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Abstract

A scmiclassical theoiy is dcvclopcd foi time-dependent cuncnt fluctuations in mesoscopic
conductois The theory is bascd on the Boltzmann Langcvin equation foi a degeneiatc clcction
gas The low-fiequency shot-noisc powci is iclated to classical tiansmission probabihties at thc
Feimi Icvcl Foi a disoidcted conductoi with impunty scatteimg, it is shown how the shot
noisc ciosscs ovei fiom zeio in thc ballistic icgime to one-thud of thc Poisson noise m the
diffusivc icgime In a conductoi consisting of n tunnel bameis m scnes, thc shot noise appioachcs
one-thud of thc Poisson noise äs n gocs to mfmity, mdependent of thc tianspaiency of the
bamets Thc analysis confiims that phase cohcicncc is not lequned foi thc occuncncc of the
one-thnd suppiession of thc shot noise The clTects ot clcction heating and inclastic scatteimg aie
calculated, by inseitmg chaigc-conseiving election icscivous between Segments of thc conductoi
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1. Introduction

The discictcncss of thc elccüon chaige causcs time-dependent fluctuations m the

clcctucal cunenl, known äs shol noisc These fluctuaüons aie chaiacteuzed by a white

noise spectium and pcisist down to zeio tempeiatuie The shot-noise powei P con-

tains infoimation on Ihe conduction piocess, which is not given by the lesistance Λ

wcll-known example is a vacuum diode, wheie P = 2e\I\ = fpoiison, with / the av-

ciagc cuncnt This teils us that thc clections tiaveise thc conductoi m a complctely
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uncorrelated fashion, äs m a Poisson process In macroscopic samples, the shot noise
is aveiaged out to zero by melastic scattenng

In the past few years, the shot noise has been investigated m mesoscopic conduc-
tois, smallei than the melastic scattermg length Theoietical analysis shows that the
shot noise can be suppressed below .Ppoiison, due to conelations in the election tians-
mission imposed by the Pauh pimciple [1-5] Most mtnguingly, it has been found that
P = j-FVoisson m a metalhc, diffusive conductoi [6-10] The factoi one-thud is umveisal
m the sense that it is mdependent of the mateiial, sample size, 01 degiee of disoi-
dei, äs long äs the length L of the conductoi is gieatei than the mean free path f
and shoiter than the locahzation length An observation of suppressed shot noise m a
diffusive conductoi has been repoited [11] In a quantum mechamcal descnption [6],
the suppiession follows fiom the bimodal distubution of tiansmission eigenvalues [12]
Surprismgly, Nagaev [7] finds the same onc-thnd suppiession fiom a scmiclassical ap-
proach, m which the Pauh pimciple is accounted foi, but the motion of elections is
tieated classically This implies that phase coheience is not essential for the suppies-
sion A similai conclusion is obtamed in Ref [13] Howevei, the relationship between
the quantum mechamcal and semiclassical theones lemams uncleai [14]

In this paper, we lemvestigate the semiclassical appioach and piesent a detailed
companson with quantum mechamcal calculations in the liteiatuie In paiticulai, we
study how the shot noise ciosses ovei fiom the balhstic to the diffusive legime This
complements Ihe study of the ciossovei of the conductance m Ref [15] We use the
Boltzmann—Langevm equation [16, 17], which is a semiclassical kinetic equaüon foi
nonequihbnum fluctuations This equation has pieviously been applied to shot noise
by Kuhk and Omel'yanchuk [18] foi a balhstic point contact, and by Nagaev [7] foi a
diffusive conductoi Heie, we will demonstratc how the Boltzmann-Langevm equation
can be applied to an arbitiaiy mesoscopic conductoi Om analysis conects pievious
woik by Beenakkei and Van Houten [19] A bnef account of oui inain icsults has
been repoited in Ref [20]

The outline of this paper is äs follows In Section 2 we discuss the Boltzmann-
Langevm equation It is dcmonstiated how the shot-noisc powci can be expicssed in
leims of semiclassical tiansmission piobabihties Impunty scatteung is tieated in Sec-
tion 3 The shot noise power mcicases fiom zeio in the balhstic legime to j/Voisson
in the diffusive legime We considei both isotiopic and nomsotiopic impunty scat-
teimg, and both a two- and three-dimcnsional density of states Wc also piesent a
one-dimensional model, which can be solved analytically Exact agiecment is found
with a previous quantum mechamcal evaluation [8], in the hmit of a conductance
3> e2/h Section 4 deals with bainci scattenng Wc considei tunnelmg thiough n pla-
nai baineis in senes (tunnel piobabihty Γ) Foi n — 2 and Γ <C l, we iccovei the
lesuhs foi a double-bainei junction of Rcfs [21,22] In the hmit n —> oo the shot-

noise powei appioaches jPpoisson mdependent of Γ By takmg Ihe contmuum hmit,
n —» oo, Γ —> l, at fixcd n(\ — Γ), we lecovei the onc-dimensional modcl of Section 3
The case of a disordeied legion m seiics with a tunnel bainei concludes Section 4

In Section 5 wc calculatc the effccts of melastic scattenng and of election heating
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due to electron electron scatteimg Analogous to the work of Beenakker and Buttikei
[6], this scattermg is modeled by putting charge-conseivmg electron leservoirs between
phase-coherent Segments of the conductor This allows us to model the effects of quasi-
elastic scatteimg, election heating, and melastic scatteimg withm a single theoretical
framework We conclude in Section 6

Before pioceeding with a descuption of the semiclassical appioach, we bnefly sum-
manze the fully quantum mechanical theory The zero-tempeiature, zero-fiequency shot-
noise powei P of a phase-coheient conductor is related to the transmission matnx t by
the foimula [4]

Ρ = Ρ0Ύτ _
n-1

wheie PQ = 2e\V\Go, with V the apphed voltage and GQ = e2/h the conductance quan-
tum (we assume spmless electrons foi simphcity of notation), T„ € [0,1] an eigenvalue
of t t t , and 7V the numbei of transverse modes at the Feimi energy Ef The conductance
is given by the Landauer formula

G = G0 Ti tt = G 0 r „ (12)
n-1

If the conductor is such that all T„ <C l (e g , a high tunnel bamer), one finds P =
2e\V\G = -Ppoisson, correspondmg to a Poisson disüibution of the emitted electrons It
has been demonstiated by Levitov and Lesovik [23] (see also Ref [24]) that the general
foimula (11) corresponds to a bmomial (01 Beinoulli) distubution of the emitted
electrons foi each transmission eigenstate If some T„ are neai l (open channels), then
the shot noise is reduced below Ppoiss0n This implies that m a quantum point contact
the shot noise is abseilt on the plateaus of conductance quantization and appeais only at
the steps between the plateaus [2] This effect has mdeed been obseived in expenments
[25-27] In a metalhc, diffusive conductor, the Tn aie either exponentially small 01 of
oider unity [12] This bimodal distnbution is lequired by Ohm's law for the aveiage
conductance [28] and has been denved microscopically by Nazaiov [9] and by Altshuler
et al [10] As a consequence of the bimodal disüibution, the shot-noise power is
reduced to one-third of the Poisson noise [6]

It has been emphasized by Landauer [29], that Coulomb mteiactions may induce a
furthei reduction of P Here, we follow the quantum mechanical treatments m assuming
nonmteractmg electrons, withm the framewoik of the Boltzmann-Langevm approach
We do mclude the effects of electrostatic potential fluctuations m Section 5

2. Boltzmann-Langevin equation

We begm by formulatmg the semiclassical kinetic theory [16,17] We consider a
conductor with a ß?-dimensional density of states connected by ideal leads to two
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Fig l The conductoi consists of a scattenng region (dotted) connected by pcifect leads to two clection
leservon s Cross sections SL and SR m the left and nght lead are indicated

electron reservoirs (see Fig 1) The leservoirs have a temperatuie TQ and a voltage
difference V The electrons m the left and the nght reservoir are in equihbnum, with
distnbution function, /ιΧε) = /ο(ε - eV} and /ιι(ε) = /ο(ε), respectively Heie /o is
the Fermi-Dirac distnbution,

