H

i PHYSICA

LLSEVIER Physica A 230 (1996) 219 243

Semiclassical theory of shot noise in mesoscopic
conductors

M.JM. de Jong?®*, C.W.J. Beenakker®

'Philips Rescarch Laboratories 5656 AA Lmdhoven The Netheilands
Ymstiuut-Loientz - Univcrsity of Laden 2300 RA Leden The Nether lands

Recerved 29 January 1996

Abstract

A scenuclassical theory 1s developed for time-dependent curient fluctuations in mesoscopic
conductots The theory 1s based on the Boltzmann Langevin equation for a degeneiate clection
gas The low-fiequency shot-noise powet 1s tclated to classical transmission probabilities at the
Fetnm level For a disoideted conductor with impurnity scattetng, 1t 1s shown how the shot
notse crosscs over fiom zeio i the ballistic 1cgime to one-thnd of the Poisson noise in the
diffusive 1cgime In a conductot consisting of # tunnel baitiets m series, the shot notse appioaches
one-thnd of the Poisson noise as n goes to infinity, independent of the tianspatency of the
baitietrs The analysis confitms that phase cohctence 1s not 1equned for the occutience of the
one-thitd suppression of the shot noise The eflects ot clection heating and nclastic scattering ate
calculated, by nserting chaige-conset ving election 1escivous between segments of the conductor

PACS 7350 Td, 72 10 Bg, 72 70 +m, 73 23 Ps
Keywords Noise and fluctuations, Electionic tianspott theoty

1. Introduction

The discictencss of the election chaige causcs time-dependent fluctuations in the
clecttical curtent, known as shot noisec These fluctuations ate chaiactetized by a white
notse spectium and peisist down to zeio temperatute The shot-noise power P con-
tams mformation on the conduction piocess, which 1s not given by the 1esistance A
well-known example 1s a vacuum diode, whete P = 2@]1_\ = Ppowson, With 7 the av-
ctage cutient This tells us that the clections traveise the conductor 1 a completely
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uncorrelated fashion, as i a Poisson process In macroscopic samples, the shot noise
1s averaged out to zero by inelastic scattering

In the past few years, the shot noise has been nvestigated 1 mesoscopic conduc-
tots, smaller than the melastic scattering length Theoretical analysis shows that the
shot noise can be suppressed below Ppyson, due to corielations n the election tians-
miussion 1mposed by the Pauli pumciple [1-5] Most mtiiguingly, 1t has been found that
P= %Ppo,sson i a metallic, diffusive conductor [6-10] The factor one-thid 1s univeisal
m the sense that 1t 15 mdependent of the material, sample size, o1 degiee of disoi-
der, as long as the length L of the conductor is gieater than the mean free path /
and shoiter than the localization length An observation of suppressed shot noise 1n a
diffusive conductor has been reported [11] In a quantum mechanical desciiption [6],
the suppiession follows fiom the bimodal disttibution of transmission eigenvalues [12]
Surprisingly, Nagaev [7] finds the same onc-thud suppiession fiom a scnmclassical ap-
proach, m which the Pauli pimnciple 1s accounted foi, but the motion of elections is
treated classically This implies that phase cohetence 1s not essential for the suppres-
ston A similar conclusion 1s obtained 1in Ref [13] However, the relationship between
the quantum mechanical and semiclassical theoties 1emains unclear [14]

In this paper, we 1emvestigate the semiclassical appioach and piesent a detailed
compaiison with quantum mechanical calculations in the Iiteratuie In patticular, we
study how the shot noise ciosses over fiom the ballistic to the diffusive 1egime This
complements the study of the ciossover of the conductance in Ref [15] We use the
Boltzmann—Langevin equation [16,17], which 1s a semiclassical kinetic equation for
nonequilibtium fluctuations This equation has previously been applied to shot noise
by Kulik and Omel’yanchuk [18] for a ballistic pomt contact, and by Nagaev [7] fo1 a
difflusive conductor Hete, we will demonstratc how the Boltzmann-Langevin cquation
can be applied to an arbrtiaty mesoscopic conductor Owr analysis coitects pievious
wotk by Beenakker and Van Houten [19] A btief account of our main 1esults has
been repoited in Ref [20]

