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The main goal of the research described in this thesis was to obtain a better 
understanding of the assemblage and diversity of bacterial communities in soil 
and rhizosphere as well as of their functionality. To reach this, I manipulated 
the community diversity by use of the so-called dilution approach focusing on 
both the effects of soil and plant on the community assemblage. In order to 
study the microbial community diversity and functionality, I applied a 
combined approach of next generation amplicon and shotgun metagenome 
sequencing followed by advanced bioinformatics and statistical analyses. Here, 
I will first discuss the methodology of studying microbial diversity in soil, 
which could be used as a general approach in further studies to analyze 
microbial diversity experimentally. Secondly, I will discuss the importance of 
the impact of soil and the relevant physicochemical soil characteristics on the 
structuring of microbial communities in soil. Thirdly, I will concentrate on the 
microbial community assemblage processes operating in soil and rhizosphere at 
both taxonomic and functional levels. In the fourth section regarding plant-
microbe interactions, I will discuss the feedback of soil-borne bacteria and 
plants, and the functional traits that determinate the relationship between the 
bacterial community and plant growth. Finally, I will discuss ideas and 
directions for future research on soil microbial diversity.  
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6.1 Methodology: assessing the microbial community diversity in terrestrial 
ecosystems  

Previously, many studies on the creation and functionality of biodiversity have 
focused on macro-organisms and much less on microorganisms (Bever 1994, 
Shanmugam et al 2011, Tilman et al 1997) despite the increasingly recognized 
importance of microbial diversity in terrestrial and other natural ecosystems 
(Thiele-Bruhn et al 2012, Wall et al 2015). One of the major hurdles in these 
studies is the lack of sound approaches to manipulate experimentally microbial 
biodiversity. One of the main approaches applied to microbial biodiversity and 
assemblage studies is the so-called dilution approach, which is used here. Until 
now, the studies performed to assess microbial biodiversity based on this 
approach have often been restricted by low-resolution based analytical 
methodologies (Griffiths et al 2001, Mandeel et al 2005, Nielsen et al 2015, 
Prakamhang et al 2015, Wall and Six 2015). So, they failed to comprise the 
total microbial community profiles, while there are sufficient arguments that it 
is of utmost importance to study the diversity and functionality of the total 
microbiome in terrestrial ecosystems (Berendsen et al 2012, Chaparro et al 
2014). 

The estimates of bacterial diversity based on the results obtained with the 
dilution approach revealed that the bacterial community diversity was reduced 
significantly at species or OTU level by dilution of a soil suspension (Chapters 
2 and 3). Previous studies claimed that by dilution particularly rare species were 
removed from soil suspensions and that therefore the abundant ones would 
dominate the microbial community formed after incubation of the diluted 
suspensions in soil (Franklin and Mills 2006, Garland and Lehman 1999). As 
the role of rare species in ecosystem functioning is a hot topic in ecology 
(Gaston 2012, Pedros-Alio 2012), I was especially interested in the possibilities 
provided by the dilution approach to, indeed, separate abundant and rare 
species. The results of my studies, however, showed that unique species were 
present in all dilutions including the most diluted suspensions. Probably certain 
species are suppressed for the sequencing assessments in the less diluted 
suspensions and only showed up in the more diluted, less diverse, suspensions. 
Thus, the conclusion can be drawn that the common presumption underlying 
the dilution approach that rare species would be out diluted, is not correct. 
Thus, the dilution approach does not allow for the separations of rare and 
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abundant species, and, so, is not the appropriate approach to study the 
importance of rare and/or abundant microorganisms in ecosystems.  

It should be pointed out however, that it is hard to formulate a clear-cut 
definition of  ‘abundant’ and ‘rare’ organisms (Fuhrman 2009). Rare species are 
often described as organisms occurring in the relative abundance range of 
approximately 0.1% (Postma-Blaauw et al 2005) to 0.01% (Qin et al 2010) of 
the total community. However, organisms that do occur in one environment in 
that abundance range may become common, even dominant, when the 
environment changes (Kulmatiski et al 2008). So, they may be regarded as a 
seed bank of diversity and functionality when local conditions change through 
natural or anthropogenic causes (Fuhrman 2009). Yet, certain studies indicated 
that it would be the abundant species that mainly perform most of the functions 
in marine ecosystems (Cottrell and Kirchman 2003). Similarly, studies based on 
advanced sequencing approaches indicated that the abundant members of the 
community are primarily responsible for most major biogeochemical processes 
such as the nutrient cycling (Pedros-Alio 2006). So, in conclusion: our 
understanding of the functional importance of different groups, i.e. 
rare/abundant species, in natural ecosystems is limited mainly by limitations to 
the possibilities provided by the currently available methodological approaches 
to provide a comprehensive assessment of the microbial community diversity at 
the phylum (van de Voorde et al 2012) and/or the OTU level (Bulgarelli et al 
2015). 