/ο(ε) = l + exp
Γη

(21)

The fluctuatmq distnbution function /"(r, k, t) in the conductor equals (2π)ί/ times the
density of electrons with position r, and wave vectoi k, at time t [The factoi (2π)ί/

is introduced so that / is the occupation numbei of a unit cell in phase space ] The
average over time-dependent fluctuations (/) =f obeys the Boltzmann equation,

(22a)

(22b)
_d = d_

dt = 'dt

The derivative (2 2b) (with

Hob

= Äk/m) descnbes the classical motion m the foice field
·, with electiostatic potcntial </>(r) and magnetic field B(r)

The term Sf accounts for the stochastic effects of scattenng Only elastic scattenng
is taken into account and electron-electron scattenng is disiegarded In the case of
impunty scattenng, the scattenng term m the Boltzmann equation (2 2) is given by

Sf(r,k, i) - /dk' 0W(r) {/(r,k, t) [l - /(r,k',i)] - /(r,k', f ) [l - /(r,k, t)]}

(23)

Here, Ww(r) is the tiansition rate for scattenng fiom k to k', which may in pnnciple
also depend on r [We assume Inversion symmetry, so that Wk]i>(r) = J^VkOO ]

We consider the stationary Situation, wheie/ is mdependent of l The time-dependent
fluctuations öf = f - f satisfy the Boltzmann-Langevm equation [16,17],
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wheie j is a fluctuatmg souice teim lepiesentmg the fluctuations mduced by the stochas-

tic natuie of the scatteimg The flux j has zeio average, (7) =0, and covanance

<y(r, k, 07(1', k', f')> = (2n)d δ(τ - r') ö(t - t')J(r, k, k') (25)

The delta functions ensme that fluxes aie only correlated if they aie mduced by the
same scatteimg process The flux coiielator J depends on the type of scattermg and
on/ , but not on öf The conelator J for the impuiity-scattenng term (23) has been
denved by Kogan and S hui'man [17],

J(r,k k') = -Wn (r) [/(l - f ) + / (l - /)]

+ <5(k - k') ydk" Wn (r) [/(l - /") + /"(l - 7)] , (2 6)

wheic / Ξ 7(r,k), / ΞΞ /(r,k'), and f" = 7(r,k") One venfies that

/

/·
ikJ(r,k,k') = /dk'j(r,k,k') = 0, (27)

äs it should, smce the fluctuatmg somce teim conserves the numbei of particles
[/dky(r,k,0 = 0] Fo1 the denvaüon of Eq (26) we lefer to Ref [17] In Section 4
we give a similar denvation foi J in the case of bamei scatteimg

Smce 7 and /' aie unconclated foi t > t', it follows from Eq (2 4) that the conelation
funcüon ( ö f ö f ) satisfies a Boltzmann equation m the vanables r, k, t,

ι , ' ~~ l \~ J \~ l — ? - / - ' / v- 5-- ;- / / " V ^ /

Eq (28) foims the staitmg pomt of the method of moments of Gantsevich et al

[30] This method is veiy convement to study equilibiium fluctuations, because the
equal-time conelation is known,

{f5/(r,k,/)(5/-(r',k',0)cqmi,bnum = (2n)d /(r,k)[l - /(r, k)] <>(k - k')ö(r - r ') ,

(29)

and Eq (2 8) can be used to compute the non-equal-time conelation (Foi a study of
theimal noise withm this appioach, sce, for example, Ref [31] ) Out of equilibnum,
Eq (2 9) does not hold, except m the leseivons, and one has to letuin to the füll
Boltzmann-Langevm equation (24) to determme the shot noise In paiticulai, it is only
m equilibnum that the equal-time conelation (öf ö f ' } vamshes for r 7^ i', k ^ k' Out
of equilibnum, scatteimg conelates fluctuations öf at diffeient momenta and difTerent
pomts in space

To obtam the shot-noise powei we compute the cuiient I ( t ) = I + öl(t) thiough a
cioss-section SR m the nght lead The aveiage cuiient / and the fluctuations öl (t) aie
given by

a l l

(210)
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<5/(0 = -~-d Jdj ykk vx <5/(r, k, i) (211)
SR

We denote r = (jc, y), with the x-coordmate along and y perpendiculai to the wne (see
Fig 1) The zero-frequency noise powei is defined äs

oo

P = 2 idt(OI(t)ÖI(0)) (212)
— OO

The formal solution of Eq (24) is

t

<3/(r,k,0 = idi' /dr' /dk'a(r,k,r',k',i-i ')7(r',k',i '), (213)

where the Green's function Q is a solution of

^-+S\ g(r, k, r', k', i) = <5(r - r') <5(k - k') <5(0 , (2 14)

such that g = 0 if t < 0 The Transmission probability T(r, k) is the probabihty that an
electron at (r, k) leaves the wire through the nght lead It is related to Q by

oo

r(r,k)= l dt fdy' /dkX£(r',k',r,k,0 (2 15)
J J J
0 SR

Substitution of Eqs (211) and (2 13) mto Eq (2 12) yield for the noise powei the
expression

p-^pr.
t

χ ίdt" fdr" /dk"ö(r,k,r",k",f-f")

— oo

0

x i dt'" fdr"' idk'"g(r',-k',r"',1s.'",-t'")

which can be simphfied usmg Eqs (25) and (215)

_ 2e2 r r r , ,

Eq (2 17) apphes generally to any conductor It contams the noise due to the current
fluctuations induced by the scattermg processes inside the conductor At nonzero tem-
peratures, there is an additional source of noise from fluctuations which oiigmate from
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the reservoirs In Appendix A it is shown how this thermal noise can be mcorporated

In what follows, we restnct to zero temperature

A final remark concerns the x-coordinate of the cross-section at which the cunent is

evaluated [at χ = x& m Eq (211)] From current conservation it follows that the zero-

frequency noise power should not depend on the specific value of χ This is exphcitly

pioven m Appendix B, äs a check on the consistency of the formahsm

3. Impurity scattering

In this section we speciahze to elastic impunty scatteimg m a conductor made of
a matenal with a sphencal Feimi suiface and m which the force field T = 0 (so we
do not consider the case that a magnetic field is piesent) The conductor has a length
L and a constant width W (d = 2) 01 a constant cross-sectional aiea A (d = 3) (In
geneial expiessions, both W and A will be denoted by A ) We calculate the shot noise
at zero temperatuie and small applied voltage, eV <C EP, so that we need to consider
electrons at the Fermi energy only The case of nonzero tempeiature is bnefly discussed
m Appendix A

It is useful to change variables from wave vectoi k to energy ε = H2k2/2m, and unit

vector n = k//c The mtegrations are modified accordmgly,

, (31)

where ~D(e) = s(/m(k/2n')d~2h~2 is the density of states, and sj is the surface of a

i/-dimensional unit sphere (s\ =2, $2= 2n, s 3 = 4π) We consider the case of specu-

lar boundary scatteimg and assume that the elastic impunty-scatteimg rate fFkk'(r) =

Ψηαιδ(ε — ε')/Τ>(ε) is mdependent of r This allows us to drop the transverse coordmate

y and wnte T(r, k) = T(x, n) for the transmission piobability at the Feimi level From

Eqs (2 14) and (2 15) we denve a Boltzmann equation for the transmission piobability

[15],

- ST(x, n) = — Wnn, [T(x, n) - T(x, n )] (3 2a)>
CX

The boundary conditions m the left and the nght leads aie

Γ(0, n) = 0 if nx < 0 , (3 2b)

T (L, n) = l if nx > 0 , (3 2c)

wheie XL = 0 and JCR = L aie the jc-coordmates of the left and nght cioss-section ^L

and SR, respectively

The average distribution function can be expressed äs

/(r, k) = [l - T(t, -k)]/L(e) + f(r, -k)/R(e) , (3 3)
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where (because of time-reversal symmetry m the absence of a raagneüc field) T(r, — k)
equals the piobabihty that an electron at (r, k) has amved there fiom the nght leseivon
Combmmg Eqs (2 10) and (3 3), we obtam the semiclassical Landauei formula foi
the Imear-iesponse conductance G = limy^oI/V [32],