The outline of this paper 1s as follows In Section 2 we discuss the Boltzmann-
Langevin equation It 1s demonstiated how the shot-noisc power can be expicssed n
terms of semiclassical ttansmission pirobabilities Impurity scatteting 1s ticated mn Sec-
tion 3 The shot noise power ncicases fiom zeio in the ballistic 1egime 1o %PPO,SSO,,
m the diffusive 1egime We consider both 1sotiopic and nonisotiopic impuity scat-
teting, and both a two- and three-dimensional density of states We also picsent a
one-dimensional model, which can be solved analytically Exact agiecment 1s found
with a previous quantum mechanical evaluation [8], in the Imit of a conductance
> e’/h Section 4 deals with baitier scattering We consider tunneling thiough » pla-
nat baitiets n series (tunnel piobability I') For n =2 and I' < 1, we 1ccover the
tesulis for a double-bainier junction of Refs [21,22] In the limit # — oo the shot-
notse power approachcs %PPOMO,, independent of I” By taking the continuum limut,
n—o0, ' — 1, at fixed n(1 —T"), we 1ecover the onc-dimensional model of Section 3
The case of a disordered 1egion m setics with a tunnel baitier concludes Section 4
In Section 5 we calculate the effects of elastic scatteing and of election heating
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due to electron electron scattening Analogous to the work of Beenakker and Buttiker
[6], this scattering 1s modeled by putting charge-consetving electron 1eservoirs between
phase-coherent segments of the conductor This allows us to model the effects of quasi-
elastic scatteung, election heating, and inelastic scatteing within a single theoretical
framework We conclude m Section 6

Before proceeding with a desciiption of the semiclassical apptoach, we briefly sum-
matize the fully quantum mechanical theory The zero-temperature, zero-fiequency shot-
noise powel P of a phase-coherent conductor 1s related to the transmission matiix t by
the foimula [4]

N
P=Py Trtt(1—tth =Py T.(1-T,), (1

n—1

whete Py = 2¢|V|Gy, with ¥ the applied voltage and Gy = ¢?/h the conductance quan-
tum (we assume spinless electrons fo1 simplicity of notation), 7, € [0, 1] an eigenvalue
of tt!, and N the number of transverse modes at the Fermi energy Ep The conductance
18 given by the Landauer formula

N
G=Go Titth =Go > T, (12)

n—1

If the conductor 1s such that all 7, < 1 (e g, a high tunnel bartier), one finds P =
2e|V|G = Pposons corresponding to a Poisson distiibution of the emutted electrons Tt
has been demonstiated by Levitov and Lesovik [23] (see also Ref [24]) that the general
formula (1 1) corresponds to a binomial (o1 Betnoullr) distubution of the emitted
electrons fot each transmission eigenstate If some 7, are near 1 (open channels), then
the shot noise 1s reduced below Ppogson  This mmplies that mn a quantum point contact
the shot noise 1s absent on the plateaus of conductance quantization and appeais only at
the steps between the plateaus [2] This effect has indeed been obseived in experiments
[25-27] In a metallic, diffusive conductor, the 7, ate either exponentially small o1 of
otder unity [12] This bimodal distribution 1s tequired by Ohm’s law for the aveiage
conductance [28] and has been detrved microscopically by Nazaiov [9] and by Altshuler
et al [10] As a consequence of the bimodal distiibution, the shot-noise power 1s
reduced to one-third of the Poisson noise [6]

It has been emphasized by Landauer [29], that Coulomb mteiactions may mnduce a
further reduction of P Here, we follow the quantum mechanical treatments n assuming
noninteracting electrons, within the framewoik of the Boltzmann-Langevin approach
We do nclude the effects of electrostatic potential fluctuations m Section 5

2. Boltzmann-Langevin equation

We begm by formulating the semiclassical kinetic theory [16,17] We consider a
conductor with a d-dimensional density of states connected by ideal leads to two
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Fig 1 The conductor consists of a scattering region (dotted) connected by peifect leads to two clection
1eservons Cross sections Sy and Sg m the left and tight lead are indicated

electron reservoirs (see Fig 1) The 1eservoirs have a temperatme Ty and a voltage
difference ¥ The electrons in the left and the 1ight reservorr are in equilibrium, with
distribution function, fL(e)= fo(e — eV} and fr(e)= fo(e), respectively Hete fo is
the Fermi—Dirac distribution,