Recently, new low-cost, high-throughput sequencing approaches have 
greatly improved the understanding of the huge diversity of microbial 
communities in ecosystems (Bulgarelli et al 2015, Franzosa et al 2015, Lebeis 
et al 2015, Rodrigues et al 2013, van de Voorde et al 2011, van de Voorde et al 
2012). High-resolution sequencing approaches have the potential to allow for 
the detection of the entire microbial community structure including the most 
dominant and the rarest species (Lynch and Neufeld 2015, Pester et al 2010). I 
applied these approaches in the study described here. Continuing advances in 
sequencing technology have allowed for studies on diverse microbiomes, 
ranging from natural environments (Mendes et al 2014) to the human body 
(Tremaroli and Backhed 2012). Although these approaches have been proven 
highly effective, there are still limitations based on the current DNA sequence-
based methods. For example, upon application of these approaches, a clear 
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definition of a microbial species is still lacking (Nielsen et al 2015). Usually we 
rely on the sequence similarities of taxa-specific DNA subunits to distinguish 
microorganisms, using the term “Operational Taxonomic Unit, or OTU” rather 
than species. Most sequencing approaches provide, at best, species-level 
taxonomic resolution, but many important phenomena may be present at the 
strain level. Furthermore, uncultured microorganisms represent the majority of 
microbial diversity, and, as their functional potential is largely unknown, the 
databases used for annotation of the functional genes underrepresent 
dramatically the overall microbial functional potential. In addition, a 
fundamental limitation of metagenome sequencing is that the presence of a 
functional gene does not necessarily represent its activity, as host organisms 
may be dormant, inactive or only active in certain condition. Thus, additional 
integrated approaches, such as RNA (transcriptomics) and proteins 
(proteomics), are required to fully describe a microbial community and it’s 
functioning.   

The network analysis described in Chapter 4 showed a more tighter and 
complex network of rhizosphere communities than that of bulk soil 
communities, including more keynote species mainly belonging to different 
genera. These key members of the rhizosphere microbial communities may also 
be the key intermediaries in plant-microbe associations. Indeed, in Chapter 5, 
two groups, i.e. Arthrobacter and Planctomycetaceae, which were identified as 
strongly enriched families in the rhizosphere and important intermediates in the 
networks in the rhizosphere (Chapter 4), were also identified as potential 
candidates to explain best the differences in plant biomass production after 
incubation of the undiluted 10-1 suspension using unsupervised multivariate 
analysis. Further partial correlation revealed that Arthrobacter was the 
taxonomical group most related to plant growth. However, Arthrobacter had a 
lower betweenness centrality, i.e. the extent of network interactions, than 
Planctomycetaceae in the 10-1 rhizosphere community (317 for 
Planctomycetaceae and 163 for Arthrobacter, respectively). This suggests that 
Arthrobacter might have been more important for plant-microbe interactions, 
while Planctomycetaceae mediated more network associations. The role of the 
other key intermediate groups of the rhizosphere and soil networks was not 
further assessed and, at least, their impact on plant biomass production was 
negligible as compared to that of Arthrobacter and Planctomycetaceae. This 
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points to both the power and the limitations of network analyses for detecting 
species associations in plant-soil systems. 

 

6.2 The impact of soil on the structuring of soil bacterial communities 

Previous studies have found that soil is one of the most important factors 
structuring microbial communities (Berg and Smalla 2009, Garbeva et al 2004, 
Kuramae et al 2012). Results from my study indicated (Chapters 2 and 3), 
indeed, that different soils had a strong steering, selective, effect on shaping 
bacterial communities.  

As described in previous studies, soil type has been ranked as the most 
important factor determining the structure of microbial communities, followed 
by time, specific farming operations, management systems and spatial variation 
(Bossio et al 1998). The factors in soils that may potentially affect microbial 
communities and thus may explain differences and shifts in community 
structure are pH (Lauber et al 2009), phosphate availability (Faoro et al 2010), 
and organic matter content (Verbruggen et al 2010). The soils I used in the 
cross-dilution experiment differed in these factors. The Utrecht soil was 
characterized by low pH, the Clue soil was characterized by high phosphate 
content, and high organic matter while the Meijendel was characterized by a 
relatively high pH. All these soils contained a characteristic microbial 
community and the factors mentioned are likely the driving variables shaping 
the bacterial communities in these soils (Chapter 3).  