=*
= G0N — n,T(x,n), (34)

with Sf the cioss-section at χ The numbei of üansverse modes N = vi/-](kp/2n)d 1A,
where v 4 is the volume of a rf-dimensional unit sphere (VQ=\, v\=2, ν·2 = π) One has

7V = kr W/π for d = 2 and N = k^A/4n for d = 3 One can venfy that the conductance

m Eq (3 4) is mdependent of the value of x, äs it should By mtegratmg Eq (3 2a)
ovei ή one finds that

^ fdnnxT(x,n) = Q (35)

We evaluate the noise power by Substitution of Eqs (2 6) and (3 3) mto Eq (2 17)

Some mtermediate Steps are given m Appendix A The lesultmg zeio-tempeiature shot-

noise powei is

L

fa /dfl [an W„„ [ T ( x , n ) - T ( x , n ) ] 2

J J
o

xT(x,-n)[l-T(x,-n')] (36)

This completes oui general semiclassical theory What lemains is to compute the

transmission probabilities fiom Eqs (3 2) foi a paiticular choice of the scattenng late

W Companng Eqs (l 2) and (34), we note that ^„T„ conesponds semiclassically

to 7V l dnnxT(x,n) Companson of Eqs (l 1) and (3 6) shows that the semiclassical

correspondence to ^n T„(l — T„) is much more complicated, äs it mvolves the tians-
mission probabihties T(x,n) at all scatteiers mside the conductor (and not just the
transmission probability T(0, n) thiough the whole conductor)

In a ballistic conductor, where impunty scattenng is absent, the transmission pioba-
bihties are given by T(x,f\) = l, if nx > 0, and T(x,n~) = 0, if ηλ < 0 Fiom Eq (3 4),

we then obtam the Sharvin conductance Gs = G0N [33] Eq (3 6) imphes that the

shot-noise power is zeio, m agreement with a previous semiclassical calculation by

Kuhk and Omel'yanchuk [18]

We now lestnct ourselves to the case Wan =υγ/£ of isotiopic impunty scattenng Let

us first show that m the diffusive hmit (£ <C L) the result of Nagaev [7] is recovered
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Foi a diffusive wue the solution of Eq (3 4) can be appioximated by

Γ(τ,β) = ̂  (37)

Deviations fiom this appioximation only occm within a thin layer, of ordei f , at

the ends \ = 0 and λ = L Substitution of Eq (3 7) mto Eq (3 4) yields the Drude
conductance

GD = G0Nj, (38)
i-/

with the noimalized mean fiee path £ Ξ (υίι/υ(ι_\ )/, i e for d = 2 we have / = ^π/
and foi d = 3 we have / = |/ Foi the shot-noise powei we obtam fiom Eq (3 6),

neglecting terms of ordei (//L)2,

(39)

in agieement with Nagaev [7] This lesult is a dnect consequence of the Imeai de-

pendence of the transmission piobability (3 7) on x, which is genenc for diffusive
tiansport In Appendix C it is demonstrated that foi a diffusive conductoi with arbi-

tiary (nomsotiopic) impunty scattermg Wan , the lesult P = jfp0isson lemams vahd
We can go beyond Ref [7] and apply our method to quasi-ballistic conductors,

foi which ( and L become comparable In Ref [15], we showed how m this case
the piobability Τ(τ, ή) can be calculated numencally by solvmg Eq (32) With this
numencal solution äs mput, we compute the conductance and the shot-noise power
fiom Eqs (3 4) and (3 6) The lesult is shown m Fig 2 The conductance ciosses
ovei fiom the Sharvm conductance to the Diude conductance with mcreasmg length
[15] This ciossover is accompamed by a nse m the shot noise, from zero to jPp0isson
We note small differences between the two- and the thiee-dimensional case m the
ciossovei legime The crossovei is only weakly dependent on the dimensionality of
the Feimi suiface

The dimensions d ·=· 2 and 3 lequne a numencal solution of Eqs (3 2) Foi d = l
an analytical solution is possible We emphasize that this is not a model foi true one-
dimensional tianspoit, wheie quantum mteifeience leads to localization if L > f [34]
The case d = l should lather be consideied äs a toy model, which displays simüai
behavioi äs the two and three-dimensional cases, but which allows us to evaluate both
the conductance and the shot-noise powei analytically foi arbitiaiy latio (/L In the
case d = l an election can move either forward 01 backwaid, so nv Ξ n is eithei l 01

— l The solution of Eq (3 2) is

™ = ' - >
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0 l -

0 0

10 10 l O2

L / t

Fig 2 (a) The conductance (normahzed by the Sharvm conductance Gs=/VGo) and (b) the shot-noise power
(m units of PPolsson = 1e\J\), äs a function of the ratio i/7 computed fiom Eqs (3 4) and (3 6) foi isottopic
impuiity scattenng The curves conespond to a three-dimensional (Ihm solid cuive), two dimensional (dashed
curve), and a one-dimensional conductor (thick solid curve) The one-dimensional case is the analytical lesult
from Eqs (311) and (3 12) The two- and three dimensional cases aie numencal results

Substitution mto Eq (3 4) yields

l
= G0N

l +Ljf
(311)

where £ Ξ 1£ Note that the resistance l/G is precisely the sum of the Drude and the

Sharvm resistance The shot-noise power follows from Eq (3 6),

P = P0N (L + 2<f)4
(312)

In Fig 2 we have plotted G and P accordmg to Eqs (311) and (3 12) The difference

between the results for d = 2 and d = 3 is very small

Liu et al [35] have camed out Monte Cailo simulations of the shot noise m a meso-

scopic conductor, m good agreement with Eq (312) In Ref [8], we have peiformed

a quantum mechamcal study of the shot noise m a wire geometry, on the basis of
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Fig 3 The shot noise powci P foi n tunnel baiuers m senes with tiansmission probability Γ = 0 l (dots)
and Γ = 09 (ciicles), computed from Eq (4 10) The dashed hne is the large-n limit P = |-Pp0,sson The
mset shows schematically the geometry consideied

the Dorokhov-Mello-Peieyra-Kumai equation [36] The semiclassical results for d= l

obtained in the present paper, both for the conductance and foi the shot-noise powei,

comcide piecisely with these quantum mechanical results, m the limrt N?/L 2> l Cor-

lections (of ordei PQ) to the shot-noise powei, due to weak locahzation [8], aie beyond

the semiclassical appioach

4. Barrier scattering

We now speciahze to the case that the scattering is due to n planai tunnel baniers in

senes, perpendicular to the x-diiection (see mset of Fig 3) Bamei z has tunnel piob-

ability Γ, e [0,1], which for simplicity is assumed to be k and y-mdependent In what

follows, we agam drop the y-coordmate Upon transmission k is conseived, wheieas

upon reflection k —> k = (-/cv,k;) At barnei z (at χ = x,) the aveiage densities

/ on the left side (x,~) and on the nght side (x,+ ) aie lelated by

_,k) + (l - r,)/(.r;+,k) if kx > 0 , (4 la)

f,k) + (l-r,)/(jc,„,k) i f / c x < 0 (41b)

To determme the conelatoi J m Eq (2 5), we argue m a similai way äs in Ref [5]
Consider an incoming state from the left (x,_,k) and from the nght (X+,k) (we assume
kx > 0) We need to distinguish between fom diffeient situations

(a) Both incoming states empty, probability [l -/(.r!-,k)][l -/(x!+,k)] Smce no
fluctuations m the outgomg states are possible, the contnbution to J is zero

(b) Both incoming states occupied, probability /(x,_,k)/(^/+,k) Agam, no con-
tnbution to J
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(c) Incommg state frora the left occupied and from the right empty, probability

/(jc,_,k)[l — f(x,+,k)]. On the average, the outgoing states at the left and right have

occupation l — Γ, and Γ,, respectively. However, since the incoming electron is either

transmitted or reflected, the instantaneous occupation of the outgoing states differs from

the average occupation. Upon transmission, the state at the right (left) has an excess

(deficit) occupation of l — Γ,. Upon reflection, the state at the right (left) has a deficit

(excess) occupation off , . Since transmission occurs with probability Γ, and reflection

with probability l — Γ,, the equal-time correlation of the occupations is given by

if χ,χ' > χ, or χ,χ' < χ , ,

\ -(2π)''Γ,(1 - r,)<5(k - k')<5(y - y ' )δ(χ + χ' - 2χ,)
if χ < χ, < χ' or χ' < χ, < χ .

