×
168

1120+

1288

34/544\16

34

204

204

0

whole-number-based algorithm 56

23×
18

150

120

1000+

1288

544 : 34 =

340 - 10×
204

102 - 3×
102

102 - 3×+

0 16×
non-algorithmic written strategies 1120 + 3 × 56

1120 + 168

1288

10 × 34 = 340

13 × 34 = 442

16 × 34 = 544

division strategies in the Dutch situation (Hickendorff, 2011; J. Janssen et al., 2005).

Multidigit multiplication and division go beyond simple multiplication table facts

(such as 5×6 or 72÷8) and require operations on larger numbers or decimal numbers

(such as 56×23 or 544÷16). The Dutch mathematics education reform introduced

new algorithmic ’whole-number-based’ approaches for these multidigit operations,

where every step towards obtaining the solution requires students to understand the

magnitude of the numbers they are working with (Treffers, 1987a). This approach

deviates from the more traditional ’digit-based’ algorithms, where the numbers

are broken up into digits that can be handled without an appreciation of their

magnitude in the whole number (see Table 2.1 for examples of both algorithms).

In general, Dutch children’s learning trajectory consists of first learning the whole-

number-based multiplication and division algorithms, and later switching to the

digit-based algorithm for multiplication (and in some schools, also for division;

Buijs, 2008).

Using data from large-scale assessments, it was demonstrated that with grow-

ing adoption of reform-based mathematics textbooks in Dutch elementary schools,

many primary school students abandoned the digit-based algorithms for multidigit
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multiplication and division and switched to answering without writing down any

calculations (mental calculation; Hickendorff et al., 2010) instead. These mental

calculation strategies were found to be much less accurate than written strategies

(digit-based or other) (Hickendorff, 2011; Hickendorff et al., 2009), and were used

more by boys, students with low mathematical proficiency, and lower SES students.

2.1.4 The present study

In the present study, MLCA is used to investigate the relation between both the

intended and enacted curriculum and the use of solution strategies for multidigit

multiplication and division items by 1619 Dutch sixth graders (11-12-year-olds).

The intended curriculum is operationalized as the mathematics textbook and the

enacted curriculum as the self-reports on mathematics teaching practices of the stu-

dents’ 107 teachers. The data are from the most recent (2011) large-scale national

assessment of the mathematical abilities of Dutch students at the end of primary

school (Scheltens et al., 2013).

Hypotheses

Based on previous research on Dutch students’ multiplication and division strategy

use by Hickendorff (2011), we expect to find a considerable group of students who

mostly answer without written calculations (with relatively many boys, students

with low mathematical proficiency, and lower SES students), one group where stu-

dents mostly use the digit-based algorithm, and one group where students mostly

use the whole-number-based algorithm or non-algorithmic approaches. Hickendorff

(2011) considered multiplication and division in isolation, but we consider them si-

multaneously and can therefore analyze the relation between individual differences

in strategy use on multiplication and division items. For example, there may be a

group of students who prefer the digit-based algorithm for multiplication and the

whole-number-based algorithm for division, matching the most common end points

of the respective learning trajectories.

The lack of research on the effects of the curriculum on strategy use makes

it hard to make strong predictions in that area, but a tentative generalization of

curriculum effects on achievement suggests that the effects of the enacted curricu-

lum might be greater than those of the intended curriculum - though this could be

countered by the fact that the mathematics textbooks which form the intended cur-

riculum are an important direct source of strategy instruction. As for the particular
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effects of the enacted curriculum, the previously discussed achievement literature

described positive effects of direct instruction rather than independent work, so

these activities might affect choices for more accurate (written) or less accurate

(mental) strategies. Differentiated instruction might also have such effects, espe-

cially because of the association between ability and strategy choices. Furthermore,

we expect effects of teachers’ strategy instruction in algorithms, mental calculation,

and strategy flexibility, because of the apparent direct connection to students’ strat-

egy use.

Issues in applying MLCA

The application of MLCA with predictors which is the focus of the present study

comes with several practical issues that require attention. The first is the speci-

fication of the multilevel effect in the model. The common parametric approach

specifies a normal distribution for group (in our case, teacher) deviations from the

overall parameter value, but this distributional assumption is strong and the inter-

pretation of such group effects is abstract. The nonparametric approach proposed

by Vermunt (2003) instead creates a latent class variable for the groups (in addition

to the latent class variable for the individuals), requiring less strong distributional

assumptions, making computations less intensive, and allowing for easier substan-

tive interpretation. Therefore, we will use the nonparametric approach.

The second issue is the inclusion of predictors in the model, as discussed by

Bolck, Croon, and Hagenaars (2004). In the so-called one-step approach, the mea-

surement part of the model (the part of the model without predictors) and the

structural part (the predictor part) are estimated simultaneously. While this leads

to unbiased effect estimates, the number of models that needs to be fitted and com-

pared can quickly become unfeasible (all combinations of lower level and higher

level latent class structures, combined with all predictor structures). In addition,

the structural part of the model may influence the measurement part: individuals’

class membership may be different with and without predictors. These problems do

not occur in the three-step approach, where the measurement model without any

predictors is fitted first, then individual class membership predictions are computed,

and finally these class membership predictions are treated as observed variables in

an analysis with the predictors. However, this approach treats class membership

as deterministic and leads to systematic underestimation of the effects of the pre-

dictors. This can be corrected by taking into account the misclassification in the

second step during the final third step (Asparouhov & Muthén, 2014). Therefore,
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we will use this corrected three-step approach.

The third issue is the selection of the best model. This is usually done based on

information criteria that consider model fit and complexity simultaneously, such as

the popular Aikaike en Bayesian Information Criterion (AIC and BIC). However,

these criteria penalize model complexity differently and therefore often identify

different models as optimal (Burnham & Anderson, 2004). The issue is further

complicated with the introduction of a multilevel effect, because the BIC penaliza-

tion depends on sample size, and it is then unclear whether to use the number of

individuals or groups for that (Jones, 2011). Lukočienė and Vermunt (2010) inves-

tigated this issue and demonstrate optimal performance of the group-based BIC,

and underestimation of complexity by the individual-based BIC and overestimation

by the AIC. In our analyses, model selection with all three criteria is compared.

2.2 Method

2.2.1 Sample

For our data from the most recent large-scale assessment of the mathematical abil-

ities of Dutch students, 107 schools from the entire country were selected according

to a random sampling procedure stratified by socioeconomic status. From a total

of 2548 participating sixth graders (11-12-year-olds) in those schools, 1619 students

from the classes of 107 teachers (one teacher per school, between 5 and 25 students

per school in most cases) solved multidigit multiplication and division problems

(because of the incomplete assessment design, not all students solved this type of

problems). Of the 1619 children, 49 percent were boys and 51 percent were girls.

Fifty percent of the children had a relatively higher general scholastic ability level,

as they were to go to secondary school types after summer that would prepare them

for higher education, while the other 50 percent were to go to vocational types of

secondary education. In terms of SES, most children (88 percent) had at least one

parent who completed at least two years of secondary school, while 12 percent did

not.

Different mathematics textbooks were used on which the children’s mathemat-

ics instruction was based. These textbooks are part of a textbook series that is

used for mathematics instruction throughout the various grades of primary school,

and are therefore not (solely) determined by the sixth grade teacher. All textbooks

in our sample could be considered reform-based, but they differ in instruction ele-

ments such as lesson structure, differentiation, and assessment. Textbooks from six
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Table 2.2: The content of the thirteen multidigit multiplication problems and eight

multidigit division problems in the assessment, and the strategy use frequency on

each item.

strategy use (percent)

problem context DA WA NA NW U O N

M01 9 × 48 = 432 yes 39 4 24 30 2 2 368

M02 23 × 56 = 1288 yes 45 6 21 17 5 6 358

M03 209 × 76 = 15884 no 49 5 24 12 7 3 344

M04 35 × 29 = 1015 yes 40 4 28 23 3 2 353

M05 35 × 29 = 1015 no 43 4 23 24 3 3 352

M06 24 × 37.50 = 900 no 39 2 31 18 6 5 352

M07 9.8 × 7.2 = 70.56 no 40 3 17 27 10 3 352

M08 8 × 194 = 1552 yes 43 3 25 27 2 1 355

M09 6 × 192 = 1152 no 33 2 33 23 4 5 352

M10 1.5 × 1.80 = 2.70 yes 1 0 13 79 3 4 353

M11 0.18 × 750 = 135 no 41 2 16 27 12 2 356

M12 6 × 14.95 = 89.70 yes 32 1 29 34 2 2 359

M13 3340 × 5.50 = 18370 yes 41 3 23 18 10 5 359

D01 544 ÷ 34 = 16 yes 18 32 5 27 10 7 368

D02 31.2 ÷ 1.2 = 26 no 9 10 6 50 18 7 369

D03 11585 ÷ 14 = 827.5 yes 17 30 4 32 10 7 345

D04 1470 ÷ 12 = 122.50 yes 19 25 11 31 12 3 350

D05 1575 ÷ 14 = 112.50 no 17 30 16 22 12 3 355

D06 47.25 ÷ 7 = 6.75 yes 17 25 10 33 10 5 352

D07 6496 ÷ 14 = 464 yes 16 24 5 36 12 7 354

D08 2500 ÷ 40 = 62 yes 12 15 11 45 6 11 359

total multiplication 37 3 24 28 5 3 4613

total division 16 24 9 35 11 6 2852

Note: Parallel versions of problems not yet released for publication are in ital-

ics. DA=digit-based algorithm, WA=whole-number-based algorithm, NA=non-

algorithmic written, NW=no written work, U=unanswered, O=other

different methods were used in our sample: Pluspunt (PP; used by 37% percent of

the teachers in our sample); Wereld in Getallen (WiG; 30%); Rekenrijk (RR; 14%);

Alles Telt (AT; 11%); Wis en Reken (6%); and Talrijk (2%).
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2.2.2 Materials

Multiplication and division problems

The assessment contained thirteen multidigit multiplication and eight division prob-

lems, of which students solved systematically varying subsets of three or six prob-

lems according to an incomplete design (see Hickendorff et al., 2009, for more de-

tails on such designs). The problems are given in Table 2.2, including whether the

problem to be solved was provided in a realistic context (such as determining how

many bundles of 40 tulips can be made from 2500 tulips). Students were allowed

to write down their calculations in the ample blank space in their test booklets,

and these calculations were coded for strategy use. Six categories were discerned:

the aforementioned digit-based and whole-number-based algorithms, written work

without an algorithmic notation (such as only writing down intermediate steps), no

written work, unanswered problems, and other (unclear) solutions (see Table 2.1

for examples). The coding was carried out by the first and third author and three

undergraduate students, and interrater agreement was high (Cohen’s κ’s (J. Cohen,

1960) of .90 for the multiplication and .89 for the division coding on average, based

on 112 multiplication and 112 division solutions categorized by all).

Teacher survey about classroom practice

The teachers of the participating students filled out a survey about their mathemat-

ics teaching practices. The 14 questions in the survey that concerned multiplication,

division, and mental calculation strategy instruction were used to create four scores

(by taking the mean of the standardized responses to the questions), as were the 10

questions that concerned instruction formats, and the 10 questions that concerned

instruction differentiation. The Appendix gives the questions that were used to

create each score.

2.2.3 Multilevel latent class analysis

We estimated latent classes of students reflecting particular strategy choice pro-

files using MLCA, which classifies respondents in latent classes that are each char-

acterized by a particular pattern of response probabilities for a set of problems

(Goodman, 1974; Hagenaars & McCutcheon, 2002). For our case, let Yijk denote

the strategy choice of student i of teacher j for item k. A particular strategy choice

on item k is denoted by sk. The latent class variable is denoted by Xij , a particular

latent class by t, and the number of latent classes by T . The full vector of strategy
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choices of a student is denoted by Yij and a possible strategy choice pattern by s.

This makes the model:

P (Yij = s) =

T∑
t=1

P (Xij = t)

K∏
k=1

P (Yijk = sk|Xij = t). (2.1)

In this model, the general probability of a particular pattern of strategy choices,

P (Yij = s), is decomposed into T class-dependent probabilities,
K∏
k=1

P (Yijk =

sk|Xij = t). These class-dependent probabilities are each weighted by the proba-

bility of being in that latent class, P (Xij = t). The interpretation of the nature of

the latent classes is based on the class-dependent probabilities of strategy choices

on each of the problems, P (Yijk = sk|Xij = t). The model is extended with a

multilevel component by adding a latent teacher class variable, on which students’

probability of being in each latent student class (P (Xij = t)) is dependent. Predic-

tors at the teacher and student level that influence class probabilities can also be

added, as described by Vermunt (2003, 2005). For such a multilevel model with one

teacher-level predictor Z1j and one student-level predictor Z2ij , let Wj denote the

latent teacher class that that teacher j is in, with m denoting a particular teacher

class. The model then becomes:

P (Xij = t|Wj = m) =
exp(γtm + γ1tZ1j + γ2tZ2ij)
T∑
r=1

exp(γrm + γ1rZ1j + γ2rZ2ij)

. (2.2)

See Henry and Muthén (2010) for graphical representations of this type of mod-

els.

The MLCA was conducted with version 5.0 of the Latent GOLD program

(Vermunt & Magidson, 2013). All thirteen multiplication and eight division strat-

egy choice variables were entered as observed response variables and a teacher

identifier variable as the grouping variable for the multilevel effect. Models with

latent structures with up to eight latent student classes and eleven latent teacher

classes were fitted, and the model with the optimal structure was selected using the

AIC and BICs. Using the three-step approach (Bakk, Tekle, & Vermunt, 2013),

this measurement model was then fixed and curriculum and student predictors

were added to the model in groups, because of the high number of predictors. The

successive models were compared using information criteria and the best model

was investigated in more detail by evaluating the statistical significance of each of

the predictors with a Wald test. The practical significance of the predictors was
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evaluated based on the magnitude of the changes in the probability of class mem-

berships associated with different levels of the predictors. Effect coding was used

for all predictors.

2.3 Results

2.3.1 The latent class measurement model

For the LC measurement models fitted on the strategy data, both the AIC and BICs

(see Table 2.3) show that adding a multilevel structure greatly improves model fit,

signifying a considerable within-teacher dependency of observations. While the AIC

identifies a very complex model as optimal (ten latent teacher classes and six latent

student classes), the BICs are in near agreement on a more simple model (four

latent teacher classes and three or four latent student classes). Of these simpler

models, the model with four student classes has a much clearer interpretation and

is also favored by the group-based BIC that is optimal according to Lukočienė and

Vermunt (2010). This model has an entropy R2 of .87 for the latent student classes

and .82 for the teacher classes, which both indicate a high level of classification

certainty (Dias & Vermunt, 2006).

We also estimated measurement models with a parametric rather than a non-

parametric teacher effect (see the bottom part of Table 2.3). The parametric model

with the lowest group-based BIC also had four student classes, and the class-specific

probabilities of these classes were very similar to those of the classes in the non-

parametric model (indicating very similar nature of the classes), but the classes

differed considerably in size in the two approaches (by 13, 4, 25, and 15 percentage

points respectively). Latent teacher classes cannot be compared as there are none in

the parametric approach, which also prevents later easy substantive interpretation

of the multilevel effect. The fit of the best parametric model was not better than

that of the best non-parametric model according to the information criteria, and

the entropy R2 for the student classes of the parametric model was lower (.80).

Latent student classes

Overall, students solved multiplication problems most often with the digit-based

algorithm, while solutions without written work were most frequent for division (see

Table 2.2 for frequencies for each strategy). The class-dependent probabilities of

choosing each strategy in each of the four latent student classes are given in Table
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Table 2.3: Fit statistics for the non-parametric and parametric multilevel latent

class models.

latent classes BIC

teachers students LL parameters AIC individual group

1 (no multi- 2 -9801 209 20020 21146 20587

level effect) 3 -9388 314 19403 21096 20242

4 -9165 419 19169 21427 20289

5 -8964 524 18976 21800 20376

2 2 -9717 211 19856 20993 20419

3 -9253 317 19141 20849 19988

4 -8912 423 18670 20950 19800

5 -8713 529 18484 21335 19898

3 2 -9707 213 19839 20987 20408

3 -9207 320 19054 20779 19910

4 -8819 427 18491 20792 19632

5 -8614 534 18295 21173 19723

4 2 -9705 215 19840 20999 20415

3 -9178 323 19002 20743 19865

4 -8790 431 18441 20764 19593

5 -8585 539 18248 21153 19688

5 2 -9705 217 19844 21013 21965

3 -9220 326 19092 20849 19963

4 -8866 435 18257 21189 19711

5 -8584 544 18234 21167 19689

parametric 2 -9708 210 19836 20968 20397

3 -9205 316 19042 20745 19887

4 -8861 422 18566 20841 19694

5 -8661 528 18377 21223 19789

Note: The lowest BICs are bold. The lowest AIC was for 10 teacher and 6 student

classes.
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Table 2.4: The mean probabilities of choosing each of the six strategies for the

multiplication and division problems for each latent class.

strategy probability (proportion students in class)

NW class (.31) MA class (.29) NA class (.21) DA class (.20)

strategy × ÷ × ÷ × ÷ × ÷
DA .06 .01 .71 .01 .04 .03 .68 .70

WA .01 .02 .02 .54 .14 .37 .02 .01

NA .25 .03 .15 .10 .68 .21 .16 .03

NW .52 .65 .10 .24 .08 .22 .10 .17

U .13 .23 .02 .06 .03 .08 .03 .03

O .04 .05 .02 .05 .04 .10 .02 .06

Note: The highest probability per operation within a class is in boldface. MA=mixed

algorithm, see Table 2.2 for other abbreviations.

2.4, which shows that every latent student class is dominated by high probabilities

of choosing one or two strategies.

The largest student class (with a class probability of .31, i.e., containing 31

percent of students) is characterized by a high probability of answering without

written work for every item, and also a considerable probability of leaving prob-

lems unanswered (especially division problems). Because of this, we label this class

the ’no written work class’. The second largest student class (probability of .29)

is characterized by a high probability of solving multiplication problems with the

digit-based algorithm and a high probability of solving division problems with the

number-based algorithm (the ’mixed algorithm class’). The third largest student

class (probability of .21) is characterized by a high probability of solving multi-

plication problems with non-algorithmic written strategies and a mixture of the

number algorithm, non-algorithmic written strategies and no written work for the

division problems (the ’non-algorithmic written class’). The smallest student class

(probability of .20) is characterized by a high probability of solving both multiplica-

tion and division problems with digit-based algorithms (the ’digit-based algorithm

class’.)

Latent teacher classes

The latent student class probabilities (or sizes) from Table 2.4 are the mean for all

the teachers. Within the four latent teacher classes, the student class probabilities

differ greatly. As can be seen in Table 2.5, the probability of the digit algorithm
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Table 2.5: The latent student class probabilities in each of the four latent teacher

classes.

latent student class probability

latent teacher class NW MA NA DA

1 (P = .39) .27 .61 .11 .00

2 (P = .30) .38 .08 .51 .02

3 (P = .19) .23 .00 .03 .74

4 (P = .12) .34 .22 .09 .36

total .31 .29 .21 .20

Note: The highest latent student class probability within a latent teacher class is in

boldface. See Table 2.2 and 2.4 for abbreviations.

class varies most over teacher classes (between .00 and .74), followed by that of

the mixed algorithm class (between .00 and .61), and that of the non-algorithmic

written class (between .03 and .51). The probability of the no written work class

varies relatively little over teacher classes (between .23 and .38). The largest teacher

class (size of .39) is characterized by a high probability of the mixed algorithm class,

the second largest teacher class (.30) by a high probability of the non-algorithmic

written strategy class, the third largest teacher class (.19) by a high probability of

the digit-based algorithm class, and the smallest teacher class (.12) by substantial

probabilities for all classes except the non-algorithmic written class.

These insightful results on the magnitude and nature of teachers’ effects illus-

trate one of the advantages of the nonparametric specification of the multilevel

effect.

2.3.2 Adding predictors to the latent class model

Next, the structural part was added to the model: predictors for students’ prob-

ability of being in a particular latent strategy class. First the relation between

the intended and enacted curriculum(textbook and instruction) was investigated,

using a MANOVA with textbook as the between-group independent variable and

the twelve teachers’ instruction scores as the dependent variables. No significant

relation was found, Wilks′ λ = .57, F (48, 322) = 1.05, p = .39. Next, student

characteristics and intended and enacted curriculum predictors were added to the

model in a stepwise fashion. As can be seen in Table 2.6, according to both BICs

model fit is best with only the student characteristics as predictors, whereas the

AIC identifies the more complex model with all predictors as optimal. The group-
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Table 2.6: Fit statistics for the latent class models with successively added predic-

tors.

BIC

predictors added to the model LL pars AIC individual group

none -1651 15 3333 3414 3373

student char. gender, ability, SES -1569 24 3186 3315 3250

intended curr. textbook -1550 36 3172 3366 3268

enacted curr. strategy instruction -1517 48 3129 3388 3257

instruction formats -1500 60 3120 3443 3280

instruction diff. -1479 72 3103 3491 3295

Note: The lowest information criteria are in boldface.

based BIC is nearly as low for the model with the textbook and strategy instruction

predictors added as for the model with only student predictors (3257 vs. 3250).

Since curriculum effects were our primary interest, we chose to proceed with this

more extensive model.

The statistical significance of the covariates in this model was evaluated with

Wald tests, and the magnitude of the effects is illustrated by comparisons of the

probabilities of membership of the latent student classes for individuals at the dif-

ferent levels of the predictors (see Table 2.7). These probabilities were calculated

with all of the other selected predictors in the model set at their mean. For the

interval-level instruction variables, probabilities are compared for students of teach-

ers who score one standard deviation above the mean of that variable and students

of teachers who score one standard deviation below the mean. Probabilities for the

different levels of a predictor that differ by .10 or more are discussed.

Student characteristics

Student gender had a significant effect on class probabilities, W 2 = 107.1, p < .001,

with the probability of being in the no written work class being .33 higher for boys

than for girls. The probability of being in the mixed algorithm class was .17 higher

for girls than for boys. Students’ general scholastic ability also had a significant

effect, W 2 = 53.0, p < .001, with the probability of being in the no written work

class being.25 higher for students with a lower compared to a higher ability, and

the probability of being in the non-algorithmic class .12 lower. SES also had a

significant effect, W 2 = 8.4, p = .04, but class probability differences between

children with a different SES were all smaller than .10.
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Intended curriculum

Mathematics textbook had a significant effect, W 2 = 123.6, p < .001. Students

being instructed from the Pluspunt (PP) textbook had a probability for the non-

algorithmic class that is .14 higher than than that of the total, and a .13 lower

probability for the digit-based algorithm class. Students with the Rekenrijk (RR)

textbook had a .16 lower probability for the digit algorithm class. Students with

the Alles Telt (AT) textbook had a .16 lower probability of being in the mixed

algorithm class and a .13 higher probability of being in the non-algorithmic written

class. Students with other textbooks had .14 lower probability of being in the mixed

algorithm class and a .14 higher probability of being in the digit algorithm class.

Enacted curriculum

All strategy instruction scores had significant effects. When comparing students

whose teacher scored one standard deviation above the mean in their focus on

the digit-based algorithm for multiplication to students whose teacher scored one

standard deviation below the mean (and who were thus more focused on the

whole-number-based algorithm for multiplication), their probability of being in the

mixed algorithm class was .25 higher, while their probability of being in the non-

algorithmic written class was .14 lower, W 2 = 36.6, p < .001. Students whose

teacher scored above rather than below the mean for digit-based division had a .26

higher probability of being in the digit algorithm class, and a .18 and .12 lower

probability of being in the mixed algorithm and non-algorithmic written class re-

spectively, W 2 = 100.9, p < .001 . Students whose teacher scored above rather

than below the mean in their attention to various aspects of mental calculation

had a .18 higher probability of being in the mixed algorithm class and a .15 lower

probability of being in the digit algorithm class, W 2 = 49.0, p < .001. Students

whose teachers scored above rather than below the mean for the use of multiple

strategies per operation type, had a .35 lower probability of being in the mixed

algorithm class and a .18 higher probability of being in the no written work class,

W 2 = 54.0, p < .001.

2.4 Discussion

The present study demonstrated a first application of MLCA to educational large-

scale assessment data. We argued that this technique is especially suitable for the

challenges of this type of data and for evaluating contextual effects on problem
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solving (Zumbo et al., 2015). We demonstrated the added value of adequately

modeling the multilevel structure inherent to educational data: though teacher

effects are often ignored by researchers, we found them to be considerable. Model

fit was much better with than without a multilevel structure for the teacher level,

and latent teacher groups were found with large differences in students’ probability

of having a certain strategy choice profile. Ignoring teacher effects therefore seems

to result in the omission of a crucial part of the model, and thereby in an incomplete

representation of reality. The present study also demonstrated the relevance of the

possibility of including predictors at different hierarchical levels in the model by

simultaneously controlling for student characteristics and investigating curriculum

effects, which led to interesting results relevant to both educational practice and

theory.

2.4.1 Substantive conclusions

The results with regard to strategy choice profiles (or latent classes) that were found

were largely in line with our hypotheses: there were profiles dominated by answering

without written work, by the digit-based algorithm, by non-algorithmic approaches

and the whole-number-based algorithm, and by both algorithms depending on the

operation (multiplication or division). Students’ probability of being in each of these

classes was found to depend strongly on the teacher, because it varied considerably

between latent teacher groups. The range was largest for the algorithmic classes

and smallest for the no written work class. Therefore, teachers appear to have

large effects effects on students’ strategy use, but these effects unfortunately seem

smallest for the inaccurate mental strategies without written work.

Intended and enacted curriculum predictors were added, controlling for student

characteristics. Consistent with previous research findings, boys and students who

were going to a lower secondary school level were more likely to answer without writ-

ten work. The intended curriculum and enacted curriculum were not significantly

related to each other, and were both found to be related to strategy choices, despite

the suggestion from the literature of limited effects of the intended curriculum. As

for the intended curriculum, the textbooks mostly appeared to be related to stu-

dents’ probability of using the different algorithmic and non-algorithmic written

strategies.

As for the enacted curriculum, its relation to strategy use appeared somewhat

stronger than that of the intended curriculum. Teaching digit-based algorithms

was associated with an accordingly higher use of these strategies, while teaching
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whole-number-based algorithms appeared to have the unexpected side-effect of a

higher use of non-algorithmic written strategies. Devoting more attention to men-

tal strategies was associated with higher probability of the mixed algorithm class

and lower probability of the digit-based algorithm class. Teaching more than one

strategy per operation was associated with lower probability of the mixed algorithm

class and higher probability of the no written work class. Instruction formats did

not have significant effects on strategy use, thereby not confirming our expectations

regarding the effects of direct instruction versus independent work. Instruction dif-

ferentiation also did not have a significant effect.

2.4.2 Limitations

A limitation of the present study could be the sample size, which is both relevant

for the estimation of the complex MLCA models and the generalizability of the

results. As for the sample size required for the estimation of MLCA models (or

LCA models more generally), there are no general rules of thumb. Our sample

of 1619 students with 107 teachers seems to be of a similar order of magnitude

as those in the examples used by Vermunt (2003) in his introduction of MLCA,

where applications were featured with 886 employees in 41 teams, 2156 students

in 97 schools, and 3584 respondents in 32 countries. A more precise estimate for a

specific situation can be made using Monte Carlo simulations, where factors such

as the number and type of problems, the separation of the classes and their relative

sizes (approximately equal or not) and the amount of missing data play a role

(Muthén & Muthén, 2002; Nylund, Asparouhov, & Muthén, 2007). Nylund et al.

(2007) found particular problems with information criteria when a small sample

(N = 200) was combined with unequal class sizes, as small classes then contain

very few subjects. This is not the case in our sample.