Previously, studies have focused on the importance of single (a)biotic 
factors and much less on the integrated soil characteristics when evaluating the 
effects of soil on microbial community structure and function (Murty et al 2002, 
Torsvik and Ovreas 2002), despite the increasing recognition of the importance 
of the overall environment on the structuring of microbial communities in soil 
and their biodiversity (Fierer and Jackson 2006, Hogberg et al 2007). I showed 
that the structure of the bacterial community was changed dramatically after 
incubation in soil as compared to the structure of the community in the 
suspension (Chapters 2 and 3). This strongly points to the overriding impact of 
soil, as an important, decisive, factor in the assemblage of bacterial 
communities in soil, which is likely due to the integrated physical and chemical 
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characteristics of the soils. Therefore, I suggest that a combination of abiotic 
factors, and not only pH or another single factor determines the structure of soil 
bacterial communities.  

 

6.3 Bacterial community assemblage in soil and rhizosphere  

Plants are known to significantly select for specific microorganisms in the 
rhizosphere (Haichar et al 2008, Mendes et al 2014). This is called the 
‘rhizosphere effect’. It is known that plant species have rather specific effects 
on the structure of the rhizosphere microbial communities, even at the genotype 
level, (Berg and Smalla 2009, Duineveld et al 2001, Haichar et al 2008). I also 
observed a considerable effect of the presence of plants on the bacterial 
communities in the rhizosphere at both taxonomic and functional levels 
(Chapter 4). 

Earlier studies indicated that plants influence the composition and 
activity of the rhizosphere microbiota by selecting specific microbial 
populations from the soil-borne microbial reservoirs (Berg 2009, van Overbeek 
and van Elsas 2008), and, thus, the microbial community in the rhizosphere is a 
subset of the bulk soil (Duineveld et al 2001). Results presented in this thesis 
clearly indicate that the composition of the rhizosphere communities was 
dramatically different from that of the soil communities in terms of the 
dominant species. That does not hold for the abundant phyla of Proteobacteria, 
which showed to be highly diverse both in soil (Chapters 2 and 3) and 
rhizosphere (Chapter 4), which is consistent with the common concepts on the 
lifestyle of Proteobacteria (Fierer et al 2007). In agreement with earlier 
observations, within the phylum of the Preoteobacteria, bacteria from the 
families of Pseudomonadaceae (DeAngelis et al 2009) or of Burkholderiaceae 
(Pastorelli et al 2011, Uroz et al 2010) are among the most abundant members 
of the rhizosphere communities. It is, therefore, remarkable that ‘transporters’ 
genes that could be assigned to Pseudomonaceae were overrepresented in the 
bulk soil and not in the rhizosphere. As the occurrence of ‘transporters’ genes 
was found to be a determinative factor explaining plant biomass production 
(Chapter 5), this questions the significance of this group of bacteria as plant 
growth promoting organisms. Also, the relative abundance of Actinobacteria 
was found to be significantly larger in the rhizosphere of Senecio plant than in 
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the bulk soil while the Shannon diversity index for this phylum was 
significantly lower in the rhizosphere, which could be explained by the large 
relative abundance in the rhizosphere samples of one family, i.e. 
Micrococcaceae to which Arthrobacter belongs (Chapter 4). Interestingly, in 
line with these observations we clearly showed in Chapter 5 that Arthrobacter 
was significantly positively correlated to plant biomass more than any other 
group of bacteria (Chapter 5).  