-1
fole) = [1 Texp (E‘EFﬂ @
Ty

The fluctuating distribution function f(r,k,¢) m the conductor equals (21)¢ times the
density of electrons with position r, and wave vector k, at tme ¢ [The factor (27)?
1s mtroduced so that f 1s the occupation number of a umit cell i phase space | The
average over time-dependent fluctuations (f) = 7 obeys the Boltzmann equation,

<%+5) frk,t)=0, (2 2a)
d o 0 0

The dervative (2 2b) (with v =7k/m) describes the classical motion 1n the foice field
F(x)=—ed¢p(r)/dr+evx B(r), with electiostatic potential ¢(r) and magnetic field B(r)
The term Sf accounts for the stochastic effects of scattering Only elastic scattering
1s taken mto account and electron—electron scattering 1s disiegarded In the case of
impurity scattering, the scatteting term 1n the Boltzmann equation (2 2) 1s given by

Sf(r>k7t):/dk/ Wkk’(r) {f(r7k>t)[1 - f(r,k’,t)] - f(l‘,k/,l)[l - f(r’kal)]}

- / Ak’ Wi (O L (1, k, 1) — f(1, K, )] (23)

Here, Wi (r) 1s the tiansition rate for scattering fiom k to k', which may in principle
also depend on r [We assume 1nversion symmetry, so that Wi (r) = W (r) |

We consider the stationary situation, wheie f 18 independent of 1 The time-dependent
fluctuations 6 f = f — f satisfy the Boltzmann—Langevin equation [16, 17],

(%—}—S) (Sf(r,k,l):J(r=k>t)’ (24)
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whete ; 1s a fluctuating source term repiesenting the fluctuations imnduced by the stochas-
tic natute of the scatteting The flux ; has zeio average, (j) =0, and covariance

(k) 0K, )y =2m)T o — ') 8t — ') J(r,k,K') 25)

The delta functions ensuie that fluxes ate only correlated 1f they aie induced by the
same scatteting process The flux corielator J depends on the type of scattering and
on f, but not on 8 The cortelator J for the mmpurity-scattering term (2 3) has been
denived by Kogan and Shul’man [17],

K K==W (0) [ 70 = 7+ (1= )
+3(k — k) /dk” M 0 [ 70 =7+ 7= (26)
wheic 7= 7(r,k), f = f(r.k'), and 7/ = F(r,k”) One venfies that
/ko(r,k,k’):/dk/J(r,k,k’):O, 27

as 1t should, since the fluctuating souice term conserves the number of particles
[/ dk(r,k,t)=0] For the dertvation of Eq (2 6) we tefer to Ref [17] In Section 4
we give a sular detivation for J 1n the case of bainier scatteiing

Since 7 and ;" are uncortclated for ¢ > ¢/, 1t follows from Eq (2 4) that the coitelation
function (61 6f”) satisfies a Boltzmann equation 1n the vausables t,Kk, ¢,

ds

Eq (28) forms the staiting point of the method of moments of Gantsevich et al
[30] This method 1s very convenient to study equilibiium fluctuations, because the
equal-time couelation 1s known,

(8F (K, ) 3L K, D) squibim = 217 f(1,K)[1 — F(r,k)] ok — k') d(r — 1),
(29)

(i T 3> (3f(r, k)3, K, 1)) =0 (28)

and Eq (2 8) can be used to compute the non-equal-time courelation (For a study of
thetmal noise within this appioach, sce, for example, Ref [31]) Out of equilibiium,
Eq (29) does not hold, except m the 1eseivous, and one has to 1etuin to the full
Boltzmann—Langevin cquation (2 4) to determine the shot noise In paiticulai, 1t 1s only
mn equilibiium that the equal-time corelation (6 f 6 /) vamshes for r £1/, k # k’ Out
of cquilibiium, scattering cortelates fluctuations o f at diffetent momenta and different
pomts mn space

To obtain the shot-noise power we compute the cuttent /(z) = I + 5I(¢) thiough a
cross-section Sg 1n the 11ght lead The aveiage curtent / and the fluctuations 81(¢) are
given by