Another limitation is the correlational nature of the large-scale assessment data.

We of course had no influence on the intended or enacted curriculum, and therefore

the causal nature of the found relations between curriculum and strategy use is

uncertain and requires further (experimental) investigation. The present study does

provide a starting point for such follow-up research. It should also be noted that

the intended and enacted curriculum do not reflect (direct) effects of the teachers

in our sample to the same extent, as the enacted curriculum is in the hands of the

teacher, whereas the intended curriculum (the textbook) is determined on a school

level.
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2.4.3 Implications

The results suggest several implications (though the limited sample size should

be noted). They suggest that models for strategy choices such as the Adaptive

Strategy Choice Model (ASCM; Lemaire & Siegler, 1995) may need to be extended

to include factors beyond the student and the problem (in line with suggestions by

Verschaffel et al., 2009), and the same goes for other investigations of mathematical

strategy use that have overlooked instructional factors so far (e.g., Hickendorff et

al., 2010; Imbo & Vandierendonck, 2008; Lemaire & Lecacheur, 2011). The results

also suggest that the investigations of curriculum effects on achievement may so far

have omitted an important mediator: curriculum affects strategy use, and there are

strong performance differences between strategies (Hickendorff, 2011; Hickendorff

et al., 2009), so the curriculum may (in part) affect achievement through its effect

on strategy use.

For educational reforms, our results suggest that although positive effects on

achievement have been found of instructional practices congruent with reform ideas

(Cohen & Hill, 2000), reform-oriented instruction may also have unexpected side-

effects: teaching that is more oriented towards the whole-number-based algorithms

introduced by the Dutch mathematics education reform, is not only associated with

more use of those algorithms, but also with more use of non-algorithmic strategies

that have previously been shown to be less accurate than algorithms (Hickendorff

et al., 2009). Finally, our finding that the effects of teachers and the curriculum on

the proportion of students who mainly use mental strategies were small suggests

that it might be challenging to reduce students’ use of mental strategies through

means of regular instruction, and that perhaps special interventions are necessary

to promote their use of more accurate written strategies.

2.4.4 Conclusion

We would like to conclude by noting that our application of MLCA is relevant to

applications of this technique to educational data more generally, and that several

generalizations can be thought of: applications to other domains (e.g., strategies

in spelling or reading), other types of nominal response data (e.g., error types),

and also educational data from other sources than large-scale assessments (e.g.,

educational intervention studies with a large enough sample). With this article, we

hope to have increased the attractiveness and accessibility of MLCA for educational

researchers.
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Using LASSO penalization for explanatory IRT: An application on

instructional covariates for mathematical achievement in a large-scale

assessment

Abstract

A new combination of statistical techniques is introduced: LASSO pe-

nalization for explanatory IRT models. This was made possible by recently

released software for LASSO penalization of GLMMs, as IRT models can be

conceptualized as GLMMs. LASSO penalized IRT shows special promise for

the simultaneous consideration of high numbers of covariates for students’

achievement in large-scale educational assessments. This is illustrated with

an application of the technique on Dutch mathematical large-scale assessment

data from 1619 students, with covariates from a questionnaire filled out by

107 teachers. The various steps in applying the technique are explicated, and

educationally relevant results are discussed.

3.1 Introduction

Data with very high numbers of covariates can be analyzed using regularization

methods that place a penalty on the regression parameters to improve prediction

accuracy and interpretation, making this type of regression known as penalized re-

gression. A popular form of penalized regression is LASSO (least absolute shrinkage

and selection operator), where more and more regression parameters become zero as

the penalty increases, thereby functioning as a covariate selection tool (Tibshirani,

This chapter is currently submitted for publication as: Fagginger Auer, M. F., Hickendorff,
M., & Van Putten, C. M. (submitted). Using LASSO penalization for explanatory IRT: An
application on covariates for mathematical achievement in a large-scale assessment.

The research was made possible by the Dutch National Institute for Educational Measurement
Cito, who made the assessment data available to us.
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1996). LASSO has so far been applied in many (generalized) linear models, but has

only recently been extended to generalized linear mixed models (GLMMs), allow-

ing for the modeling of correlated observations (Groll & Tutz, 2014; Schelldorfer,

Meier, & Bühlmann, 2014).

In the present study, we utilize this GLMM extension of LASSO to introduce

penalized regression for explanatory item response theory (IRT) models, making

use of the possibility of conducting IRT analyses with general GLMM software

demonstrated by De Boeck and Wilson (2004). This first use of LASSO penalized

explanatory IRT is demonstrated with an application to a large-scale educational

dataset, a type of data for which this technique promises to be especially useful as

it allows for the simultaneous consideration of high numbers of potentially relevant

covariates while optimally modeling achievement.

3.1.1 Explanatory IRT with LASSO penalization for large-scale

assessment data

In large-scale educational assessments, achievement in an educational domain is

assessed for a large representative sample of students to enable evaluation of the

outcomes of an educational system (often that of a country), and to make compar-

isons to past outcomes or to outcomes of other educational systems. The analysis of

achievement data from assessments usually requires the linking of different subsets

of a total item set. These can be both subsets of the large complete item set within

an assessment and item sets of successive assessments, and can be done using IRT

(e.g, Mullis, Martin, Foy, & Akora, 2012; Mullis, Martin, Foy, & Drucker, 2012;

OECD, 2013; Scheltens et al., 2013). IRT models achievement by placing persons

and items on a common latent scale, and the probability of a correct response de-

pends on the distance between the ability θp of a person p and the difficulty βi

of an item i in a logistic function: P (ypi = 1|θp) =
exp(θp−βi)

1+exp(θp−βi)
. This basic IRT

model is the Rasch model (Rasch, 1960), which can be extended in multiple ways.

One extension is to make it an explanatory model rather than just a measure-

ment model, by including explaining factors for items’ difficulty and persons’ ability

(De Boeck & Wilson, 2004). These explanatory variables can be labeled in vari-

ous ways (e.g., as predictors), but we will refer to them as covariates. Whereas

in a Rasch model a separate difficulty parameter is estimated for each item, in an

item explanatory model (e.g., the linear logistic test model (LLTM); G. H. Fischer,

1973) item covariates that differ across items but not persons (such as number of

operations required in a math item) are used to model item difficulty. Similarly,



3.1. INTRODUCTION 35

person covariates that vary across persons but not items (such as gender) can be

used to explain ability level, and finally, person-by-item covariates that vary across

both persons and items (such as solution strategy use) are also possible. IRT can

therefore be used not only to optimally model achievement in large-scale assess-

ments, but also to gain more insight into the factors that affect achievement (e.g.,

see Hickendorff et al., 2009).

Collection of data on such factors is a part of many assessments, as these assess-

ments include questionnaires on topics such as children’s background and attitudes,

teachers’ characteristics and instructional practices, and the conditions in schools

(Mullis, Martin, Foy, & Akora, 2012; Mullis, Martin, Foy, & Drucker, 2012; OECD,

2013; Scheltens et al., 2013). These many different factors contribute to achieve-

ment jointly, and should be considered simultaneously so that effects are evaluated

while controlling for other covariates, and so that the importance of different co-

variates relative to each other can be determined. However, analyses with very high

numbers of covariates can be challenging, especially with models that are already

complex models such as explanatory IRT models.

Penalized regression

A common way to deal with the challenge of high numbers of covariates is through

so-called penalized regression. As described by Tibshirani (1996), normal regression

with ordinary least squares (OLS) estimates can be improved in terms of prediction

accuracy and interpretation by penalizing regression coefficients by shrinking them

or setting some of them to zero. This can be done in various ways. One way

is subset selection, in which a model with a subset of the covariates is selected

(through forward or backward selection). Though the reduced number of covariates

in this situation facilitates interpretation, small changes in the data can lead to

the selection of very different models, creating the risk of chance capitalization

and compromising prediction accuracy. A second way, ridge regression, is more

stable as regression coefficients are shrunk in a continuous process, but is also

more complex in terms of interpretation as none of the coefficients become zero.

Tibshirani (1996) proposed a third way, LASSO regression, which seeks to combine

stability and interpretability by shrinking some regression coefficients and setting

others to zero.

Both in LASSO and ridge regression, the sum of a specific function of the

regression parameters has to be smaller than or equal to a tuning parameter t.

With ridge regression, this is the sum of the squared coefficients,
∑
j

β2
j ≤ t, and
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with LASSO regression, the sum of the absolute coefficients,
∑
j

|βj | ≤ t. With this

restriction, the sum of the squared differences between the observed and predicted

y’s,
N∑
i=1

(yi−
∑
j

βjxij)
2, is minimized. Incorporating the restriction explicitly in the

latter equation, this can be alternatively formulated as
N∑
i=1

(yi−
∑
j

βjxij)
2 +λ

∑
j

β2
j

or
N∑
i=1

(yi−
∑
j

βjxij)
2+λ

∑
j

|βj |. This whole equation is minimized, which in the case

of a λ of 0 results in ordinary regression, but with increasing values of λ in a higher

and higher penalization for the sum of the coefficients (until finally all penalized

coefficients are zero). The different restrictions on the regression coefficients in

ridge and LASSO result in shrunken coefficients in both cases, but generally, only

with LASSO coefficients are set to zero (Tibshirani, 1996).

Recently, software has become available that allows for LASSO (but as far as

we know, not ridge) penalization for GLMMs (Groll & Tutz, 2014; Schelldorfer et

al., 2014). Schelldorfer et al. (2014) implemented GLMM LASSO in an R package

entitled glmmixedLASSO, and demonstrated the efficiency and accuracy of their

algorithm using various simulations with both relatively low (e.g., 10 and 50) and

very high numbers of covariates (e.g., 500 and 1500) in logistic and Poisson models.

They note that the mixed aspect of GLMMs causes a problem for LASSO, as the

shrinkage of regression coefficients can severely bias the estimation of the variance

components. They address this issue with a two-stage approach: first the LASSO

is used as a variable selection tool, and then in a second step an unpenalized model

with the selected variables is fitted using a maximum likelihood method, to ensure

accurate estimation of the variance components.

The availability of LASSO for GLMMs makes LASSO penalization for explana-

tory IRT models possible. IRT models were not developed as a special case of

GLMMs but in a separate line of research, with specialized IRT software such as

BILOG, PARSCALE and TESTFACT (Embretson & Reise, 2000). However, more

recently, De Boeck and Wilson (2004) have described how to formulate IRT models

as GLMMs and how to estimate them using general purpose GLMM software, en-

abling a wider application of this class of models. Therefore, LASSO penalization

for explanatory IRT models is now possible, and it can be used for the simultaneous

consideration of high numbers of covariates for achievement in large-scale assess-

ment data. In the present study, we apply this new combination of techniques for

this purpose. We use it to investigate the effects of various factors on mathematical

achievement in a large-scale assessment: children’s and teachers’ characteristics, as-
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pects of teachers’ instruction, and the solution strategies that children use to obtain

item answers. The existing literature on the effects of these factors on achievement

will now be succinctly described.

3.1.2 Covariates for mathematical achievement

Children’s characteristics and achievement

Various characteristics of children have been found to be related to mathematical

achievement. As for other achievement measures, children with a lower socioeco-

nomic status (SES) generally perform less well in mathematics than children with

a higher SES (e.g., Sirin, 2005). Children’s general intelligence and mathematical

achievement are also positively related (e.g., Primi, Eugénia Ferrão, & Almeida,

2010). While stereotypes still suggest that girls perform less well in mathematics

than boys, no general gender differences in mathematical achievement for children

are indicated (e.g., J. S. Hyde, Lindberg, Linn, Ellis, & Williams, 2008), though

in some countries such differences do exist (e.g., the Netherlands; Scheltens et al.,

2013).

Effects of teachers on student achievement

There is large amount of research on the effects that teachers and their instruction

methods can have on achievement, in which many different aspects of the teaching

process are considered. One obvious indicator of instruction is the formal curricu-

lum provided by the mathematics textbook that is used. However, as noted by

Remillard (2005), a distinction must be made between this formal curriculum and

what actually takes place in the classroom (i.e., the intended versus the enacted

curriculum). A review of the existing research on effective programs in mathe-

matics by Slavin and Lake (2008) demonstrated very limited effects of textbooks,

but much stronger effects of programs that targeted the instructional processes in

which teachers and children interact in the classroom. Positive effects were found

of interventions that concerned classroom management, keeping children engaged,

promoting cooperation among children, and supplementary tutoring. In another

review, the Royal Netherlands Academy of Arts and Sciences (2009) similarly con-

cludes that there is little support for meaningful effects of the formal curriculum

and more for effects of the actual teaching process.

However, these reviews for an important part concern studies with small sam-

ples, which could bias results as small studies with null or negative results may be
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likely to remain unpublished and therefore not included in reviews (Slavin, 2008).

Large-scale assessment data can, though correlational rather than experimental,

supplement these findings with its very large and representative samples. This

has been done for the investigation of the relation between teacher behaviors and

children’s achievement in what is called the process-product literature. Studies of

this kind have indeed shown that certain teaching practices affect children’s achieve-

ment, and have for example found a consistent positive effect of time spent on active

academic instruction rather than other activities (Hill et al., 2005). The related

notion of opportunity to learn (Carroll, 1963) posits that the assessed achievement

in a domain depends on the time students have spent in learning about that do-

main relative to the time they need to learn it. The process-product literature

can be contrasted with the educational production function literature, where not

processes but the resources of children, teachers and schools are related to student

outcomes. These can be resources such as children’s SES and teachers’ education

or their years of teaching experience. Generally, the results on the effects of such

factors have been mixed, indicating modest effects at best (Wenglinsky, 2002).

Considering these various findings, the literature seems to suggest that effects

of teachers on children’s mathematics achievement are more in the actual process

of how teachers interact with children, than in general characteristics of the teacher

or of the curriculum. This is in line with findings about children’s achievement in

general, for which a large synthesis of thousands of studies by Hattie (2003) shows

that teachers have the largest effects on children’s achievement through the teaching

behaviors of providing feedback and direct instruction, and through instructional

quality.

Solution strategies and achievement

Children’s solution strategies for mathematical items are also highly relevant to

achievement. These strategies vary from formal algorithms with a fixed notation

(such as long division), to informal approaches with a customized notation, to

approaches that only comprise mental calculation in the head (see Table 3.1 for ex-

amples). Increased attention for children’s own strategic explorations (rather than

for a prescribed set of algorithmic strategies) is an important part of the reform

in mathematics education that has taken place in various countries over the past

decades (Gravemeijer, 1997; Kilpatrick et al., 2001; Verschaffel, Luwel, Torbeyns,

& Van Dooren, 2007). As such, solution strategies are a crucial part of the instruc-

tional process, and they have received ample research attention (e.g., Barrouillet et



3.1. INTRODUCTION 39

Table 3.1: Examples for the multiplication and division strategy categories.

× ÷
digit-based algorithm 56

23×
168

1120+

1288

34/544\16

34

204

204

0

whole-number-based algorithm 56

23×
18

150

120

1000+

1288

544 : 34 =

340 - 10×
204

102 - 3×
102

102 - 3×+

0 16×
non-algorithmic strategies 1120 + 3 × 56

1120 + 168

1288

10 × 34 = 340

13 × 34 = 442

16 × 34 = 544

no written work 1288 544

al., 2008; Siegler & Lemaire, 1997; Torbeyns, Verschaffel, & Ghesquière, 2005).

In the present study, we therefore also devote attention to teachers’ specific

strategy instruction and to children’s strategy use. We focus on strategies for

answering multidigit multiplication and division items (items with larger or with

decimal numbers, such as 23× 56 or 31.2÷ 1.2), as strategies in this domain have

been shown to be highly relevant to achievement for the students in our sample

(Dutch sixth graders). In particular, Hickendorff et al. (2009) and Hickendorff

(2011) demonstrated a large accuracy advantage for multiplication and division

strategies that involved writing down calculations compared to strategies that did

not, and within these more accurate written strategies, a higher accuracy of the

traditional digit-based multiplication algorithm than of other written approaches

for multiplication. The accuracy advantage of written over non-written strategies

was larger for children with a lower mathematical ability than for children with a

higher ability, and girls wrote down calculations more often than boys.
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3.1.3 Present study

In the present study, we consider these various types of covariates in our demonstra-

tion of the new combination of the techniques of LASSO penalization and explana-

tory IRT. We apply the LASSO penalized IRT to a large-scale educational dataset

from the most recent (2011) national assessment of the mathematical ability of

children at the end of primary school (sixth graders) in the Netherlands, for which

no links between instruction and achievement have been investigated yet (Scheltens

et al., 2013). Data on item responses, gender, ability and SES were collected for

the children, and data on teacher characteristics and instructional practices were

collected from the children’s teachers.

Hypotheses

Based on our previous discussion of instructional effects on achievement, we expect

that covariates that concern instructional practices during mathematics lessons are

more strongly related to achievement than teacher characteristics or the mathe-

matics textbook that is used. Several particular instructional practices covered in

our covariates can be expected to have a positive relation to achievement. One is

that of time spent on group instruction and not other activities, given the positive

effect of active academic instruction from the process-product literature (Hill et al.,

2005). Another is the frequency of practices that engage children in instruction

(such as asking the class questions and letting children write out calculations on

the blackboard), given the positive effects of keeping children engaged found in the

review of effective programs in mathematics (Slavin & Lake, 2008). Another is

practices that involve extra attention for weaker students, through extra support

at or outside of school (and perhaps differentiation of instruction more broadly),

given the positive effects of supplementary tutoring (Slavin & Lake, 2008).

For strategies, we expect to find written strategies to be associated with higher

achievement than mental strategies, and possibly best achievement with the tra-

ditional digit-based algorithm (Hickendorff, 2011; Hickendorff et al., 2009). Ac-

cordingly, instructional practices focused on mental strategies may be negatively

related to achievement, while practices that focus on the digit-based algorithm,

or more generally, a single standardized approach rather than multiple approaches,

may be positively related to achievement. Since previous research indicates interac-

tions between strategy use and accuracy and children’s characteristics (e.g., smaller

accuracy difference between written and mental strategies for stronger students;

Hickendorff et al., 2009), these interactions were also included in the analyses.



3.2. METHOD 41

3.2 Method

3.2.1 Sample

Schools were selected for participation in the 2011 mathematics assessment accord-

ing to a random sampling procedure stratified by socioeconomic status, resulting

in a total number of 2548 participating sixth graders (11-12-year-olds) from 107

schools. The children were presented subsets of a large set of mathematical items

on a variety of topics, and subsets containing multidigit multiplication and division

items were presented to 1619 of the children. These children were in the classes of

107 teachers (one teacher per school), which means that an average of 15 children

per teacher participated. Of the 1619 children, 49 percent were boys and 51 percent

were girls. Fifty percent of the children had a relatively higher general scholastic

ability level, as they were to go to secondary school types after summer that would

prepare them for higher education, while the other 50 percent were to go to pre-

vocational secondary education. In terms of SES, most children (88 percent) had

at least one parent who completed at least two years of medium or higher-level

secondary school (SES not low), while 12 percent did not (SES low).

3.2.2 Materials

Multiplication and division items

The assessment contained thirteen multidigit multiplication items and eight multi-

digit division items in total. These items were administered to children according

to an incomplete design (see Hickendorff et al., 2009, for more details on such de-

signs): children were presented systematically varying subsets of either three or six

of these items. Table 3.2 provides information on the content of the items: the

numbers with which the multiplication or division operation had to be performed

and whether these numbers were presented in a realistic context describing a prob-

lem situation (such as determining how many bundles of 40 tulips can be made

from 2500 tulips) or not. The items were presented in booklets in which children

could also write down their calculations and solutions. The children were not given

any other paper to write on and were explicitly instructed that if they wanted to

write down calculations, they could use the (ample) blank space next to the items

in the booklet.

Following the assessment, these calculations were coded for strategy use. For

this, five different categories were distinguished. The first two categories are for
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algorithmic solutions: the more traditional digit-based algorithm and the newer

whole-number-based algorithm. The third category consists of written work with-

out an algorithmic notation, such as writing down only intermediate steps. Table

3.1 gives examples for multiplication and division strategies in these three cate-

gories. The two remaining categories are solutions with no written calculations,

and a small other category, consisting mostly of unanswered items.

The strategy coding was carried out by three undergraduate students and the

first and third author. Parts of the material (112 multiplication and 112 division

solutions) were coded by all coders to determine the interrater reliability. Cohen’s κ

(J. Cohen, 1960) was found to be .90 for the multiplication and .89 for the division

coding on average, which indicates high levels of interrater agreement.

Teacher questionnaire about classroom practice

The teachers of the participating children filled out a questionnaire about their

mathematics teaching. A total of 39 questions were selected from this question-

naire (see the Appendix) that were either relevant to the mathematics lessons in

general (teacher characteristics, mathematics textbook used, and general instruc-

tional practices during the mathematics lessons), or that specifically concerned

multiplication, division, or mental strategies (the latter because of the aforemen-

tioned large achievement difference between strategies with and without written

down calculations). Questions that were excluded specifically concerned mathemat-

ical domains other than multiplication or division (e.g., addition or percentages)

or concerned attitudes or opinions rather than concrete characteristics or instruc-

tional practices (e.g., opinion on class size rather than actual class size). Dummy

variables were made for questions with nominal response categories and scores were

standardized for the other questions (missing values were imputed with the variable

mode, because multiple imputation was not feasible given the complex LASSO IRT

analyses).

3.2.3 Statistical analysis

The R package glmmixedLASSO (Schelldorfer et al., 2014) was used to conduct the

LASSO penalized explanatory IRT analysis. As described by De Boeck and Wilson

(2004), the explanatory IRT model was specified by using a binomial model with

the solution accuracy (incorrect or correct) as the dependent variable, and a ran-

dom person intercept for the latent ability variable and fixed item effects for the
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Table 3.2: The content of the thirteen multidigit multiplication items and eight

multidigit division items in the assessment and the percentage of correct solutions.

item context N %

9 × 48 = 432 yes 368 76

8 × 194 = 1552 yes 355 72

6 × 192 = 1152 no 352 70

35 × 29 = 1015 yes 353 69

6 × 14.95 = 89.70 yes 359 66

1.5 × 1.80 = 2.70 yes 353 65

35 × 29 = 1015 no 352 64

23 × 56 = 1288 yes 358 58

209 × 76 = 15884 no 344 54

24 × 37.50 = 900 no 352 47

0.18 × 750 = 135 no 356 36

9.8 × 7.2 = 70.56 no 352 26

3340 × 5.50 = 18370 yes 359 21

total multiplication 4613 56

544 ÷ 34 = 16 yes 368 56

47.25 ÷ 7 = 6.75 yes 352 47

1575 ÷ 14 = 112.50 no 355 41

1470 ÷ 12 = 122.50 yes 350 40

2500 ÷ 40 = 62 yes 359 32

31.2 ÷ 1.2 = 26 no 369 30

6496 ÷ 14 = 464 yes 354 29

11585 ÷ 14 = 827.5 yes 345 26

total division 2852 38

Note: The items in italics are slightly modified parallel versions of items that have

not yet been released for publication by Cito because they may be used in subsequent

assessments.
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item easiness parameters. The person covariates that were added were children’s

gender (boy or girl), general scholastic ability level (lower or higher) and SES (not

low or low), and the questions from the teacher questionnaire. The person-by-item

covariate that was added was that for strategy use on the item (with dummy vari-

ables for the aforementioned multiplication and division strategy categories). In

addition, interactions between strategy use and the three student characteristics

(gender, ability and SES) were added. The penalization was not imposed on all

covariates: the fixed item effects were specified as unpenalized, so the IRT part of

the model remained intact regardless of the degree of penalization. The children’s

characteristics (gender, general scholastic ability level and SES) were also unpe-

nalized, so that these were always controlled for in evaluating the effects of the

instruction and strategies.

The final element of the model to be specified is the degree of penalization,

which is determined by λ (as discussed in the introduction). We did this using the

approach taken by Schelldorfer et al. (2014), the authors of the glmmixedLASSO

package: we used the Bayesian Information Criterion (BIC) to select the model

that provided the best balance between model parsimony and fit to the data. The

BIC is calculated by taking the log-likelihood (LL) of the observed data under

the model and imposing a penalty for the number of parameters (k) in the model,

weighed by the logarithm of the number of cases (N) (individuals, in our case):

−2LL + log(N) × k (and asymptotically, the BIC is equivalent to k-fold cross-

validation with some optimal k; Shao, 1997). The lower the BIC, the better the

trade-off between model fit and complexity, so the model with the lowest BIC was

selected.

As recommended by Schelldorfer et al. (2014), we then reran the model with

the selected covariates with the R package lme4 (Bates & Maechler, 2010), for an

unbiased estimation of the random effects. In this model, a random intercept was

also added for the teachers to account for the nesting of children within teachers (see

Doran, Bates, Bliese, & Dowling, 2007), which is not yet possible in glmmixedLASSO.

This model was used for final interpretation of the covariate effects.

Expressed mathematically, the explanatory model for the probability of a correct

response with J person covariates j (which can be both at the child and teacher

level) for child p with teacher t (denoted Zptj with regression parameter ζj), H

person-by-item covariates h for child p of teacher t and item i (denoted Wptih with

regression parameter δih), and I item dummy variables Xi with easiness parameter

βi, is then:
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Table 3.3: Use and (observed and estimated) accuracy of the multiplication and

division strategies.

observed estimated P (correct)

use (%) correct (%) × ÷
× ÷ × ÷ boys girls

digit-based algorithm 37 16 68 61 .76 .61 .63

number-based algorithm 3 24 68 63 .75 .65 .64

non-algorithmic strategies 24 10 59 50 .62 .51 .45

no written work 28 35 51 22 .50 .22 .16

other 8 15 2 2 .05 .05 .07

P (ypti = 1|Zpt1...ZptJ ,Wpti1...WptiH , X1...XI) =
exp(η)

1 + exp(η)
(3.1)

with

η = ΣJj=1ζjZptj + ΣHh=1δihWptih + ΣIi=1βiXi + εp + εt (3.2)

3.3 Results

3.3.1 Descriptives

Overall, 56 percent of the multiplication items was solved correctly (varying be-

tween 21 percent correct for the item 3340×5.50 and 76 percent for 9×48), and 39

percent of the division items (varying between 26 percent correct for 11585÷14 and

56 percent for 544÷34) (see Table 3.2). Multiplication items were most often solved

using the digit-based algorithm, which was also (together with the whole-number-

based algorithm) the most accurate strategy with 68 percent of correct solutions

(see Table 3.3 for strategy descriptives). Solutions without written work were also

frequent (and relatively inaccurate, with 51 percent correct solutions), as were non-

algorithmic written strategies (59 percent correct). Division items were most often

solved without written work, an approach that was very inaccurate (22 percent

correct). Application of the whole-number-based algorithm was also frequent, fol-

lowed by application of the digit-based algorithm, and both these strategies were

relatively accurate (63 and 61 percent correct respectively).
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3.3.2 Covariate selection using penalized regression

The LASSO IRT model with penalization on the teacher and strategy covariates

was estimated with different settings of λ. All penalized coefficients were shrunk

to zero for λ ≥ 240, so models with all (integer) λs from 0 (no penalization) to

240 (all penalized covariates dropped from the model) were estimated. Figure 3.1

shows the shrinking of penalized regression coefficients over this range, with each

line representing one coefficient. The optimal amount of penalization indicated

by the BICs (also see Figure 3.1) was found to be at λ = 35. The 18 penalized

covariates with non-zero regression coefficients at this λ are the questions from the

teacher questionnaire marked with asterisks in the Appendix and the multiplication

and division solution strategy use, and the interaction between division strategy use

and student gender.