Based on the possibilities provided by the advanced sequencing 
approaches available, the concept of ‘rhizosphere effect’ should not only be 
limited to species but should be extended to the selection of functional genes in 
the soil microbiome (Mendes et al 2014, Ofek-Lalzar et al 2014). One of main 
goals of metagenomics has always been to link functional genes to particular 
organisms (DeLong 2009). The results presented in chapter 4 clearly illustrate 
the process of rhizosphere selection both at the community composition and 
functioning levels. We showed that the enrichment processes in the rhizosphere 
selects for microorganisms with specific functional traits including 
‘transporters’, ‘Embden Meyerhof Parnas’ (EMP) and ‘hydrogen metabolism’. 
The genes related to ‘transporters’ have been described in earlier observations 
by Mark et al (2006) and Mendes et al (2014) who showed that transporter 
systems are frequently enriched in the rhizosphere. The ‘transporters’ genes 
were positively related to plant growth. Because they were enriched in the 
rhizosphere compared to the soil we can conclude that plants positively affect 
bacterial species with such genes and this may in part explain the positive 
correlation with plant growth. At the same time bacterial species with these 
‘transporters’ genes may stimulate plant growth, which would contribute to the 
positive correlation. Whether either one of the two or both explanations are true 
cannot be concluded from our experiments with certainty. Another over-
represented group of functions in the rhizosphere is linked to EMP cycling. The 
EMP pathway is the most common bacterial glycolytic pathway for cellular 
energy production (Flamholz et al 2013). Considering that plants provide a 
wider and more complex range of substrate in the rhizosphere than is available 
in the soil, and thus provide better conditions for bacterial growth and activity 
we could expect, indeed, that the genes related to energy production will be 
over-represented in the rhizosphere metagenome as compared to the soil 
metagenome. Similarly, ‘hydrogen metabolisms’ also involve genes related to 
energy-generating mechanisms of specific microbial species such as nitrogen-
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fixing bacteria (Eisbrenner and Evans 1983). Therefore, the group of genes 
related to ‘hydrogen metabolism’ might also be over-represented in the 
rhizosphere than in the soil, as we discussed earlier.  

 

6.4 Impact of the rhizosphere microbiome on plant growth 

One of the main results of the metagenomics analysis was the identification of 
particular functional genes activated in the rhizosphere, which determines plant 
microbe interactions. As mentioned above the results described in Chapter 4 
demonstrated that selection of functions took place in the rhizosphere resulting 
in over-representation of particular functional genes in the rhizosphere 
compared to bulk soil. Although earlier studies have identified particular 
functions beneficial to plant growth, including nitrogen fixation or disease 
suppression (Quecine et al 2012, Tittabutr et al 2013), generally, the microbial 
functional traits that contribute to plant fitness have been largely unknown. In 
Chapter 5 I identified both the species and functional genes that potentially had 
most influence on plant growth by unsupervised multivariate analysis. As 
mentioned earlier based on unsupervised multivariate analysis, Arthrobacter 
and Planctomycetaceae were selected as potential candidates to explain the 
differences in plant biomass production, with Arthrobacter having the strongest 
impact. Tahir et al (2015) showed, after analysis of the wheat rhizosphere using 
16S rRNA gene sequencing, that Arthrobacter belonged to the plant health 
promoting rhizobacteria. Several species of Arthrobacter have been described 
as plant growth promoting rhizobacterium (Gusain et al 2015, Ullah and Bano 
2015). Planctomycetales is also a rhizosphere species (Tahir et al 2015), but its 
functionality is until now largely unknown.  

The results presented in Chapter 5 also illustrated the importance of 
particular functional gene category for regulating plant growth. Interestingly, 
the functional genes of ‘transporters’ in the rhizosphere, which I already 
observed as being positively selected in the rhizosphere in Chapter 4, also 
appeared to be positively correlated to plant growth (Chapter 5). This provides 
evidence that plants may select for particular functional genes that promote 
their own growth. Interestingly, the frequency of ‘transporters’ genes was 
higher in Arthrobacter than in most other components of the bacterial 
community. By using partial correlation analysis, I proved that Arthrobacter 
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was not significantly correlated to plant biomass when taking ‘transporters’ 
genes into account, which suggests, that the functional genes explained better 
the plant-bacteria interactions than the community composition. Specifically, 
the ‘monosaccharide transporters’ genes were significantly positively correlated 
to plant biomass when all three dilutions samples were taken together, and this 
group of genes increased significantly upon dilutions in the rhizosphere. So, it 
is not enough to know who is there, but more importantly is to know what are 
they doing (Xu et al 2014).    

However, we should exercise caution with the assertion on the 
importance of certain functional traits because it is extremely unlikely that a 
single function determines the differences in plant biomass production. Indeed, 
we also observed that ‘nucleic acid metabolism’ genes were also positively 
correlated to plant biomass production. The nature of this particular relationship 
is still unclear to us, but this may be related to cellular growth processes, which 
indicates a higher bacterial abundance/activity in the rhizosphere than in the soil, 
as also shown in Chapter 5. Consequently, this group of genes may point to a 
positive relationship between bacterial and plant growth.  

