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Abstract 

The relationship between plants and their surrounding microbiota belowground 
is complex and has been the focus of much research. In reality, the functionality 
of the microorganisms that are involved in plant-microbe interactions is still not 
well understood. We used 16S rRNA gene sequencing to determine the 
bacterial composition and a shotgun metagenomics approach to determine the 
functional traits of the rhizosphere microbiome. We examined the effects of the 
taxonomical composition and the functional traits of the bacterial community in 
the rhizosphere on plant biomass production. Both were significantly different 
among soils inoculated with different dilutions of the original bacterial 
community. Plant biomass production was on average the lowest and showed 
the highest variation after inoculation of the undiluted communities. A 
combination of unsupervised multivariate statistics and partial correlations 
showed that Arthrobacter was the taxonomical group that was most strongly 
related to plant biomass and that ‘transporters’ genes were the functional genes 
most strongly related to plant biomass. Both were positively correlated to plant 
biomass and positively correlated with each other. Specifically, the 
‘monosaccharide transporters’ genes significantly positively correlated to plant 
biomass when all three dilutions samples were taken together, and this group of 
genes increased significantly upon dilutions in the rhizosphere. The frequency 
of ‘transporters’ genes was higher in Arthrobacter than in other components of 
the bacterial community. Partial correlation indicated that after taking the 
frequency of ‘transporters’ genes into account the correlation between 
Arthrobacter and plant biomass was no longer significant while after taking the 
frequency of Arthrobacter into account the correlation between ‘transporters’ 
genes and plant biomass was still highly significant. Although these results 
should be considered with caution this seems to suggest that functional genes 
rather than the taxonomical composition of the bacterial community of the 
rhizosphere determine plant biomass production. 

 

Keywords  

Rhizosphere metagenome | Functional traits | Unsupervised multivariate 
analyses | Plant biomass
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5.1. Introduction 

The microbiome of the rhizosphere plays critical roles in the functioning of 
terrestrial ecosystems (Philippot et al 2013). The rhizomicrobiome drives and 
responds to the specificity of its environment, including host plant 
characteristics (Haichar et al 2008, Bulgarelli et al 2012), and factors such as 
pH, salinity, moisture and the availability of nutrients (Fierer and Jackson 2006, 
Logue and Lindstrom 2010, Nemergut et al 2010, Brockett et al 2012). The 
rhizomicrobiome plays a key role in plant development and the productivity of 
the aboveground vegetation (van der Heijden et al 1998, Wagg et al 2011).  

Despite the general acceptance that plant roots select specific microbial 
species which directly or indirectly influence host plant physiology and 
development (Mendes et al 2011), the extent to which functional traits linked 
with the rhizosphere microbiome determine colonization and impact on the host 
plant remains largely unknown. Therefore, characterization of the functional 
traits of the rhizosphere microbiome is crucial for understanding the effect of 
soil-borne microbes on plant development.  

Advanced shotgun metagenomics approaches offer promising tools to 
target the microbial genes related to host plant-microbe interactions and so the 
associated functions. Current studies using this approach that focus on 
describing the microbiome of humans or other mammal host revealed that the 
microbiome composition and functions are determinative for the physiology of 
the host (Turnbaugh et al 2006, Tremaroli and Backhed 2012). Transcription 
analyses of bacterial genes in the rhizosphere have mostly been performed on 
single rhizobacterial strains (Mark et al 2005, Matilla et al 2007, Dennis et al 
2010). However, because of the complexity of the rhizomicrobiome and the 
inability to culture many microorganisms, comprehensive, overall, pictures of 
the microbial community and its functionality related to its link with host plant 
productivity in natural ecosystems are scarce (Ofek-Lalzar et al 2014, Bulgarelli 
et al 2015). Thus, in order to improve our understanding of the mechanisms of 
plant-microbe interactions, we need to characterize better the fundamental 
ecological processes that underlie the composition and the functionality of the 
rhizomicrobiome.  

The major aim of this study was to acquire better understanding of the 
relationship between the rhizosphere microbiome and plant growth both at the 
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level of the taxonomical composition and at the level of the functional genes of 
the bacterial community. To establish differences in the microbial communities 
and differences in plant growth, serial dilutions of a soil suspension were 
prepared and the obtained inocula were, subsequently, re-inoculated into the 
original soil previously sterilized by γ-irradiation. After an incubation period, 
plants were potted in the soil samples. We used Jacobaea vulgaris, one of the 
most common weeds in the Netherlands. We used 16S rRNA gene sequencing 
to assess the composition of the bacterial community in the rhizosphere and a 
total DNA shotgun metagenomics approach to assess the potential microbiome 
functionality. In Chapter 4 we already showed that the selection of rhizosphere 
microbial communities from soil communities was strongly based on the 
functional traits of the selected microbes. So, here, we hypothesized that 
selection on the basis of particular functional traits will also have a strong 
impact on plant growth. We addressed three basic questions: 1) Is plant growth 
related to the taxonomical composition of bacterial communities in the 
rhizosphere? 2) Is plant growth related to the frequency of particular functional 
genes in the rhizosphere? 3) Is the taxonomical composition related to the 
frequency of particular functional genes and if so which of the two is most 
strongly related to plant growth? 