3.3.3 Effects in the final model

The results of running an explanatory IRT model with the unpenalized and the

selected covariates are given in Table 3.4 (the selected questions from the teacher

questionnaires are numbered as in the Appendix). Of the unpenalized covariates,

performance was found to be significantly related to children’s general scholastic

ability: higher ability children had a significantly higher probability of a correct

response (P = .58) than lower ability children (P = .33), z = 13.1, p < .001.

Gender did not have a significant effect, z = 1.1, p = .29, nor did SES, z = −1.6,

p = .10.

Of the selected teacher covariates, the strongest positive effect was of the amount

of time spent on group instruction in mathematics lessons (P = .40 for 1 SD below

the mean and P = .50 for 1 SD above the mean). The strongest negative effect was

of the amount of support at home (P = .49 for 1 SD below the mean and P = .41

for 1 SD above the mean).

There were strong effects of the employed solution strategy on the probabil-

ity of a correct response, both for multiplication and division (see Table 3.3 for the

estimated probability per strategy). The accuracy of the whole-number-based algo-

rithms was comparable to that of the digit-based algorithms, while non-algorithmic

strategies, strategies without any written work and other strategies (mostly leav-

ing items unanswered) were less accurate (with the smallest accuracy difference

for non-algorithmic strategies and the largest for other strategies). There was also

an interaction between division strategy use and student gender: most notably, the
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Figure 3.1: Penalized regression coefficients and BICs for the different settings of

λ in the LASSO penalized IRT model (dashed vertical line at optimal λ = 35).
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Table 3.4: Effects of the student characteristics and selected teacher covariates.

covariate
levels

estimate (S.E.)
reference target

student char.

gender boy girl 0.10 (0.09)

ability lower higher 1.05 (0.08)

SES not low low -0.20 (0.12)

teacher char.

1. age 0.04 (0.06)

2. gender male female -0.16 (0.10)

5. years grade 6 -0.10 (0.05)

general instr.

12. time group instr. 0.18 (0.06)

13. time indiv. instr. -0.08 (0.05)

15. ask class questions 0.01 (0.05)

16. blackboard solutions -0.05 (0.05)

18. discuss errors -0.01 (0.05)

instr. differ.

19. lesson diff. -0.09 (0.05)

22. support at home -0.17 (0.06)

23. external support -0.09 (0.05)

strategy instr.

25. division alg. 0.05 (0.05)

30. strat. multidigit ÷ one multiple -0.11 (0.10)

32. ment. mul. div. -0.07 (0.07)

35. ment. smart strat. -0.12 (0.08)

strategy use

multiplication digit.

number. -0.03 (0.24)

non-alg. -0.63 (0.11)

no writ. -1.14 (0.11)

other -4.07 (0.27)

division digit.

number. 0.19 (0.21)

non-alg. -0.40 (0.26)

no writ. -1.69 (0.18)

other -3.43 (0.33)

gender×division digit.

number. -0.14 (0.21)

non-alg. -0.34 (0.31)

no writ. -0.51 (0.21)

other 0.33 (0.41)

difference in accuracy between the digit-based algorithm and strategies without any

written work was larger for girls (P = .63 vs. P = .16) than for boys (P = .61 vs.

P = .22).



3.4. DISCUSSION 49

3.4 Discussion

In the present study, we introduced LASSO penalization for explanatory IRT mod-

els. This was made possible by recently released software that allows for LASSO

penalization of GLMMs (Groll & Tutz, 2014; Schelldorfer et al., 2014), as IRT

models can be conceptualized as GLMMs (De Boeck & Wilson, 2004). We argued

that this new combination of techniques is especially useful for simultaneous con-

sideration of the effects of the high numbers of covariates for students’ achievement

that are collected in large-scale educational assessments. This was illustrated with

an application of LASSO penalized explanatory IRT to data from the most recent

national large-scale assessment of mathematics at the end of primary school in the

Netherlands. The various steps involved in applying the technique were explicated

and educationally relevant results were discussed.

3.4.1 Substantive conclusions

A first result that was found is that the LASSO did not select formal curriculum co-

variates as important covariates for students’ achievement: at the optimal degree of

penalization, the coefficients for the textbook covariate were shrunk to zero. This

is in accordance with findings of Slavin and Lake (2008) and the Royal Nether-

lands Academy of Arts and Sciences (2009) of very limited effects of the formal

curriculum. A positive effect of the amount of time the teacher spends on group

instruction was found, concordant with the positive effect of time spent on active

academic instruction rather than other activities in the process-product literature

(Hill et al., 2005). Though we expected practices that involve extra attention for

weaker students to be beneficial because of the positive effects of supplementary

tutoring (Royal Netherlands Academy of Arts and Sciences, 2009; Slavin & Lake,

2008), the amount of support that students received at home according to their

teachers was negatively related to achievement. This could suggest that home sup-

port affects achievement negatively, but could also indicate that weaker students

receive more home support. However, the teacher reported on the amount of home

support only at the class level, and a proper investigation of this effect should be

conducted with support measures at the student level.

Children’s use of mathematical strategies was also found to play an important

role. Strategies with written work were found to be much more accurate than those

without written work, as was also found by Hickendorff et al. (2009) and Hickendorff

(2011). Within written strategies, these authors found an accuracy advantage of the
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digit-based algorithm over other written approaches, and we refined this finding by

dividing the other written approaches into the whole-number-based-algorithm and

non-algorithmic written strategies. This showed the accuracy of the whole-number-

based algorithms to be comparable to that of the digit-based-algorithms, while the

non-algorithmic approaches were less accurate. An interaction between gender and

division strategy use was also found: strategies without written work were found

to be relatively more inaccurate for girls than for boys. Fortunately, girls appear

to use strategies without written work less frequently than boys (Fagginger Auer,

Hickendorff, Van Putten, Béguin, & Heiser, in press; Hickendorff et al., 2009). It

should be noted, however, that the accuracy estimations of the strategies could be

biased by the ability of the students using the strategies and the difficulty of the

items the strategies are applied to (bias by selection effects; Siegler & Lemaire,

1997), though a statistical correction for such bias is carried out with the inclusion

of student ability and item easiness parameters in the model.

3.4.2 Limitations and future directions

The present study also has several limitations, some of which provide directions for

future investigation and development.

Mediation student and teacher effects by strategies

A first limitation is substantive in nature. We investigated the effects of student

and teacher covariates on student achievement, but some effects may have been

obscured because they occurred through strategy use. For example, we found no

significant effect of gender per se, but boys do make more use of the inaccurate strat-

egy of answering without any written work (Fagginger Auer et al., in press). As for

teacher effects, the sociocultural context is an important determinant of strategy

use (Verschaffel et al., 2009), and teacher covariates are significantly related to stu-

dents’ strategy use (Fagginger Auer et al., in press). Given the large differences in

students’ achievement with different strategies, this means that teacher covariates

can exert effects on achievement through strategy use, and these effects may go un-

detected when strategy use is also in the model. Though hard to incorporate in our

current LASSO penalized explanatory IRT analysis, a more thorough investigation

of this chain of effects could be done with a mediation analysis. However, it should

also be noted that the impact of this issue may be limited, as teachers appear to

exert relatively little influence over the strategy that has the largest negative con-
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sequences for achievement - answering without any written work (Fagginger Auer

et al., in press).

LASSO for correlated covariates

A second limitation is that when LASSO is used for covariates that are (highly)

correlated, the selection of covariates can be to some extent random: when there

is a near perfect correlation between two covariates, selection of either covariate

results in nearly equal prediction of the dependent variable. This limitation is

true for LASSO in general and not particular to our LASSO penalized explanatory

IRT. However, in their successful simulation tests of the glmmixedLASSO procedure,

Schelldorfer et al. (2014) included correlations among the covariates of up to .20,

and the vast majority (90 percent) of correlations among our teacher covariates

fell within that range. Less than one percent of the correlations was large (≥ .50),

none of which concerned covariates that were found to be significant. Therefore,

our results should not be affected too much by correlations among the covariates.

More random effects

A third limitation is that only one random effect could be specified for the LASSO

penalization. While this is enough for a basic IRT model, in an educational context

(with students nested in classes in schools) a random effect for the teacher or

school level is also called for. In addition, in some contexts it makes more sense to

model the item effects as random than as fixed - for example when items can be

considered random draws from a domain, such as the items in this study from the

domain of multidigit multiplication and division (De Boeck, 2008). A larger number

of possible random effects (e.g., as in the package lme4; Bates & Maechler, 2010)

would therefore be an important improvement for LASSO penalized explanatory

IRT.

Cross-validation

A fourth limitation is the way in which the optimal degree of LASSO penalization

was determined. We did this using the BIC (as in Schelldorfer et al., 2014), but a

more common approach is to use cross-validation (e.g., it is a standard option the R

package penalized; Goeman, 2010). With cross-validation, overfitting is prevented

through fitting the model on one part of the data, and evaluating the prediction

error of the model on another part of the data (Colby & Bair, 2013). Implement-
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ing cross-validation in LASSO GLMM packages would provide an important tool

for selecting the amount of penalization in LASSO penalized IRT. One problem

with implementing this, however, is that the LASSO penalized IRT is already very

computationally intensive with the estimation of just one model for each value of

λ, but this should be resolved with ongoing improvements in computational power.

Another problem is that cross-validation for GLMMs is not straightforward, but

several approaches have been proposed to deal with this issue (Colby & Bair, 2013).

Other IRT models

A final limitation is that not all IRT models can be specified as GLMMs (De

Boeck & Wilson, 2004), and therefore that our currently outlined procedure for

LASSO penalized explanatory IRT does not apply to all types of IRT models.

For example, models that cannot be specified as univariate GLMMs are the popu-

lar two-parameter (2PL) model (with item discrimination parameters) and models

for polytomous response data. However, there is still ample flexibility within the

current Rasch (1PL) framework, as any combination of person, item, and person-

by-item covariates that is of interest can be made (e.g., we did not include item

covariates, but LLTM-like models that include many potential sources of item diffi-

culty are possible). Therefore, with our current demonstration of LASSO penalized

explanatory IRT, we aimed to introduce a new combination of techniques that is

versatile and that can lead to insightful results regarding the factors that influence

achievement.

3.A Teacher survey questions

(when the same response options apply to multiple questions, those options are

given under the last question they apply to for brevity; and the questions selected

with the LASSO are marked with asterisks)

3.A.1 Teacher characteristics

1. ?What is your age? (. . . years)

2. ?What is your gender? (male / female)

3. From which teacher education did you graduate? (PABO (after 1985) / PA,

kweekschool or kindergarten training (before 1985) / other)

4. In which grade do you have most teaching experience? (sixth grade / other grade)
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5. ?At the end of this school year, how many successive years have you been teaching in

the sixth grade? (. . . years)

6. Have you received extra training in the past five years? (yes / no)

7. If so, in what areas have you received extra training? (optimizing the learning

opportunities of students with different backgrounds / evaluating the level of progress

of a class / school self evaluation / subject-specific / other)

3.A.2 Textbook

8. Which textbook do you use (predominantly) for mathematics instruction? (Pluspunt

/ Wereld in Getallen / Rekenrijk / Alles Telt / other)

3.A.3 General instruction

9. How many students are in your class? (. . . students)

10. How much time do you spend on mathematics lessons in an average week? (. . . hours)

11. How many minutes do you spend on multiplication and division in your mathematics

lessons in a week? (<30 minutes / 30-60 minutes / 60-90 minutes / 90-120 minutes

/ >120 minutes)

12. ?How many minutes do you on average spend on group instruction in a mathematics

lesson?

13. ?How many minutes do you on average spend on individual instruction in a

mathematics lesson?

14. How many minutes do your students on average spend on individual work in a

mathematics lesson? (<10 minutes / 10-20 minutes / 20-30 minutes / 30-40 minutes

/ >40 minutes)

15. ?How often do you ask the class questions during instruction?

16. ?How often do you let students write out calculations on the blackboard?

17. How often do you ask students how they found an answer they gave?

18. ?How often do you discuss frequent errors with the class? (less than once a month /

once a month / twice a month / once every two weeks / at least once a week)

3.A.4 Instruction differentiation

19. ?To what extent do you differentiate in your mathematics teaching by level or pace?

(generally no differentiation / differentiation in practice materials but not instruction

/ differentiation in instruction and materials for different groups / individual

instruction and selection of materials)
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20. How much extra learning time do weak students get compared to average students?

(. . . minutes per week)

21. Are there possibilities for extra individual support in mathematics for students in

your school from a remedial teacher or a mathematics specialist? (no / yes, a

remedial teacher / yes, by a care coordinator or mathematics specialist / yes, a

remedial teacher and a care coordinator or mathematics specialist)

22. ?How intensive is the support of students at home, by parents or caretakers? (no

support / little support / medium support / frequent support / permanent support)

23. ?How many students receive external support, for example in homework classes?

(. . . students)

3.A.5 Strategy instruction

24. Which multiplication algorithm reflects the practice in your class most closely?

25. ?Which division algorithm reflects the practice in your class most closely?

(whole-number-based / both / digit-based)

26. How often do you devote attention to mental calculation and estimation in your

mathematics lessons? (. . . times a week)

27. Do your students use a single or multiple strategies for mental multiplication?

28. Do your students use a single or multiple strategies for mental division?

29. Do your students use a single or multiple strategies for multidigit multiplication?

30. ?Do your students use a single or multiple strategies for multidigit division? (one

strategy / multiple strategies)

31. How much time do you devote to mental calculation and estimation per week?

(. . . minutes)

32. ?How often do you devote attention to basic skills in multiplication and division in

mental calculation and estimation?

33. How often do you devote attention to roughly estimating the solution of a problem?

34. How often do you devote attention to applying approximations, estimations and

rounding off? (never / less than once a month / once a month / twice a month / at

least once a week)

35. ?How often do you devote attention to finding and using smart number-dependent

strategies in mental calculation and estimation?

36. How often do you devote attention to letting students use multiple solution strategies

for a single problem type in mental calculation and estimation? (never / less than

once a month / once a month / twice a month / at least once a week)
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37. Are calculators or computer software used during mathematics lessons? (only

calculators / both calculators and computer software / only computer software /

neither)

38. Do you instruct your students in the multiplication function of the calculator? (yes /

no)

39. Do you instruct your students in the division function of the calculator? (yes / no)
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Solution strategies and adaptivity in multidigit division in a

choice/no-choice experiment: Student and instructional factors

Abstract

Adaptive expertise in choosing when to apply which solution strategy is

a central element of current day mathematics, but may not be attainable for

all students in all mathematics domains. In the domain of multidigit division,

the adaptivity of choices between mental and written strategies appears to

be problematic. These solution strategies were investigated with a sample

of 162 sixth graders in a choice/no-choice experiment. Children chose freely

when to apply which strategy in the choice condition, but not in the no-choice

conditions for mental and written calculation, so strategy performance could

be assessed unbiasedly. Mental strategies were found to be less accurate but

faster than written ones, and lower ability students made counter-adaptive

choices between the two strategies. No teacher effects on strategy use were

found. Implications for research on individual differences in adaptivity and

the feasibility of adaptive expertise for lower ability students are discussed.

4.1 Introduction

Learning and problem solving are characterized by the use of a variety of strategies

at every developmental stage (Siegler, 2007). Children’s and adults’ strategy use

has been investigated for cognitive tasks concerning diverse topics such as class

inclusion (Siegler & Svetina, 2006), analogical reasoning (Tunteler et al., 2008),

and digital gaming (Ott & Pozzi, 2012). A well-studied area of investigation in

This chapter has been published as: Fagginger Auer, M. F., Hickendorff, M., & Van Putten,
C. M. (2016). Solution strategies and adaptivity in multidigit division in a choice/no-choice
experiment: Student and instructional factors. Learning and Instruction, 41, 52-59.

We would like to thank the schools and students for their participation in the experiment.
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solution strategy research is strategy use for arithmetic problems. Many studies

have been conducted on strategies in elementary addition, subtraction, multiplica-

tion and division (e.g., Barrouillet & Lépine, 2005; Imbo & Vandierendonck, 2007;

Mulligan & Mitchelmore, 1997; Van der Ven et al., 2012), which concern operations

in the number domain up to 100 that are taught in the lower grades of primary

school. However, there is a notable scarcity of research on strategy use of higher

grade students on more complex arithmetic problems (though not an absence; see

for example Van Putten et al., 2005; Selter, 2001; Torbeyns, Ghesquière, & Ver-

schaffel, 2009). This more advanced arithmetic is called multidigit arithmetic, as it

involves larger numbers and decimal numbers. Multidigit arithmetic is particularly

interesting with regard to strategy use, as the higher complexity of the problems

allows for the use of a wider range of strategies.

4.1.1 Solution strategies and adaptivity

To chart strategy use for a given domain, Lemaire and Siegler (1995) proposed

a general framework consisting of four aspects of strategic competence: strategy

repertoire (which strategies are used); frequency (how often each strategy in that

repertoire is chosen for use); efficiency (performance with use of each strategy); and

adaptivity (the appropriateness of a choice for a strategy given its relative perfor-

mance). While the first three aspects of the framework are quite straightforward,

the aspect of adaptivity has been conceptualized in various ways by different re-

searchers. Verschaffel et al. (2009) reviewed the existing literature on this topic and

identified three factors that play central roles in the different conceptualizations.

First there is the role of task variables, which concern the adaptation of strategy

choices to problem characteristics. For example, for a problem such as 62− 29 the

adaptive strategy choice could be defined as compensation (Blöte, Van der Burg,

& Klein, 2001): the problem can be greatly simplified by rounding the subtrahend

29 to 30, and then compensating for this after the subtraction (62− 30 + 1). Sec-

ond there is the role of subject variables, which concern the adaptation of strategy

choices to strategies’ relative performance for a particular individual (for a partic-

ular problem), such as in the Adaptive Strategy Choice Model (ASCM; Siegler &

Shipley, 1995). Third there is the role of context variables, which can be both in

the direct context of the task (such as time restrictions) and in the broader socio-

cultural context (such as the value placed on accuracy versus speed). Verschaffel

et al. (2009) combine all three factors (calling for more research attention for con-

text variables especially) in defining a strategy choice as adaptive when it is most
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appropriate for a particular problem for a particular individual, in a particular

sociocultural context.

A second issue in determining adaptivity is that often there is not one unequiv-

ocal best performing strategy, as the most accurate strategy is not always also the

fastest. This can be addressed by combining speed and accuracy in a definition of

the best performing strategy as the one that leads to the correct solution the fastest

(e.g., Luwel, Onghena, et al., 2009; Torbeyns, De Smedt, et al., 2009; Kerkman &

Siegler, 1997). Yet, even with this definition, researchers tend to consider accuracy

and speed separately in their statistical analyses in practice (with the exception of

Torbeyns et al., 2005).

4.1.2 Adaptive expertise in mathematics education

Debates of its exact definition aside, adaptivity has become more and more im-

portant in the educational practice of primary school mathematics. Reforms in

mathematics education have taken place in various countries over the past decades

(Kilpatrick et al., 2001) and they have reshaped the didactics for multidigit arith-

metic from prescribing a fixed algorithmic strategy per problem type to building on

students’ own strategic explorations (Gravemeijer, 1997). For students, this means

that performing well now requires more than perfecting the execution of a limited

set of algorithmic strategies, because choosing the best performing strategy for solv-

ing a problem is also necessary. Adaptive expertise has become a central element of

education: students should have an array of strategies at their disposal, that they

can use efficiently, flexibly and creatively when they solve problems (Verschaffel et

al., 2009). Investigations differ in their findings of whether such adaptivity is at-

tainable for everyone: some have found evidence of a general adaptivity of strategy

choices (e.g., Siegler & Lemaire, 1997; Torbeyns et al., 2005), while others found it

only for students with a high mathematical ability (e.g., Hickendorff et al., 2010;

Torbeyns, Verschaffel, & Ghesquière, 2006), and some not at all (e.g., Torbeyns,

De Smedt, et al., 2009).

In addition to providing more space for informal strategies, the reforms in-

troduced new standardized approaches for the more complex multidigit problems.

With traditional algorithms the large numbers in such problems are considered one

or two digits at a time, without an appreciation of the magnitude of those digits in

the whole number being necessary, while new approaches place more focus on the

whole number (as such, the former approaches have been labeled ’digit-based’ and

the latter ’whole-number-based’; Van den Heuvel-Panhuizen et al., 2009). Espe-
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Table 4.1: Examples of applications of the different strategies on 850÷ 25.

digit-based

algorithm

whole-number-

based algorithm

repeated addition

or subtraction

simplifying

strategies

25/850\34 850 : 25 = 4× 100 850÷ 25

75 250 - 10 × = 3400÷ 100

100 600 32× 800 = 34

100 500 - 20 × 2× 50

0 100 34× 850

100 - 4 ×
0 34 ×

cially for multidigit division, digit-based algorithms (e.g., long division) have been

de-emphasized or even abandoned in favor of whole-number-based approaches (e.g.,

partial quotients; Buijs, 2008; Scheltens et al., 2013). Table 4.1 provides examples

of digit-based and whole-number-based approaches for division: while they both

consist of standardized steps with a schematic notation, the digit-based algorithm

breaks the dividend up into digits (e.g., in Table 1, the 85 part of 850 is considered

separately when subtracting 75, and the rest of the dividend is only considered in

a later step), whereas the whole-number-based algorithm considers the dividend as

a whole (e.g., 250 is subtracted from 850).

However, dismissing a digit-based algorithm does not necessarily mean that

a whole-number-based algorithm will be used instead; an increase in the use of

more informal, non-algorithmic strategies is also possible, even though they may

be less suited for challenging problems. For example, the decrease in the use of the

digit-based division algorithm in Dutch national assessments from 1997 to 2004 was

paired by an almost equal increase in answering problems without writing down any

calculations (Van Putten, 2005), which should be interpreted as mental calculation

(Hickendorff et al., 2010). This switch from written to mental calculation turned

out to be very unfortunate, as the probability for a student to solve a division

problem accurately was drastically lower with mental than with written calculation

(Hickendorff et al., 2009), and the overall performance level on multidigit division

decreased sharply from 1997 to 2004 (J. Janssen et al., 2005). This trend over time

of an increasing percentage of students choosing an inaccurate strategy suggests

that the reform goal of adaptive expertise may not be feasible for some domains of

mathematics.
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4.1.3 The present study

The present study therefore constitutes an in-depth experimental investigation of

adaptivity in this domain of mathematics that was particularly affected by the

reforms: multidigit division. An experimental approach is necessary, because per-

formance estimates of strategies may be biased by so-called selection effects (Siegler

& Lemaire, 1997): for example, though mental strategies produce a low percentage

of correct solutions for multidigit division problems, this performance estimate may

be biased because of the mathematical ability level of the students who choose to

use this strategy or because of the difficulty of the problems it is applied to. If men-

tal calculation were used equally by all types of students on all types of problems,

then a different estimation of its performance could very well result. Hickendorff et

al. (2010) experimentally compared a condition in which students freely chose when

to write down calculations and one in which they had to write down calculations for

every problem, and found that written calculation was at least as accurate or more

accurate than mental calculation, especially for weak students. Mental calculation,

however, was only observed in this study when spontaneously chosen and therefore

performance estimates were biased by selection effects. In addition, only accuracy

and not solution times were measured, so the role of speed in strategy choices and

adaptivity remained unclear.

The present study addresses these two issues by experimentally investigating

students’ spontaneous strategy choices for multidigit division and both their accu-

racy and speed with required written and required mental calculation. The partic-

ipants are sixth graders, because the radical changes in performance and strategy

use were demonstrated for this age group in the aforementioned large-scale assess-

ment. The aim of the present study is to systematically chart the four aspects

of strategic competence of Lemaire and Siegler (1995) - repertoire, frequency, ef-

ficiency and adaptivity - with special attention to adaptivity, because of its high

relevance to mathematics education and to multidigit division specifically. This

was done using the choice/no-choice paradigm introduced by Siegler and Lemaire

(1997) to allow for the unbiased assessment of strategy performance characteristics,

that has since been applied in numerous solution strategy investigations (e.g., Imbo

& Vandierendonck, 2007; Lemaire & Lecacheur, 2002; Torbeyns et al., 2005).

This design consists first of a choice phase in which participants freely choose

between strategies in solving a set of problems. This phase provides information on

strategy repertoire and the frequency with which strategies in that repertoire are

chosen. The choice phase is followed by a no-choice (NC) phase, with a separate
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NC-condition for each strategy under investigation, in which participants have to

solve (parallel versions of) the problems from the choice phase with that strategy.

This provides strategy efficiency estimates unbiased by selection effects, as every

participant has to solve each problem with each strategy. Adaptivity can be judged

based on the two phases combined: it can be evaluated whether the strategies that

the participant chose in the choice phase were the most accurate and fastest in the

no-choice phase for him or her.

Hypotheses

There were several hypotheses regarding the four aspects of students’ strategic com-

petence in multidigit division. As for strategy repertoire and frequency, previous

research indicates that a majority of the students predominantly use written calcu-

lation for multidigit division, sometimes with mental calculation for particular prob-

lems, while around one third predominantly uses mental calculation (Hickendorff

et al., 2009). Girls may use more written calculation than boys, as girls use more

algorithmic strategies, while boys tend to use more intuitive, less formal strategies

(Carr & Jessup, 1997; Davis & Carr, 2002; Hickendorff et al., 2009). As for strategy

efficiency, mental calculation was expected to be less accurate than written calcu-

lation (see section 1.2). The fact that mental calculation is used frequently despite

its apparent inaccuracy, suggests that it may offer advantages in terms of speed.

As for adaptivity, it was expected that counter-adaptive choices with regard

to accuracy would be made for mental rather than written calculation, given the

apparent role of increased mental calculation in the Dutch performance decline.

Considering the previously described differences in adaptivity for different levels

of mathematical ability, this counter-adaptivity may occur particularly in lower

ability students. Adaptivity with regard to the sociocultural context was expected,

given the large influence on strategy choices that the sociocultural context exerts

by defining what choices are appropriate, as described in a review on this topic by

Ellis (1997). Among other factors, Ellis (1997) describes cultural values regarding

the use of mental strategies and the originality of employed strategies as influential.

In the present study, these values (and values regarding the digit-based versus the

whole-number-based algorithm) were measured in the students’ teachers, and we

expected students’ strategy choices to be related to these cultural values of the

teacher.
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Table 4.2: The three versions of the eight problems in the division problem set.

problem

1 2 3 4 5 6 7 8

47÷ 2 93÷ 4 810÷ 30 850÷ 25 136÷ 32 308÷ 14 216÷ 6 861÷ 7

87÷ 2 77÷ 4 510÷ 30 675÷ 25 175÷ 28 414÷ 18 231÷ 7 732÷ 6

67÷ 2 85÷ 4 720÷ 30 925÷ 25 189÷ 36 336÷ 16 306÷ 9 976÷ 8

4.2 Method

4.2.1 Sample

A sample of 162 sixth graders (11-12-year-olds) from 25 different primary schools

participated, of whom 81 were boys (50 percent) and 81 were girls (50 percent).

Seventy-two of these students had a mathematical ability score below the national

median (44 percent) and the remaining 90 a score above the median (56 percent),

as measured by standardized national tests that are administered at most Dutch

primary schools (J. Janssen, Verhelst, Engelen, & Scheltens, 2010).

4.2.2 Materials

Division problems

Three comparable versions of a set of eight multidigit division problems were con-

structed (see Table 4.2). The characteristics of the dividends and divisors were

varied systematically: there were two problems with a two-digit dividend and one-

digit divisor (e.g., 93 ÷ 4); two problems with a relatively easy combination of a

three-digit dividend and two-digit divisor (e.g., 850 ÷ 25); two problems with a

more challenging combination of a three-digit dividend and two-digit divisor (e.g.,

308 ÷ 14); and two problems with a three-digit dividend and a one-digit divisor

(e.g., 861÷ 7).