_ e -
I= G /dy/dkz))f(r,k), (2 10)
Sk
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e
51(t):ZWS/dy/dkvxéf(r,k,t) 211

We denote r = (x,y), with the x-coordinate along and y perpendicular to the wie (see
Fig 1) The zero-frequency noise power 18 defined as

P=2 /dt (8I(t) 81(0)) (212)
The formal solution of Eq (24) 1s
t
of (e, k,t) = /dt’ /dr/ /dk’ e,k K, t— )00 K, 1), (213)
where the Green’s function G 1s a solution of
<% + S) Gr, kv K, 1) =8(r —v") 6k — k') (1), (2 14)

such that G =0 1f r <0 The transmission probability 7(x,k) 1s the probability that an
electron at (r,k) leaves the wire through the right lead It 1s related to G by

7(r,k) = /dt/dy’ /dk’ o G K1k, 1) (2 15)
0 Sk

Substitution of Eqs (2 11) and (2 13) mto Eq (2 12) yield for the noise power the
expression

p 2 /d /dku /d’/dk’v’
T omE | s Y x
Sk Sr
t
x / de’ /dr” /dk” AR A A

0
X /dll// /dr//l /dk/l/ g(r/ k/ 1_/// kll/ _Z”’)

% <](l’”,k//, l//)J(r/l/,k///, t///)> , (2 16)
which can be simplified using Eqs (2 5) and (2 15)

2@2 7 / /
P:W/dr/dk/dk T(r,k) T(r,k)J(r,k, k') (217)

Eq (2 17) applies generally to any conductor It contains the noise due to the current
fluctuations induced by the scattering processes inside the conductor At nonzero tem-
peratures, there 1s an additional source of noise from fluctuations which o1niginate from



MJIM de Jong CWJ Becnakker | Physica A 230 (1996) 219-248 225

the reservoirs In Appendix A 1t 1s shown how this thermal noise can be incorporated
In what follows, we restrict to zero temperature

A final remark concerns the x-coordinate of the cross-section at which the curtent 1s
evaluated [at x=xgr m Eq (2 11)] From current conservation it follows that the zero-
frequency noise power should not depend on the specific value of x This 1s explicitly
proven in Appendix B, as a check on the consistency of the formalism

3. Impurity scattering

In this section we specialize to elastic impuiity scattering m a conductor made of
a material with a spherical Fermi sutface and mn which the force field F =0 (so we
do not consider the case that a magnetic field 1s piesent) The conductor has a length
L and a constant width W (d =2) ot a constant cross-sectional atea A (d =3) (In
genetal expiessions, both W and 4 will be denoted by 4 ) We calculate the shot noise
at zero temperature and small applied voltage, eV < Ef, so that we need to consider
electrons at the Fermi energy only The case of nonzero tempeiature 1s briefly discussed
m Appendix A

It 1s useful to change variables from wave vector k to energy e =#A2k?/2m, and umt
vector fi = k/k The integrations are modified accordingly,

(2 )d /dsD(a)/— 31)

where D(e) = sgm(k/2m)?2h~2 1s the density of states, and sy 15 the surface of a
d-dimensional unit sphere (5] =2, s, =2x, 53 =4mn) We consider the case of specu-
lar boundary scatteiing and assume that the elastic impurnity-scatteiing rate Wi (r) =
W 0(e —€")/D(e) 1s independent of r This allows us to drop the transverse coordinate
y and write T(r,k)=T(x, n) for the transmission ptobability at the Fetmi level From
Egs (2 14) and (2 15) we derive a Boltzmann equation for the transmission probability
[15],

0T (x, fi)
Ox

Upny

=570 =[S 1705 1)~ 706 ) (322)
The boundary conditions in the left and the 11ght leads aie
T, 0)=0 1ifn, <0, (32b)
T(L,h)=1 1fn >0, (32c)

whete xp =0 and xg = L atre the x-coordinates of the left and right cross-section S
and Sr, respectively
The average distribution function can be expressed as

fk) =[1-T(,~K)]f(e) + T(r,~k)fr(e), (33)
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where (because of tume-reversal symmetry n the absence of a magnetic field) 7'(r, —k)
equals the probability that an electron at (r,k) has arrived there fiom the right 1ese1voi