 

5.2. Materials and methods 

5.2.1. Soil sampling and plant selection 

Thirty liters of soil were collected at a depth of 15 cm from a dune soil in 
Meijendel, The Netherlands. The soil had a sandy texture, an organic matter 
content of 9.1%, pH of 7.4 and the ammonium, nitrate and phosphorus content 
of 30.4 mg/kg, 2.2 mg/kg and 15.2 mg/kg respectively. The soil was sieved and 
homogenized and stored in 500 g aliquots in plastic bags. One bag of soil was 
kept separately to prepare the inoculum. The soil was sterilized by γ-irradiation 
(> 25 kGray, Isotron, Ede, the Netherlands). Sterility was tested by spreading 
0.5 g of the soil from the inoculum-bag onto TSA and PDA media. No bacterial 
and fungal growth was observed on agar plates after 6 days for 6 replicates. A 
subsample of the fresh soil was used to determine soil moisture (24 h, 105 ºC). 
For the dilution treatments, a 10 % suspension of untreated soil in sterilized 
water (10-1) was sequentially diluted to obtain further dilutions of 10-6 and 10-9 
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and these were added to the sterilized soil. The 10-1 suspension was considered 
to be the undiluted treatment. 

Jacobaea vulgaris was used as study plant species. Seeds were collected 
in Meijendel (52°9’N, 4°22’E), The Netherlands. One seed was propagated by 
tissue culture. This genotype showed a strong negative feedback in the 
inoculated soil compared to growth in sterile soil in a previous study (Joosten et 
al 2009). Since tissue culture plants are more or less “sterile”, it was reasonable 
to use this “clean” plant for the experiments. After 8 weeks of incubation of the 
inoculated soils, at the moment that the regrown microbial communities 
reached similar abundances (Chapter 2), tissue culture plants were potted in 0.5 
L pots containing the incubated soil. Samples were taken from the bulk soil at 
the moment of planting. Plants were grown randomly distributed in a climate 
room (relative humidity 70%, light 16h at 20 ºC, dark 8h at 20 ºC). Sterile 
demineralized water was given every two days with additions of 10 ml nutrient 
solution (Steiner 1968) once every two weeks, in order to avoid nutrient 
limitation to plant growth. After 6 weeks of plant growth, plants were harvested 
and gently shaken to remove the loosely adhering soil after which rhizosphere 
soil samples were collected by removing the remnant soil with a fine sterile 
brush. Soil samples were stored at -20 ºC for further analysis. Harvested plant 
parts (shoots and roots) were freeze-dried at -80 ºC for one week until constant 
weight. The design of the experiment included 3 dilutions, with 6 replicates 
each and duplicate samples per replicate for both the incubated soil and 
rhizosphere samples. Given that during plant growth the soil was only isolated 
by a layer of tin foil from the atmosphere, there is a possibility that this could 
constitute an unknown source of bacteria. However, we assumed that this 
would not have a major effect on our results as we know that the bulk soil had a 
full grown community of over 109 cells per gram of soil after the 8-week pre-
incubation period in closed bags following inoculation of the (un-) diluted 
suspensions as found in Chapter 2.  

 

5.2.2. Amplicon sequence analysis  

The raw data was processed using the QIIME v.1.6.0 pipeline (Caporaso et al 
2010). Low quality sequences below 150 bp in length or with an average 
quality score below 25 were removed. After denoising the sequences using 
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Denoiser 0.91 (Reeder and Knight 2010), and testing for chimeras using 
USEARCH (Edgar et al 2011), Operational Taxonomic Units (OTUs) were 
identified using the UCLUST 1.2.21 algorithm (Edgar 2010) with a phylotype 
defined at the 97% sequence similarity level. The resulting OTUs were aligned 
against the Ribosomal Database Project database (Cole et al 2009). 
 

5.2.3. Metagenomics library preparation for DNA shotgun sequencing  

Shotgun metagenomic analyses were conducted on the soil DNA extracts 
(according to the supplier's manual (MO BIO Laboratories, Carlsbad, CA, 
USA) following the Illumina Pair-End Prep kit protocol with sequencing 
performed using 2×300 bp sequencing run on the Illumina Miseq2000 
(Macrogen Inc. Company, South Korea).  

Paired end reads were trimmed using Sickle (Joshi and Fass 2011) with a 
minimum PHRED score of 30 and at least 150 bp in length. Subsequently a co-
assembly of all data was made with Spades 3.1.1 (Bankevich et al 2012) at 
different k-mer length of 31,91,101 and 121. Following the final assembly 
genes are predicted using Prodigal 2.61 (Hyatt et al 2010) and converted from 
GFF (General Feature Format) to GTF (General Transfer Format) using 
cufflinks 2.1.1 (Trapnell et al 2010). Per sample, reads were mapped to contigs 
using BamM 1.4.1 (Imelfort 2015), which uses BWA 0.7.12-r1039 (Li and 
Durbin 2009) and samtools 1.2 (Li et al 2009). Next the number of reads per 
sample mapping to genes was calculated using featureCounts (Liao et al 2014). 
To annotate the set of genes hmmsearch 3.0 (Finn et al 2015) was used to 
screen the FOAM (Prestat et al 2014) set of Hidden Markov Models (release 
1.0). Scripts provided by FOAM were used to select the best hit to the database. 
For each gene the best KO hits were added to the count matrix of featureCounts 
as a single column. Thereafter, the KO column was aggregated using the 
Python Pandas library (McKinney 2015). Hits to multiple KO terms were split. 
Finally, for each FOAM level a count matrix was made. The whole analysis has 
been implemented in a Snakemake workflow (Koster and Rahmann 2012). 
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5.2.4. Data analysis 