Teacher questionnaire

A questionnaire for the students’ teachers was constructed to assess the values re-

garding arithmetic in the sociocultural context formed by the teacher (see Table

4.3). Two questions in the questionnaire concerned teachers’ values regarding the

type of division algorithm (digit-based or whole-number-based). The rest of the

questionnaire focused on two values described as influential by Ellis (1997): men-
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Table 4.3: The questions from the values questionnaire for the students’ teachers.

Whole-number-based or digit-based algorithm

Which division algorithm best reflects the practice in your class?

whole-number-based - both - digit-based

To what extent do you as a teacher prefer a division algorithm?

strong preference whole-number-based - digit-based (5-point scale)

Mental versus written calculation

What is important to you when your students solve multidigit problems?

that they try that with mental calculation - written calculation (5-point scale)

How important is the skill of writing down calculations to you?

not important - very important (5-point scale)

How often do your students write down their calculations?

very infrequently - infrequently - sometimes - regularly - often

How important is advising students to write down calculations to you?

How important is instructing students in writing down calculations to you?

very unimportant - very important (5-point scale)

Original strategy use

How important is teaching students multiple solution strategies to you?

How important is letting students choose their own solution strategies to you?

very unimportant - very important (5-point scale)

How often do you devote attention to convenient solution strategies?

How often do you devote attention to multiple strategies per problem type?

< 1/month - 1×/month - 2×/month - 1×/two weeks - ≥ 1/week

Note: Response options are in italics under the question(s) they apply to.

tal (as opposed to written) calculation (five questions) and originality of strategies

(four questions). The three scales were found to have adequate reliability (Cron-

bach’s alphas of .75, .75 and .65 for the algorithm, mental calculation and originality

scales respectively). Validity was not separately investigated, but previous research

indicates that teachers’ self-reports of instructional practice converge with class-

room observations of independent observers and that teachers feel that self-report

measures can capture how they teach (Mayer, 1999; Martinez, Borko, & Stecher,

2012).

4.2.3 Procedure

Students were tested individually in a quiet room. They solved the three different

versions of the same set of multidigit division problems according to a choice/no-
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choice design (Siegler & Lemaire, 1997). The students solved the first set of prob-

lems in the choice condition, in which they were free to choose whether they wanted

to write down calculations or not. The second and the third problem set were of-

fered in two NC-conditions: one in which the entire set had to be solved without

writing down any calculations (the NC mental calculation condition), and one in

which calculations had to be written down for every problem in the set (the NC

written calculation condition). Both the order in which the different versions of the

problem set were presented and the order of the NC-conditions were counterbal-

anced.

The solution time for each problem was recorded by the experimenter using

a stopwatch. Student’s strategy use on the division problems was inferred from

their written work, and when no calculations were written down for a problem,

students were interviewed on their solution strategy. Five different strategy cate-

gories were discerned (both within mental and written calculation; see Table 4.1

for examples): the digit-based algorithm; the whole-number-based algorithm (both

algorithms were discussed in section 1.2); non-algorithmic strategies that involve re-

peated addition (or subtraction) of multiples of the divisor; strategies that involve

a simplification of the problem (such as the compensation strategy discussed in

section 1.1); and remaining solution strategies (unclear strategies, misconceptions

such as multiplying rather than dividing, and guessing).

The students’ teachers filled out the questionnaire on the day that the experi-

menter was present at the school for testing, and also solved one of the sets of eight

division problems so that their free strategy use and performance could be assessed.

4.2.4 Statistical analysis

Binary logistic mixed models (e.g., Molenberghs & Verbeke, 2006) were used for an-

alyzing the accuracy scores for each problem (correct or incorrect), strategy choices

on each problem (mental or written calculation), and students’ overall strategy

choices in the choice condition (at least once or never mental calculation). Linear

mixed models were used for analyzing the proportion of correct solutions with each

version of the problem set, and the time students took to obtain the solution to

each problem. This solution time was log-transformed to normalize its strongly

skewed distribution (as in Klein Entink, Fox, & Van der Linden, 2009).

For analyses at the problem level, random effects were added for the students

and the schools, to account for the dependencies of problem solving within students

and within schools. For analyses at the student level, only random school effects



66 CHAPTER 4. CHOICE/NO-CHOICE EXPERIMENT ADAPTIVITY

were added. All mixed model analyses were carried out using the SAS procedure

GLIMMIX (Schabenberger, 2005). Ninety-five percent confidence intervals (95% CIs)

are reported for the regression coefficient estimates (which equal the log of the

odds ratio (OR) in the logistic models) and differences in estimated means for an

indication of the magnitude of the effects. In addition, the standardized versions

of these mean differences (SMDs) are reported as effect sizes for the linear models

(where values of 0.2, 0.5 and 0.8 can be considered to reflect small, medium and

large effects respectively; J. Cohen, 1988), and ORs for the logistic models (where

values of 1.5, 3.5 and 9.0 can be considered small, medium and large respectively;

J. Cohen, 1988).

4.3 Results

The difficulty of the three versions of the problem set (aggregated over all con-

ditions) was comparable: students did not differ significantly in their proportion

of correct solutions for the first (M = .62) and second version (M = .62) of the

problem set, z = −0.37, p = .71, 95% CI [-0.04, 0.03], SMD = −0.01, or for the

first and third version (M = .59), z = −1.84, p = .07, 95% CI [-0.07, -0.01], SMD

= −0.07, (and given the intermediate difficulty of the second version, also not for

the second and third version).

4.3.1 Strategy repertoire and frequency

Table 4.4 provides information on students’ strategy repertoire and the frequency

of use of strategies in that repertoire in the three conditions of the choice/no-choice

experiment. In the choice condition, students solved 29 percent of the problems

using mental calculation, but this varied both between problems (from 18 percent

of mental calculation for problem 6 to 56 percent for problem 1) and between

students: 40 percent of the students never used mental calculation in the choice

condition, 30 percent used it at least once but for less than half of the problems,

and 30 percent applied it to half of the problems or more. There were no significant

differences between students who did and did not use any mental calculation in the

choice condition in terms of gender, z = 0.24, p = .81, 95% CI [-0.86, 1.10], OR

= 1.13, or mathematical ability level, z = 1.22, p = .22, 95% CI [-0.36, 1.54], OR

= 1.80, or interaction between gender and ability, z = 0.78, p = .43, 95% CI [-0.82,

1.90], OR = 1.72.
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Table 4.4: Strategy use in the choice, NC-mental and NC-written calculation con-

dition.

condition mental/written dig. alg. num. alg. rep. +/− simp. rem.

choice
mental (.29) .01 .14 .46 .20 .18

written (.71) .13 .55 .22 .08 .02

NC
mental .03 .23 .43 .19 .13

written .11 .49 .24 .11 .04

Note: dig. alg. = digit-based algorithm; num. alg. = whole-number-based algorithm;

rep. +/− = non-algorithmic repeated addition or subtraction; simp. = simplifying

strategies; rem. = remaining strategies

In the free strategy choice condition, algorithms (both digit-based and whole-

number-based) were used much more often in written than in mental solutions. In

contrast, non-algorithmic repeated addition or subtraction and simplifying strate-

gies (and also remaining strategies) were more frequent in mental solutions. The

strategy use within mental and within written solutions was similar in the choice

and NC-conditions.

4.3.2 Strategy efficiency

We investigated the relative efficiency of mental and written calculation strategies

by comparing students’ performance in the NC-mental and NC-written calculation

conditions (see Table 4.5 for accuracy and speed averages per condition). Students

had a higher probability of solving a problem correctly in the NC-written calculation

condition (probability of a correct solution (P ) of .70) than in the NC-mental

calculation condition (P = .54), z = −7.48, p < .001, 95% CI [-1.57, -0.92], OR

= 3.48. For below median ability students, the difference in accuracy between NC-

written and NC-mental calculation was much larger (∆P = .26) than for above

median ability students (∆P = .06), z = 3.72, p < .001, 95% CI [0.34, 1.08], OR

= 2.03. The accuracy difference did not depend significantly on student gender,

z = 1.80, p = .07, 95% CI [-0.03, 0.71], OR = 1.40.

As for speed: students solved problems faster in the NC-mental calculation

condition ( estimated mean problem solving time of 38 s) than in the NC-written

calculation condition (M = 50 s), z = −5.52, p < .001, 95% CI [-0.29, -0.14], SMD

= −0.39. This speed difference was larger for boys (∆M = 15 s) than for girls

(∆M = 11 s), z = −2.47, p = .01, 95% CI [-0.19, -0.02], SMD = −0.20, but did not

depend significantly on students’ ability level, z = −1.15, p = .25, 95% CI [-0.14,
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Table 4.5: Efficiency of required mental and written calculation in the respective

no-choice conditions.

accuracy speed

(proportion correct) (problem solving time (s))

NC-mental NC-written NC-mental NC-written

gender
girls .51 .67 48 51

boys .56 .65 44 53

ability
below median .36 .56 49 58

above median .68 .74 44 48

total .53 .66 46 52

0.04], SMD = −0.09.

4.3.3 Strategy adaptivity

Student-level correlations

A first indication of adaptivity is a positive relation between the frequency with

which a student chooses to use a strategy and the relative performance of that

strategy for that student (e.g., more choices for written calculation by students for

whom this strategy is generally more accurate and faster than mental calculation).

To investigate whether such an adaptive association between strategy choices and

performance exists, the total number of choices for written calculation by students

was correlated with their relative accuracy with written calculation (number correct

with NC-written minus that with NC-mental) and their relative speed (average

solution time with NC-mental minus that with NC-written) using Spearman’s rho.

Students were found to adaptively choose more written calculation when it was

relatively more accurate for them than mental calculation, ρ = .35, df = 156,

p < .001, but not significantly so when it was relatively faster, ρ = .08, df = 154,

p = .32 (though adaptivity with regard to speed was shown by the subgroup of

higher ability students, ρabove = .24, df = 87, p = .03).

Problem level adaptivity scores

However, such correlation analyses - though common in adaptivity investigations

(e.g., Kerkman & Siegler, 1997; Siegler & Lemaire, 1997; Torbeyns, Ghesquière, &

Verschaffel, 2009; Torbeyns, De Smedt, et al., 2009; Torbeyns et al., 2006) - only

reveal general trends at the student level and do not utilize the information that is
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available at the problem level in a choice/no-choice experiment, where comparisons

can be made between the different strategy conditions in which parallel versions

of a single problem are presented. In addition, correlation analyses consider ac-

curacy and speed in isolation, while it is more educationally relevant to consider

them simultaneously and define a choice as adaptive when it is for the strategy that

produces the correct solution the fastest (as in Luwel, Onghena, et al., 2009; Tor-

beyns, De Smedt, et al., 2009; Kerkman & Siegler, 1997). Following this definition,

the following problem-level adaptivity judgments can be made: when one no-choice

strategy was accurate and the other no-choice strategy inaccurate on parallel ver-

sions of the same problem for a student (e.g., NC-written correct and NC-mental

incorrect on two of the versions of problem 5), a choice for the accurate strategy

(in this example, written) on the other version of the problem by that student

in the choice condition was defined as adaptive, and a choice for the inaccurate

strategy (in this example, mental) as counter-adaptive. When both strategies were

accurate, a choice for the faster strategy was defined as adaptive and a choice for

the slower strategy as counter-adaptive. The case of two incorrect NC-solutions is

undetermined, as then there is no ’best’ choice to speak of.

Disregarding the undetermined trials (34 percent of all trials), 62 percent of

choices were found to be adaptive using these criteria (of which 67 percent were for

written strategies) and 38 percent counter-adaptive. This considerable percentage

of counter-adaptive strategy choices was found to hardly vary over gender and abil-

ity subgroups (between 61 to 66 percent), though the percentage of undetermined

trials was considerably higher in lower (40 percent) compared to higher ability stu-

dents (29 percent) because of the larger proportion of incorrect answers in the lower

ability students.

Relative performance with free strategy choice and required written

calculation

In the introduction, it was suggested that requiring students to write down cal-

culations might improve their performance. Therefore, we also investigated the

adaptivity of students’ strategy choices at the problem level in the following way:

we examined whether students performed better in solving a problem when they

were required to write down calculations, compared to when they were free to choose

whether they wanted to. Table 4.6 shows students’ accuracy and speed in the choice

and NC-written conditions, separately for mental and written strategy choices in

the choice condition. There was no general significant effect of condition on accu-
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racy, z = 1.26, p = .21, 95% CI [-0.15, 0.67], OR = 1.30, but condition did interact

with students’ strategy choice in the choice condition, z = 2.15, p = .03, 95% CI

[0.07, 1.53], OR = 2.23. There was also an interaction of condition, strategy choice

and ability level, z = −1.95, p = .05, 95% CI [-1.62, 0.00], OR = 2.25: when be-

low median ability students chose mental calculation, their accuracy improved with

NC-written calculation (increase in probability of a correct solution of .14), which

was not the case for students with an above median ability (∆P = −.02). When

students chose written calculation in the choice condition, accuracy was largely

unaffected by condition, both for below median ability students (∆P = .01) and

above median ability students (∆P = .03). Condition, strategy choice and gender

did not interact significantly, z = −1.33, p = .18, 95% CI [-1.36, 0.26], OR = 1.73.

Requiring written calculation affected speed, z = −2.42, p = .02, 95% CI [-0.19,

-0.02], SMD = −0.22, and this condition effect interacted with strategy choice,

z = 7.51, p < .001, 95% CI [0.43, 0.74], SMD = 1.23: when students chose mental

calculation in the choice condition they were slower in the NC-written condition

(∆M = 19 s), which did not hold when students chose written calculation (∆M =

−2 s). This slowing effect of NC-written calculation when students chose mental

calculation was stronger for higher ability students (∆M = 21 s) than for lower

ability students (∆M = 17 s), z = 2.59, p = .01, 95% CI [0.05, 0.39], SMD = 0.46.

Condition, strategy choice and gender did not interact significantly , z = −0.65,

p = .51, 95% CI [-0.22, 0.11], SMD = −0.11.

Teachers’ effects on strategy choices

No significant teacher effects on students’ choices between mental and written cal-

culation in the choice condition were found. Firstly, there were no significant effects

of teacher’s responses on the teacher questionnaire. To investigate this, mean scores

were calculated for the responses per category (with one question transformed to a

five-point scale). For the questions on the whole-number-based versus digit-based

algorithm, these mean scores showed that teachers were on average more oriented

towards the whole-number-based approach (M = 2.20, SD = 1.33), but these

scores had no significant effect on students’ use of mental calculation, z = −0.42,

p = .68, 95% CI [-0.53, 0.34], OR = 1.10. Mean scores for the questions on mental

versus written computation showed that teachers on average considered written

computation more important (M = 4.27, SD = .49), but these scores also had

no significant effect, z = 0.26, p = .80, 95% CI [-0.96, 1.25], OR = 1.16. Mean

scores for the questions on originality showed that teachers on average found orig-
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Table 4.6: Performance in terms of accuracy and speed with free strategy choice

and NC-written calculation, split by strategy choice in the choice condition.

accuracy (proportion correct)

mental choice written choice

choice NC-written choice NC-written

gender
girls .52 .64 .68 .68

boys .66 .59 .68 .68

ability
lower .40 .50 .57 .58

higher .73 .69 .73 .76

total .60 .62 .66 .68

speed (problem solving time (s))

mental choice written choice

choice NC-written choice NC-written

gender
girls 29 48 60 52

boys 25 46 59 57

ability
lower 33 51 64 60

higher 23 44 55 49

total 27 47 59 54

inality important (M = 4.04, SD = .76), but these scores also had no significant

effect, z = −0.21, p = .84, 95% CI [-0.95, 0.76], OR = 1.09. Secondly, there were

no significant effects of how the teachers solved the eight problems: neither for

the number of times a teacher used mental calculation (M = 2.13, SD = 2.03),

z = 0.10, p = .92, 95% CI [-0.27, 0.30], OR = 1.01; nor for the number of correctly

solved problems (M = 6.61, SD = 1.12), z = −0.99, p = .33, 95% CI [-0.79, 0.26],

OR = 1.30.

4.4 Discussion

In this study, students’ mental and written solution strategies for multidigit division

problems were investigated. Using the choice/no-choice paradigm, the four dimen-

sions of strategy use proposed by Lemaire and Siegler (1995) were charted: reper-

toire, frequency, efficiency, and adaptivity. The repertoire that students demon-

strated contained mental strategies for more than half of the students, half of

whom applied it to a majority of the problems. In line with the more informal

nature of mental strategies (Blöte, Klein, & Beishuizen, 2000), mental strategies

were found to be non-algorithmic and simplifying more often than written strate-
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gies. As expected, mental strategies were found to be faster but less accurate than

written strategies, and earlier estimates of the inaccuracy of mental strategies (Van

Putten, 2005) were probably even still too optimistic because of selection effects

(Siegler & Lemaire, 1997): the percentage correct difference between mental and

written strategies was smaller in the free strategy choice condition (6 percentage

points) than in the unbiased NC-conditions (13 points).

We first investigated adaptivity by evaluating the degree to which students

adapted their strategy choices to their relative performance with these strategies.

Using student-level correlations, students were found to adaptively choose written

strategies more when these were relatively more accurate for them than mental

strategies, and above median ability students also when written strategies were

relatively faster. However, using problem-level adaptivity scores that labeled a

strategy choice as adaptive when it was for the fastest accurate strategy, we found

that a considerable portion of the strategy choices was counter-adaptive (around a

third), also for higher ability students. Particular counter-adaptivity was indicated

for lower ability students who chose mental calculation, as their accuracy improved

when they were required to write down calculations - which was also found by

Hickendorff et al. (2010), though they did not find the effect to depend on ability

level.

Following the suggestion of Verschaffel et al. (2009) of high importance of the

sociocultural context, we also devoted attention to adaptivity in the sense of adap-

tation of solution strategies to that context in the form of the students’ teachers

attitudes towards various aspects of strategy use and teachers’ own strategy appli-

cation. However, we found no significant effects, suggesting that students’ division

strategy use may not be very sensitive to that context, at least to the extent that

that context is shaped by their current teacher. Other studies of sociocultural

context effects which operationalized that context more broadly did find effects,

for example by including parents in addition to teachers (Carr & Jessup, 1997),

or contrasting vastly different contexts in which Brazilian children functioned as a

street vendor or as a student (Nunes, Schliemann, & Carraher, 1993). Sociocul-

tural effects on mental division strategy use might therefore be found by taking

broader approaches such as also including teachers from earlier stages of mathe-

matics learning instead of only the teacher from the final year of primary school,

or by also including less formal sociocultural influences such as parents and peers.

Contrasting distinct contexts could be achieved by comparing mental strategy use

in different countries.
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Several interesting individual differences were found. Mental strategies offered

boys a larger speed advantage relative to written strategies than they did for girls,

which could contribute to the finding of Hickendorff et al. (2009) that boys use

mental strategies more than girls (though we did not replicate that finding). As for

ability level, while the rate of choices for mental strategies did not differ significantly

between levels, the accuracy advantage of written compared to mental strategies

was larger for lower than for higher ability students, and lower ability students

demonstrated less adaptivity (as in several other studies, e.g., Foxman & Beishuizen,

2003; Hickendorff et al., 2010; Torbeyns et al., 2006). These results indicate that

mental strategies are especially risky for lower ability students: not only are these

strategies especially inaccurate for this group, these weaker students also appear

to have problems with determining when they should and should not be applied.

What makes this especially worrisome, is that lower ability students nonetheless

appear to use mental strategies as often as higher ability students (or even more

often, as found by Hickendorff et al., 2009).

The finding that lower ability students benefit from being required to write

down calculations while higher ability students do not (who instead are slowed

down more) is in line with the expertise reversal effect in cognitive load theory,

which states that instructional techniques can have differential (and even reversed)

effects on cognitive load (and thereby, performance) depending on the expertise of

the learner (Kalyuga, Ayres, Chandler, & Sweller, 2003). In low-expertise students,

writing down calculations may free working memory resources for division problems

that otherwise pose a cognitive load that is too high, whereas in high-expertise

students, writing down calculations may be a redundant activity that places an

unnecessary extra load on those resources. Such an expertise reversed effect implies

that this technique of requiring writing down calculations should only be used for

expertise levels for which it is effective: lower ability students.

4.4.1 Methodological considerations

Two aspects of the methodology of the current investigation warrant further atten-

tion. The first is the strategies evaluated in the choice/no-choice experiments. The

choice/no-choice paradigm is often employed to compare specific strategies such

as direct subtraction and indirect addition (Torbeyns, Ghesquière, & Verschaffel,

2009), but in our case broader categories of strategies are compared. As criticized

by Luwel, Onghena, et al. (2009), such broad categories can in turn consists of sev-

eral strategies, which is indeed the case here (both written and mental strategies are
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further classified into five categories). However, we argue that our comparison of

mental and written strategies is very meaningful in light of their large performance

difference and the apparently important role of this difference in performance level

changes (as discussed in the introduction), and note that in their introduction of

the choice/no-choice paradigm, Siegler and Lemaire (1997) also compared mental

and written strategies. In addition, comparing more specific division strategies in

the Dutch situation is complicated, as the division strategies that Dutch students

are taught differ and therefore not all students can be expected to be able to execute

particular strategies.

The second methodological aspect is the statistical conceptualization of adap-

tivity. In this study different approaches were taken, that each shed their own light

on the degree of adaptivity displayed by (subgroups of) students. A first consid-

eration is the level at which adaptivity is evaluated. Performance on individuals

problems may be unreliable, making aggregating over problems necessary for sta-

ble results Luwel, Onghena, et al. (2009), but this discards a lot of information

and treats problems as if they are interchangeable, which even within a domain as

specific as multidigit division seems unreasonable (e.g., see Table 4.2). The ASCM

posits that strategy choices are based on a weighted combination of global data

averaged over all problems, featural data per particular structural problem feature,

and local data per particular problem, and that the weighing depends on the fa-

miliarity of the problem (Siegler & Shipley, 1995). Therefore, it might be argued

that aggregating over all problems is more suitable when problems are relatively

unfamiliar, and less so when problems or problem features are more familiar. The

present study appears to lie somewhere in between, as multidigit division should

by a very familiar domain for students, but particular problems are typically not

repeatedly encountered, and both problem and individual approaches were taken.

A second consideration in determining adaptivity - also touched upon in the

introduction - is whether to consider accuracy and speed in isolation or to combine

them. In this study both approaches were taken, and for the combination speed

was only considered when both strategies were accurate, defining choices for the

fastest accurate strategy as adaptive (as in Luwel, Onghena, et al., 2009; Torbeyns,

De Smedt, et al., 2009; Kerkman & Siegler, 1997). Trials where both NC-solutions

were inaccurate remained undetermined, which is not the case when speed is con-

sidered in isolation, but one could question whether speed differences for inaccurate

strategies are as relevant as those for accurate strategies. All in all, we urge investi-

gators of adaptivity to be aware that different choices with regard to analysis level
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and accuracy and speed can highlight different aspects of adaptivity.

4.4.2 Implications

The findings of this study have implications for cognitive psychological research

on solution strategies and for educational practice. As for cognitive research, we

found that written strategies appear to be chosen more for their accuracy, while

mental strategies appear to be chosen more for their speed. These considerations

did not play in equal measure in everyone: the strength of the accuracy effect

depended on mathematical ability level and the strength of the speed effect on

gender, and differences in adaptivity indicated that students differ in the extent to

which they adapt their strategy choices to strategies’ accuracy and speed. Choices

between mental and written calculation may therefore in part be determined by

individual differences in the relative value assigned to accuracy and speed, and

therefore in part reflect students’ speed-accuracy tradeoff (MacKay, 1982). Factors

that may play a role in the relative favoring of accuracy and speed are traits which

are traditionally associated with academic success (Bembenutty, 2009): academic

delay of gratification (which is generally higher in girls) parallels sacrificing speed for

accuracy, and self-efficacy (higher in boys) could determine the speed that students

allow themselves while still feeling confident about their accuracy. Future research

on adaptivity could extend existing models such as the ASCM (Siegler & Shipley,

1995) to accommodate individual differences in preferences for accuracy and speed,

and provide more insight into the sources of these individual differences by relating

them to other factors such as the ones discussed.

As for educational practice, results suggest that for some students it may be too

ambitious to strive for what is a central element of mathematics reforms: adaptive

expertise in choosing from an array of formal and informal strategies, rather than

mastery of a limited set of algorithmic strategies. We found that lower ability

students appear to use mental strategies as often as higher ability students, while

mental strategies are especially inaccurate for them and adaptivity in choosing when

to apply these strategies appears problematic. Lower ability students’ performance

may therefore be improved by providing them with more direction in their strategy

choices. The present study provided support for beneficial effects of doing this

directly by simply requiring students to write down calculations, and a broader

change in strategy behavior might be accomplished by targeting the sociocultural

context (Verschaffel et al., 2009).

As described in a review by Ellis (1997), cultural values in this context concern-
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ing various aspects of problem solving exert an important influence on children’s

strategy choices. She discusses values regarding speed and accuracy, mental strate-

gies, originality, and independent performance, and contrasts these values in differ-

ent cultures (such as Western cultures as apposed to Navajo, Asian and aborigine

cultures). Given the results of the present study, values for speed and accuracy

and mental strategies appear especially relevant to performance in multidigit arith-

metic. The suboptimal choices for mental strategies that we have observed may be

related to typical Western values in these areas: the favoring of fast performance

(rather than error-free performance, as for example in the Navajo culture), and

of solutions constructed in the head without any external aids. Therefore, perfor-

mance might be improved by making efforts to adjust these norms so that accuracy

is more important than speed, and that solutions constructed in the head are not

more desirable than those constructed with the external aids of paper and pencil.

The results of the present study suggest that such an adjustment may require a

broader approach of sociocultural effects than just the students’ current teacher.

All in all, we feel that it would be highly relevant for mathematics education to de-

vote more research efforts to investigating the feasibility of the educational goal of

adaptive expertise for lower ability students, and evaluating sociocultural influences

more broadly to see how strategy choices may be favorably influenced.
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Affecting students’ choices between mental and written solution

strategies for division problems

Abstract

Making adaptive choices between strategies is a central element of cur-

rent day mathematics, but not all students may be able to do so. Suboptimal

choices between mental and written division strategies are indicated for lower

mathematical ability students. Strategy choices in this domain were related

to student and teacher factors for 323 sixth graders, and for 224 lower abil-

ity students an intervention promoting choices for relatively accurate written

strategies was evaluated using a pretest-posttest design. Written strategy

choices and performance increased considerably for students receiving inter-

vention or control training, but not for students who did not receive any

training. Results suggest that students’ strategy choices may also be affected

by targeting their motivation and the sociocultural context for strategy use.

5.1 Introduction

Tasks are executed using a variety of strategies during all phases of development

(Siegler, 2007). For example, infants vary in their use of walking strategies (Snapp-

Childs & Corbetta, 2009), first graders in their use of spelling strategies (Rittle-

Johnson & Siegler, 1999), and older children in their use of transitive reasoning

strategies (Sijtsma & Verweij, 1999). This large variance in strategies goes together

with widely differing performance rates of the different strategies, thereby having

This chapter is currently submitted for publication as: Fagginger Auer, M. F., Van Putten,
C. M., & Hickendorff, M. (submitted). Affecting students’ choices between mental and written
solution strategies for division problems.

We would like to thank the schools and students for their participation in the experiment, and
the Dutch National Institute for Educational Measurement Cito for allowing use of the assessment
items.
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profound effects on performance levels. As such, strategies have been a topic of

continued investigation.