Combinming Eqs (2 10) and (3 3), we obtain the semiclassical Landauer formula foi
the linear-1esponse conductance G = limy_¢1/V [32],

& 0fo(e)
_(275)" /dy/dk(— 7e )UAT(I‘,I()
S
/dy/daD( )< afo;”) ;—va(x i)
d

:GON/ f n, T(x, 1), (3 4)
Vg—1

with S, the closs-section at x The number of tiansverse modes N = v _;(kp/21)7 "4,
where v, 18 the volume of a d-dimensional unit sphere (vo=1, v;=2, v;=mn) One has
N =krW/r for d =2 and N = kZA/4n for d =3 One can veufy that the conductance
m Eq (3 4) 1s mdependent of the value of x, as 1t should By integrating Eq (3 2a)
over 0 one finds that
I N .
Ew dnn, T(x,f) =0 35)
We evaluate the noise power by substitution of Eqs (2 6) and (3 3) into Eq (2 17)
Some intermediate steps are given in Appendix A The 1esulting zeto-tempeiature shot-
noise powel 18

_ PN /dx/ /dﬁ' o [T(6 ) — T(x )P

UVESqUg—1
xT(x,—)[1 — T(x,—A")] 36)

This completes ow general semiclassical theory What temains 1s to compute the
transmission probabilities fiom Eqs (3 2) for a paiticular choice of the scattering 1ate
W Comparing Eqs (12) and (3 4), we note that > 7, couresponds semiclassically
to N [diin,T(x,i) Comparison of Eqs (11) and (3 6) shows that the semiclassical
correspondence to > 7,(1 — 7;,) 1s much more complicated, as 1t mvolves the trans-
mission probabilities 7'(x,f) at all scatteters mside the conductor (and not just the
transmission probability 7(0,#) thiough the whole conductor)

In a ballistic conductor, where unpurity scattering 1s absent, the transmission proba-
bilities are given by 7(x,n)=1, if n, > 0, and T(x,fi)=0, 1f n, <0 From Eq (34),
we then obtain the Sharvin conductance Gg = GoN [33] Eq (3 6) mmplies that the
shot-noise power 1s zeto, m agreement with a previous semiclassical calculation by
Kulik and Omel’yanchuk [18]

We now 1estrict ourselves to the case Wy, =ur/¢ of 1sottopic impuiity scattering Let
us first show that m the diffusive limit (¢ < L) the result of Nagaev [7] 1s recovered



MJM dc Jong CWJ Beenakker [ Physica A 230 (1996) 219 248 227

For a diffusive wite the solutton of Eq (3 4) can be approximated by

x+<n.
L

T(x,h)= (37)
Deviations fiom this appioximation only occur within a thin layer, of order ¢, at
the ends v =0 and 1 = L Substitutton of Eq (3 7) wnto Eq (3 4) yields the Drude
conductance

/
GD:GONZ, (38)

with the noimalized mean fiee path /= (va/vg_1), 1e for d =2 we have l = %n/
and for d =3 we have / = %/ Fot the shot-noise power we obtain fiom Eq (3 6),
neglecting terms of orde1 (£/L)?,

1

<1 - _> = §PP01sson 5 (3 9)

m agieement with Nagaev [7] This tesult 1s a duect consequence of the linear de-
pendence of the transmission piobability (3 7) on x, which 1s geneiic for diffusive
trtansport In Appendix C 1t 1s demonstrated that for a diffusive conductor with arbi-
ttary (nonisotiopic) umputity scattering Wy, , the iesult P = %Ppmsson 1emains vald

We can go beyond Ref [7] and apply our method to quasi-ballistic conductors,
for which ¢ and L become comparable In Ref [15], we showed how n this case
the probability T'(x,n) can be calculated numetically by solving Eq (32) With this
numeiical solution as put, we compute the conductance and the shot-noise power
fiom Eqs (34) and (36) The 1esult 1s shown m Fig 2 The conductance ciosses
ovet fiom the Sharvin conductance to the Diude conductance with mcreasing length
[15] This ciossover 1s accompanied by a ti1se m the shot noise, from zero to %Ppo,sson
We note small differences between the two- and the thiee-dimensional case m the
ciossovel tegime The crossover 1s only weakly dependent on the dimensionality of
the Fermi suiface