Alpha diversity calculations were performed based on the rarefied OTU table to 
compare the diversity among samples at a given level of sampling effort 
(Hughes and Hellmann 2005). The OTU table was rarefied to 1,535 reads by 
“single rarefaction” QIIME script since this number was the lowest number of 
reads for all samples. Four undiluted 10-1 samples were filtered out because of 
the very low number of reads. The average sequence reads from 3 sterilized 
controls were used as a baseline that was subtracted from the reads of all 
samples.	 

All statistical analyses were conducted using R and the vegan package 
(Dixon 2003). To assess whether manipulation of the bacterial community 
could explain changes in total plant biomass, ANOVA (False Discovery Rate-
corrected) was determined across dilution groups. Data was transformed to fit 
normal distributions when needed. Unsupervised Principal Component Analysis 
(PCA) was applied by PAST (Hammer et al 2001). PCAs were performed to 
visualize the different dilution effects on both taxonomical profiles and 
functional traits based on normalized functional data. Each broad functional 
category could be divided in in a subset of functions based on the FOAM 
dataset. The weight of each taxonomical unit and each functional trait was 
assigned on the PC score, respectively. In this way the important species 
functional traits for the PCA separation were distinguished from all other 
functions on the basis of PC score. The unsupervised analyses were followed up 
by correlation analyses of the selected potentially important taxonomical units 
and functional traits with plant biomass. We then used partial correlations to 
identify the most important taxonomical units and functional traits that were 
related to plant biomass. As a last step we used again partial correlations with 
plant biomass to identify whether the taxonomical composition or functional 
traits were the most important to explain differences in plant biomass. 

Network analysis was conducted based on the correlations between the 
selected functional traits and plant biomass of the undiluted 10-1 rhizosphere 
samples. Significant correlations were identified based on P-values < 0.05, this 
corresponds to correlation coefficients > 0.5 or < -0.5. The resulting correlation 
matrix was translated into an association network using Cytoscape 3.2.1 
(Shannon et al 2003).  
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A heatmap was created using the relative abundance of the selected 
functional traits and classified by R package. The distance used were Pearson 
correlation for clustering the genes. Partial correlations were calculated by R 
and the ‘ppcor’ package. 

 

5.3. Results 

5.3.1. Effect of bacterial community composition on plant biomass  

Clearly, as was already demonstrated in Chapter 4, dilution and rhizosphere 
selection led to changes in diversity and structure of the bacterial communities 
(Fig. 5.1A). The taxonomical profile of rhizosphere samples showed a 
significant separation amongst three dilutions (Fig. 5.1B; ANOSIM, R = 0.49, P 
< 0.01) with PC1 and PC2 explained 26.3 % and 11.9 % of the observed 
variation, respectively.  

 

Figure 5.1. PCoA of Bray-curtis similarity matrix among samples using taxonomic profiles based 
on the relative abundance of OTUs. (A) Variation between samples of soil and rhizosphere. (B) 
Variation between dilutions of rhizosphere samples. 
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The plants grew significantly less well in the undiluted 10-1 rhizosphere 
samples compared to the diluted samples (Fig. 5.2). Variation in plant biomass 
production among replicated samples differed for the different dilutions. In the 
undiluted 10-1 rhizosphere samples, the largest variation in plant biomass 
amongst replicates was observed.   

 

Figure 5.2. Effect of soil microbial communities on plant dry biomass (Mean dry weight, n=12 
per dilution).  

To determine the species that were potentially responsible for the 
differences in plant biomass production, we determined Spearman’s rank 
correlation between the PC1 score of the rhizosphere taxonomic profile and 
plant biomass of the undiluted 10-1 samples. Interestingly, the PC1 and PC2 
scores significantly correlated with plant biomass in soils inoculated with 
undiluted 10-1 samples (PC1: n = 8, R = -0.91, P < 0.001; PC2: R = 0.82, P < 
0.01). To pre-select OTUs, we zoomed in on PC1 and PC2 of the taxonomical 
profile and selected species with scores < -0.3 and > 0.3. This resulted in two 
species from PC1 and three species from PC2 (Fig. 5.3). One group of OTUs 
(Arthrobacter) overlapped so this resulted in four species in total (Fig. 5.4). 
Arthrobacter was negatively correlated with PC1 and positively with PC2, and 
as expected it showed a positive correlation with plant biomass (Fig. 5.4; n = 8, 
R = 0.87, P < 0.01).  Planctomycetales was positively correlated with PC2 and 
as expected it was also positively related to plant biomass (n = 8, R = 0.79, P < 
0.01). Verrucomicrobia and Chitinophagaceae that positively correlated to PC1 
and PC2, respectively, were not significantly correlated to plant biomass, 
although the trends were in the direction as expected on basis of their PC scores 
(Fig. 5.4B).  
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Figure 5.3. Loading plot of Principle Component Analysis (PC1) of the taxonomical profiles 
with red dots as important factors and gray dots as not important. Species names are indicated 
near each red dot. 