Children’s and adults’ solution strategy use has been investigated for many

cognitive tasks, such as mental rotation (A. B. Janssen & Geiser, 2010), class

inclusion (Siegler & Svetina, 2006), and analogical reasoning (Stevenson, Touw,

& Resing, 2011). A cognitive domain that has featured prominently in strategy

research is arithmetic. Many studies have been conducted on elementary addition

(e.g., Barrouillet & Lépine, 2005; Geary et al., 2004), subtraction (e.g., Barrouillet

et al., 2008), multiplication (e.g., Van der Ven et al., 2012) and division (e.g.,

Mulligan & Mitchelmore, 1997), which concern operations in the number domain

up to 100 that are taught in the lower grades of primary school. Some studies

have also addressed strategy use on the more complex multidigit (involving larger

numbers and decimal numbers) arithmetical tasks in the higher grades (e.g., Van

Putten et al., 2005; Selter, 2001; Torbeyns, Ghesquière, & Verschaffel, 2009).

5.1.1 Determinants of strategy choices

Different aspects of strategy use for both elementary and multidigit arithmetical

problems can be discerned (Lemaire & Siegler, 1995): individuals’ strategy reper-

toire (which strategies are used); frequency (how often each strategy is used); effi-

ciency (the accuracy and speed of each strategy); and adaptivity (whether the most

suitable strategy for a given problem is used). These four aspects together shape

arithmetical performance. With reforms that have taken place in various countries

over the past decades (Kilpatrick et al., 2001), the aspect of adaptivity has become

particularly important. Building on students’ own strategic explorations and devel-

oping adaptive expertise in flexibly using an array of strategies now take a central

place, instead of perfecting the execution of a single algorithm per problem type

(Gravemeijer, 1997; Verschaffel et al., 2009). This makes choosing the most suitable

strategy for a given problem (i.e., making an adaptive strategy choice) crucial.

There are several ways in which the adaptivity of a strategy choice can be

defined, as described by Verschaffel et al. (2009). One way is to define adaptivity

purely based on task variables: the characteristics of a problem determine which

strategy is adaptive (e.g., the adaptive strategy choice for a problem like 1089÷ 11

is compensation: 1100 ÷ 11 − 1). However, individuals differ in their mastery of

different strategies, and the strategy that is most effective for one person does not

have to be that for another person. Therefore, a second way to define adaptivity

also takes subject variables into account: the strategy that is the adaptive choice
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is the one that is most effective for a given problem for a particular person. A

third way looks even further and includes context variables in the definition. These

can be variables both in the direct context of the test (e.g., time restrictions and

characteristics of preceding items) and in the broader sociocultural context. In their

discussion of adaptive expertise in elementary mathematics education, Verschaffel

et al. (2009) stress the importance of more educational research attention to these

sociocultural context variables.

Ellis (1997) reviewed research on this topic and argues that the sociocultural

context is very important in shaping individuals’ strategy repertoire and choices.

Students have an implicit understanding of which ways of problem solving are val-

ued by their community: whether speed or accuracy is more important; whether

mental strategies are valued over using external aids; whether using conventional

procedures or original approaches is preferred; and whether asking for help in prob-

lem solving is desirable. Ellis (1997) describes examples of existing differences in

strategy use between different cultures (e.g., Western, Asian, aborigine and Navajo

cultures). What is also interesting, and moreover, highly practically relevant, is

to investigate in what way the context may be manipulated to favorably influence

strategy choices.

5.1.2 Influencing students’ choices between mental and written

division strategies

A case in which influencing students’ strategy choices could have large beneficial

effects for performance, is that of mental and written strategies for multidigit di-

vision problems. As previously described, the attention to traditional algorithms

decreased during the reforms of mathematics education. In the Netherlands, this

was most extreme for the operation of division, for which the traditional algorithm

was abandoned in favor of a new standardized approach (Buijs, 2008; J. Janssen et

al., 2005). The traditional and newer approach (see Table 5.1 for examples) differ

in that the traditional algorithm is digit-based in the sense that it breaks the div-

idend up into digits (e.g., in Table 5.1, the 54 part of 544 is considered separately

in subtracting 34, and the rest of the dividend is only considered in a later step),

whereas the newer approach is whole-number-based and considers the dividend as

a whole (e.g., in Table 5.1, 340 is subtracted from 544; Van den Heuvel-Panhuizen

et al., 2009). Dutch national assessments in 1997 and 2004 showed the expected

decrease in sixth graders’ use of the digit-based algorithm, but use of the whole-

number-based approach did not increase accordingly; instead, students made more
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Table 5.1: Examples of the digit-based algorithm, whole-number-based algorithm,

and non-algorithmic strategies applied to the division problem 544÷ 34.

digit-based

algorithm

whole-number-

based algorithm

non-algorithmic

written strategies

34/544\16

34

204

204

0

544 : 34 =

340 - 10×
204

102 - 3×
102

102 - 3×+

0 16×

10 × 34 = 340

13 × 34 = 442

16 × 34 = 544

use of strategies without any written work (Hickendorff et al., 2009).

These mental strategies turned out to be very inaccurate compared to written

strategies (digit-based or otherwise), suggesting a lack of adaptivity of strategy

choices with regard to accuracy, and a large performance decline for multidigit

division was observed on the assessments (Hickendorff et al., 2009). In follow-up

studies, Fagginger Auer, Hickendorff, and Van Putten (2016) and Hickendorff et

al. (2010) showed that requiring (lower mathematical ability) students who answer

without any written work to write down calculations improved their performance.

This shows that requiring the use of more efficient strategies can affect performance

favorably in the short term, providing a concrete suggestion for educational prac-

tice. A valuable extension of this finding would be an investigation of instructional

contexts that increase students’ choices for efficient strategies in the longer term,

thereby instilling more sustainable improvements in performance.

5.1.3 Present study

The present study is intended as a first step of such an investigation of the de-

terminants of sixth grade students’ choices between mental and written division

strategies. In the first part of the study, existing differences in these strategy

choices are related to students’ motivations and attitudes in mathematics and to

the sociocultural context for mathematics provided by the students’ teachers. In

the second part of the study, an intervention designed to increase students’ free

choices for written rather than mental strategies (and thereby, their performance)

is evaluated. Since mental strategies appear especially inaccurate for lower ability

students (Fagginger Auer et al., 2016; Hickendorff et al., 2010), our intervention
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focuses on this group. Using a pretest-posttest design, an intervention training con-

dition consisting of training sessions designed to promote writing down calculations

is compared to a control training condition where strategy use is not targeted, and

to a no training condition.

A meta-analysis by Kroesbergen and Van Luit (2003) on mathematics inter-

ventions for low ability students showed that effect sizes were larger for interven-

tions that featured direct instruction and self-instruction compared to interventions

with mediated instruction, and smaller effect sizes for interventions with computer-

assisted instruction and peer tutoring compared to interventions without those

elements. More specifically, in another meta-analysis on this topic, Gersten et al.

(2009) identified explicit instruction as an important component of effective inter-

ventions. This explicit instruction involves a step-by-step problem solving plan for

a specific type of problems, that is demonstrated by an instructor and that students

are asked to use. In order to maximize the potential efficacy of the intervention

training in the present study, this training therefore involves direct instruction by

a human, adult instructor using a step-by-step plan.

Hypotheses

The investigation of determinants of existing differences in mental versus written

division strategy choices is exploratory in nature, and involves of a number of po-

tentially relevant factors. Several of the aspects of the sociocultural context (as

seen by the teacher) described by Ellis (1997) as influential with regard to strategy

choices are considered: importance of speed versus accuracy, preference for mental

strategies versus use of external aids, and preference for conventional versus orig-

inal approaches. In addition, students’ self-rated functioning in mathematics and

motivation, teachers’ characteristics, and the mathematics textbook and division

algorithm instruction are considered.

As for the effects of the intervention: written strategy choices are expected

to increase more from pretest to posttest in the intervention than in the control

training group, given that they are is only promoted in the former group. Given the

higher accuracy of written compared to mental strategies, performance is therefore

expected to increase more in the intervention than in the control training group

(though the control group should also improve because of the additional practice

and attention that students receive). In the no training group, no large changes in

strategy choices or performance are expected because of the lack of training and

the limited amount of time that passes between the pretest and posttest.
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The effect of the intervention training may depend on students’ characteristics.

As boys appear to use more mental strategies for division than girls (Fagginger Auer

et al., 2013; Hickendorff et al., 2009, 2010), there is more room for improvement

through training in boys than in girls. Mathematical ability level may also be

relevant, as mental strategies are especially inaccurate for lower ability students

(Fagginger Auer et al., 2016; Hickendorff et al., 2010), and therefore increases in

the use of written strategies may affect performance more when ability is lower.

Finally, training may have a larger effect on performance when students’ working

memory capacity is lower, because then the working memory resources freed up

by writing down calculations make more of a difference (in line with cognitive load

theory; Paas, Renkl, & Sweller, 2003). This is especially relevant in our sample,

given that students with a lower mathematical ability tend to have a lower working

memory capacity than higher ability students (Friso-van den Bos, Van der Ven,

Kroesbergen, & Van Luit, 2013).

5.2 Method

5.2.1 Participants

A total of 323 sixth graders (53 percent girls) with a mean age of 11 years and 8

months (SD = 5 months) from 19 different classes at 15 different schools partic-

ipated in the study. For all students, a general mathematical ability score from

a widely used standardized national student monitoring system (J. Janssen et al.,

2010) was available. All students participated in the pretest and posttest, but train-

ing was only given to the 147 students with mathematical ability percentile scores

between 10 and 50. Students scoring in the lowest performing decile (7 percent

in our sample) were excluded, because atypical problems such as dyscalculia could

occur in this group. Of the selected students, 74 received intervention training

and 73 control training. They were assigned to a training condition using random

assignment with gender, ability quartile and school as blocking variables.

For an indication of development independent of training, performance and

strategy choices were also investigated for students who did not receive any train-

ing. However, no students with the same ability level as the students who received

training were available, so data from the 77 students in the adjoining ability groups

(the quartile just above the median and the lowest decile) was used, as in a regres-

sion discontinuity design (Hahn, Todd, & Van der Klaauw, 2001). The ability scale

scores in the untrained group were on average somewhat higher and they were more
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varied (M = 101.9, SD = 13.4) than in the control training (M = 97.9, SD = 5.3)

and intervention training group (M = 97.3, SD = 5.5).

5.2.2 Materials

Pretest and posttest

The pretest used to asses students’ division strategy choices and performance con-

tained the twelve multidigit division problems given in Table 5.2 (for the problems

not yet released for publication as they will be in future assessments, parallel ver-

sions are given in italics). These problems were taken from the two most recent na-

tional assessments of mathematical ability at the end of primary school (J. Janssen

et al., 2005; Scheltens et al., 2013), so that our results could be interpreted relative

to the national results that called for this line of mathematical strategy research. All

problems were situated in realistic problem solving context (e.g., determining how

many bundles of 40 tulips can be made from 2500 tulips), except for the problem

31.2 ÷ 1.2. The test also contained twelve problems involving other mathematical

operations (all from the most recent national assessment), so that it more closely

resembled a regular mathematics test to students. The posttest was identical to

the pretest to allow for a direct comparison of results, and with the tests being a

month apart and students solving similar problems on a daily basis in mathematics

lessons during that period, it was very unlikely that students remembered any of

the (complex) solutions.

Accuracy (correct or incorrect) and use of written work (yes or no) were scored

for every problem. For solutions with written work, a further distinction was made

between three strategy categories: the digit-based algorithm; the whole-number-

based algorithm; and non-algorithmic written strategies (see Table 5.1 for exam-

ples).

Training problems

The problems used in the three training sessions in between the pretest and posttest

were three sets of parallel versions of the twelve problems in those tests.

Student and teacher questionnaires

The students filled out a questionnaire on their attitude towards mathematics and

mental mathematical strategies consisting of seven questions. The teachers filled

out a questionnaire of fifteen questions on their attitude towards and instruction



84 CHAPTER 5. AFFECTING STUDENTS’ STRATEGY CHOICES

Table 5.2: The division problems that students had to solve at the pretest and

posttest.

problems

1536÷ 16 = 96 872÷ 4 = 218 31.2 ÷ 1.2 = 26 6496 ÷ 14 = 464

544 ÷ 34 = 16 11585 ÷ 14 = 827.5 47.25 ÷ 7 = 6.75 157.50÷ 7.50 = 21

2500 ÷ 40 = 62 1470 ÷ 12 = 122.50 736÷ 32 = 23 16300÷ 420 = 39

Note: Parallel versions of problems not yet released for publication are in italics.

of division algorithms, writing down calculations, and various aspects of flexible

strategy use. Both questionnaires can be found in the Appendix.

Working memory tests

The verbal working memory capacity of students who received training was assessed

using a computerized version (Stevenson, Saarloos, Wijers, & De Bot, in prepara-

tion) of the digit span test from the WISC-III (Wechsler, 1991), and their spatial

working memory using a computerized version (Stevenson et al., in preparation) of

the Corsi block test (Corsi, 1972).

5.2.3 Procedure

The experiment was conducted over a period of five weeks in the fall of 2014.

In the first week, the students first completed the pretest in a maximum of 45

minutes in their classroom. They then did the two working memory tasks on the

computer and filled out the student questionnaire. The teacher also filled out the

teacher questionnaire in this first week. In the following three weeks, the students

participated in three individual training sessions of fifteen minutes each (one per

week) with the experimenter. The experiment was concluded in the fifth week,

in which students did the posttest in again a maximum of 45 minutes in their

classrooms.

The training sessions consisted of the students working on the set of training

problems for that week. The experimenter evaluated each solution when it was

written down and told the student whether it was correct or incorrect. When

correct, the students proceeded to the next problem. When incorrect, the student

tried again. Accuracy feedback was provided again, and regardless of whether the

solution was correct this time, the student proceeded to the next problem. The

session was terminated when fifteen minutes had passed.
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Figure 5.1: The step-by-step plans (the lower one for students using the digit-

based algorithm, and the upper one for students using the whole-number-based

algorithm).
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Though these elements of the training were the same for the control and training

conditions, two important aspects differed. The first is that students in the control

condition were free in how they solved the problems (just as in the pretest), whereas

the students in the intervention condition had to write down their calculations in

a way that would allow another child to see how they had solved the problem (but

otherwise, strategy choice was free). In addition, while students in the intervention

condition made their first attempt at solving the problem independently (using

a written strategy of their own choice), if they failed, they were provided with

systematic feedback on writing down calculations in a standardized way at the

second attempt. The students in the control condition received no such feedback

and made both their first and second attempt independently.

A step-by-step plan was used for providing the feedback on writing down cal-

culations in the intervention condition, while there was no such plan in the control

training condition. The step-by-step plan was always on the table for the inter-

vention training students so they could use it whenever they wanted, and when

intervention students were stuck in their problem solving, the experimenter used

the plan and standardized instructions to help the students with writing down cal-

culations. No feedback was given on the accuracy of what students wrote down

(e.g., mistakes in the multiplication table), except for the final solution.

There was a version of the plan for students taught the digit-based algorithm and

one for students taught the whole-number-based algorithm (see Figure 5.1). Both

versions consist of five highly similar steps (with step 3 and 4 repeated as often as

necessary): (1) writing down the problem; (2) writing down a multiplication table

(optional step); (3) writing down a number (possibly from that table) to subtract;

(4) writing down the subtraction of that number; and (5) finishing when zero is

reached, which in the case of the whole-number-based algorithm requires a final

addition of the repeated subtractions. Each step is represented by a symbol to

make the step easy to identify and remember (the symbols in the ellipses on the

left side of the scheme). Below this symbol, a general representation of the step

is given, with question marks for problem-specific numbers already present at that

step and dots for the numbers to be written down in that step. On the right-hand

side of the plan, an example of the execution of each step for the particular problem

234 ÷ 18 is given in a thinking cloud. On both sides, the elements to be written

down in the current step are in bold font.
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5.2.4 Statistical analysis

Correlation analyses

To explore possible relations between the questions on the student and teacher ques-

tionnaires and students’ written strategy choices on the pretest, correlations rather

than formal models were used because of the high number of questions involved.

Point-biserial correlations were used for dichotomous questionnaire responses and

Spearman’s rank correlations for scales.

Explanatory IRT models

More formal tests were conducted using explanatory item response theory (IRT)

models. As argued by Stevenson, Hickendorff, Resing, Heiser, and de Boeck (2013),

measuring learning and change has inherent problems that can be addressed using

explanatory IRT. These are problems such as the dependence of the meaning of

scale units for change on pretest score, because of the non-interval measurement

level of non-IRT scores (e.g., an increase of one in the number correct does not

necessarily mean the same for a person who already had a nearly perfect score as

for someone who had a lower score).

IRT models place persons and items on a common latent scale (Embretson &

Reise, 2000). The distance between the persons and items on that scale determines

the probability of a correct response: if person ability and item difficulty are close

together that probability is around fifty percent, whereas it is lower if ability is

lower than difficulty, and higher if ability is higher than difficulty. In its most basic

form, the (Rasch) model for the probability of a correct response of person p with

ability θp on item i with difficulty βi is P (ypi = 1|θp) =
exp(θp−βi)

1+exp(θp−βi)
. The estimated

ability parameters for persons are more likely to have an interval measurement level

than simple sum scores.

This model becomes explanatory when explanatory factors for items’ difficulty

or persons’ ability are included, which can be item covariates (not used in the

present study), person covariates (condition and student gender, ability score and

working memory in the present study), and person-by-item covariates (solution

strategy choice in the present study). This type of models can be estimated as

multilevel logistic regression models using general purpose generalized linear mixed

model (GLMM) software, by fitting a binomial model with solution accuracy (cor-

rect or incorrect) as the dependent variable, a random intercept for students as

the ability parameter, and the covariates of interest as fixed effects (De Boeck &
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Wilson, 2004).

In the present study, different explanatory IRT models were fitted using the lme4

package in R (Bates, Maechler, Bolker, & Walker, 2014; De Boeck et al., 2011). All

models were random person-random item Rasch models (RPRI; De Boeck, 2008),

with a random intercept for students, and also a random intercept for the item

effects (as they were considered a draw from the larger domain of multidigit divi-

sion). The different covariates were added in stepwise fashion (as in Stevenson et

al., 2013), so that the added value of each addition could be evaluated by comparing

the models based on the Aikaike Information Criterion (AIC), Bayesian Informa-

tion Criterion (BIC), and likelihood ratio tests. The AIC and BIC balance model

fit and parsimony and lower values of these criteria are better, and a significant

likelihood ratio test indicates that of the two models that are compared, the more

complex model fits significantly better. Of the final best fitting model according

to these various criteria, the regression parameters were interpreted. Since our

research question did not only concern accuracy (correct vs. incorrect) but also

strategy choice (written vs. not written), and IRT models accommodate dichoto-

mous variables regardless of content, strategy use was modeled in the same way.

The person parameter θp then reflects individual differences in the tendency to use

written strategies.

For an indication of the size of significant effects, the probability P of a correct

response or of using a written strategy is given for different levels of the covariate,

with all other covariates in the model set at the mean in the sample. For example,

for the effect of testing occasion (pretest or posttest), the probability of a correct

solution for an average student on an average problem on the pretest and on the

posttest is given. For numeric covariates (e.g., ability score) the effects of a differ-

ence of one standard deviation around the mean (M − 0.5SD to M + 0.5SD) are

given.

5.3 Results

5.3.1 Relation between student and teacher factors and written

strategy choices

First, an exploration of pre-existing differences in choices for written strategies

based on students’ attitudes with regard to mathematics and teachers’ strategy

instruction was made using the pretest data. Students used written strategies in 62
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percent of their pretest solutions, which varied between 51 percent for the problem

31.2÷ 1.2 and 87 percent for the problem 11585÷ 14.

Student questionnaire

The Appendix shows what all students (N = 323) reported on the student ques-

tionnaire on their mathematical attitudes. The proportion of students choosing

each alternative is given in brackets after the respective alternative. After each

question, the correlation between the question response and the overall proportion

of pretest division problems solved with written strategies is also given.

On average, the students had a slightly positive attitude towards mathematics

(M = 3.2 on a 5-point scale) and were slightly positive about their mathemati-

cal ability (M = 3.3), and the more positive their attitude and the higher their

judgment of ability, the higher their frequency of choices for written strategies

(r(322) = .17 and r(322) = .21 respectively). Students reported putting quite some

effort into math (M = 4.3) and almost all (98 percent) reported valuing accuracy

over speed, but these factors were unrelated to written strategy choices. A majority

of students (72 percent) found it more important to be able to solve mathemat-

ical problems with than without paper, and this was positively related to using

written strategies (r(318) = .19). Students reported sometimes answering without

writing down a calculation (M = 2.8), and indeed, reporting more frequent mental

calculation was negatively related to using written strategies (r(322) = −.17).

Students also reported on reasons they had for not writing down calculations,

on the occasions that they used this approach (which were less frequent for some

students and more frequent for others). The most popular reason (chosen by 60

percent of students) was because they did not feel it was necessary, followed by

doing it because it was faster (37 percent), because of not feeling like it (19 percent),

and because of guessing the solution instead of calculating it (19 percent). Some

students also reported better accuracy with mental strategies (13 percent) and

finding it smarter to be able to solve a problem mentally (11 percent). Virtually no

students (1 percent) perceived mental calculation as cooler. Indicating not finding

writing down calculations necessary as a reason for not doing it was positively

related to written strategy choices (r(322) = .20), whereas indicating not feeling

like writing anything down and considering mental calculation more accurate as

reasons were negatively related to written strategy choices (r(322) = −.12 and

r(322) = −.23).
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Teacher questionnaire

The Appendix also shows what the teachers of the students (N = 19) reported on

the teacher questionnaire on their strategy instruction. As for the student question-

naire, the proportion of teachers choosing each alternative is given, and the mean

is given for the 5-point scales. Correlations were also calculated, but none of them

were significant, possibly due to low power because of the small N .

A small majority of the teachers was male (58 percent) and the teachers were

on average 38 years old. Almost half (47 percent) used the textbook ’Wereld in

Getallen’ and their students solved 54 percent of the problems using written strate-

gies, while the students of teachers using other textbooks (’Pluspunt’, ’Alles telt’

and ’Rekenrijk’) used written strategies on 66 to 69 percent of the problems.

Most teachers taught their students the whole-number-based algorithm exclu-

sively (58 percent) or in combination with the digit-based algorithm (26 percent),

and 16 percent taught their students the digit-based algorithm exclusively. On

average, teachers did not prefer one algorithm over the other (M = 3.0), but did

prefer use of an algorithm to non-algorithmic approaches (M = 2.2). During their

own training, the whole-number-based algorithm (53 percent) or digit-based al-

gorithm (42 percent) was emphasized, and for one teacher both algorithms. On

average, teachers found performing calculations well on paper and mentally equally

important for their students (M = 3.0). They reported instructing their students

in writing down calculations frequently (on average almost daily, M = 4.2).

Concerning multidigit division problems specifically, teachers on average found

writing down calculations somewhat more important for their students than trying

to do it mentally (M = 2.4) and valued accuracy somewhat over speed (M = 2.5).

Making a good estimation of the solution was more important than being able to

determine the exact solution (M = 3.5), as was knowing more solution procedures

than just one (M = 3.4). Teachers considered using an algorithm versus choosing

a custom solution strategy on average equally important (M = 3.0), and valued

convenient shortcut strategies somewhat more than using a method that can always

be applied (M = 3.3).

5.3.2 Content of the training

After the pretest, students with a mathematical ability percentile rank between

10 and 50 (N = 147) received intervention or control training. During the three

training sessions, the students in the intervention condition completed on average
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5.1 division problems per session and the students in the control condition 6.1 prob-

lems. The number of problems that students attempted a second time (when the

solution was incorrect the first time) was 1.6 for the intervention and 1.8 for the

control condition. During all the second attempts of a session combined, interven-

tion students received feedback 3.3 times on average. This feedback most often

concerned writing down a multiplication table (0.8 times) and selecting a number

from that table (1.1 times), and less often the writing down of the problem (0.5

times), subtracting the selected number (0.5 times) and finishing the procedure (0.5

times).

As instructed, the students in the intervention condition virtually always wrote

down a calculation (for 98, 99 and 99 percent of the problems in the first, second

and third session respectively). Though not instructed to do so, the students in the

control condition also often wrote down a calculation and this appeared to increase

over sessions, with 81 percent in the first session and 87 and 93 percent in the

second and third session. The use of written calculations that were algorithmic

(digit-based or whole-number-based) increased over sessions in both groups and

appeared higher overall in the intervention condition (84, 93 and 96 percent in the

three sessions in the intervention condition and 63, 71 and 76 percent in the control

condition).

5.3.3 Effects of the intervention and control training

The effects of the training were evaluated using a series of explanatory IRT models

on the pretest and posttest data with successively more predictors (see Table 5.3).

Written strategy choices

First a baseline model for the probability of a written strategy choice was fitted

with only random intercepts for students and problems and no covariates (model

M0). In model M1, main effects were added for the student characteristics gender,

ability and working memory capacity, which improved fit according to all crite-

ria (see Table 5.3). Fit was further improved by adding a main effect for testing

occasion (pretest or posttest; model M2). However, the change in written strat-

egy choices from pretest to posttest did not significantly differ for the control and

intervention training groups (model M3). Adding interactions between condition,

testing occasion and student characteristics also did not improve the model (these

models are not included in Table 5.3 for brevity).
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Table 5.4: Strategy use proportions on the pretest and posttest in the intervention,

control and no training conditions.

pretest posttest

training interv. control none interv. control none

digit algorithm .09 .09 .19 .13 .13 .20

number algorithm .37 .40 .32 .61 .62 .32

non-alg. written .19 .19 .15 .13 .08 .12

no written work .35 .30 .34 .13 .17 .37

other .01 .02 .01 .00 .00 .01

The best fitting model, M2, shows that girls used more written strategies (P =

.94) than boys (P = .74), z = −6.0, p < .001, and that general mathematics ability

score was positively associated with using written strategies (P = .80 vs. P = .92

for one standard deviation difference), z = 4.3, p < .001. Working memory (sum

score of the verbal and spatial working memory scores) had no significant effect,

z = −0.6, p = .55. Students used more written strategies at the posttest (P = .94)

than at the pretest (P = .76), z = 13.5, p < .001.

Table 5.4 gives a more detailed categorization of strategies than just written or

non-written, as intervention and control training may differ in the type of written

strategies they elicit. It shows that the frequency of use of the digit-based and

whole-number-based algorithms, non-algorithmic written strategies, non-written

strategies and other strategies is almost identical (differences of no more than 5

percentage points) in the two training groups - both at the pretest and at the

posttest. In both groups, similar increases in the use of both algorithms and de-

creases in the use of non-written strategies and non-algorithmic strategies occurred.

Accuracy

As for written strategy choices, first a baseline model for the probability of a correct

response was fitted (M0), and again, this model was improved by adding student

gender, ability and working memory (M1) and by adding testing occasion (M2),

but not by adding condition effects (M3). The best fitting model, M2, shows that

girls (P = .43) performed better than boys (P = .28), z = −3.8, p < .001, and

that general mathematics ability score was positively associated with performance

(P = .28 vs. P = .43 for one SD difference), z = 4.5, p < .001. Working memory

had no significant effect, z = 0.04, p = .97. Students performed better at the

posttest (P = .48) than at the pretest (P = .24), z = 11.9, p < .001.
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The difference in accuracy between written and non-written strategies was inves-

tigated by fitting a model for accuracy with main effects for all previous predictors

(student characteristics, testing occasion, and condition) and strategy choice (writ-

ten or not), and all first-order interactions between strategy choice and the other

predictors. This showed that written strategies were much more accurate (P = .40)

than non-written strategies (P = .19), z = 4.1, p < .001, and that this did not de-

pend significantly on testing occasion, z = 1.1, p = .27, gender, z = 0.0, p = .99,

ability, z = 1.0, p = .32, working memory, z = 0.3, p = .75, or condition, z = −1.0,

p = .33.