We also observed functional genes including ‘cellular response to stress’ 
and ‘saccharide metabolisms’ that were negatively correlated to plant biomass 
production. As was described above, these functional genes were under-
represented in the rhizosphere as compared to their abundance in the soil, 
suggesting that plant selected against such genes in the rhizosphere. One of the 
explanations could be that plants create a less hostile environment for microbial 
community in the rhizosphere by the rhizodeposition processes. As a result, this 
may lead to a negative correlation between ‘cellular response to stress’ genes 
and plant growth. Similarly, if plants produce more saccharides that become 
available for the rhizosphere community, microbial genes related to their 
biosynthetic pathway might be suppressed in the rhizosphere. However, in that 
case, one would expect that the ‘saccharide metabolisms’ genes were over-
represented in the bulk soil, which they were not.  
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6.5 Final conclusions and future perspectives  

A few points to consider in future studies concern the theoretical concept on 
assemblage of microbial communities, the separation of rare versus abundant 
species, the plant soil feedback effects and the selection processes operating in 
the rhizosphere. 

Although I did not include this in this thesis, I did assess the rules leading 
to the assemblage of microbial communities in soil and rhizosphere using the 
theories niche-based and neutral mechanisms. These theories are based upon 
macro-ecological concepts, but have been used frequently in microbial ecology 
to describe microbial community assembly processes. The niche-based 
assemblage concept predicts that the assemblage of a community is based on 
niche partitioning of the limited resources between competitive species or the 
differentiation of niche space within a community and have been used to 
explain microbial community assemblage processes in, for instance, lakes (Van 
der Gucht et al 2007), soil (Fierer and Jackson 2006, Lozupone and Knight 
2007), rhizosphere (Mendes et al 2014) and human gut (Lu et al 2014). The 
neutral theory is based on the assumption that the differences between members 
of an ecological community of similar species or species from the same trophic 
level are "neutral," or irrelevant to their success. In the light of my results on the 
importance of functionality rather than of taxonomic composition for the 
functioning of microbial communities in terrestrial ecosystems, it is 
recommendable to extend these concepts focusing on species functionality in 
order to be able to better understand how microbial communities are shaped in 
soil and rhizosphere. It should be taken into account that these models for 
microbial communities are mostly applied to the entire microbial community. 
This can lead to a strong underestimation of the selection effects. Selection is 
most likely occurring within groups of organisms, such as pollinators, insect 
herbivores etc. that share important ecological features. However, scale is a 
significant problem in microbial ecology. The entire microbial community 
encompasses a very diverse set of such ecological features and by pooling all 
microbes into one group selection may appear neutral while in fact it is not. 
Finding the “pollinators” within microbial communities is one of the challenges 
for modern microbial ecology. 

The existing assumption linked to the dilution approach is that the 
approach allows for the separation of rare from abundant species. However, I 
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showed that unique species were detected even in the most diluted suspension 
and that rare/less abundant species could become abundant in another 
environment. This may be effectuated by the dilution procedure in which a less 
competitive environment may be created for rare species so to flourish more 
than in a more competitive environment of a less diluted inoculum. Thus, it is 
impossible to investigate their importance in natural ecosystems by use of the 
dilution approach. As the long tail of less abundant/rare species is a typical 
characteristic of highly diverse natural microbial communities, there is still an 
urgent need to develop appropriate methodologies to separate less and more 
abundant microbes that allow for specific investigations of their behavior and 
activities. 

Future studies also need to compare plant-soil feedback processes across 
ecosystems and across successional stages within these ecosystems. One of the 
most reported findings regarding plant-soil feedback effects is that these effects 
are negative regarding plant growth (Bever 2003, Lankau et al 2011). So, these 
issues need to be further consideration under controlled conditions and time 
scales in order to enable the determination of the potential factors explaining 
the feedback processes. In these studies functional traits rather than taxonomy 
should be the target of fundamental research.  

Finally, further studies should address how microbial communities are 
structured and selected at both the taxonomic and functional levels, in distinct 
soil types and in the presence of specific plant species. Metagenomics analysis 
has provided information about which microorganisms are present and what 
they are capable of doing. However, the detection of functional genes is not 
evidence of their activity. Further functional gene expression analysis including 
metatranscriptome analysis can provide information about what 
microorganisms are actually doing. Therefore, integrated experimental, 
including sequencing approaches, together with computational analysis, are 
needed to improve our understanding of microbial functionality in specific 
niche and plant- microbe interactions.   
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