(4.2)

In terms of the fluctuating source, the fluctuating occupation number can be expressed

äs

«$/(r,k,0 = —
\y

Vr

Υ — T n
(4.3)

where we have used Eq. (2.13). (This result is valid äs long äs only one scattering
event has occurred.) Combining Eqs. (4.2) and (4.3), it is found that

(4.4)

(./(Γ,Μ)./(Γ'ΧΟ> = (2π)"Γ,(1 - Γ,)δ(χ-χ,) H <5(r - r')

χ [«5(k - k') - c5(k - k')] ö(t -t'),

upon the initial condition of occupied left and unoccupied right incoming state.
(d) For an incoming state from the left unoccupied and from the right occupied, the

probability is [l - /(*,_, k)]/(*,+, k). Similar to Situation (c).
Collecting results from (a)-(d) and summing over all barriers, we find

n

Σ
χ

n

δ(χ-χ,)Γ,(\ - Γ,) υ, [<5(k - k') - δ(ί - k')]

c,_,k)[l-/(x l +,k)] + /(xl

if kx > 0,

iCc- jO/xi-r , ) v, tf(k-k')-<5(k-k')]

-f(x,-,iy\ + f(Xl.

(4.5a)

if kx < 0 . (4.5b)

Substitution of Eqs. (3.3) and (4.5) into Eq. (2.17) and linearization in V yields

P = Γ,( l - Γ, ) (7p - ΤΓ - 2Τ,-+ ΤΓ ) , (4.6)
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where T^ = T(\,+,kx > 0) [T(*~ Ξ T(x, ,/CA < 0)] is the tiansmission probabihty mto

the nght leservoir of an elecüon at the Feimi level moving away from the nght [left]
side of baniei ι The conductance is given simply by

G = G0NT, (4 7)

wheie T Ξ T(x\ ,/CA > 0) is the tiansmission piobabihty through the whole conductoi

As a fiist apphcation of Eq (46), we calculate the shot noise foi a smgle tunnel

baniei Usmg Τ = Γ, 7^=0, 7p = l, we find the expected lesult [l 5] Ρ=Ρ0ΝΓ(1-

Γ) = (1 — r)/>poisson The double-bamei case (n = 2) is less tuvial Expenments by Li

et al [37] and by Lm et al [38] showed füll Poisson noise, foi asymmetnc stiuctmes
(Γ; <C Γ 2) and a suppiession by one half, for the symmetnc case (Γι ~ Γ 2) This

eifect has been explamed by Chen and Tmg [21], by Davies et al [22], and by otheis

[39] These theones assume resonant tunneling in the legime that the apphed voltage V

is much gieatei than the width of the lesonance This lequnes ΓΙ, Γ2 <C l The present

semiclassical appioach makes no leference to tiansmission lesonances and is vahd foi

all Γι,Γ2 Foi the double-bamei System one has T = Γ } Γ 2 / Α , Τ^~ = 0, T^ = Γ 2 / Α ,

Γ-Γ=(1-Γ|)Γ2/ζΙ, and 7^ = 1, with A =A +Γ2 -Γ,Γ2 Fiom Eqs (46) and (47),

it follows that

Γ?(1-Γ2) + Γ2(1-ΓΟ
r- 2 'Po-sson (48)

In the hmit Γ\,Γ2 <C l, Eq (4 8) comcides piecisely with the lesults of Refs [21,22]

The shot-noise suppiession of one half foi a symmetnc double-bamer junction has

the same ongm äs the one-thnd suppiession foi a diffusive conductoi In oui semiclas-
sical model, this is evident üom the fact that a diffusive conductoi is the contmuum
hmit of a senes of tunnel banieis We demonstiate this below Quantum mechamcally,
the common ongm is the bimodal distiibution p(T) = (]ΓΠ δ(Τ — T,,)) of tiansmission

eigenvalues, which foi a double-bamei junction is given by [40]

p(T)= - NF{F2 =, (49)

for T 6 [71, 7+], with Τ± = Γ\Γ2/({ =p ̂ l — A)2 Foi a symmetnc junction (Γι =Γ2 <C

1), the density (4 9) is süongly peaked neai T = 0 and T = l, leading to a suppiession
of shot noise, just äs m the case of a diffusive conductoi In fact, one can venfy that
the aveiage of Eqs (l 1) and (l 2), with the bimodal disüibution (4 9), gives piecisely
the lesult (4 8) fiom the Boltzmann Langevm equation

We now considei n banieis with equal Γ We find Τ = Γ/Α, Τ^ = [Γ + ι(\ - Γ)]/Α,

and Γ/- =(i-l)(l - Γ)/Α, with Δ = Γ + η(\ - Γ) Substitution mto Eqs (4 6) and

(4 7) yields
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The shot-noise suppression foi a low barner (Γ = 0 9) and for a high barrier (Γ = 0 1)

is plotted agamst n in Fig 3 For Γ = 0 l we observe almost füll shot noise if n = l,
one-half suppression if n~2, and on mcreasmg n the suppression rapidly reaches one-
third For Γ = 0 9, we observe that P/Pp01Sson mcreases from almost zero to one-thnd

It is clear from Eq (4 10) that P — > j-Pp0isson for « ̂  oo mdependent of Γ

We can make the connection with elastic impuiity scatteimg m a disordered wire

äs follows The scattermg occms throughout the whole wire mstead of at a disciete
number of bamers For the semiclassical evaluation we thus take the hmit n — > oo
and Γ — > l, such that «(l — Γ) —Ljf For the conductance and the shot-noise powei

one then obtams from Eqs (47) and (4 10) exactly the same lesults, Eqs (311)

and (3 12), äs for impunty scattermg with a one-dimensional density of states This
equivalence is expected, smce m the one-dimensional model elections move eithei
forward or backward, whereas m the model of n planar tunnel bamers m senes the
tiansverse component of the wave vector becomes irrelevant

We conclude this section by considermg a wire consistmg of a disordered region,
between χ = 0 and χ = L with mean free path f , in sei les with a barrier, at χ = xb > L

with transparency Γ For analytical convemence, we study the one-dimensional case

d = l (We have seen earher that the dependence on d is quite weak ) By modifymg

Eqs (32) and (4 1), we find

r *"Μ·
T(x,L) i f ; te |X,Jtb), (

2/r
T(x,-V=l- Lr + 2/ i f x > j c b , (

T(x,l)=l ifx>xb (

The conductance is given by Eq (3 4),

G = G0N - - — = (412)
l+TL/t

The total resistance is thus the sum of the Drude resistance AD = L/GoNt? and the

barrier resistance Rp = 1/GoNF Combmmg Eqs (3 6) and (4 6), we obtam for the

shot-noise power

L

~
2.6

0

fdx[T(x, 1) - Τ(χ,-1)]2[Τ(χ, 1) + T(x, -1) - 2T(x,l)T(x, -1)]
J

+Ρ0ΝΓ(1 - Γ) [T(x*+, 1) - r(xb_, -l)]2

x[T(xb+, 1) + T(xb-, -1) - 2T(xb+, l)7-(*b_, -1)] (4 13)
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Fig. 4. The shot-noise power P for a conductor consisting of a disordered region in series with a planar
tunnel barrier (see inset) äs a function of its length L (in units of //-T), for barrier transparencies Γ=1, 0.7,
0.4, and 0.1 (bottom to top). The dashed line is the limiting curve for Γ <C I . The curves are computed
from Eq. (4.14) for a model with a one-dimensional density of states. The dimensionality dependence is
expected to be small, compare Fig. 2.