5.3.4 Differences with no training group

Given the similar changes in strategy choices and accuracy in both training groups,

it was investigated whether these changes also occurred in students who did not

receive any training. The previous analyses were repeated, this time comparing

trained students (N = 147) to untrained students from adjoining ability groups

(N = 77). Working memory was omitted from these models, as this was only

assessed for the children who received training.

Written strategy choices

This time, the fit of the models for written strategy choices was best for model

M3 (which also included an effect of condition; see Table 5.3). The effect of the

intervention did not differ significantly by gender or ability level (models M4a and

M4b). Model M3 once more showed more written strategy choices for girls (P = .90)

than boys (P = .63), z = −6.9, p < .001, and a positive association with ability

(P = .72 vs. P = .86 for a difference of one SD), z = 6.9, p < .001. There

was no significant effect of testing occasion, z = −1.4, p = .15, and no overall

difference between the trained and untrained students, z = 0.5, p = .64. However,

the change in use of written strategies from pretest to posttest was different for

trained (P = .75 to P = .93) than for untrained students (P = .73 to P = .69),

z = 9.8, p < .001.

Comparisons of more specific strategies in Table 5.4 show that at pretest, the

untrained students appear to have used the digit-based algorithm somewhat more

often and the whole-number-based algorithm somewhat less often than the trained

students. Most notably, however, strategy choices on the pretest and posttest are

almost identical for the untrained children, whereas the trained children increased
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their use of algorithms and decreased their use of non-written strategies and non-

algorithmic strategies.

Accuracy

The fit of the models for accuracy was also best for model M3 with the condition

effect (see Table 5.3). This model again showed higher accuracy for girls (P = .41)

than boys (P = .28), z = −4.3, p < .001, and a positive association with ability

(P = .26 vs. P = .44 for one SD difference), z = 10.1, p < .001. There was no

significant effect of testing occasion, z = −1.4, p = .15, and no overall difference

between the trained and untrained students, z = −1.8, p = .07. However, the

increase in accuracy from pretest to posttest was higher for trained (P = .25 to

P = .49) than for untrained students (P = .31 to P = .35), z = 5.9, p < .001.

Written strategies were again found to be much more accurate (P = .41) than

non-written strategies (P = .21), z = 3.0, p = .002, and this did not depend

significantly on testing occasion, z = 1.6, p = .12, gender, z = 0.2, p = .88, ability,

z = 0.8, p = .44, or condition, z = 1.1, p = .28.

5.4 Discussion

The determinants of students’ choices between mental and written division strate-

gies were investigated. First, an exploration was carried out of the relation be-

tween existing differences in these choices and students’ motivations and attitudes

in mathematics and the sociocultural context for mathematics provided by the

students’ teachers. For an important part, students’ choices for mental strategies

appear to be related to their motivation: mental strategies are used more by stu-

dents who report liking mathematics less and being less good at it, and who report

not writing down calculations because they do not feel like it. Mental strategies are

also used more by students reporting higher accuracy with these strategies. Though

this higher accuracy could be true for high ability students (Fagginger Auer et al.,

2016), it mostly appears to be a misjudgment as the reporting of it is negatively

correlated with ability level, r(322) = −.24, p < .001.

No statistically significant relations between teacher reports and students’ strat-

egy choices were found, even though several aspects of the sociocultural context de-

scribed as influential on mathematical strategies by Ellis (1997) were investigated,

but this could very well be due to a lack of power (there were only 19 teachers in

our sample). Overall, teachers reported frequent instruction in writing down cal-
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culations, preferred use of an algorithm to non-algorithmic approaches, and valued

written strategies somewhat over mental strategies and accuracy somewhat over

speed. These reports suggest a sociocultural context in which there is room for

written strategies, but where it is not the highest priority.

In the second part of the study, an intervention training designed to promote

lower mathematical ability students’ choices for written rather than mental strate-

gies (and thereby, their performance) was evaluated. As intended, written strategy

choices and accuracy were considerably higher after training than before training.

However, similar changes occurred in the control training condition. This means

that the extra elements of the intervention training specifically targeted at strategy

use did not add to the effect of the training. The common elements of the control

and intervention training do appear to be responsible for the observed changes in

strategy choices and accuracy, as no such changes occurred in the students who

received no training (though these students were of a different ability level, limiting

the comparison). An important question is therefore which of the training elements

not specifically targeted at strategy use nonetheless affected it.

5.4.1 Elements of the intervention and control training

Practicing written strategies

While writing down calculations was not required during control training (it was a

specific part of the intervention training), it did occur frequently in this condition.

During the first control training session, calculations were written down for 81

percent of the problems - considerably more than the 70 percent during the pretest.

This increased up to 93 percent in the third training session. As such, students

practiced written calculations almost as much in the control training as in the

intervention training condition, reducing the contrast between the two conditions.

The generally higher level of written strategy choices in the control training

compared to the pretest may be due to the different settings in which the pretest

and training occurred: in a classroom versus one-on-one with an experimenter. An

individual setting is likely to increase students’ motivation to do well, and since the

student questionnaire suggested that an important reason for using mental strate-

gies is a lack of motivation, this increased motivation may cause the students to

use less mental strategies. Another possibility is that students use written strate-

gies because they think the experimenter may expect or prefer that (i.e., demand

characteristics; Orne, 1962), in line with the students’ teachers’ light inclination



5.4. DISCUSSION 97

towards written rather than mental strategies. Supporting the explanation of the

higher level of written strategy choices by setting (individual versus classroom),

the increase in written strategy choices from pretest to first training session was

followed by a decrease from final training session to posttest (93 to 87 percent).

A possible cause of the further increase in the use of written strategies over

sessions in the control training group is the direct accuracy feedback after each

solution, and the requirement to do a problem again when the first solution was

incorrect. Direct accuracy feedback allows for an immediate evaluation of the suc-

cess of the strategy that was applied, and this evaluation should often be in favor

of written rather than mental strategies given the considerably higher accuracy of

the former. Combined with the extra effort associated with an incorrect solution

(redoing the problem), this is likely to be an important incentive for written strat-

egy choices. The possibility of accuracy feedback promoting mathematical strategy

change was also demonstrated by Ellis, Klahr, and Siegler (1993).

Step-by-step plan

The only training element that was truly unique to the intervention condition was

the step-by-step plan for writing down calculations. Though the meta-analysis on

mathematics interventions for low ability students by Gersten et al. (2009) iden-

tified such plans as an important component of effective interventions, the lack of

differences between the training conditions shows that the plan did not make a

significant contribution in our study. Indeed, students turned out to require little

feedback based on the plan, and the feedback that was given mostly concerned

an optional element of written division algorithms (the multiplication table). This

suggests that by sixth grade, even lower ability students do not require further in-

struction in the notation of the division algorithm (even though the algorithm was

introduced only one or two years earlier).

Given that the only real difference between the control and intervention training

turned out to be mostly redundant, there was no chance for student characteristics

to interact with type of training in the effect on changes from pretest to posttest.

Our hypotheses regarding the effects of gender, ability and working memory were

therefore not confirmed. An interaction with having training or not could have

been detected if present given the differences found between these two conditions,

but was also not found. Working memory was not included in these analyses, as

it was only measured in the children who received training, and ability scores were

different in the training and no training conditions. Gender, however, could very
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well have interacted with condition: as expected from the literature (Fagginger

Auer et al., 2013; Hickendorff et al., 2009, 2010), boys used written strategies far

less frequently than girls, and therefore had more room to improve with training

than girls. However, training may not eliminate boys’ general preference for more

intuitive, less formal strategies (Carr & Jessup, 1997; Davis & Carr, 2002), which

may therefore continue to limit their choices for (formal) written strategies to some

extent.

5.4.2 Future directions

The results of the present study provide several suggestions for future research on

strategy training programs. Firstly, they underline the necessity of very careful

consideration of the content of the control condition(s). With regard to control

groups, U. Fischer, Moeller, Cress, and Nuerk (2013) stress the importance of

these groups being performance-matched to the intervention group, as learning

trajectories are highly dependent on ability level, and equal in motivational appeal

and training time, as these two non-specific factors also contribute to performance.

The untrained group in the present study does not meet these demands, which may

have inflated the effects we found (U. Fischer et al., 2013), but the control training

group certainly does. In fact, the control training even matched the intervention

training too closely, which shows that attention should also be devoted to which

control training elements may be (unintentionally) effective.

Some of the elements of the present study are promising for future training

investigations. The results suggest that direct accuracy feedback (possibly with

some cost involved in incorrect solutions) may be conducive to beneficial changes

in strategy choices. They also show that considerable changes in strategy choices

and improvements in performance may be achieved with as few as three training

sessions of fifteen minutes (in line with the finding of Kroesbergen & Van Luit,

2003, that longer mathematics interventions are not necessarily more effective). A

follow-up test after a longer period of time (e.g., several months) should be used to

establish whether the changes are lasting.

The results also provide two suggestions for other possible ways to influence stu-

dents’ choices between mental and written strategies. A first possibility is to target

students’ motivation: since strategy choices appear to be related to motivation, in-

creasing students’ motivation may also increase their choices for written strategies.

In a review, Middleton and Spanias (1999) concluded that students’ motivation

in mathematics depends for an important part on their perception of success in
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this area, but also that it can be positively affected by instruction. This may be

achieved with teacher practices such as asking students to make daily recordings of

what they learned or excelled at, and prompting them to attribute failures to lack

of effort and encouraging them to try harder (Siegle & McCoach, 2007). However,

the relation found in the present study was purely correlational, so it should be

established experimentally whether changes in motivation actually lead to changes

in strategy choices.

A second possibility for increasing students’ choices for written strategies lies

in the sociocultural context for mathematical strategy use provided by the teacher.

The results from the teacher questionnaire show that while teachers generally give

instruction on writing down calculations frequently, they only have a slight prefer-

ence for written over mental strategies and for accuracy over speed. Since cultural

values regarding the use of external aids (e.g., paper and pencil) in constructing

solutions and regarding accuracy versus speed can have large effects on students’

strategy choices (Ellis, 1997), targeting these aspects of the sociocultural context

could affect written strategy choices beneficially. This might be done by having

teachers express more appreciation of the use of external aids in problem solving,

and of accuracy compared to speed, since written strategies offer more accuracy

and mental strategies more speed (Fagginger Auer et al., 2016).

5.A Student questionnaire

The proportion of students choosing each alternative is given in between brackets,

and for five-point scales, the mean is also given. The correlations are between the

question response and the frequency of written strategy choices on the pretest.

1. How much do you like math? (M = 3.24) (r(322) = .17, p = .002)

not at all (.06) / not so much (.13) / it’s okay (.40) / quite a bit (.32) / a lot (.08)

2. How much effort do you put into doing math? (M = 4.29) (r(323) = .08, p = .17)

none (.00) / not so much (.02) / a bit (.06) / quite a lot (.54) / a lot (.39)

3. How good do you think you are at math? (M = 3.27) (r(322) = .21, p < .001)

not good at all (.04) / not so good (.17) / okay (.31) / quite good (.44) / very good

(.04)

4. What is more important to you when you solve a mathematics problem?

(r(320) = .06, p = .28)

solving the problem quickly (.02) / finding the correct solution (.98)
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5. What is more important to you when you solve a mathematics problem?

(r(318) = .19, p = .001)

being able to do it mentally (.28) / being able do it using paper (.72)

6. How often do you solve problems without writing down a calculation? (M = 2.80)

(r(322) = −.17, p = .002)

almost never (.11) / not often (.24) / sometimes (.43) / often (.19) / very often (.03)

7. When you do not write down a calculation, why is that? (tick boxes that apply)

• because it is faster (.37) (r(322) = −.04, p = .52)

• because then you get a correct solution more often (.13) (r(322) = −.23,

p < .001)

• because doing mental calculation shows you are smart (.11) (r(322) = −.02,

p = .71)

• because it is cooler to do mental calculation (.01) (r(322) = −.18, p = .001)

• because you do not feel like writing anything down (.19) (r(322) = −.12,

p = .03)

• because you guessed the solution (.19) (r(322) = −.05, p = .37)

• because it is not necessary to write down a calculation (.60) (r(322) = .20,

p < .001)

5.B Teacher questionnaire

The proportion of teachers choosing each alternative is given in between brackets, and for

five-point scales, the mean is also given. The correlations are between the question response

and the frequency of the teachers’ students’ written strategy choices on the pretest.

1. What is your gender? male (.58) / female (.42) (r(19) = .03, p = .91)

2. What is your birth year? . . . (M = 1976) (r(19) = −.23, p = .35)

3. Which mathematics textbook do you use in sixth grade? Alles Telt (.21) (M = .66)/

Wereld in Getallen (.47) (M = .54) / Pluspunt (.26) (M = .69) / Rekenrijk (.05)

(M = .69)

4. Do you teach your students the whole-number-based algorithm, digit-based algorithm

or non-algorithmic approaches for solving multidigit problems (such as 544÷ 34 or

12.6÷ 1.4)? When multiple approaches apply, tick multiple boxes.

whole-number-based algorithm (.58) / both whole-number-based and digit-based

algorithm (.26) / digit-based algorithm (.16) (r(19) = .07, p = .77)
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5. To what extent do you as a teacher prefer a division algorithm?

strong preference whole-number-based - strong preference digit-based (5-point scale)

(M = 3.0) (r(19) = .28, p = .24)

6. To what extent do you as a teacher prefer an algorithmic over a non-algorithmic

approach?

strong preference algorithmic - strong preference non-algorithmic (5-point scale)

(M = 2.2) (r(19) = −.15, p = .55)

7. Which division approach was emphasized most during your own training?

whole-number-based algorithm (.53) / both whole-number-based and digit-based

algorithm (.05) / digit-based algorithm (.42) (r(19) = .25, p = .29)

8. Which ability do you find more important in general for your students?

performing calculations well on paper - performing calculations well mentally (5-point

scale) (M = 3.0) (r(19) = .02, p = .92)

9. How often do you instruct your students in writing down intermediate steps or

calculations? almost never - daily (5-point-scale) (M = 4.2) (r(19) = .07, p = .77)

10. What is more important to you when your students solve multidigit division

problems? (six 5-point scales)

• that they write down all calculations - that they try to do it mentally (M = 2.4)

(r(19) = .06, p = .82)

• that they keep trying until they get the correct solution, even if that takes a lot of

time - that they can do it quickly, even if they sometimes make mistake

(M = 2.5) (r(19) = −.08, p = .78)

• that they can determine the exact answer - that they can make a good estimation

of the answer (M = 3.5) (r(19) = .35, p = .15)

• that they know one solution procedure - that they know multiple solution

procedures (M = 3.4) (r(19) = .35, p = .15)

• that they use an algorithm - that they choose their own solution strategy

(M = 3.0) (r(19) = .24, p = .33)

• that use a method that can always be applied - that they use convenient shortcut

strategies (such as 1089÷ 11 = 1100÷ 11− 1) (M = 3.3) (r(19) = .19, p = .44)
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Single-task versus mixed-task mathematics performance and strategy

use: Switch costs and perseveration

Abstract

The generalization of educational research to educational practice often

involves the generalization of results from a single-task setting to a mixed-

task setting. Performance and strategy use could differ in these two settings

because of task switching costs and strategy perseveration, which are both

phenomena that have yet to be studied with more complex educational tasks.

Therefore, the problem solving of 323 primary school students in a single-task

and mixed-task condition was investigated. The tasks that students had to

do were typical educational tasks from the domain of mathematics that are

especially interesting with regard to strategy use: solving twelve multidigit

division problems that were intended to be solved with written, algorithmic

strategies, and twelve non-division mathematical problems that do not call for

such strategies. The results indicated no condition differences in performance

or strategy use. This suggests that generalization of problem solving in single-

task setting to a mixed-task setting is not necessarily problematic.

6.1 Introduction

An important challenge for educational research is its generalization to educational

practice. The present study addresses a possible issue in generalization that does

This chapter is currently submitted for publication as: Fagginger Auer, M. F. (submitted).
Single-task versus mixed-task mathematics performance and strategy use: Switch costs and per-
severation.

I would like to thank the schools and students for their participation in the experiment,
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not appear to have been investigated so far: the generalization of single-task re-

search to mixed-task practice. In the daily educational practice of lessons and tests,

students generally do not work on one task exclusively, but switch between different

tasks as they go from problem to problem: for example, a mathematics test usually

does not concern only a single mathematical operation (e.g., multiplication), but

consists of different types of problems that require different operations. Also at the

higher level of evaluating educational achievement in (inter)national assessments,

tasks are presented mixed with each other rather than in isolation (e.g., Mullis &

Martin, 2014; Scheltens et al., 2013).

Yet, much of educational research consists of single-task experiments, such

as multiplication (Siegler & Lemaire, 1997), addition (Torbeyns et al., 2005), or

spelling (Rittle-Johnson & Siegler, 1999). Sometimes, single-task experiments are

even used for explanation of results of mixed-task assessments (e.g., Hickendorff et

al., 2010). The use of single-task designs for experiments is logical, given the nature

of experiments: the evaluation of the effects of controlled manipulation of only one

or a few factors at once. However, when using single-task designs, it is important

to know to what extent this may limit the generalizability of results to educational

practice. Therefore, in the present study two aspects of problem solving are con-

sidered that may differ for single-task versus mixed-task designs: performance and

solution strategy use.

6.1.1 Possible causes of differences between single-task en

mixed-task results

Two phenomena could play a role in creating differences in problem solving.

Switch costs

The first is the well-established phenomenon of task switching costs in terms of

accuracy and speed. A long line of research has established in increasingly advanced

experiments that switching between tasks incurs costs. Various explanations for

this phenomenon have been proposed (Kiesel et al., 2010). One is that costs occur

because of active preparation for the upcoming task, while another posits passive

decay of the previous task. Another explanation is interference from the other task

(that was previously performed or is expected to be performed) in performing the

current task. The research on task switching usually concerns very simple tasks,

such as determining whether a number is even or odd or whether a stimulus is a
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number or a letter, and describes switch costs in terms of milliseconds. In contrast,

most tasks in education are much more complex, and therefore the extent to which

switch costs will occur in an educational context is not self-evident and has yet to

be investigated.

Strategy perseveration

The second phenomenon that could play a role is that of strategy perseveration.

This topic has not been studied widely yet, but has received recent research at-

tention (Lemaire & Lecacheur, 2010; Luwel, Schillemans, Onghena, & Verschaffel,

2009; Luwel, Torbeyns, Schillemans, & Verschaffel, 2009; Schillemans, Luwel, Bulté,

Onghena, & Verschaffel, 2009; Schillemans, Luwel, Onghena, & Verschaffel, 2011a,

2011b). Strategy perseveration is the continuing use of the same strategy as in

previous solutions, even though another strategy may be more suitable or efficient

for the problem at hand. Schillemans (2011) has described several explanations for

this perseveration. One is the Einstellung effect, which is individuals’ tendency to

become blinded to other strategies, even though they may be more suitable than the

previously applied strategy. A second explanation is priming, where the strategy

that was previously used is more highly activated and therefore more likely to be

selected. A third explanation is strategy switch costs, which are the costs involved

in switching between strategies (which may occur through similar mechanisms as

task switching costs; Lemaire & Lecacheur, 2010).

Perseveration has been shown to occur in single-task settings (Lemaire & Lecacheur,

2010; Luwel, Schillemans, et al., 2009; Luwel, Torbeyns, et al., 2009; Schillemans

et al., 2009, 2011a, 2011b), but what occurs in a mixed-task setting has yet to be

investigated: the mixing would seem to prevent perseveration as the alternation

of tasks makes it impossible to keep applying the same strategy, but possibly per-

severation in a similar but not identical strategy could occur (e.g., an algorithmic

approach on one task might increase the probability of a (different) algorithmic

approach on a subsequent other task).

6.1.2 The present study

Given these possible and as of yet unknown effects of task switching costs and

strategy perseveration in an educational setting, the present study compares per-

formance and strategy use in a single-task versus a mixed-task condition. The task

used is the solving of mathematical problems in the domain of multidigit division
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(division with larger numbers or decimal numbers, such as 1536÷ 16 or 31.2÷ 1.2).

This task is a typical educational task, making it suitable for the goal of investi-

gating task switching and strategy perseveration in an educational context, and is

also especially interesting with regard to the latter strategy phenomenon.

This is because multidigit division problems are traditionally associated with

solution strategies that involve writing down calculations (especially algorithmic

strategies), or even defined as problems that make such an approach necessary

of desirable (J. Janssen et al., 2005; Scheltens et al., 2013). However, in mixed-

task large-scale assessments only around half of students’ solutions involve written

(mostly algorithmic) strategies (Scheltens et al., 2013), even though these strate-

gies are much more accurate than non-written strategies (Hickendorff et al., 2009).

Possibly, the mixing of multidigit division problems with other problems that do

not call for written, algorithmic strategies makes students persevere in using men-

tal, non-algorithmic strategies, or conversely, prevents students from persevering in

written algorithmic strategies on the division problems. The comparison of single-

task and mixed-task division problem solving in the present study could shed light

on the extent to which this is the case.

The division problems are contrasted with other mathematical problems that

do not involve division and that were selected to elicit mental, or at least non-

algorithmic strategy use. Rather than contrasting division with a single other task,

non-division problems from (nearly) all regularly assessed mathematics domains

were included, to more closely approximate educational practice. Division and

non-division problems from the two most recent national large-scale assessments

of mathematics at the end of primary school in the Netherlands were used, be-

cause they reflect typical problems in Dutch primary school mathematics and were

rigorously pretested.

Research questions

The first research question addressed by this study was the following: to what extent

does mathematical performance differ in single-task and mixed-task conditions?

Given the well-established existence of switch costs, it was expected that in the case

of any differences between conditions, performance (whether in accuracy or speed)

would be worse in the mixed-task than in the single-task conditions. However,

because the task of multidigit division problem solving is much more complex than

the elementary tasks usually employed in task switching, it could be that so many

facets are already involved in performing just the mathematics task, that additional
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costs in switching between different mathematical tasks are negligible. In that case,

performance in both conditions would be comparable.

The second research question that was addressed was: to what extent does

the occurrence of strategy perseveration differ in single-task and mixed-task con-

ditions? Two types of perseveration could occur. One is perseveration in applying

the mental, non-algorithmic strategies suitable for the non-division problems to

the division problems in the mixed-task condition, where division problems always

occur directly or shortly after non-division problems (which is not the case in the

single-task condition). The other is perseveration in applying written, algorithmic

strategies to the division problems when they are presented together in the single-

task condition (which is not possible when the division problems are interspersed

with non-division problems that cannot be solved with a division algorithm in the

mixed-task condition).

6.2 Method

6.2.1 Participants

A total of 323 students at the end of primary school (sixth grade; 11-12-year-

olds) from 15 different schools participated in the experiment, of whom 53 percent

were girls and 47 percent were boys. Data on students’ mathematical ability was

available from standardized national tests that are administered at most Dutch

primary schools (J. Janssen et al., 2010). Students were assigned to the single-task

(50 percent of students) and mixed-task condition (the other 50 percent) according

to a randomized block design (with blocking based on gender, ability quartile and

school).

6.2.2 Materials

Students made a test consisting of twelve multidigit division problems and twelve

problems of other types (see Table 6.1 for the problems). The problems came from

the two most recent (2004 and 2011) national large-scale assessments of mathemat-

ics performance at the end of primary school (Scheltens et al., 2013; J. Janssen et

al., 2005). All problems were open-ended, and all problems except 31 ÷ 1.2 and
3
8 + 1

4 were presented in a realistic problem solving context (such as determining

how many bundles of 40 tulips can be made from 2500 tulips). The non-division

problems were from (nearly) all mathematics domains investigated in the assess-
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ments except addition, subtraction, multiplication and division, as these problems

were intended to evoke non-algorithmic, mental strategies.

The problems were printed in A4-booklets with two problems per page, so that

there was ample space for writing down calculations. In the single-task condition,

the first twelve problems in the test booklet were the division problems and the

next twelve the non-division problems (or vice versa for half of the students that

condition), whereas in the mixed-task condition, every time one or two non-division

problems were followed by one or two division problems in an unpredictable way

(see Table 6.1). The single task did not consist of solely division problems so that

the total difficulty and time required for the test was the same in both conditions.

6.2.3 Procedure

Students made the tests in their classroom in the presence of the experimenter and

had 45 minutes to do so. Students were instructed that if they wanted to write

down calculations, they should do so in the test booklet. When a student had

finished, the test completion time in minutes for that student was written down by

the experimenter.

After students had made the test, their solutions were scored for accuracy and

strategy use. For division problems, four categories of strategy use were discerned:

the digit-based algorithm (a more traditional approach, where numbers are broken

up into digits that can be handled without an appreciation of their magnitude in the

whole number); the whole-number-based algorithm (a newer approach where every

step towards obtaining the solution requires students to understand the magnitude

of the numbers they are working with; Treffers, 1987a); non-algorithmic written

solutions (such as only writing down intermediate steps); and no written work

(see Table 6.2 for examples). For the non-division problems, the two algorithm

categories were merged into one category, as whole-number-based algorithms are

very infrequent for other operations than division (Buijs, 2008), and the other

categories were the same.

6.2.4 Statistical analysis

Mixed models

The effects of condition (single-task or mixed-task) and student gender (boy or girl)

and mathematical ability score and their interactions on speed and accuracy were

investigated using mixed models: linear mixed models for test completion time and
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Table 6.1: The twelve division and twelve other problems (order shown for the

mixed condition).

type item

surfaces determining the surface of a triangle covering half of a 4× 4 grid

division 1536÷ 16 = 96

tables looking up the lesson taking place at a given time in a timetable

division 872÷ 4 = 218

division 31.2 ÷ 1.2 = 26

geometry determining the number of windows based on a building scheme

money determining the number of 20 cent coins in 80 euro

division 6496 ÷ 14 = 464

fractions 3
8

+ 1
4

number line ? - 8 - 8.125 - 8.250 - 8.375 - 8.500

division 544 ÷ 34 = 16

division 11585 ÷ 14 = 827.5

length converting 3.1 meters to centimeters

division 47.25 ÷ 7 = 6.75

division 157.50÷ 7.50 = 21

volume reading off 1.5 liters from 2 liter container with 0.5 liter marks

time determining the difference between 09:15 and 08:55

division 2500 ÷ 40 = 62

division 1470 ÷ 12 = 122.50

measurement determining the height of a mentally rearranged tower of cubes

division 736÷ 32 = 23

weight converting 3959 grams to kilograms

number line 2.06 - ? - 2.07

division 16300÷ 420 = 39

Note: Parallel versions of problems not yet released for publication are in italics.
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Table 6.2: Examples for the different strategy coding categories for the division

problem 544÷ 34.

digit-based

algorithm

whole-number-

based algorithm

non-algorithmic

strategies

no written work

34/544\16

34

204

204

0

544 : 34 =

340 - 10×
204

102 - 3×
102

102 - 3×+

0 16×

10 × 34 = 340

15 × 34 = 510

16 × 34 = 544

16

logistic mixed models for accuracy (correct or incorrect). Both types of models

included a random effect for schools, and the accuracy model also random effects

for students and items (De Boeck, 2008) since it modeled data at the item level.

The analyses were conducted using the package lme4 in the statistical computing

software R (Bates & Maechler, 2010).