To identify the potentially most important taxonomical unit, i.e. 
Arthrobacter or Planctomycetaceae we calculated the partial correlations with 
plant biomass. After taking Arthrobacter into account Planctomycetaceae was 
no longer correlated with plant biomass while after taking Planctomycetaceae 
into account Arthrobacter still significantly positively correlated to plant 
biomass (n = 8, Rp = 0.80, P < 0.05; Table 5.1). Interestingly, we found in our 
previous paper (Chapter 4) that, indeed, Arthrobacter occurred at higher 
frequency in the rhizosphere compared to bulk soil.  

Table 5.1. Partial correlation matrix between the two main species, i.e. Arthrobacter and 
Planctomycetaceae, controlling plant biomass. 

Variables studied Arthrobacter Planctomycetaceae Plant biomass 10-1 

Arthrobacter 1.00 - 0.12 (0.79) 0.80* (0.03) 

Planctomycetaceae  1.00 0.52 (0.23) 

Plant biomass 10-1   1.00 

Values indicate partial correlation coefficients (P-value) between two species; *P < 0.05. 
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Figure 5.4. Interactions between species and their host plant. (A) Correlations between PC1 and 
PC2 of the taxonomical profiles in the rhizosphere and the plant biomass of the undiluted 10-1 
samples; (B) Correlations between plant biomass of the undiluted 10-1 samples and the species 
that were selected from the PC1 score; (C) Correlations between plant biomass of the undiluted 
10-1 samples and the species that were selected from the PC2 score. 

5.3.2. Differences in functional traits among the bacterial communities 

To further assess the functional traits responsible for the discrimination 
amongst the dilutions of the rhizosphere samples, an unsupervised multivariate 
data analyses, Principal Component Analysis (PCA), was performed on the 
bacterial functional profile (Fig. 5.5). A PCA of the functional profile based on 
FOAM Dataset ‘level 1’ of the rhizosphere samples showed a significant 
separation amongst three dilutions (ANOSIM, R = 0.41; P < 0.001) with PC1 
and PC2 explaining 60 % and 18.7 % of the observed variation, respectively. 
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Based on the PC1 score, the functional traits with scores < -0.3 and > 0.3 were 
selected. As a result, seven out of twenty-one functional traits (‘level 1’) were 
identified as significantly influenced by dilutions (Fig. 5.6).  

 

Figure 5.5. Principle component analysis of functional traits of the rhizosphere samples (FOAM 
‘level 1’). The functions responsible for the PCA separation were indicated in the biplot. 6: amino 
acid utilization biosynthesis metabolism; 7: nucleic acid metabolism; 9: carbohydrate active 
enzyme; 12: transporters; 19: saccharide and derivate synthesis; 20: hydrolysis of polymers; 21: 
cellular response to stress.   

 

Figure 5.6. Loading plot of Principle Component Analysis (PC1) of functional traits of the 
rhizosphere samples (FOAM ‘level 1’) with colored bars as the important factors and the gray 
bars as not important. 
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5.3.3. Functional traits related to plant biomass  

In order to predict the effect of the first two principal components of the 
functional profile on plant biomass, Spearman’s rank correlations between the 
first two principal components and plant biomass of each dilution was 
performed (Table 5.2). For the undiluted 10-1 samples, plant biomass was 
significantly, negatively, correlated with PC1 (n = 12, R = -0.69, P < 0.01) and 
positively correlated with PC2 (n = 12, R = 0.86, P < 0.001). The trends were 
the same for the diluted samples except for PC2 of the 10-9 dilution (Table 5.2). 
Based on the biplot (Fig. 5.5), the important functions that were responsible for 
the differences in the PCA separation, i.e. ‘level 1’: ‘amino acid utilization 
biosynthesis metabolism’, ‘nucleic acid metabolism’, ‘carbohydrate active 
enzyme’, ‘transporters’, ‘saccharide and derivate synthesis’, ‘hydrolysis of 
polymers’ and ‘cellular response to stress’, were not correlated to plant biomass 
when all three dilutions are taken together. Thus, in order to examine which 
functional traits contributed to plant biomass, we focused on the undiluted, 10-1, 
samples where we observed the largest differences in the plant biomass 
production. Overall, five out of seven functional traits (at ‘level 1’) were, on 
basis of relative gene abundances, significantly correlated with plant biomass 
(Fig. 5.7).  

Table 5.2.  Spearman’s correlation coefficients between PC1 loading of functional traits and 
plant dry biomass of each dilution. 