The dimensions d = 2 and 3 iequue a numetical solution of Eqs (32) For d =1
an analytical solution 1s possible We emphasize that this 1s not a model for true one-
dimensional tianspoit, whete quantum mterfeience leads to localization 1f L > £ [34]
The case d = 1 should iather be consideied as a toy model, which displays similat
behavior as the two and three-dimensional cases, but which allows us to evaluate both
the conductance and the shot-noise powetr analytically for arbitiaty 1atio //L In the
case d = 1 an election can move either forward o1 backwaid, so n, = n 1s either 1 o1
—1 The solution of Eq (32) 18

_x+/l(n+1)

T(x,n)= Y, (310)
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Fig 2 (a) The conductance (normahized by the Sharvin conductance Gs=NGy) and (b) the shot-noise power
(i units of Ppgson = 2€/7]), as a function of the ratio L)/ computed fiom Eqs (3 4) and (3 6) for 1sottopic
mmputity scattermg The curves coriespond to a three-dimenstonal (thin solid cuive), two dimenstonal (dashed
curve), and a one-dimensional conductor (thick solid curve) The one-dimensional case 18 the analytical tesult
from Egs (3 11) and (3 12) The two- and three dimensional cases aie numetical results

Substitution mnto Eq (3 4) yields

1

A (311)

G = GoN
where 7 =2/ Note that the resistance 1/G 1s precisely the sum of the Drude and the
Sharvin resistance The shot-noise power follows from Eq (3 6),

2D+ ALY+ 8L ] 1
P=PyN =={1- =3 Poisson
(L+20) 3 (1+LJ0)

In Fig 2 we have plotted G and P according to Eqs (3 11) and (3 12) The difference
between the results for d =2 and d =3 1s very small

Liu et al [35] have carried out Monte Cailo stmulations of the shot noise m a meso-
scoptc conductor, mn good agreement with Eq (3 12) In Ref [8], we have peiformed
a quantum mechanical study of the shot noise in a wire geometry, on the basis of

(3 12)
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Fig 3 The shot noise power P foi 1 tunnel barters in seites with transnussion probability ' =01 (dots)
and I =09 (cucles), computed from Eq (4 10) The dashed line 1s the large-n hmit P = §ll’po,sson The
mset shows schematically the geometry consideied

the Dorokhov—Mello-Peieyra-Kumar equation [36] The semiclassical results for d =1
obtamed 1 the present paper, both for the conductance and for the shot-noise power,
comcide precisely with these quantum mechanical results, m the limit N¢/L > 1 Cor-
tections (of order Py) to the shot-noise power, due to weak localization [8], ate beyond
the semiclassical appioach

4. Barrier scattering

We now spectalize to the case that the scattering 1s due to n planai tunnel bartiers 1n
sertes, perpendicular to the x-duection (see mset of Fig 3) Barrier 1 has tunnel piob-
ability I; € [0, 1], which for simplicity 1s assumed to be k and y-independent In what
follows, we agam drop the y-coordmate Upon transmussion k 1s conserved, wheteas
upon reflection k — k = (—k,k,) At barmnier 1 (at x = x,) the average densities
/ on the left side (x,.) and on the right side (x,; ) aie 1elated by

e k) =L F (0, k) + (1 = L) f(x,K) 1f k>0, (4 1a)
feo k) =1 f(xe, k) + (1 = ) f(x_, k) 1fk, <0 (4 1b)

To determine the cortelator J 1 Eq (2 5), we argue n a similar way as m Ref [5]
Consider an incomung state from the left (x,_, k) and from the right (x,+,i) (we assume
ky > 0) We need to distinguish between fowr diffeient situations

(a) Both incoming states empty, probability [1 — F(x,_,k)][1 — f (x,+,l:)] Since no
fluctuations m the outgoing states are possible, the contuibution to J 1s zero

(b) Both mcoming states occupied, probability f(x,—,k) f (x,+,K) Agam, no con-
tribution to J