Latent class analysis

Students’ patterns of strategy use on the twelve division items were investigated

using multilevel latent class analysis (MLCA). In LCA, individuals are classified

in latent classes that are each characterized by a particular pattern of response

probabilities for a set of items (Goodman, 1974; Hagenaars & McCutcheon, 2002).

The multilevel aspect makes individuals’ probability of being in latent classes de-

pendent on the group they are in (in this study, the groups that are formed by the

classes of the different teachers). Covariates can also be added to predict latent

class membership. The multilevel latent class analysis was conducted with version

5.0 of the Latent GOLD program (Vermunt & Magidson, 2013). All twelve division

strategy variables were entered as observed response variables and a teacher iden-

tifier variable as the grouping variable for a nonparametric multilevel effect. The

optimal number of latent students and teacher classes was determined based on the

Bayesian Information Criterion (BIC; Schwarz, 1978) and the effects of covariates

were evaluated using Wald tests.
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Table 6.3: Performance in the single and mixed task condition in terms of accuracy

and speed.

accuracy (percentage correct) speed (minutes)

condition non-division problems division problems whole test

single-task 69 44 37

mixed-task 70 45 36

total 70 45 36

Table 6.4: Strategy use in the single-task and mixed-task condition.

non-division problems division problems

condition A NA NW DA WA NA NW

single-task 2 7 91 13 36 20 32

mixed-task 3 7 90 17 34 19 30

total 2 7 91 14 35 19 31

Note: A=algorithm, NA=non-algorithmic, NW=no written work, DA=digit-based

algorithm, WA=whole-number-based algorithm

6.3 Results

As can be seen from the performance descriptives in Table 6.3, students provided

correct solutions to 70 percent of the non-division and 45 percent of the division

problems, and completed the test in 36 minutes on average (SD = 8 minutes). Ta-

ble 6.4 gives the frequencies of students’ use of the different strategies. As intended,

students almost never applied an algorithmic strategy to non-division problems (2

percent), and most often solved such problems without writing down any calcula-

tions (91 percent). For the division problems, students used an algorithmic strategy

approximately half of the time: they applied the whole-number-based algorithm to

35 percent of the problems and the digit-based algorithm to 15 percent of the prob-

lems. Solutions without any written work were also frequent (31 percent), as were

non-algorithmic written strategies (19 percent).

6.3.1 Task switching costs

To investigate whether the switching between division and non-division problems in

the mixed-task condition incurred switch costs that did not occur in the single-task

condition, accuracy and speed in the two conditions were compared.
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Accuracy

Table 6.3 shows that the observed percentage of correct answers to division problems

was nearly identical in the two conditions: 44 percent in the single-task and 45

percent in the mixed-task condition. A comparison of models using likelihood ratio

tests confirmed a lack of differences between the conditions: the null model for the

accuracy of division solutions (with only an intercept) was significantly improved

by adding the student characteristics gender and ability (and their interaction) as

predictors, χ2(3) = 231.4, p < .001, but adding a condition effect (and condition

interactions with gender and ability) did not provide further improvement, χ2(4) =

6.7, p = .15. In the model with student characteristics, accuracy was found to be

lower for boys than for girls, z = −3.41, p < .001, and accuracy was found to be

positively related to ability score, z = 10.25, p < .001. The interaction between

gender and ability was non-significant, z = 1.75, p = .08.

Speed

Table 6.3 also shows that average time in which students completed the whole test

was nearly identical in the two conditions: 37 minutes in the single-task and 36

minutes in the mixed-task condition. Again, a comparison of models confirmed a

lack of differences between the conditions: the null model for test completion time

(with only an intercept) was significantly improved by adding student gender and

ability, χ2(3) = 27.3, p < .001, but adding condition effects provided no further

improvement, χ2(4) = 4.4, p = .36. In the model with student characteristics, boys

were found to be faster than girls, z = −5.23, p < .001. Ability score did not have

a significant effect, z = −0.31, p = .38, nor did the interaction between gender and

ability, z = 0.49, p = .31.

6.3.2 Strategy perseveration

To investigate the effects of mixing division and non-division problems on strategy

use, patterns of strategy use in the two conditions were compared. Table 6.4 shows

that the overall percentage of division problems solved with each strategy was

nearly identical in the single-task and mixed-task conditions: 13 and 17 percent

respectively for the digit-based algorithm; 36 and 34 percent for the whole-number-

based algorithm; 20 and 18 percent for non-algorithmic written strategies; and 32

and 30 percent for strategies without any written work.
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A latent class analysis identified four different patterns of strategy use on the

division problems (the BIC was lowest for a model with four latent student and

three latent teacher classes): 44 percent of the students predominantly used the

whole-number-based algorithm (mean probability of using that strategy on the

different items of .72); 23 percent of students used mainly non-algorithmic written

strategies (mean probability of .55) and answering without written work (mean

probability of .28); 18 percent mostly answered without any written work (mean

probability of .87); and 15 percent predominantly used the digit-based algorithm

(mean probability of .71).

Again, adding student characteristics to the null model improved it, χ2(9) =

58.4, p < .001, while the subsequent addition of condition effects did not pro-

vide further improvement, χ2(12) = 15.3, p = .23. In the model with student

characteristics, gender was significantly related to strategy use (the probability of

the whole-number-based algorithm pattern was lower for boys than for girls, while

the probability of the answering without any written work pattern was higher),

W 2 = 18.0, p < .001. Ability score also had a significant effect (it was positively

related to the probability of the algorithm patterns and negatively to the proba-

bility of the non-algorithmic written and no written work patterns), W 2 = 10.4,

p = .02. The interaction between gender and ability was not significant, W 2 = 6.9,

p = .07.

6.4 Discussion

As the generalization of educational research to educational practice often involves

the generalization of results from a single-task setting to a mixed-task setting, the

present study compared students’ problem solving in these two conditions. The

tasks that students had to do were typical educational tasks from the domain of

mathematics that are especially interesting with regard to strategy use: solving

multidigit division problems that are intended to be solved with written, algorith-

mic strategies, and non-division mathematical problems that do not call for such

strategies. Differences in performance and strategy use on these tasks in the single-

task and mixed-task conditions could occur because of task switching costs (both

in terms of accuracy and speed) and because of strategy perseveration.

However, no differences between conditions were found: accuracy and speed did

not differ, and though different patterns of strategy use were identified, students

were equally likely to have those patterns in both conditions. There were gender
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and ability level differences in accuracy, speed and strategy use, but there were

no significant interaction effects of these student characteristics with condition.

Therefore, no support was found for task switching costs with these educational

tasks. Possibly, the larger complexity of educational tasks compared to typical

tasks from the task switching literature (such as deciding whether a number is odd

or even) makes switching costs negligible, as the task itself already requires the

switching between many different sub-tasks.

There was also no indication of strategy perseveration. There was a group of

students who quite consistently answered without any written work on not only

the non-division, but also the division problems. This might have indicated per-

severation if this strategy choice pattern occurred more often in the mixed-task

condition (where the division problems were preceded by non-division problems

that elicited this strategy) than in the single-task condition, but this was not the

case. There were also two groups of students who quite consistently used the digit-

based or whole-number-based algorithms for division, which might have indicated

perseveration if this pattern occurred more often in the single-task (where all divi-

sion problems were presented in a row) than in the mixed-task condition, but this

was also not the case.

All in all, the results of the present study therefore suggest that a generalization

of performance and strategy use in a single-task setting to a mixed-task setting is

not necessarily problematic.

6.4.1 Limitations

However, the detection of possible task switching costs and strategy perseveration

may have been hindered by some limitations in the design of the present study.

Task switching costs

A limitation that may have prevented the finding of task switching costs is that a

comparison of complete single-task blocks with mixed-task blocks is quite crude. A

more refined comparison could be made between problems directly after a switch

(switch trials) and problems not directly after a switch (repeat trials; Kiesel et al.,

2010). This is not possible with the current data, however, as a fair comparison

requires that each problem features as often in a switch as in a repeat trial (other-

wise, type of trial and problem difficulty are confounded). This would necessitate

extra versions of the problem set.
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Another limitation is that switching costs in terms of speed were investigated

using the amount of minutes it took students to solve all (division and non-division)

problems combined, rather than the much more precise amount of seconds per

problem. The latter could be assessed by making students do the test on a computer

or individually in the presence of an experimenter who records the time, but both

these situations are likely to affects students’ performance and strategy use.

Another issue is the type of tasks that were used. The tasks in the present

study may have been so complex that switching costs became negligible, but ed-

ucational practice also involves simpler tasks where this may not be the case. In

addition, division problems were mixed with many other tasks from the domain

of mathematics, whereas in the task switching literature usually just two tasks

are contrasted. Doing the latter could make differences between conditions more

pronounced, though it would also reduce the similarity to educational practice.

Strategy perseveration

There are also two factors that may have prevented us from finding strategy perse-

veration effects. One is that strategy perseveration has only been demonstrated in

the context of a single task for which different strategies are most appropriate de-

pending on the characteristics of the problem at hand (Lemaire & Lecacheur, 2010;

Luwel, Schillemans, et al., 2009; Schillemans et al., 2009, 2011b). In contrast, in the

present study mental, non-algorithmic strategy use was elicited with non-division

problems and the effect of this on strategy use on division problems was evaluated.

Perseveration within the division problems could still have occurred in the single-

task condition, but presumably in the form of repeated use of a written algorithm,

and since this strategy is most accurate for this type of problem (Fagginger Auer

et al., 2013) that would not constitute persevering in using a suboptimal strategy.

In addition, both Schillemans et al. (2009) and Lemaire and Lecacheur (2010)

did not find perseveration or strategy switch costs generally, but only for problems

with specific characteristics. Lemaire and Lecacheur (2010) found strategy switch

costs particularly for easier problems, while the division problems in the present

study were difficult (45 percent correct solutions), so strategy perseveration may

be found with easier educational tasks.
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6.4.2 Conclusion

It can be concluded that the results of the present study do not indicate particu-

lar problems for the generalization of performance and strategy use in single-task

experiments to mixed-task educational practice. However, less complex tasks may

induce more switch costs and strategy perseveration, and several adjustments to

the experimental set-up would allow for a more thorough investigation (though

possibly at the cost of similarity of the experiment to educational practice).



7

General discussion

The previous five chapters of this dissertation described investigations of what

factors affect students’ mathematical solution strategy use and performance, and

of techniques that can be used to conduct such investigations. This research was

carried out in the domain of multidigit multiplication and division at the end of

Dutch primary school, in which large changes in students’ solution strategy use

and performance have taken place, and in which the educational goal of adaptive

strategy choices appears not to be achieved by a considerable amount of students.

In Chapters 2 and 3 of this dissertation, the relation between the instruction that

takes place in classrooms and students’ multiplication and division solution strat-

egy choices and performance was investigated, by the means of secondary analyses

of large-scale assessment data using latent variable models. Instruction was con-

sidered both as the formal curriculum provided by mathematics textbooks and the

instructional practices. In Chapters 4 and 5, students’ division strategy choices

(and through these, performance) were targeted in experiments in schools. Specif-

ically, choices between relatively accurate written and inaccurate mental strategies

were manipulated: students had to write down calculations (Chapter 4) or received

a training intended to encourage them to do so (Chapter 5). In Chapter 6, a com-

parison was made of strategy choices and performance in tasks in which multiple

operations are mixed together (as in Chapters 2 and 3) versus tasks that only

concern one mathematical operation (as in Chapters 4 and 5), and no particular

problems for generalization of results from one setting to another were indicated.

In all the chapters, the effects of different student characteristics were considered

(gender, mathematical ability, SES, working memory and attitudes with regard to

mathematics and mathematical strategy use).
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7.1 Substantive conclusions

Various findings with regard to students’ solution strategy choices and performance

were described in Chapters 2 to 6.

7.1.1 Solution strategy choices

In line with previous research on division alone (Hickendorff et al., 2009), around

one third of students was found to predominantly answer both multiplication and

division problems without writing down any caculations (Chapter 2). Also simi-

larly, one fifth of students predominantly used the digit-based algorithm. However,

following the suggestion of Van den Heuvel-Panhuizen et al. (2009), the remain-

ing written strategies were not classified into a single ’realistic’ strategy category.

Instead, a distinction was made between the whole-number-based algorithm and

more informal non-algorithmic approaches. The results described in Chapter 2 and

3 indicate that this is an important distinction: different latent classes for whole-

number-based algorithm use and non-algorithmic written approaches were found,

and the digit-based and whole-number-based algorithms did not differ significantly

in accuracy, while the digit-based algorithm and non-algorithmic approaches for

multiplication did (and a similar, though non-significant difference was found for

division). These results suggest that it may be more relevant to distinguish be-

tween non-algorithmic and algorithmic approaches, than to distinguish between

’traditional’ and ’realistic’ approaches. This is in line with a review by the Royal

Netherlands Academy of Arts and Sciences (2009) that concluded that achievement

differences between traditional and realistic curricula are smaller than differences

between methods of the same type. Of course, the category of non-algorithmic

written approaches is still very heterogeneous, but further splitting it up results in

categories with very low numbers of observations in them (Fagginger Auer et al.,

2013).

In Chapters 2, 4, 5 and 6, factors affecting choices between the strategies were

investigated. With the multilevel latent class analysis in Chapter 2, it was found

that while students’ probability of using the different written strategies depended

strongly on the teacher, this was not the case for the strategies without any written

work. Teachers’ responses to the questionnaires on their strategy instruction and

attitudes in Chapters 4 and 5 were also not significantly related to students’ choices

between mental and written strategies. On the other hand, a relation was found

between students’ characteristics and the frequency of choices for mental strategies
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in Chapters 2, 5 and 6 (but not 4): this frequency was higher for boys and for

students with a lower mathematical ability. For boys, this appears to be mainly at

the cost of algorithmic strategies, while for lower mathematical ability the picture

is less clear (Chapters 2 and 6). This tendency of boys to use less algorithmic

and more mental strategies than girls is also described in the literature (Carr &

Jessup, 1997; Davis & Carr, 2002; Fennema, Carpenter, Jacobs, Franke, & Levi,

1998). Lack of motivation (that does not appear to be more common in boys)

appears to be a reason for choosing mental strategies (Chapter 5). These results

suggest that the characteristics of students may be more relevant to mental strategy

choices than common variations in teacher behaviors. However, intervening in these

common teaching practices can be effective: Chapter 5 shows that an instructional

intervention can reduce mental strategy choices (both for boys and girls).

Findings on the adaptivity of strategy choices were also described. Adaptivity

was considered as the degree to which students adapt their choices between strate-

gies to the relative accuracy and speed with which they can execute those strategies

for the type of problem at hand (Siegler & Lemaire, 1997). In mathematics instruc-

tion that builds on the variety of students’ own strategic explorations rather than

focusing on a few specific algorithmic strategies (Treffers, 1987b), adaptivity is vital

to performance. However, Chapter 4 indicated that weaker students may not al-

ways be able to make adaptive choices between strategies, as was also found in some

previous research (e.g., Hickendorff et al., 2010; Torbeyns et al., 2006), but not all

(e.g., Siegler & Lemaire, 1997; Torbeyns et al., 2005). Accuracy and speed were

considered both separately and simultaneously (the adaptive strategy being the

one that leads to the correct solution the fastest; Kerkman & Siegler, 1997; Luwel,

Onghena, et al., 2009; Torbeyns, De Smedt, et al., 2009), and the relative rele-

vance of accuracy and speed in choices between mental and written strategies was

found to depend on students’ gender and mathematical ability: mental strategies

appeared to be especially inaccurate for lower ability students and offered a larger

speed advantage relative to written strategies for boys than for girls. These and

other potentially relevant factors to students’ speed-accuracy tradeoff (MacKay,

1982) could therefore be included in models for strategy choices such as the Adap-

tive Strategy Choice Model (ASCM; Siegler & Shipley, 1995). Verschaffel et al.

(2009) also stressed the importance of the sociocultural context for the adaptivity

of strategy choices, and in this dissertation, the part of the sociocultural context

formed by the teacher was considered. As described in the first part of this sec-

tion, many teacher behaviors and attitudes that were expected to be relevant were
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not found to be related to students’ choices between mental and written strategies

(whereas Ellis, 1997, did describe sociocultural effects on such choices), but there

was a considerable teacher effect on choices between different written strategies.

7.1.2 Performance

The effects of instruction on performance were also investigated; both direct ef-

fects and effects occurring indirectly through strategy use. The indirect effects can

occur because of the large accuracy differences between strategies: as in previous

research (Hickendorff, 2013; Hickendorff et al., 2009, 2010; Van Putten, 2005), writ-

ten strategies were found to be much more accurate than mental strategies. This

was not only the case when potentially biasing strategy selection effects (Siegler &

Lemaire, 1997) of student and problem characteristics were statistically corrected

for (Chapters 3 and 5), but also when they were eliminated through experimen-

tal design (with the choice/no-choice design of Siegler & Lemaire, 1997; Chapter

4). Within written strategies, the digit-based and whole-number-based algorithms

were found to be comparable in accuracy, while non-algorithmic approaches ap-

peared less accurate than the algorithms (as discussed previously). This suggests

that while attention to informal strategies may be very fruitful in earlier stages of

the educational process (Treffers, 1987b), performance may benefit from a focus on

standardized procedures at the end of the instructional trajectory. This may be

especially relevant to students with a lower mathematical ability, who appear to

benefit less from more free forms of instruction with attention to multiple solution

strategies than from more direct forms of instruction (Royal Netherlands Academy

of Arts and Sciences, 2009).

Given the strategy accuracy differences, the associations between instruction

and strategy choices discussed in the previous section also indirectly affect per-

formance (though it should be noted that a thorough investigation of the chain

of effects would involve a mediation analysis). The effects of teachers’ instruc-

tion on students’ choices between relatively inaccurate mental and accurate written

strategies were limited, and thereby also the indirect effects of that on perfor-

mance. However, teachers’ strategy instruction was found to be related to choices

between written strategies. Choices for the somewhat less accurate non-algorithmic

strategies were associated with instruction in the whole-number-based algorithms

for multiplication and division, in line with the link between such algorithms and

informal approaches envisioned in the development of these algorithms (Treffers,

1987a). These results concern the effects of normal variations in instructional be-
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haviors reported by teachers. In Chapters 4 and 5, interventions in this daily

teaching practice were described. In Chapter 4, it was shown that instructing stu-

dents with a below (but not above) average mathematical ability to write down

calculations results in an immediate improvement in their performance, whereas

Hickendorff et al. (2010) found such an improvement regardless of ability level. In

Chapter 5, it was shown that a training for lower ability students that increases

choices for written strategies also improves performance.

In Chapter 2, direct effects of instruction on performance were investigated.

Teaching practices turned out to be more relevant to multiplication and division

performance than the formal curriculum (as it is laid down in mathematics text-

books) and teacher characteristics, as had also been found for mathematics more

generally (Royal Netherlands Academy of Arts and Sciences, 2009; Slavin & Lake,

2008; Wenglinsky, 2002). Particularly, the amount of time that teachers spend on

instruction to the whole class was found to be positively related to students’ perfor-

mance, in line with the positive effect of time spent on active academic instruction

rather than other activities reported in the process-product literature (Hill et al.,

2005). This may be in conflict with the trend of decreasing whole class instruction

and increasing differentiation of instruction based on students’ mathematical ability

level (Scheltens et al., 2013).

7.2 Methodological conclusions

To obtain these substantive conclusions, several methods were used that are not

very commonly applied in educational research, but that have great potential for

other investigations of this type.

7.2.1 Latent variable models

Firstly, latent variable models were used. Advanced modeling techniques were nec-

essary because the data posed several statistical challenges (depending on the chap-

ter), many of which frequently play a role in educational investigations: the multi-

level structure of the data (item responses within students, who are within classes);

the nominal measurement level of the strategies; the measurement of change; the

large number of items in the teacher questionnaire in the large-scale assessment; and

the incomplete design of the large-scale assessment, in which students do not com-

plete all items but only systematically varying subsets of items. These challenges

were met with two statistical techniques that model item responses as dependent on
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a latent variable: latent class analysis (LCA) and item response theory (IRT). The

latent variable reflects individual differences between students, and these differences

can be more quantitative or more qualitative (De Boeck, Wilson, & Acton, 2005).

In IRT, the latent variable is dimensional and students are modeled as differing

from each other only in degree, whereas in LCA, the latent variable is categorical

and students in different latent classes are modeled as qualitatively different from

one another.

In this dissertation, LCA was used to discern qualitatively different strategy

choice profiles (latent classes) based on students’ strategy choices on items. Chap-

ters 2 and 6 show that this is a very insightful way to deal with nominal strategy

data that is richer than just a dichotomization (e.g., mental versus written strate-

gies), and its merit has also been demonstrated in previous educational research

(e.g., Geiser et al., 2010; Hickendorff et al., 2009, 2010; Lee Webb et al., 2008;

Yang et al., 2005). However, what previous studies usually lacked, is the mod-

eling of teacher effects that was implemented in this dissertation through use of

multilevel LCA (MLCA; Vermunt, 2003). Given the central role of teachers in the

educational process, such multilevel effects are theoretically of high importance in

educational research, and Chapter 2 also shows that the effects are so large that

not modeling them results in a serious misspecification of the latent class model. In

addition, it was shown that modeling the multilevel effect as nonparametric (cre-

ating latent classes of teachers as well as of students; Vermunt, 2003) allows for

interesting substantive interpretations of teacher effects. Finally, Chapters 2 and 6

illustrated the versatility of MLCA: it can be used to deal with the challenges of

large-scale assessment data, but can also easily be applied to data from a cognitive

experiment.

IRT models were employed in Chapters 3, 4, 5, and 6; not as measurement

models that only describe individual differences in performance, but as explana-

tory models that include factors that explain performance (De Boeck & Wilson,

2004). Different approaches were taken that illustrate the flexibility of the explana-

tory IRT framework: person covariates (e.g., gender and ability level) as well as

person-by-item covariates (strategy use) were used as explanatory factors, item dif-

ficulties were modeled as fixed and as random effects (De Boeck, 2008), different

response variables (accuracy and mental versus written strategy choices) were mod-

eled, and teacher effects were included. IRT was used to evaluate condition effects

in experiments, both in designs where children were only tested once (Chapters 4

and 6) and in a pretest-posttest design (Chapter 5). IRT offers special benefits in
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the latter case, as it addresses problems inherent to measuring learning and change

(Stevenson et al., 2013). Finally, a new application of explanatory IRT was intro-

duced (Chapter 3): a combination with LASSO penalization (Tibshirani, 1996),

that enables the simultaneous consideration of high numbers of potentially relevant

covariates while optimally modeling achievement differences (making it especially

suitable for large-scale assessments).

7.2.2 Strategy coding

A second methodological approach in this dissertation that could benefit other

educational investigations is not statistical, but concerns the way in which the so-

lution strategies that students use are determined. In all chapters, strategy use was

inferred from the calculations that students wrote down while solving problems.

As discussed by Fagginger Auer et al. (2015), a more common approach is to use

students’ verbal reports, but this approach has important disadvantages: verbal re-

ports can be inaccurate and the reporting can influence students’ strategy choices

and performance (Crutcher, 1994; Ericsson & Simon, 1993; Kirk & Ashcraft, 2001).

This plays a lesser role when written work is used, as students write down calcu-

lations as a natural part of the problem solving process. In addition, much larger

sample sizes can be achieved with written strategy identification, as verbal reports

can only be obtained in an individual setting with a trained interviewer, whereas

written work can be collected using group administration and can be efficiently

coded for strategy use afterwards. An important disadvantage of written identifi-

cation is that parts of the problem solving process that have not been written down

cannot be recovered, and that no written work could reflect anything from guess-

ing to mental execution of an algorithm. However, with supplementary interviews

it has been found that in cases of no written work students most frequently use

non-algorithmic approaches (such as clever shortcut strategies like compensation),

while guessing and estimation are very infrequent (Fagginger Auer & Scheltens,

2012; Hickendorff et al., 2010).

7.3 Future directions

The findings in this dissertation on factors affecting strategy choices and perfor-

mance and on methods that can be used to study this, provide several directions

for future research in this area and educational research more generally. For the

domain under study, results indicate that what teachers are currently doing has a
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relatively limited effect on the strategy choices that matter most to performance

(mental versus written strategies). These results are based purely on self-reports

of the teachers, so it would be valuable to include actual observations of teach-

ing practices in future investigations. However, results may be quite similar in

both cases according to Desimone (2009), who has argued that early studies that

suggested low correlations between classroom observations and teacher self-reports

were flawed, and that more methodologically rigorous studies (with self-reports on

concrete teaching behaviors, as was the case for many of the teacher reports in this

dissertation) have demonstrated moderate to high correlations.

Aside from apparently limited teacher effects, the findings in this dissertation

indicate that instructional interventions targeted at the desired strategy use can

be effective. The most fruitful direction for future research therefore appears to

be to develop interventions targeting students’ strategy use, with careful attention

for exactly which investigation elements are effective (e.g., direct accuracy feed-

back; Ellis et al., 1993), and possibly with training in making strategy choices that

are adaptive at the student-level rather than promoting use of one generally well-

performing strategy (for example, Chapter 4 indicated that written strategies are

not necessarily more accurate than mental strategies for stronger students). When

further research on the effects of the sociocultural context on strategy use is con-

ducted (as recommended by Verschaffel et al., 2009), the present results indicate

that this context should be considered more broadly than just in terms of the cur-

rent teacher: parents and peers could be considered (Carr & Jessup, 1997), and

teachers from earlier grades in which strategies were first encountered.

Larger than the effects of teachers on strategy choices, were the effects of student

characteristics. Gender differences were found multiple times, with girls being more

likely to use algorithmic, written strategies, and boys more likely to use mental

strategies. Such gender differences have been found already at younger ages (Carr

& Jessup, 1997; Davis & Carr, 2002; Fennema et al., 1998) and an interesting

direction for future research would be to investigate how they may be explained by

other traits in which boys and girls differ. For example, girls’ lower self-confidence

in math (J. A. Hyde, Fennema, Ryan, Frost, & Hopp, 1990; Mullis, Martin, & Foy,

2008) and their higher potential for academic delay of gratification (Bembenutty,

2009) may cause them to choose the less risky written strategies, at the cost of

speed. Students’ motivation also appears to be related to their strategy choices, so

it may be fruitful to investigate the effects of a motivation intervention (e.g., Siegle

& McCoach, 2007) on strategy use.
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Students’ working memory also seems a highly relevant factor for choices for

mental strategies: for students with a lower working memory capacity, the working

memory resources freed up by writing down calculations should be especially im-

portant (in line with cognitive load theory; Paas et al., 2003). No effects of working

memory were found in this dissertation, but this factor was only investigated once,

with a new computerized version of existing instruments of which the reliability and

validity has not been established yet (Stevenson et al., in preparation), and only for

lower ability students. Since mathematical ability and working memory are related

(Friso-van den Bos et al., 2013), it may be that a restriction of range of working

memory prevented the finding of effects. So, working memory seems to be a very

important factor for mental strategy use to investigate, but a proper investigation

should be done with an appropriate measurement instrument and enough variance

in memory capacities.