Dilution PC loading Spearman’s coefficient P value 

10-1 PC 1 - 0.69   0.013 ** 

10-6 PC 1 - 0.33     0.291 

10-9 PC 1 - 0.48     0.118 

10-1 PC 2 0.86     0.001*** 

10-6 PC 2 0.52     0.079 

10-9 PC 2 - 0.28     0.381 

 
To pre-select functional traits at deeper levels (e.g. ‘level 2’ or ‘level 3’), 

first we tested the five functional traits (‘level 1’), and only for the four ones for 
which we found a significant correlation with plant biomass we zoomed in at 
deeper levels of particular functional traits. Correlations between each potential 
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functional trait and plant biomass were determined to generate a correlation 
network. For three of the functional traits, we zoomed in at ‘level 2’, for two 
others we could zoom in at ‘level 3’ (Fig. 5.8). The results of the network 
analysis indicated twelve functional traits belonging to four broad functional 
categories that were significantly correlated with plant biomass (Fig. 5.9). For 
one category, i.e. ‘carbohydrate active enzymes’, no deeper level function was 
correlated with plant biomass. Functional traits related to ‘transporters’ and 
‘nucleic acid mechanism’ showed positive correlations with plant biomass. In 
contrast, functional traits that were related to ‘cellular response to stress’ and 
‘saccharide and derivate synthesis’ were negatively correlated with plant 
biomass.  

 

Figure 5.7. Correlations between the functional traits of the rhizosphere samples and the plant 
biomass of the undiluted 10-1 samples. The colour of each dot indicates the functional categories 
of ‘level 1’ in the FOAM dataset to which the traits belong.  
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To further determine the above selected twelve functional genes (e.g. 
‘level 2’ or ‘level 3’) that could determine the differences in plant biomass 
when all three dilutions were taken together, Spearman correlations were 
performed between these functional genes and plant biomass, respectively. 
‘Monosaccharide transporters’ genes significantly positive correlated to plant 
biomass (n = 36, R = 0.48, P < 0.01). 

 

Figure 5.8. Loading plot of principle component analysis (PC1) of functional traits of the 
rhizosphere samples (FOAM ‘level 1’) with colored bars as important factors.  

5.3.4. Abundance of predicted functional traits in the rhizosphere and in the 
soil 

We visualized the relative abundances of these twelve selected functional traits 
in the rhizosphere and in the bulk soil of the three dilutions in a heatmap (Fig. 
5.10). The functional traits, which were positively correlated with plant biomass 
of the undiluted 10-1 samples, i.e. genes related to ‘transporters’ and ‘nucleic 
acid metabolism’, clustered together and were over-represented in the 
rhizosphere compared to the soil samples (Fig. 5.9). This overrepresentation 



503396-L-bw-Yan503396-L-bw-Yan503396-L-bw-Yan503396-L-bw-Yan

Impact of rhizosphere selection on plant growth 
 

 
114 

was strongest for the ‘transporters’ genes. Therefore we analyzed this category 
in more detail. Permanova test yielded significant results for the interaction 
between dilutions and the presence of plants for the ‘transporters’ genes (F = 
7.97, P < 0.0001). Visual inspection of the heatmap clearly showed effects of 
both dilutions and the presence of plants (Fig. 5.10). The strongest differences 
that were consistent with the Permanova test were between the soil samples and 
rhizosphere samples of 10-6 dilution. Furthermore, Permanova tests showed that 
both dilutions and the presence of plants had a significant influence on the 
relative abundance of ‘transporters’ genes (‘level 1’), respectively (Table 5.3; F 
= 14.98, P < 0.001; F = 15.13, P < 0.001). The relative abundance of ‘ABC 
transporters’ genes in the rhizosphere, involved in the uptake of 
monosaccharides, oligosaccharide and other compounds, was significantly 
affected by dilutions (F = 14.98, P < 0.001; F = 10.59, P < 0.001; F = 11.72, P 
< 0.001, for the three ‘transporters’ genes, respectively), and was higher in the 
rhizosphere than in the soil (F = 15.13, P < 0.001; F = 12.87, P < 0.001; F = 
21.77, P < 0.001). Both dilutions and the presence of plants increased the 
relative abundance of ‘drug transporters’, respectively (F = 17.97, P < 0.001; F 
= 18.72, P < 0.001).  

 

Figure 5.9. Network correlations of twelve functional traits (FOAM ‘level 2’ and ‘level 3’) with 
the plant biomass of the undiluted 10-1 samples. Red lines indicate positive correlations, blue lines 
indicate negative correlations. The colour of each node indicates the functional categories of level 
1 to which the traits belong. P < 0.05, R > 0.05 or R < -0.05.  
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Figure 5.10. Heatmap of relative abundance of twelve functional traits in each dilution of the soil 
and the rhizosphere. Red lines cluster functional traits positively correlated with plant biomass of 
undiluted 10-1 samples, blue lines cluster functional traits negatively correlated with plant 
biomass of undiluted 10-1 samples. The colour at the bottom of the heatmap profile indicates the 
functional categories of level 1 to which the traits belong.  
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Table 5.3. Two-way Permanova using Bray-Curtis similarity showing the effects of dilution and 
plant presence on functional traits.  