Substitution of Eqs. (4.11) yields

2r3*?L(i2/2 + 6/z, + n2) t 8Γ(ΐ - ry3

3(2/ + ΓΖ,)4 '

1 1 -Γ

(2/ + rz,)3

.w. (4.14)
3(1+ΓΖ,/// (Ι+ΓΖ,/OV

where we have used Eq. (4.12). In Fig. 4 we have plotted the shot-noise power against
the length of the disordered region for various values of the barrier transparency. In
the absence of disorder, there is füll shot noise for high barriers (Γ <C l) and complete
suppression if the barrier is abseilt (Γ = 1). Upon increasing the disorder strength, we
note that the shot-noise power approaches the limiting value P = j/^poisson independent
of Γ: once the disordered region dominates the resistance, the shot noise is suppressed
by one-third. Note that it follows from Eq. (4.14) that for Γ = | the suppression is
one-third for all ratios i/L.

We have carried out a quantum mechanical calculation of the shot-noise power in
a wire geometry similar to the calculation in Ref. [8]. The barrier can be incorporated
in the Dorokhov-Mello-Pereyra-Kumar equation [36] by means of an initial condition
(see Ref. [41]). We find exactly the same result äs Eq. (4.14) in the regime ΝΓ 3> l
and N? l L ^> 1. For a high barrier (Γ <C 1) in series with a diffusive wire (L ^> ?) our
results for the shot noise coincide with previous work by Nazarov [9] using a different
quantum mechanical theory. In this limit, the shot noise can be expressed äs [9]

1+2
R Pp0 (4.15)
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with the total resistance R = RO + Rr The Innitmg lesult (4 15) is depicted by the

dashed cuive in Fig 4

5. Inelastic and electron-electron scattering

In the previous sections we have calculated the shot noise foi seveial types of elastic

scattering In an expenment, however, additional types of scattering may occur In pai-

ticular, electron-electron and melastic election-phonon scattenng will be enhanced due

to the high currents which are often requned for noise expenments The purpose of

this section is to discuss the effects of these additional scattenng piocesses As shown

by Nagaev [42] and by Kozub and Rudin [43], this can be achieved by mcluding

additional scattering terms in the Boltzmann-Langevm equation Here, we will adopt

a diffeient method, followmg Beenakkei and Buttikei [6], m which melastic scattenng

is modeled by dividmg the conductoi m sepaiate, phase-coheient paits which aie con-

nected by charge-conserving leservoirs We extend this model to mclude the followmg

types of scattenng
(a) Quasi-elastic scattenng Due to weak couplmg with exteinal degiees of fieedom

the election wave function gets dephased, but its energy is conserved In metals, this

scattenng is caused by fluctuations m the electiomagnetic field [44]

(b) Election heatmg Electron-election scattering exchanges energy between the

elections, but the total energy of the election System is conservcd The distnbution

function is therefoie assumed to be a Feimi-Duac distnbution at a tempeiatuie above

the lattice tempcratuie

(c) Inelastic scattenng Due to election-phonon inteiactions the elections exchange

energy with the lattice The electrons emeiging from the leservoii aie distiibuted ac-

cordmg to the Fermi-Dnac distnbution (2 1), at the lattice lempeiature TQ This is the

model of Ref [6]

First, we divide the conductor m two paits connected via one reseivon and deteimme
the shot noise foi cases (a), (b) and (c) After that, we lepeat the calculation foi many

inteimediate leservous to take into account that the scattenng occurs thioughout the

whole length of the conductoi
The model is depicted m Fig 5 The conductois l and 2 aie connected via a leser-

vou with distnbution function /]2(ε) The time-aveiaged cunent /„, through conductoi

m = ], 2 is given by

/, = (G,/e) fde [fL(e) - /12(ε)], h = (G2/e) [de [ /,2(ε) - /R(e)]
J J

(51a,b)

The conductance G,„ Ξ \/Rm is expressed in terms of the tiansmission matnx t„, of

conductor m at the Fermi energy,

N
t r* \ ^ τ (in} /c o \
;n = Cro / J l„ , (-> *·)

n-1
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-̂V-
Fig. 5. Both cnds of the conductor are connecled to an electron rescrvoir. Additional scattering insidc
the conductor is modelcd by dividing it in two parts and connecting them through another reservoir. The
electron distnbutions in the left and the right reservoir, /L(E) and /κ(ε), are Fermi—Dirac distributions. The
distnbution fn(e) in the intermediate reservoir depends on the type of scattering.

with T„ 6 [0,1] an eigenvalue of tmt]r We assume small eV and /CB?O, so that we
can neglect the energy dependence of the transmission eigenvalues.

Current conservation requires that

h=h=l. (5.3)

We define the total resistance of the conductor by

R=Rl+R2. (5.4)

It will be shown that this incoherent addition of resistances is valid for all three types
of scattering that we consider. Our model is not suitable for transport in the ballistic
regime or in the quantum Hall regime, where a different type of "one-way" reservoirs
are required [45]. Recently, Büttiker has calculated the effects of inelastic scattering
along these lines [46].

The time-averaged current (5.1) depends on the average distribution /ι2(ε) in the
reservoir between conductors l and 2. In order to calculate the current fluctuations,
we need to take into account that this distribution varies in time. We denote the time-
dependent distribution by /12(ε, t). The fluctuating current through conductor l or 2
causes electrostatic potential fluctuations δ φ [2(1) in the reservoir, which enforce Charge
neutrality. In Ref. [6], the reservoir has a Fermi-Dirac distribution /12(ε, Ο = /ο [ε —
eV\2 — εδφ\2(ί)], with E-f + eV\2 the average electrochemical potential in the reservoir.
As a result, it is found that the shot-noise power P of the entire conductor is given by

[6]

R2P = R}P{+R\P2. (5.5)

In other words, the voltage fluctuations add. The noise powers P\ and P2 of the two
segments depend solely on the time-averaged distribution [4],

Pl = 2SlJde(fL - /12)
2 , (5.6a)

252/d6(/ I 2-/R)2. (5.6b)
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Here, Sm is defined äs

N

Sm = G0Tr tmtt,( l - t,„tl ) = Go Σ Γ,('"'( l - T™) (57)
n-l

For example, for a smgle tunnel bamer we have S,„ = G,„, whereas for a diffusive con-

ductor Sm = ^Gm The analysis of Ref [6] is easily generahzed to aibitiaiy distnbution

/i2 Then, we have/12(s,i) = / jäte - βδφη(ί)] It follows that Eqs (5 5) and (5 6)
remam vahd, but f u ( ß ) may be different Let us determme the shot noise for the three
types of scattermg

(a) Quasi-elastic scattermg Here, it is not just the total current which must be
conserved, but the cunent m each enetgy ränge This requires

*,(0-0lA(')tt/'(') (58)

We note that Eq (58) imphes the validity of Eq (5 4) Substitution of Eq (58) into
Eqs (55) and (56) yields at zeio temperatme the result

P = ^Po,Sso„ (RiS} + R\S2 + R,Ri + R\R2) R^ (5 9)

Foi a double-barnei junction m the hmit A, 7^ <C l, Eqs (48) and (59) give the
same result, demonstratmg that dephasing between the bameis does not mfluence the
shot noise This is m contiast to the result of Ref [47], where dephasing is modeled
by addmg random phases to the wave function For the diffusive wue Eq (5 9) imphes
P = ^Ppmsson, mdependent of the ratio between R\ and /?2 Breakmg phase coherence,
but retammg the nonequilibnum electron distnbution leaves the shot noise unalteied
The reservoir model for phase-breakmg scattermg is therefore consistent with the results
of the Boltzmann-Langevm approach

(b) Electron heating We model electron-electron scatteung, wheie energy can be
exchanged between the elections, at constant total eneigy We assume that the exchange
of energies estabhshes a Fermi-Dirac distubution /η(ε) at an electrochemical potential
Ef + eV\2 and an elevated temperature T\2 Fiom current conservation, Eq (5 3), it

follows that

Vn = R~V (5 10)

Conservation of the energy of the electron System requires that T\i is such that no
eneigy is absorbed or emitted by the reservoir The energy current J„, thiough conductor

m is given by

J2=

(5 l la , b)
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Smce /i2 is a Feimi-Dnac distnbution, Eq (511) equals