230 M J M. de Jong, C W J Beenakker! Physica A 230 (1996) 219-248

(¢) Incoming state from the left occupied and from the right empty, probability
fo—, k)1 — f (x,+,E)]. On the average, the outgoing states at the left and right have
occupation 1 — I, and [, respectively. However, since the incoming electron is either
transmitted or reflected, the instantaneous occupation of the outgoing states differs from
the average occupation. Upon transmission, the state at the right (left) has an excess
(deficit) occupation of 1 — I;. Upon reflection, the state at the right (left) has a deficit
(excess) occupation of I;. Since transmission occurs with probability I}, and reflection
with probability 1 — I, the equal-time correlation of the occupations is given by

Cm)' L1 —T,)6k -k )d(r—1")
if x,xX>x or xx <x,

~(2m)/I,(1 = 1) 5k = K)S(y = ¥') 6(x + x' — 2x,)
if x<x, <x or X <x <x.

<5.f(r,k’[)5f(r/,k/,[)>:

(4.2)
In terms of the fluctuating source, the fluctuating occupation number can be expressed
as
1 v -
Ok = /dXOj<Xo,y SRR T "0) : (43)
v\ X A

where we have used Eq. (2.13). (This result is valid as long as only one scattering
event has occurred.) Combining Eqgs. (4.2) and (4.3), it is found that

(i, 0) j(r' K, ¢)) = (2m) T(1 = I,) 8(x — x,) |o.] 6(r —v')
x[6(k — k') — 8(k — k)] o(t — '), (4.4)

upon the initial condition of occupied left and unoccupied right incoming state.

(d) For an incoming state from the left unoccupied and from the right occupied, the
probability is [1 — f(x,_,k)]f (x,+,§). Similar to situation (c).

Collecting results from (a)—(d) and summing over all barriers, we find

> o —x) LA = 1) o | [0k — k') = 6(k — K]

1=1

[P IO = Fon KN+ T B0 = F0n-. k1)

if &, >0, 4.5a
Jo kK = ! (4.52)

>0 =) 11 = D) foe] [6(k = K') — 6k — K]

1=]

1 { FGe Ol = e 0T+ G, ROl = Fne k01
if I < 0. (4.5b)

Substitution of Egs. (3.3) and (4.5) into Eq. (2.17) and linearization in V' yields

P=PyN Y L(=L)T" =T, (7 + 17 =217 17, (4.6)

=1
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where 777 = T(v,4, k. > 0) [T,7 = T'(x, ,k < 0)] 1s the ttansmission probability into
the right 1eservoir of an election at the Feimi level movmg away from the right [left]

side of bariter 7 The conductance 1s grven stmply by
G = GoNT, “47)

whete T = T'(x; ,k > 0) 1s the ttansmission probability through the whole conductot

As a fitst application of Eq (4 6), we calculate the shot noise for a smgle tunnel
bariter Usmg T'=1, T~ =0, T;” =1, we find the expected 1esult [1 5] P=PoNI'(1 —
I'Y=(1 —I)Ppgysson The double-batiier case (n=2) 1s less trivial Experrments by Li
et al [37] and by Liu et al [38] showed full Poisson noise, for asymmetiic stiuctuies
(I'y <« I';) and a suppiession by one half, for the symmetiic case (I'j ~ I';) This
effect has been explamned by Chen and Ting [21], by Davies et al [22], and by otheis
[39] These theoties assume resonant tunneling m the 1egune that the applied voltage V'
1s much gieater than the width of the 1esonance This 1equues I';,I'; < 1 The present
semiclassical approach makes no 1eference to tiansmission iesonances and 1s valid for
all I';,I'; For the double-baitier system one has T =T'1I2/4, T\~ =0, T|” =I1/4,
Tym=(—=I)/4, and Ty~ =1, with A=T1+ T2 —1'1Ty From Eqs (46) and (4 7),
1t follows that

P:F%(l —I)+T3(1-T1))
(I + Ty = T'Ih)?