 Functions      Factors Sum of 

sqrs 

df Mean 

Square 

F p 

Level 1 Level 2      Level 3 

Transporters   Plant presence 0.019 1 0.019 15.13 < 0.001 

   Dilution 0.038 2 0.019 14.98 < 0.001 

   Interaction 0.020 2 0.010 7.97 < 0.001 

         
Transporters ABC 

transporters 

Monosaccharide 

transporters 

Plant presence 0.019 1 0.019 15.13 < 0.001 

   Dilution 0.038 2 0.019 14.98 < 0.001 

   Interaction 0.020 2 0.010 7.97 < 0.001 

         
Transporters ABC 

transporters 

Oligosaccharide 

and polyol 

transporters 

Plant presence 0.002 1 0.002 12.87 < 0.001 

   Dilution 0.003 2 0.002 10.59 < 0.001 

   Interaction 0.002 2 0.001 5.27 < 0.001 

         
Transporters ABC 

transporters 

Peptide and nickel 

transporters 

Plant presence 0.002 1 0.002 21.77 < 0.001 

   Dilution 0.003 2 0.001 11.72 < 0.001 

   Interaction 0.002 2 0.001 8.84 < 0.001 

         
Transporters Major 

Facilitator 

Superfamily 

Drug transporters Plant presence 0.001 1 0.001 17.97 < 0.001 

   Dilution 0.002 2 0.001 18.72 < 0.001 

   Interaction 0.001 2 0.001 13.28 < 0.001 

Saccharides and derivate synthesis Plant presence 0.001 1 0.001 0.75 0.52 

Dilution 0.005 2 0.002 6.08 < 0.001 

Interaction 0.001 2 0.001 1.23 0.30 

         
Cellular response to stress Plant presence 0.001 1 0.001 1.022 0.317 

Dilution 0.021 2 0.010 44.84 < 0.001 

Interaction 0.002 2 0.001 4.62 0.012 
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Functional traits related to ‘saccharides and derivate synthesis’, which 
were negatively correlated with plant biomass of the undiluted 10-1 samples, 
were over-represented in the bulk soil compared to the rhizosphere samples 
(Fig. 5.10). This is also true for the genes of ‘cellular response to stress’. 
Permanova test for the effects of dilutions and the presence of plants on the 
relative abundance of ‘cellular response to stress’ related genes resulted in a 
significant interaction (F = 4.62, P = 0.01). Furthermore, Permanova test for the 
effect of dilutions and the presence of plants on the relative abundance of 
‘saccharides and derivate synthesis’ resulted in significant results for dilutions 
(Table 5.1; F = 6.08, P < 0.001), but not for the presence of plants. However, 
dilutions also had a significant influence on the relative abundance of ‘cellular 
response to stress’ related genes (F = 44.84, P < 0.001), but not for the presence 
of plant.  

The over representation in the rhizosphere was the strongest for the 
‘transporters’ genes, the group of genes that also had the highest correlation 
with plant biomass (n = 12, R = 0.90, p < 0.001). To further analyze which of 
the four groups of functional genes (‘level 1’) potentially was the most 
important one to explain variation in plant biomass we calculated partial 
correlations with plant biomass (Table 5.4). After taking the ‘transporters’ 
genes into account none of the other groups of functional genes was 
significantly correlated with plant biomass while after taking the other groups 
into account in each case ‘transporters’ genes were significantly correlated with 
plant biomass. 
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Table 5.4. Partial correlation matrix between ‘transporters’ and other functional traits controlling 
plant biomass production. 

Functional traits studied 
Nucleic acid 
metabolism 

Transporters 
Plant biomass 

10-1 

Nucleic acid metabolism 1.00 0.29 (0.530) 0.15 (0.750) 

Transporters 
 

1.00 0.84*(0.020) 

Plant biomass 10-1 
  

1.00 

 
Carbohydrate Active 

enzyme 
Transporters 

Plant biomass 
10-1 

Carbohydrate Active 
enzyme 

1.00 -0.46 (0.300) 0.17 (0.710) 

Transporters 
 

1.00 0.90**(0.006) 

Plant biomass 10-1 
  

1.00 

 
Saccharide and 

derivate synthesis 
Transporters 

Plant biomass 
10-1 

Saccharides and derivate 
synthesis 

1.00 -0.82* (0.020) 0.58 (0.170) 

Transporters 
 

1.00 0.91**(0.004) 

Plant biomass 10-1 
  

1.00 

 
Cellular response to 

stress 
Transporters 

Plant biomass 
10-1 

Cellular response to stress 1.00 -0.62 (0.140) 0.36 (0.43) 

Transporters 
 

1.00 0.91**(0.005) 

Plant biomass 10-1 
  

1.00 

Values in the table indicate partial correlation coefficients (P-value) between two functional 
traits; *P < 0.05, **P < 0.01. 

5.3.5. A combined analysis of the effects of taxonomical composition and 
functional traits on plant biomass.  

We first analyzed the relative frequency of the twelve selected functional genes 
for Arthrobacter and the remainder of the bacterial community (Fig. 5.11). A 
heatmap revealed that functional traits belonging to ‘transporters’, ‘nucleic acid 
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metabolism’, and most genes of ‘saccharides and derivate synthesis’ clustered 
together. Specifically, genes of ‘purine metabolism’, ‘pyrimidine metabolism’, 
‘drug transporters’, ‘monosaccharide transporters’ and ‘peptidoglycan 
biosynthesis’ were significantly enriched in the community with Arthrobacter, 
while ‘cellular response to osmotic stress’, ‘regulation of response to osmotic 
stress’ and ‘lipopolysaccharide biosynthesis’ were clustered together and were 
significantly enriched in bacterial community without Arthrobacter. 