J\=Q\+ μ\Ι/ε = £i(7o - Γ12) + μ,Ι/e , (5 12a)

Λ = 02 + M2//e = ̂ 2(r12 - Tb) + μ2Ι/ε , (5 12b)

wheie μι Ξ £F + \e(V + K]2) and μ2 = Εγ + ^eV\2 The energy current J„, is thus the

sum of the heat current Q,„ and of the parücle cunent I/e ümes the average energy μιη

of each electron The heat cunent Q,„ equals the diffeience in tempeiatuie times the

theimal conductance K,„ = G,„£oTm, with T,„ = ^(TQ + Tn) and the Loientz numbei

£0 = ^(kB/e)2n2 Theie aie no theimo-electnc contnbutions m Eqs (51) and (5 12),

because of the assumption of eneigy mdependent tiansmission eigenvalues [48] Fiom

the lequuement of eneigy conseivation, J\ = J2, we calculate the electron tempeiature

in the inteimediate leservoii

*·»-* + ™ < 5 1 3 )

At zeio tempeiatuie m the left and nght leservoll and for R\ = R2 we have k&T\i =

(\/3/2n)e\V\ ~ 0 28e|K| Foi the shot noise at T0 =0, we thus obtam usmg Eqs (5 5)

and (5 6),

+2^{eF12+/cBr12[21n(l+e- t l "^ ) - 1]} (514)

The shot noise foi two equal (R\ =Ä 2 ) diffusive conductois,

P = Ppmsson— 7- [l + In 2 + lncosh(7i/2\/3)l ^ 0 38PPolsi,0„ , (5 15)

is shghtly above the one-thnd suppiession This shows that the cunent becomes less
coiielated due to elecüon-election scattenng

(c) Inelastic icatteimg This is the model of Ref [6] The distnbution funcüon of
the inteimediate leseivon is the Feimi-Dnac distnbution at the lattice tempeiatuie ΓΟ,

with an elcctiochemical potential μι2 = E\. + eV\2, wheie V\i is given by Eq (5 10)

This leseivon absoibs eneigy, in contiast to cases (a) and (b) The zei o-tcmpei atui e

shot-noise powei follows fiom Eqs (55) and (5 6) [6]

p p
' — -OOisson - J^ - (3 i O J

Foi the diffusive casc, with R\ = R2, one has P = ^fp0isson The melastic scaltenng

gives an additional suppiession [6]

Foi a double-bamei System it is plausible to modcl the additional scattenng by a

smgle leseivon between the bainets In a diffusive conductoi, howevei, these scattenng

piocesses occui thioughout the system 1t is theiefoie moie lealistic to divide the
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conductor into M Segments, connected by reservoirs. Eq. (5.5) becomes

M

R2

mPm, (5.17)

where the noise power Pm of segment m is calculated analogous to Eq. (5.6). We

take the contmuum hmit M — > oo. The electron distnbution at position χ is denoted

by f(e,x). At the ends of the conductor /(ε, 0) = /ΊΧε) and f(e,L) = f^(e), i.e.

the electrons are Fermi-Dirac distnbuted at temperature TQ and with electrochemical

potential μ(0) = Εγ + eV and μ(£) = Ε·ρ, respectively. The value of /(ε,Λ:) mside the

conductor depends on the type of scattenng, (a), (b), or (c), and is determmed below.

In the expression for Pm only the first term of Eq. (5.6a) rcmains. It follows from

Eq. (5.17) that the noise power is given by

^ fdef(e,x)[l-f(e,x)], (5.18)
Ά J

o

whcre p(x) is the resistivity at position x. The total resistance is given by

L

R=- ί ά χ ρ ( χ ) . (5.19)
A l

0

Foi a constant resistivity p we find from Eq. (5.18)

ax /de f ( e , x ) [ ] - f(e,x)} .
J

(5.20)

This formula has been denved by Nagaev from the Boltzmann-Langevm equation for

Isotropie impunty scattenng in the diffusive hmit [7]. Our semiclassical calculation in

the previous sections is worked out in teims of transmission piobabihties lathei than in

terms of the electron distnbution function. Howcver, one can casily convmce oneself

that in the diffusive hmit and at zero temperature, Eqs (3.6) and (5.20) are equivalenl.

The present denvation shows that the quantum mechanical expression for the noise

with phase-breakmg reservoirs leads to the same result äs the semiclassical approach.
We evaluate Eq. (5 20) for the thiee types of scattenng

(a) Quasi-e/aslic uattermq This calculation has previously bcen perfoimed by Na-
gaev [7] and is similar to Section 3. Cmrent conscrvation and the absence of melastic
scattenng requires

-^f(e,x) = Q . (5.21)
oxz

The solution is

f(c,x)=-f(e,0)+f(e,L), (5.22)
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Fig 6 The noise powei P (divided by the Johnson-Nyquist noise 4/CB7OG) veisus applied voltage V foi a
disoidcicd wne foi modcl (a) of quasi elasüc scatteimg (solid cuive) (b) of election hcating (dashed cmve)
(c) of melastic scatteung (dash dotted cuivc) accoidmg to Eqs (523) (532) and (5 35) lespectively The
uppei left msct gives thc election distubution in the middle of the wue /(ε ^L) äs a function of energy ε
foi model (a) (b) and (c) Thc lowei ught inset shows the tempeiatuie T^(x) äs a function of the position
χ foi model (b) Foi both insets

The election distribution at x= ^L is plotted in the left mset of Fig 6 Substitution of

Eq (5 22) mto Eq (5 20) yields [7]

p = A [4/cB T0 + eV coth(eV/2kBT0)] (523)
3-R

At zeio tempeiatme the shot noise is one-thnd of the Poisson noise The tempeiatme

dependence of P is given m Fig 6

(b) Electron heatmq This calculation is due to Martinis and Devoiet [49] Simi-

lai denvations on the basis of the Boltzmann—Langevin equation have been given by

Nagaev [42] and by Kozub and Rudm [43] The election distubution function is a

Fermi-Dirac distnbution at an elevated tempeiatme Te(\),

(524)f(e,x)= <M +exp

The cuirent density j(\) at τ is

d
de/(ε,*), (525)
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where D is the diffusion constant and V is the density of states We neglect the

energy dependence of D and T> The resistivity p is given by the Einstein relation,

p~' =e2DV(Ef) Current conservation yields

which implies for the electrochemical potential

μ(χ) = EF + I^eV (527)
ij

The eneigy-current density j€(x) is determined accoidmg to

Γ\ Γ

MX) = ~DV(Ef)— Jdeef(e,x) = μ(χ)}(χ)/β +JQ(X) , (5 28a)

JQ(X) = -K(X)^·^· (528b)

The heat-current density JQ(X) equals the temperature gradient times the heat conduc-

tivity κ(χ) = Tc(x)Lo/p Because of encigy conservation the diveigence of the energy-

cunent density must be zero,

Combinmg Eqs (5 28) and (5 29), we obtam the following differential equation foi

the tempei ature

2
(530)

Taking mto account the boundaiy conditions, the solution is

In the middle of the wne the electron temperatuie takes its maximum value Foi zeio

lattice tempei atme (7Ό = 0) one has kBTc (\L) =(ν/3/2π)β| V\ ~ 0 28e| V\ The election

distnbution at χ = ^L is depicted m the left mset and the election tempeiatme piofile

(531) is plotted m the nght mset of Fig 6

Eqs (5 20), (5 24), and (531) yield for the noise powei the lesult

RL]^'^C

0

2*Β7Ό ,
Ä ' ^C/

^y

'Λ / Ί Τ^ \2 /ο"2π / Α β Γ ο λ ν 3
Γ- Ι „ 1 Ι _

/VS eK

y 2π /CB/O
(5 32)
V '

Eq (5 32) is plotted m Fig 6 Foi the limit eV > kBT0 one finds [50]

P = -V3 /Won - 0 43 Ppo.sson (5 33)
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Due to the electron-electron scattenng the shot noise is mcreased The exchange of
energies among the electrons makes the cm reut less correlated The suppression factor
of j\/3 is close to the value observed m an expenment on süver wires by Stembach
et al [50]