In addition to providing specific substantive suggestions for research on strate-

gies, this dissertation illustrates an approach more generally applicable in educa-

tional research. The starting point of this dissertation was a large-scale assessment

finding, and the dissertation itself consists of secondary analyses of assessment data

and follow-up experiments. This approach combines the best of two worlds: it uses

the wealth of data obtained from a large, representative sample for a large-scale

assessment to scout for factors correlated with outcomes, which then enables tar-

geted follow-up experiments in which the causality of the found correlations can

be established, potentially resulting in interventions beneficial to educational prac-

tice. There is a very large amount of assessment data (e.g., TIMSS, PIRLS, PISA;

Mullis, Martin, Foy, & Akora, 2012; Mullis, Martin, Foy, & Drucker, 2012; OECD,

2013), and secondary analyses help to make full use of this data. The discussed

multilevel LCA and variations of explanatory IRT can be used to analyze the com-

plex assessment data, as well as the data from follow-up experiments. And finally,

to conclude with the central theme of this dissertation, solution strategies can be

coded from readily available written work and are very important to performance,

so including these in educational investigations is both easy and vital to obtaining

a complete picture of students’ learning.
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vermenigvuldigopgaven in groep 8 [Solution strategies voor division and multi-

plication problems in sixth grade]. In M. Van Zanten (Ed.), Opbrengstgericht

onderwijs - rekenen!-wiskunde? (p. 137-150). Utrecht: FIsme, Universiteit

Utrecht.

Fennema, E., Carpenter, T. P., Jacobs, V. R., Franke, M. L., & Levi, L. W. (1998).

A longitudinal study of gender differences in young children’s mathematical

thinking. Eductional Researcher , 27 , 6-11.

Fischer, G. H. (1973). Linear logistic test model as an instrument in educational

130



research. Acta Psychologica, 37 , 359-374.

Fischer, U., Moeller, K., Cress, U., & Nuerk, H. (2013). Interventions supporting

children’s mathematics school success: A meta-analytic review. European

Psychologist , 18 , 89-113.

Foxman, D., & Beishuizen, M. (2003). Mental calculation methods used by 11-

year-olds in different attainment bands: A reanalysis of data from the 1987

APU survey in the UK. Educational Studies in Mathematics, 51 , 41-69.

Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, The

Netherlands: Reidel.

Friso-van den Bos, I., Van der Ven, S. H. G., Kroesbergen, E. H., & Van Luit,

J. E. H. (2013). Working memory and mathematics in primary school children:

A meta-analysis. Educational Research Review , 10 , 29-44.

Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy

choices in simple and complex addition: Contributions of working memory

and counting knowledge for children with mathematical disability. Journal of

Experimental Child Psychology , 88 , 121-151.

Geiser, C., Lehman, W., & Eid, M. (2010). Separating ”rotators” from ”non-

rotators” in the mental rotations test: A multigroup latent class analysis.

Multivariate Behavioral Research, 41 , 261-293.

Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J.

(2009). Mathematics instruction for students with learning disabilities: A

meta-analysis of instructional components. Review of Educational Research,

79 , 1202-1242.

Goeman, J. J. (2010). L-1 penalized estimation in the Cox proportional hazards

model. Biometrical Journal , 52 , 70-84.

Goodman, L. A. (1974). Exploratory latent structure analysis using both identifi-

able and unidentifiable models. Biometrika, 61 , 215-231.

Goodnow, J. J. (1976). The nature of intelligent behavior: Questions raised by

cross-cultural studies. In L. B. Resnick (Ed.), The nature of intelligence

(p. 83-102). Hillsdale, NJ: Erlbaum.

Gravemeijer, K. P. E. (1997). Instructional design for reform in mathematics edu-

cation. In M. Beishuizen, K. P. E. Gravemeijer, & E. C. D. M. Van Lieshout

(Eds.), The role of contexts and models in the development of mathematical

strategies and procedures (p. 13-34). Utrecht, The Netherlands: Freudenthal

Institute.

Groll, A., & Tutz, G. (2014). Variable selection for generalized linear mixed models

131



by L1-penalized estimation. Statistics and Computing , 24 , 137-154.

Hagenaars, J. A., & McCutcheon, A. L. (Eds.). (2002). Applied latent class analysis.

Cambridge, England: Cambridge University Press.

Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of

treatment effects with a regression-discontinuity design. Econometrica, 69 ,

201-209.

Hattie, J. (2003). Teachers make a difference: What is the research evidence?

Paper presented at the Australian Council for Educational Research Annual

Conference on Building Teacher Quality, Melbourne.

Henry, K. L., & Muthén, B. (2010). Multilevel latent class analysis: An application

of adolescent smoking typologies with individual and contextual predictors.

Structural Equation Modeling , 17 , 193-215.

Hickendorff, M. (2011). Explanatory latent variable modeling of mathematical ability

in primary school: Crossing the border between psychometrics and psychology.

Unpublished doctoral dissertation, Leiden University.

Hickendorff, M. (2013). The effects of presenting multidigit mathematics prob-

lems in a realistic context on sixth graders’ problem solving. Cognition and

Instruction, 31 , 314-344.

Hickendorff, M., Heiser, W. J., Van Putten, C. M., & Verhelst, N. D. (2009).

Solution strategies and achievement in Dutch complex arithmetic: Latent

variable modeling of change. Psychometrika, 74 , 331-350.

Hickendorff, M., Van Putten, C. M., Verhelst, N. D., & Heiser, W. J. (2010).

Individual differences in strategy use on division problems: Mental versus

written computation. Journal of Educational Psychology , 102 , 439-452.

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathemati-

cal knowledge for teaching on student achievement. American Educational

Research Journal , 42 , 371-406.

Hsieh, T.-C., & Yang, C. (2012). Do online learning patterns exhibit regional

and demographic differences? The Turkish Online Journal of Educational

Technology , 11 , 60-70.

Hyde, J. A., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990). Gen-

der comparisons of mathematics attitudes and affect. Psychology of Women

Quarterly , 14 , 299-324.

Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008).

Gender similarities characterize math performance. Science, 321 , 494-495.

Imbo, I., & Vandierendonck, A. (2007). The development of strategy use in elemen-

132



tary school children: Working memory and individual differences. Journal of

Experimental Child Psychology , 96 , 284-309.

Imbo, I., & Vandierendonck, A. (2008). Effects of problem size, operation, and

working-memory span on simple-arithmetic strategies: differences between

children and adults? Psychological Research, 72 , 331-346.

Janssen, A. B., & Geiser, C. (2010). On the relationship between solution strategies

in two mental rotation tasks. Learning and Individual Differences, 20 , 473-

478.

Janssen, J., Van der Schoot, F., & Hemker, B. (2005). Balans van het reken-

wiskundeonderwijs aan het einde van de basisschool 4 [Fourth assessment of

mathematics education at the end of primary school]. Arnhem, The Nether-

lands: Cito.

Janssen, J., Van der Schoot, F., Hemker, B., & Verhelst, N. D. (1999). Balans

van het reken-wiskundeonderwijs aan het einde van de basisschool 3 [Third

assessment of mathematics education at the end of primary school]. Arnhem,

The Netherlands: Cito.

Janssen, J., Verhelst, N., Engelen, R., & Scheltens, F. (2010). Wetenschappelijke

verantwoording van de toetsen LOVS rekenen-wiskunde voor groep 3 tot en

met groep 8 [Technical report for the student monitoring system mathematics

tests for grade 1 to 6]. Arnhem, The Netherlands: Cito.

Jepsen, C. (2005). Teacher characteristics and student achievement: evidence from

teacher surveys. Journal of Urban Economics, 57 , 302-319.

Jones, R. H. (2011). Bayesian information criterion for longitudinal and clustered

data. Statistics in Medicine, 30 , 3050-3056.

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal

effect. Educational Psychologist , 38 , 23-31.

Kerkman, D. D., & Siegler, R. S. (1997). Measuring individual differences in

children’s addition strategy choices. Learning and Individual Differences, 9 ,

1-18.

Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M.,

& Koch, I. (2010). Control and interference in task switching - a review.

Psychological Bulletin, 136 , 849-874.

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up. Helping children

learn mathematics. Washington, D.C.: National Academy Press.

Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and promise

of using verbal reports to study math strategies. Journal of Experimental

133



Psychology: Learning, Memory and Cognition, 27 , 157-175.

Klein, D. (2003). A brief history of K-12 mathematics education in the 20th century.

In J. M. Royer (Ed.), Mathematical cognition (p. 175-225). Greenwich, CT:

Information Age Publishing.

Klein Entink, R. H., Fox, J.-P., & Van der Linden, W. J. (2009). A multivariate

multilevel approach to the modeling of accuracy and speed of test takers.

Psychometrika, 74 , 21-48.

Kroesbergen, E. H., & Van Luit, J. E. H. (2003). Mathematics interventions

for children with special educational needs: A meta-analysis. Remedial and

Special Education, 24 , 97-114.

Laski, E. V., Casey, B. M., Yu, Q., Dulaney, A., Heyman, M., & Dearing, E. (2013).

Spatial skills as a predictor of first grade girls’ use of higher level arithmetic

strategies. Learning and Individual Differences, 23 , 123-130.

Lee Webb, M.-Y., Cohen, A. S., & Schwanenflugel, P. J. (2008). Latent class

analysis of differential item functioning on the Peabody Picture Vocabulary

Test III. Educational and Psychological Measuremen, 68 , 335-351.

Lemaire, P., & Lecacheur, M. (2002). Applying the choice/no-choice methodology:

the case of children’s strategy use in spelling. Developmental Science, 5 ,

42-47.

Lemaire, P., & Lecacheur, M. (2010). Strategy switch costs in arithemetic problem

solving. Memory & Cognition, 38 , 322-332.

Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children’s execu-

tive functions and strategy selection: A study in computational estimation.

Cognitive Development , 26 , 282-294.

Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions

to children’s learning of multiplication. Journal of Experimental Psychology:

General , 124 , 83-97.
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Nederlandse samenvatting

De afgelopen decennia zijn de prestaties van leerlingen aan het einde van de basiss-

chool bij bewerkingen met vermenigvuldigen en delen sterk gedaald (J. Janssen et

al., 1999, 2005; Scheltens et al., 2013). Het gaat hierbij om opgaven met grotere

getallen en kommagetallen, zoals 23 × 56 en 31.2 ÷ 1.2. Deze prestatiedaling ging

samen met een verandering in de strategieën die leerlingen gebruiken om dergelijke

opgaven op te lossen: het gebruik van relatief accurate algoritmes (zoals de staart-

deling) nam af, terwijl het relatief inaccurate beantwoorden van opgaven zonder

daarbij een berekening op te schrijven toenam (Fagginger Auer et al., 2013; Hick-

endorff et al., 2009; Van Putten, 2005). De verschuiving in strategiegebruik lijkt

daarmee (deels) de waargenomen prestatiedaling te verklaren. In dit proefschrift

wordt getracht meer inzicht te krijgen in deze ontwikkelingen (en hoe ze mogelijk

ten goede te keren) door de factoren die invloed hebben op het rekenstrategiege-

bruik en de prestaties van leerlingen te onderzoeken. Ook wordt er dieper ingegaan

op de statistische technieken die bij dergelijk onderzoek kunnen worden gebruikt.

Strategiegebruik is een belangrijk onderzoeksgebied binnen de cognitieve psy-

chologie en speelt een rol bij zeer diverse taken en ontwikkelingsfasen (Siegler,

2007): bijvoorbeeld de manieren waarop peuters een speeltje proberen te pakken

dat buiten hun bereik ligt, waarop basisschoolkinderen woorden spellen, en waarop

oudere kinderen transitieve redeneerproblemen oplossen. Een populair onderwerp

van onderzoek zijn rekenstrategieën. Vaak worden strategieën onderzocht voor re-

latief simpele optel-, aftrek-, vermenigvuldig- en deelopgaven met getallen onder de

100 die worden onderwezen in de de lagere groepen van de basisschool (zie bijvoor-

beeld Barrouillet et al., 2008; Blöte et al., 2001; Mulligan & Mitchelmore, 1997),

maar er bestaat minder onderzoek naar strategiegebruik voor complexere opgaven.

Dit strategiegebruik is juist interessant omdat er bij dit soort opgaven vaak veel

verschillende aanpakken mogelijk zijn. De adaptiviteit (Lemaire & Siegler, 1995)
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van de keuzes die leerlingen maken tussen die verschillende aanpakken is heel be-

langrijk: kiest de leerling de strategie die voor hem of haar het meest geschikt is

voor de opgave? De accuratesse (kans op een goed antwoord) en snelheid van de

verschillende mogelijke strategieën voor een leerling zijn hierbij belangrijk (Siegler

& Shipley, 1995), maar ook de socioculturele context waarin de strategie wordt

gebruikt (Verschaffel et al., 2009).

Het belang van strategiekeuzes in het rekenonderwijs is in de loop der jaren

toegenomen. Zoals beschreven door de Koninklijke Nederlandse Academie van

Wetenschappen (KNAW; 2009), schokte de lancering van de satelliet Spoetnik door

de Sovjet-Unie in 1957 het Westen en volgden daarop hervormingen van het onder-

wijs die moesten zorgen voor snellere technologische vooruitgang. De uitwerking

van deze hervormingen verschilde per land, maar een belangrijk aspect was vermin-

derde nadruk op algoritmes gezien de opkomst van computers en rekenmachines. In

Nederland ontstond het ’realistisch rekenen’, met vijf karateristieke grondprincipes

(Treffers, 1987b): het zelf kennis construeren door leerlingen; het gebruik van mod-

ellen en schema’s; reflectie van leerlingen op hun eigen producties; leren van elkaar

door interactie; en het stimuleren van het ontdekken van verbanden binnen de leer-

stof. Zo nam dus de nadruk op een vaste algoritmische aanpak af en werden de vele

informele strategieën van leerlingen belangrijker. In 2002 waren er alleen nog real-

istische rekenboeken voor het basisonderwijs op de markt (KNAW, 2009; inmiddels

is er een meer traditioneel georiënteerde methode bijgekomen).

Naast de verscheidenheid aan informele strategieën die in het realistisch rekenen

wordt benadrukt, werd er ook een nieuwe, niet-cijferende aanpak met vaste stappen

en een schematische notatie gëıntroduceerd, als tussenvorm tussen hoofdrekenen en

cijferen: het kolomsgewijs rekenen (Treffers, 1987a). Bij deze kolomsgewijze al-

goritmes blijft de getalwaarde van de cijfers intact (bijvoorbeeld dat bij 23 × 56

de 2 voor 20 staat), wat bij cijferen niet het geval is. Met de opkomst van het

realistisch rekenen nam dan ook het gebruik van cijferalgoritmes af. Het gebruik

van kolomsgewijze algoritmes en strategieën met een minder formele notatie nam

echter niet in dezelfde mate toe: in plaats daarvan was er een grote toename van

het aantal opgaven dat werd beantwoord zonder dat daarbij een berekening werd

genoteerd (Fagginger Auer et al., 2013; Hickendorff et al., 2009). Vervolgonder-

zoek liet zien dat leerlingen in dit geval veelal hoofdrekenen (Hickendorff et al.,

2010). Antwoorden zonder schriftelijke uitwerking bleken veel minder vaak goed

dan antwoorden met uitwerking, en verschuivingen in het strategiegebruik tussen

nationale peilingen van het rekenniveau in 1997 en 2004 gingen dan ook samen met
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een sterke prestatiedaling (Hickendorff et al., 2009). Tussen 2004 en 2011 bleef het

strategiegebruik grotendeels stabiel en bleven de prestaties op het lage niveau van

2004 (Fagginger Auer et al., 2013; Scheltens et al., 2013).

Opzet van dit proefschrift

Naar aanleiding van deze ontwikkelingen richt dit proefschrift zich op onderzoek

naar de factoren die het strategiegebruik en de prestaties van groep-8-leerlingen bij

het oplossen van vermenigvuldig- en deelopgaven bëınvloeden. Zowel de invloed van

de instructie die leerlingen krijgen (dagelijks in de klas en bij speciale interventies)

als van kenmerken van leerlingen en leerkrachten wordt onderzocht. Dit onderzoek

wordt op twee manieren uitgevoerd: door middel van aanvullende analyses van

bestaande data van een grote nationale rekenpeiling van Cito (Scheltens et al.,

2013) en door middel van experimenten op basisscholen.

De eerste aanpak - aanvullende analyses van peilingsdata - wordt gebruikt in

hoofdstuk 2 en 3, waar respectievelijk het strategiegebruik en de prestaties van

groep-8-leerlingen worden gerelateerd aan kenmerken van de leerlingen en aan rap-

portages van de leerkrachten van deze leerlingen over de inhoud van hun reken-

lessen. De rekenpeilingsdata die wordt gebruikt in deze hoofdstukken zorgt voor

verschillende statistische complicaties: het grote aantal items in de leerkrachtvra-

genlijst; de multilevelstructuur van de data (opgaven, leerlingen, leerkrachten); het

nonimale meetniveau van de strategieën; en het zogenaamde ’onvolledige design’

van de peiling, waarbij elke leerling slechts een klein deel van de grote totale item-

set maakt. Met latente-variabele-modellen wordt hiervoor een oplossing gezocht.

In hoofdstuk 2 wordt een eerste toepassing van multilevel latente-klassen-analyse

(MLCA; Vermunt, 2003) op peilingsdata beschreven en in hoofdstuk 3 wordt een

nieuwe combinatie van LASSO-penalisatie (Tibshirani, 1996) en explanatory item-

respons-theorie (IRT; De Boeck & Wilson, 2004) gëıntroduceerd.

De tweede aanpak - experimenteel onderzoek op basisscholen - wordt gebruikt

in hoofdstuk 4 en 5. Terwijl met de eerste aanpak alleen de samenhang tussen

instructie en uitkomsten in kaart kan worden gebracht (correlationele verbanden),

kan met de tweede aanpak daadwerkelijk worden onderzocht wat de gevolgen zijn

van instructiepraktijken (causale verbanden). De nadruk ligt bij de experimenten

qua strategieën op het wel versus niet noteren van berekeningen, vanwege het eerder

beschreven grote verschil in prestaties tussen schriftelijke en hoofdrekenstrategieën,

en op de effecten van de leerkracht en van leerlingkenmerken. In hoofdstuk 4
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wordt met een choice/no-choice-experiment (Siegler & Lemaire, 1997) onderzocht

of leerlingen beter presteren wanneer ze worden gëınstrueerd berekeningen op te

schrijven en in welke mate ze verstandige (adaptieve) keuzes maken tussen wel en

niet berekeningen opschrijven wat betreft accuratesse en snelheid. In hoofdstuk 5

wordt het effect van een training in het opschrijven van berekeningen op spontane

strategiekeuzes en prestaties onderzocht. Dit wordt gedaan door verschillen hierin

voor en na de training te meten (pretest-posstest-design) bij drie groepen leerlingen:

een groep die de training krijgt, een groep die een controletraining krijgt en een

groep die geen training krijgt.

Tenslotte wordt in hoofdstuk 6 met een experiment onderzoek gedaan naar de

vergelijkbaarheid van resultaten verkregen met de aanpak in hoofdstuk 2 en 3 en de

aanpak in hoofdstuk 4 en 5. Er wordt hierbij gekeken naar de mate waarin strate-

giegebruik en prestaties vergelijkbaar zijn wanneer verschillende soorten rekenop-

gaven door elkaar gemengd worden afgenomen (zoals doorgaans bij peilingen en

in de onderwijspraktijk) versus wanneer alleen maar opgaven van één type worden

afgenomen (zoals vaak bij experimenten). Er zou sprake kunnen zijn van verschillen

door de cognitieve kosten van het wisselen tussen taken (Kiesel et al., 2010) en door

perseveratie in het gebruik van strategieën (Lemaire & Lecacheur, 2010; Luwel,

Schillemans, et al., 2009).

Bevindingen

Deze onderzoeken hebben geresulteerd in verschillende bevindingen over het strate-

giegebruik en de prestaties van leerlingen en de methoden die kunnen worden ge-

bruikt om dit te onderzoeken.

Strategiegebruik en prestaties

Ongeveer een derde deel van de leerlingen bleek voornamelijk opgaven te beantwo-

orden zonder daarbij berekeningen te noteren, terwijl een vijfde deel vooral cijfer-

algoritmes gebruikte (hoofdstuk 2). Om tegemoet te komen aan de opmerkingen

van Van den Heuvel-Panhuizen, Robitzsch, Treffers en Köller (2009) werd in de

overige ’realistische’ oplossingen verder onderscheid gemaakt tussen kolomsgewijze

algoritmes en meer informele, non-algoritmische schriftelijke strategieën. Net als

in eerder onderzoek (Hickendorff, 2013; Hickendorff et al., 2009, 2010; Van Putten,

2005) bleken leerlingen een veel grotere kans te hebben op een goed antwoord wan-

neer zij wel dan wanneer zij niet een berekening noteerden (hoofdstuk 3, 4 en 5).
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Binnen de schriftelijke strategieën bleken de cijferende en kolomsgewijze algoritmes

vergelijkbaar in hun accuratesse, terwijl non-algoritmische strategieën wat minder

accuraat leken (hoofdstuk 3).

De dagelijkse onderwijspraktijken van leerkrachten bleken vooral samen te hangen

met de keuzes die leerlingen maken tussen schriftelijke strategieën, en minder

met de keuzes tussen schriftelijke en hoofdrekenstrategieën (hoofdstuk 2, 4 en 5).

Daarmee lijkt het indirecte effect van die praktijken op prestaties via strategiege-

bruik beperkt. Wel bleken speciale interventies gericht op strategieën de prestaties

en strategiekeuzes van zwakkere rekenaars positief te kunnen bëınvloeden, zowel op

de korte termijn (als leerlingen werden gëınstrueerd hun berekeningen op te schri-

jven; hoofdstuk 4) als op de wat langere termijn (als leerlingen over een langere

periode werden getraind met het doel hun spontane strategiekeuzes en prestaties te

veranderen; hoofdstuk 5). Er werd ook een direct, positief effect van de hoeveelheid

klassikale instructie op prestaties gevonden (hoofdstuk 3).

Kenmerken van leerlingen bleken sterk samen te hangen met het kiezen voor

hoofdrekenen: dit werd vaker gedaan door jongens (vooral in plaats van het ge-

bruiken van algoritmes) en door zwakkere rekenaars (hoofdstuk 2, 5 en 6). Hoof-

drekenen bood een groter snelheidsvoordeel ten opzichte van schriftelijke strategieën

voor jongens dan voor meisjes en was extra inaccuraat voor zwakkere rekenaars

(hoofdstuk 4). Deze zwakkere rekenaars bleken op basis van hun prestaties met

schriftelijke en hoofdrekenstrategieën ook niet altijd verstandige keuzes tussen deze

twee aanpakken te maken, terwijl sterkere rekenaars niet per se (direct) baat hebben

bij gedwongen worden hun berekeningen op te schrijven (hoofdstuk 4). Motivatie

lijkt een rol te spelen bij keuzes voor hoofdrekenen (hoofdstuk 5).

Het wel of niet mengen van deelopgaven met andere opgaven hing niet samen

met het strategiegebruik en de prestaties van leerlingen (hoofdstuk 6).

Methoden

Deze conclusies over het strategiegebruik en de prestaties van leerlingen werden

getrokken met behulp van analyses van de data met latente-variabele-modellen. In

deze modellen worden de responsen van leerlingen op opgaven (goed/fout of de

gebruikte strategie) gemodelleerd als zijnde afhankelijk van een niet-geobserveerde

(dus latente) variable. Bij item-respons-modellen is deze latente variabele een con-

tinue schaal waarop je hoger of lager kan scoren, die bijvoorbeeld kan staan voor

rekenvaardigheid. Bij latente-klassen-modellen is de latente variabele categorisch

en bestaat hij uit verschillende groepen met elk een karakteristiek responspatroon
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op een reeks items, bijvoorbeeld groepen leerlingen die elk een specifiek patroon

van strategiekeuzes hebben. Deze modellen kunnen op een beschrijvende manier

worden gebruikt, als er bijvoorbeeld alleen interesse is in wat de rekenvaardighei-

dsscore van individuele leerlingen is, maar ook op een verklarende manier, waarbij

de scores op de latente variabele worden verklaard aan de hand van andere vari-

abelen. Dit laatste stond centraal in dit proefschrift: er werd steeds gekeken naar

hoe instructiepraktijken en leerlingkenmerken samenhangen met rekenvaardigheid

en met de kans om in een bepaalde latente strategieklasse te komen.

Latente-variabele-modellen werden in dit proefschrift op veel verschillende manieren

toegepast, waarvan sommige manieren nieuw waren. Zo worden in latente-klassen-

modellen meestal maar twee niveaus (bijvoorbeeld opgaven en leerlingen) gemod-

elleerd, maar in hoofdstuk 2 werd een eerste toepassing van multilevel-latente-

klassen-analyse (met een extra niveau voor de leerkrachten) op peilingsdata beschreven.

In hoofdstuk 3 werd een nieuwe combinatie van item-respons-theorie met verk-

larende variabelen voor de rekenscores (explanatory IRT) met LASSO-penalisatie

gëıntroduceerd. Deze penalisatie is een manier om uit een grote groep voorspel-

lende variabelen de variabelen te selecteren die het sterkst samenhangen met de

uitkomstvariabele (rekenscores in dit geval). Deze nieuwe toepassingen werden

gedaan op peilingsdata, waarvoor vaker latente-variable-modellen worden gebruikt

vanwege de uitdagingen die dit type data biedt. In hoofdstuk 4, 5 en 6 werden

de modellen ook ingezet voor de data van de experimenten en ze boden daar ook

belangrijke voordelen, bijvoorbeeld bij het modelleren van de groei in prestaties bij

het trainingsonderzoek (hoofdstuk 5).

Naast deze statistische methoden stond ook een andere methodologische be-

nadering in dit proefschrift centraal: het in kaart brengen van het strategiegebruik

van leerlingen aan de hand van de berekeningen die ze hebben genoteerd. Zoals

besproken door Fagginger Auer, Hickendorff en Van Putten (2015), wordt strate-

giegebruik normaal vaak bepaald door de gebruikers van de strategieën daar ver-

baal over te laten rapporteren. Dit rapporteren kan echter het strategiegebruik

zelf bëınvloeden, en het verzamelen van de rapportages is erg arbeidsintensief en

vereist de aanwezigheid van een getrainde interviewer. Het noteren van berekenin-

gen is daarentegen een natuurlijk onderdeel van het oplossen van opgaven en de

berekeningen kunnen op grote schaal worden verzameld, waarna achteraf kan wor-

den bepaald welke strategieën zijn gebruikt. Een belangrijk nadeel van het ge-

bruiken van berekeningen is wel dat in het geval van het ontbreken van genoteerde

berekeningen onbekend blijft wat een leerling precies heeft gedaan.
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Dit proefschrift als geheel genomen illustreert een meer algemeen toepasbare

methode voor onderwijsonderzoek. Het bouwt voort op bevindingen bij onder-

wijspeilingen en bestaat uit aanvullende analyses van bestaande peilingsdata en

daarop gebaseerd experimenteel vervolgonderzoek. Deze aanpak combineert het

beste van twee werelden: de grote hoeveelheid data van een grote, representatieve

steekproef van een rekenpeiling wordt gebruikt om factoren te vinden die gerela-

teerd zijn aan onderwijsopbrengsten, en de causaliteit van die relaties kan vervolgens

worden vastgesteld met gericht experimenteel vervolgonderzoek, dat mogelijk resul-

teert in interventies waar de onderwijspraktijk baat bij heeft. Er is nationaal en

internationaal een grote hoeveelheid bestaande peilingsdata die nog beter kan wor-

den benut door er aanvullende analyses op uit te voeren. De besproken multilevel-

latente-klassen-analyse en variaties van item-respons-theorie-modellen kunnen wor-

den gebruikt om de complexe peilingsdata te analyseren, evenals de data van ver-

volgexperimenten. En ten slotte, om af te sluiten met het centrale thema van dit

proefschrift: de oplossingsstrategieën van leerlingen kunnen veelal worden afgeleid

uit beschikbaar schriftelijk werk en zijn een cruciaal onderdeel van hoe leerlingen

rekenen, dus deze opnemen in onderwijsonderzoek is zowel relatief eenvoudig als

essentieel voor het verkrijgen van een compleet beeld van het leren van leerlingen.
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