              

Figure 5.11. Heatmap of relative abundance of the twelve functional traits of the undiluted 10-1 

rhizosphere samples for communities with and without Arthrobacter. The colour at the bottom of 
heatmap profile indicates the functional traits at ‘level 1’ (ANOVA: ** P < 0.01, *** P < 0.001). 
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Because the frequency of ‘transporters’ genes is higher in the community 
with Arthrobacter, the correlation of ‘transporters’ genes with plant biomass 
may be indirect through Arthrobacter or vice versa. We therefore calculated 
partial correlations. After taking the frequency of ‘transporters’ genes into 
account, the correlation of Arthrobacter with plant biomass is no longer 
significant. While after taking the effect of Arthrobacter into account, the 
correlation of ‘transporters’ genes with plant biomass is still significant (Table 
5.5; n = 12, Rp = 0.79, P = 0.036). This suggests the ‘transporters’ genes are 
more important to explain differences in plant biomass than Arthrobacter.  

Table 5.5. Partial correlation matrix between Arthrobacter and transporters controlling plant 
biomass production.  

Variables studied Transporters Arthrobacter Plant biomass 10-1 

Transporters 1.00 0.05 (0.916) 0.79* (0.036) 

Arthrobacter  1.00 0.50  (0.258) 

Plant biomass 10-1   1.00 

Values in the table indicate partial correlation coefficients (P-value) within Arthrobacter and 
transporters; *P < 0.05. 

 

5.4. Discussion 

In Chapter 2, we demonstrated that the dilution procedure changes the diversity 
and structure of the bacterial community after regrown in the soil and in 
Chapter 4 that further selection proceeds in the rhizosphere, largely on the basis 
of functional traits. This may imply that functional traits that are selected in the 
rhizosphere may also have a strong influence on plant growth. As we already 
showed in Chapter 4 that the selection of functional traits is not randomly 
associated with taxonomic selection, the functional selection as observed in the 
rhizosphere is, of course, intimately associated with selection of bacterial 
species. Therefore, here, we also assessed the taxonomic relationship between 
plant biomass and the bacterial community composition.  
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Indeed, we demonstrated that manipulation of the bacterial community 
by the dilution approach, affected plant biomass production. Plants gained the 
lowest biomass in soils inoculated with the lower dilutions, i.e. the more diverse 
rhizosphere communities. Recent studies on ‘plant-soil feedback’ have shown 
that rhizomicrobiome could directly or indirectly influence the composition and 
productivity (i.e. biomass) of plant communities (van der Heijen 2008, Joosten 
et al 2009, van Elsas et al 2012). Moreover, reduction of abundant and/or rare 
species by manipulation of microbial community could promote plant growth 
(Hol et al 2010). Hence, microbial community composition belowground has 
been identified as predictor of fitness of the aboveground vegetation (van der 
Heijden et al 2008, Lau and Lennon 2011, Wagg et al 2011). In our study, we 
detected two OTUs (Fig. 5.4), which were actually significantly related to plant 
biomass and, thus, being potential candidates to explain the observed 
differences by unsupervised multivariate analysis. The first taxonomical unit 
was Arthrobacter that is known to promote plant growth (Dimkpa et al 2009). 
Arthrobacter is typically found in soil and several species of Arthrobacter have 
been described as plant growth promoter (Gusain et al 2015, Ullah and Bano 
2015). Analysis of the wheat rhizosphere using 16S rRNA gene sequencing 
revealed that Arthrobacter belonged to the group of rhizobacteria (Tahir et al 
2015). The other group of bacteria that also showed a positive correlation with 
plant biomass was Planctomycetaceae. This genus is known to include typical 
rhizosphere species (Tesfaye et al 2003), but from literature it is not known if it 
includes growth-promoting species. Partial correlation analysis identified 
Arthrobacter as the most important one to explain differences in plant biomass 
(Table 5.1). Identifying genera that promote or inhibit plant growth gives us 
little information on the mechanisms causing these effects. It is therefore also of 
great interest to study, in addition to the taxonomic composition, the 
relationship between plant growth and the functional genes of the bacteria from 
the rhizosphere community. 

This study showed the power of the metagenomics approach in 
combination with an unsupervised Principal Component Analysis to predict 
plant biomass production in relation to the functional traits of the 
rhizomicrobiome. Interestingly, as was shown in the heatmap and Permanova 
test, the functional traits that were positively correlated with plant biomass were 
over-represented in the rhizosphere compared to the bulk soil, which suggests 
that plants selected beneficial bacterial activities surrounding their roots. This 
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particular bacterial functionality may lead to plant growth promotion. In 
contrast, the functional traits that were negatively correlated with plant biomass 
were more abundant in the soil than in the rhizosphere, suggesting plants 
selected against such functions leading to over-representation in the bulk soil 
compared to the rhizosphere.  