(c) Inelastic scattenng The electron distnbution function is given by

, (534)

with μ(χ) accordmg to Eq (5 27) For the noise power we obtam from Eqs (5 20)
and (5 34)

(535)
I\

which is equal to the Johnson-Nyquist noise for arbitrary V (see Fig 6) The shot

noise is thus completely suppiessed by the melastic scattenng [6,13,42,43,51,52]
These calculations assume a constant cross-section and lesistivity of the conductoi

One might wonder, whether vanations in cross-section and lesistivity, which will cer-

tainly appeai m experiments, change the one-thnd suppiession foi the case of elastic
scattermg and the j\/3 suppression for the case of electron-heatmg In Appendix D,
it is demonstiated how this can be calculated on the basis of Eq (5 18) It is found
that the lesults [Eqs (5 23), (5 32), and (5 35)] aie mdependent of smooth vanations

in cioss-section and lesistivity We thus conclude, that both the one-third suppiession
äs well äs the |\/3 suppiession aie m prmciple observable in any diffusive conductoi

6. Conclusions and discussion

We have denved a geneial foimula foi the shot noise withm the fiamewoik of the
semiclassical Boltzmann—Langevin equation We have apphed this to the case of a
disoideied conductoi, wheic we have calculated how the shot noise ciosses ovei fiom
complete suppiession m the ballistic limit to one-thnd of the Poisson noise m the dif-
fusive hmit Fuitheimoie, we have apphed oui foimula to the shot noise m a conductoi
consistmg of a sequence of tunnel bairieis Fmally, we have considered a disoideied
conductoi m seiies with a tunnel baniei Foi all these Systems, we have obtamed a
sub-Poissoman shot-noise powei, m complete agieement with quantum mechamcal cal-
culations m the hteiatme This estabhshes that phase coheience is not icquned for the
occurrence of suppressed shot noise m mesoscopic conductoi s Moieovei, it has been
shown that foi diffusive conductors the one-thnd suppiession occuis quite geneially
This phenomcnon depends ncithei on the dimensionality of the conductoi, nor on the
microscopic details of the scattenng potential

We have modeled quasi-elastic scattenng (which bieaks phase coheience), elec-
tion heatmg (due to election-election scattenng), and melastic scattenng (due to, eg,
election-phonon scattenng) by puttmg chaige-conservmg reservons between phase-
coheient Segments of the conductoi If the scattenng occuis thioughout the whole
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length of the conductoi, we end up with the same formula for the noise äs can be ob-
tamed directly from the Boltzmann-Langevm approach [42,43] In the case of election
heatmg, the shot noise is |\/3 of the Poisson noise, which is shghtly above l/Voisscn
for the fully elastic case The expenments of Refs [11,50] are hkely m this election-
heatmg regime We have demonstrated that both the one-third suppression and the | A/3
Slippression are insensitive to the geometry of the conductor, äs long äs the transport
is m the diffusive regime Foi futme woik, it might be worthwhile to take the effects
of electron heatmg and melastic scattermg mto account through the scattenng terms
m the Boltzmann-Langevm equation, äs has been done in Refs [42,43], m order to
calculate the crossover between the different regimes

In both the quantum mechanical and semiclassical theones the elections aie treated
äs nonmteractmg particles Some aspects of the electron-electron mteraction are taken
mto account by the conditions on the reservoirs m Section 5, where fluctuations m the
electrostatic potential enfoice chaige-neutrabty We have shown that these fluctuations
suppress the noise only in the presence of melastic scattenng Coulomb lepulsion is
known to have a strong effect on the noise m confined geometnes with a small capaci-
tance [39, 53] This is relevant for the double-bainer case tieated m Section 4 Theoues
which take the Coulomb blockadc mto account [39,53] predict a shot-noise suppiession
which is penodic m the applied voltage This effect has recently been obseived foi a
nanoparticle between a surface and the tip of a scanmng tunnelmg micioscope [54] In
open conductois wc would expect these mteraction effects to be less important [55]
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Appendix A. Thermal noise

In this appendix it is shown how thcimal fluctuations can be mcoiporated m the
theoiy These are ignored m Sections 3 and 4 where zeio tempeiatuie is considered
At nonzero tempeiatures we need to take mto account the time-dependent fluctuations
m the occupation of the statcs m the leservoirs The foi mal solution of the Boltzmann-
Langevm equation (2 4) can bc wntten äs

<5/(r,k,i)= i dt' jdr' fdk'G(r,k,r',k',1 - t')j(r',k',t')
o V

t

i dt' idy' i dk'vxg(r,k,r',k',t-t')öf(r',k',t')

oo S L k >0
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t

+ i dt' /dy' /dk' v, 0(r,k,r',k',/-f')<5/(rU',O, ( A I )
J J J

oo S κ / <0

wheie V denotes the scattermg region of the conductoi The second and thud term

descnbe the time-dependent fluctuations of states origmating fiom the reservon which

aie ignoied m Eq (217) The conelation funcüon of the mcoming fluctuations which
have not yet leached the scattermg legion [i e foi the left lead χ,χ' ^ XL, k^,k( > 0

and foi the nght lead \,\' ^ JCR, k^,k( < 0] follows fiom Eqs (2 8) and (2 9)

(df(r,\i,t)of(r',k',t')} = (2κΥ' ö[r - r' - \(t - t')] c5(k - k')

X/LR(£)[! - /"LR(e)] (A 2)

The denvation of the noise powei proceeds similai to the denvation of Eq (2 17)
Substitution of Eq ( A I ) mto Eqs (211) and (2 12) and usmg both the conelation
functions (25) and (A 2), yields

,v

dy ydkU x7Xr,k) 2 / -L(e)[ l - /L(e)]

S, k >0

+ /dy / dk v, [l - r(r,k)]2/R(e)[l - /κ(ε)] l (A 3)
J J l

S, l <0 /

Let us apply Eq (A3) to the case of impunty scatteimg, tieated m Section 3 foi

zeio tempeiatuie By changing vanables accoidmg to Eq (31) and by Substitution of

Eqs (2 6) and (3 3), we obtain

P = 2e2A /d\ /deP(£) / — / — W \T(\ n) - T(\ n'll2

/ / 7 ic/ 7 sc/ ""
o

/L(£)[! - Λ(ε)] [l - Τ(κ, - n)] + /„(ε)[1 - /R(e)] Γ(λ, - ή)

Λ/ε) - /κ(ε)]2η^, - ή)[1 - Τ(κ, - ή')]}

+2e2A /deX»( e)/L( e)[l - fL(e)] / ~ υη, Γ2(0,η)

i l f dn „ 2

wheic wc havc used Eq (3 2) and W„„ =W„„ Eq (A4) can be simplified by means
of the lelations

f dn f dn , , f dn , ,
d\ / — / —W„„ \T(x,n) - T(x,n }]=-Vl· l —n, \T (L, n) — T (0,n)l,

/ irf J Srf / Srf

(A 5)
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L Λ Λ /

fax f — l — WAA> [T(x,n) - Τ(χ,η')]2Τ(χ, - n)
J J sd J sd
0

/

dn -, i
— nx [T2 (L, n)T(L, - ή) - Γ2(0, η)Γ(0, - ή)] , (Α.6)
Sd

which can be denved fiom Eq. (3.2). For the distnbution function we apply the idenüty

/o(l - /o) = ~kBT0 d f 0 / d e and define

F(V, Το) Ξ de[fL(e) - /R(e)]2 = e\V\ coth - - 2kBT0 . (A.7)
J \/.KftlQj

Collectmg results, we find for the noise power the expression

'r r rü, 2

J J JVFSdVd-i
0

xT(x, - n)[l - T(x, - n')] + 4kBT0 G0N l — ηλΤ(1, ή) (Α.8)

At zero voltage, Eqs. (3.4) and (A. 8) reduce to the Johnson-Nyquist noisc P = Ak^ToG.