 More precisely, a group of ‘ABC-type transporters’ of peptides, 
oligosaccharides and drugs and the uptake and release of many different 
compounds were over-represented in the rhizosphere compared to the bulk soil. 
This observation is consistent with the fact that numerous genes for ‘membrane 
transporters’ systems have been reported as enriched in the rhizosphere 
(Mendes et al 2014). Another group of functional genes that was over-
represented in the rhizosphere compared to the bulk soil is linked to ‘nucleic 
acid metabolism’. Given that the category ‘nucleic acid metabolism’ involves 
several interconnected pathways, and may be indicative of cellular growth 
processes, this suggests higher bacterial growth and activity in the rhizosphere 
than in soil. This may presumably result in increased plant biomass production 
for instance by protection against pathogens or by increasing nutrient 
acquisition for the host. 

In this study we observed not only positive but also negative correlations 
between functional traits of the rhizomicrobiome and plant biomass. As 
mentioned above, in contrast to the functional genes that were positively related 
to plant biomass, the ones that were negatively correlated with plant biomass 
were over-represented in the soil compared to the rhizosphere. This would 
suggest that plants selected against such genes in the rhizosphere. If, for 
example, plants create a less stressful environment for bacteria by 
rhizodeposition this would cause a less stressful environment in the rhizosphere 
compared to the soil and consequently to an under representation of these genes 
in the rhizosphere as compared to the soil. At the same time, if plants are 
growing well, they would produce more roots and more developed rhizosphere 
and thus to a less stressful environment for the bacteria, leading to a negative 
correlation between plant biomass and the density of stress genes. We should be 
careful however with such an interpretation because one of the negative 
correlations was between plant biomass and a group of osmotic stress genes, i.e. 
‘cellular response to osmotic stress’ and ‘regulation of response to osmotic 
stress’. As larger plants take up more water this could create a more stress full 
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environment to the microbes and so one could expect a positive relationship 
between plant biomass and osmotic stress genes Because plants were watered 
every two days during plant growth we may have created an environment that 
did not have moisture stress, nor for plants and nor for microbes  

We also found a negative relationship between genes related to 
‘saccharides and derivate synthesis’. It could be that this negative correlation is 
due to the fact that the plants that grow better provide more carbohydrates and 
saccharides to the microbes so that biosynthesis of these products is repressed 
in their rhizosphere. If the above reasoning is correct we would also expect that 
the rhizosphere provide an environment where these genes are repressed 
compared to the bulk soil. However, for this group of genes we did not find an 
under- or over representation in the rhizosphere compared to the bulk soil.  

Partial correlation analyses identified ‘transporters’ genes as the most 
important ones to potentially explain the observed differences in plant biomass. 
Likewise we identified Arthrobacter as the most important taxonomical unit in 
this respect. Well-known activities of Arthrobacter are degradation of 
pollutants in the rhizosphere (Khan et al 2009), production of auxin that might 
stimulate nutrient uptake (Tsavkelova et al 2006) and production of indole-3-
acetic acid (IAA) (Sziderics et al 2007). Because the frequency of ‘transporters’ 
genes was relatively high in Arthrobacter compared to the rest of the bacterial 
community we used partial correlation to test for the relative importance of the 
two for plant growth. This analysis suggests that the frequency of ‘transporters’ 
genes is the most important factor and that plants select for favorable functions 
rather than species to benefit their growth. Thus, the high abundance of 
‘transporters’ genes in Arthrobacter may lead to the high abundance of 
Arthrobacter in the rhizosphere. Yet, we should treat these results with caution 
because our analyses may be biased by the fact that the two methods may have 
different sensitivity. Furthermore, the genes of ‘monosaccharide transporters’ 
(‘level 3’) significantly correlated positively to plant biomass when all three 
dilutions were taken together, and this group of genes increased significantly 
upon dilutions in the rhizosphere samples, indicating that this group of genes 
most likely explained the plant biomass differences in dilutions. Because the 
‘transporters’ genes were enriched in the rhizosphere compared to the soil we 
can conclude that plants positively affect bacterial species with such genes and 
this may in part explain the positive correlation with plant growth. At the same 
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time bacterial species with these ‘transporters’ genes may stimulate plant 
growth, which would contribute to the positive correlation. Whether either one 
of the two or both explanations are true cannot be concluded from our 
experiments with certainty. Additional experiments are needed that use the 
microbial communities from soil of pots with different plant growth to 
inoculate sterile soil again and measure plant growth for a second and following 
generations in order to achieve maximum enrichment of the most responsible 
genes. Clearly, it is not very likely that there is a single function that determines 
the variation in plant biomass. The problem in the analyses of this type of 
studies is the fact that there are many potential factors and a limited number of 
replicates. We therefore used an unsupervised method to make an unbiased pre-
selection of potential taxonomical units and groups of functional genes. This 
improves the statistical power but comes at the cost of many important factors 
going unnoticed.  

 

Nevertheless, our study provides a comprehensive framework for understanding 
the mechanism of plant-microbe interactions. The latter is not merely of 
scientific interest but is also useful for the development of sustainable crop 
production systems, e.g. by application of beneficial soil microbial communities 
or species to optimize crop yields.  
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