At zero temperature, Eq. (A. 8) reduces to Eq. (3.6) Applymg Eq. (A. 8) to impunty

scattenng for the case d = l of Section 3, we obtam

2G ( , / eV \\. l
l P V r.nthP = — i eKcoth ^-^ l —^- + 2kBT0 2 + ^̂ ~

3 l \2kBT0J[ (1+L//) 3 J [ (1+L/O3

(A.9)

The voltage dependence of the noise is plotted m Fig. 7 for vanous values of L//.

The result for the difliisive hmit is equal to Eq. (5.23). Also depictcd is the classical

result for a smgle high tunnel barrier (Γ <C l),

, (A. 10)

which can be denved within our theoiy by combinmg the results of Section 4 with the

analysis of this appendix.

Appendix B. Noise at arbitrary cross-section

Let us verify that the noise powei does not depend on the location χ of the cross-

section at which the current is cvaluated The fluctualing current through a cross-section

Sr at cooidmate χ is defined by

(5/(^) = 7^7, Jay /dk »τ <5/(r,k,0 , (B 1)

5,
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PL,

4
eV

6
kBT0

10

Fig 7 The noisc powei P (divided by thc Johnson-Nyquist noise 4/feToG) veisus applied voltage V for a
disordeied wue (bottom to top) m the balhstic limit Ljf —> 0, the mtermodiate regime Ljf = l, and m the
diffusive limit Lj( —> oo, äs given by Eq (A 9) The dashed hne is the noise m a tunncl baniei, accoidmg
to Eq (A 10)

and leads to
00

P(x,x') = 2 fdt(SI(t,x)Sl(Q,x')} .
J

— oo

We use the following relation
oo
r r r
dt /dy /dk

(B.2)

(B.3)

which follows from Eqs. (2.14) and (2.15). Here, Θ(χ) is the unit-step function. Eval-

uaüng Eq. (B.2) along the hnes of Section 2, we find

- χ)] [r(r0,kj) - Θ(Χ() - χ')]. (B.4)

We use the fact that the integral over k or over k' of J(r,k,k') vamshes, Eq. (2.7),
and find that P(x,x') is mdependent of x,x'.

Appendix C. Nonisotropic scattering

We wish to demonstrate that the occurrence of one-third suppressed shot noise m the

diffusive regime is mdependent of the angle-dependence of the scattering rate. We write

^nn' = w ( n · n')fF, with arbitiary w. In the diffusive limit, the transmission probabihty

is given by

T(x,n) = T(x) + t(n^ , (C.l)
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άχ ί *± f ^L w [τ-^fi) _ Τ(Χ,Ά'·)]2Τ(Χ, - ή)
J sd J sd

0

, - ή) - Γ2(0, ή)Γ(0, - ή)] , (Α 6)

which can be denved fiom Eq (32) For the distnbution function we apply the identity

/o(l - /o) = -kßT0 Sf0/de and define

F(V,TQ) = de[fL(e)-fR(s)] = e\V\coth_-2kBT0 (A 7)
7 \//CB-/O/

Collecting icsults, we find foi the noise powei the expiession

2F(V,T0)G0N J f f ,
= — dx an an

VfSfiVc/-] J J J
c,n) - T ( x , n ) ] 2

xT(x, - n)[l - T(x, - n')] + 4/cBr0 G0N l — »τΓ(Ι, ή) (A 8)
7 ^rf i

At zeio voltage, Eqs (3 4) and (A 8) reduce to the Johnson-Nyquist noise P = 4kBT0G

At zeio tempeiature, Eq (A 8) reduces to Eq (36) Applymg Eq (A 8) to impunty

scattermg foi the case d = l of Section 3, we obtain

2kßT0J\

(A 9)

The voltage dcpendence of the noise is plotted m Fig 7 foi vanous values of L/?
The result foi the diffusive hmit is equal to Eq (5 23) Also depicted is the classical
lesult foi a smgle high tunnel bainer (Γ <C 1),

/ eV λ
/> = 2ej/ |coth —— , (A 10)

which can be deuved within oui theoiy by combinmg the lesults of Section 4 with the

analysis of this appendix

Appendix B. Noise at arbitrary cross-section

Let us venfy that the noise powei does not depend on the location χ of the cioss-

section at which the cunent is evaluated The fluctuatmg cuiienl thiough a cioss-scction

S τ at cooidmate χ is defined by

SI&x)^-^ Idy /dkM/Xr,k,0, (B 1)
; /

s
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O

4
eV

10
k T

Fig 7 The noise powei P (dividcd by the Johnson Nyquist noise 4fcß7oG) veisus apphed voltage V foi a
disoidered wirc (bottom to top) in the ballistic limit Lj( —» 0, the inteimediate legime L/f = l, and m the
diffusive limit LjC —> oo, äs given by Eq (A 9) The dashed line is the noise m a tunnel baniei, accordmg
to Eq (A 10)

and leads to
oo
/·

P(x,x') = 2 / at ( δ ΐ ( ί , χ ) δ ΐ ( θ , χ ' ) }

We use the followmg lelation
oo

(at /dy /dk ut 0(r, k, r0, k0,0 = Τ(τ0, k0) - 6>0o - *),

(B 2)

(B 3)

0 5

which follows fiom Eqs (2 14) and (2 15) Here, Θ(χ) is the umt-step function Eval-

uatmg Eq (B 2) along the hnes of Section 2, we find

x[r(r0,k0) - 6>(^o -λ)] (Β 4)

We use the fact that the mtegial ovei k or ovei k' of J(r,k, k') vanishes, Eq (2 7),
and find that P(x,x') is mdependent of x, v'

Appendix C. Nonisotropic scattering

We wish to demonstiate that the occunence of one-thnd suppiessed shot noise m the

diffusive legime is mdependent of the angle-dependence of the scatteimg late We wiite

^nn' =w(n n')fF, with aibitiary w In the diffusive limit, the transmission piobability

is given by

T(x,n) = T(x) + t(n,), (C 1)
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where T(x)=x/L and t(nx) of order {JL, with J dnt(nx) = 0 The conductance is given
by the Drude result, Eq (3 8), where the normahzed mean free path f can be denved
äs follows Upon Integration of Eq (3 2a) over danx and Substitution of Eq (C 1),
one obtams

an 2 dT(x) r dn i" dn f K „ , . , - , N , ,,-,
— ^ = l — \ — «Λ>ν( ή η') ?(«, - t(n()] (C 2«J sd

 λ dx J sd J sd

Companson with Eq (34) yields

vd Γ /"dn . x / ,

Vd l U Sd

From Eq (3 2a) it also follows that

dn

(C3)

d f dn ~ ,
— %7^ (A:, n)
sd

-

dx

where we have used Eqs (3 4) and (C 1) By Substitution of Eq (C4) into Eq (3 6)
and neglecting terms of order ?/L, we find

L

P = 2/Won fo T(X)[\ - T(X)]^^- = ^Po.sson , (C 5)

0

mdependent of w

Appendix D. The effect of variations in cross-section and resistivity

In Section 5, we have calculated the shot noise in a diffusive conductoi foi seveial
types of scattenng It has been assumed that both the aiea of the cioss-section A and
the resistivity p are constant along the conductoi Below, we bnefly descnbe how the
calculations are modified by takmg into account a non-constant, but smoothly vaiymg
area A(x) and resistivity p(x)

Om starting pomt is Eq (5 18) It is convement to change vanables from χ to η,
defined accordmg to

In othei words, η is the ratio between the lesistance of the conductoi fiom 0 to χ
and the total lesistance Eq (5 18) thus becomes
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P = άη Αε/(ε> ΌΠ - /(ε> »/)] · (D.2)

It is now straightforward to repeat the calculation for the chffusive conductor m Sec-

tion 5. It follows, that all the results [Eqs (5.23), (5 32), and (5.35)] remam unaltered

Here, we will just illustrate how the calculation for the case of electron heatmg is done.

Startmg from Eq (5.24) we find for the current at position η

t From current conservation {Ι(η)=Ι for all η e [0,1]} it follows that the electrochemical

potential is

(D 4)

The energy current is given by

/e(l)=^-f Γ,ΟΟΑΓ,Ο,). (D.5)

Similar to the denvation in Section 5, we thus find

£ο, (D 6)

from which it follows that the noise is given by Eq. (5.32), äs before.
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