PPmsson (4 8)

In the it I', I, < 1, Eq (4 8) comncides piecisely with the tesults of Refs  [21,22]

The shot-noise suppiession of one half for a symmetiic double-bartier junction has
the same origm as the one-third supptession for a diffusive conductor In owt semiclas-
sical model, this 1s evident fiom the fact that a diffusive conductor 1s the contmuum
limat of a seites of tunnel bauiers We demonstiate this below Quantum mechanically,
the common origm 1s the bimodal distubution p(T) = (3>, (T —T,,)) of transmission
eigenvalues, which fo1 a double-barier junction 1s given by [40]

NI'\T,
RT\/AI\ T2 T — (AT + T T,)?

p(1) = (49)

for Te[7_,T,), with To =T T»/(1F+/1 — 4)* For a symmetiic junction (I' =Ty <
1), the density (4 9) 1s stiongly peaked near 7 =0 and 7 =1, leading to a suppiession
of shot noise, just as n the case of a diffusive conductor In fact, one can veuify that
the average of Eqs (1 1) and (1 2), with the bimodal disttibution (4 9), gives precisely
the 1esult (4 8) fiom the Boltzmann Langevin equation

We now consider n batuets with equal I' We find T=1I/4, T, =[I +1(1-1)]/4,
and 7,7 = (1 — 1)1 — I')/4, with A =1+ n(1 — I'") Substitution mmto Eqs (4 6) and
(47) yields

_1 n(1—TIYQ2+T)-T?
<] + Ir+ n(] — 1")]3 ) Protsson

(4 10)
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The shot-noise suppression for a low barrier (I'=09) and for a high bamer (I'=01)
1s plotted agamst » in Fig 3 For I' =01 we observe almost full shot nowse 1f n =1,
one-half suppression if n =2, and on creasing n the suppression rapidly reaches one-
third For I' =09, we observe that P/Ppogsson InCreases from almost zero to one-thnd
It 1s clear from Eq (4 10) that P — %Ppmsson for n — oo mdependent of I’

We can make the connection with elastic impuiity scatteting m a disordered wire
as follows The scattering occuts throughout the whole wire mstead of at a disciete
number of barriers For the semiclassical evaluation we thus take the limit n — oo
and I — 1, such that n(1 — I') = L/¢ For the conductance and the shot-noise powe
one then obtains from Eqs (4 7) and (4 10) exactly the same 1esults, Eqs (3 11)
and (3 12), as for impurity scattering with a one-dimensional density of states This
equivalence 1s expected, since m the one-dimensional model elections move either
forward or backward, whereas in the model of n planar tunnel bairiers in series the
trtansverse component of the wave vector becomes 1rrelevant

We conclude this section by considering a wire consisting of a disordered region,
between x =0 and x =L with mean free path 7, 1n seties with a barrier, at x =x, > L
with transparency I For analytical convenience, we study the one-dimensional case
d =1 (We have seen earlier that the dependence on d 1s quite weak ) By modifying
Egs (32) and (4 1), we find

x+Z(1+n)

—_ 0
T(x,n) = Ir 427 I ifxe[0,L], (4 11a)
T(x,L) ifxell,x), (4 11b)
20
T(x,—l):l—m if x > xy, (4 11c)
T(x,1)=1 if x > xp (411d)

The conductance 1s given by Eq (3 4),

r

L 412
1+ I'L/? (412)

G = GyN
The total resistance 1s thus the sum of the Drude resistance Rp = L/GoNZ and the

barrier resistance Ry = 1/GoNI” Combiming Eqs (3 6) and (4 6), we obtamn for the
shot-noise power

_ PN

L
P== /dx[T(x,l)—T(x,~1)]2[T(x,1)+T(x,—l)—2T(x,l)T(x,—1)]
0

+PoN I'(1 — I') [T (%, 1) — Ty, —1)]°

X[T(xpq, 1) + T(xp—, —1) — 2T (x4, 1) T (xp—, —1)] (413)
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Fig. 4. The shot-noise power P for a conductor consisting of a disordered region in series with a planar
tunnel barrier (see inset) as a function of its length L (in units of //I'), for barrier transparencies I'=1, 0.7,
0.4, and 0.1 (bottom to top). The dashed line is the limiting curve for I' < |. The curves are computed
from Eq. (4.14) for a model with a one-dimensional density of states. The dimensionality dependence is
expected to be small, compare Fig. 2.

Substitution of Egs. (4.11) yields

PopN 2I3/L(124% + 6/L +T'L?)  8I'(1 —I')/3
0 3(2¢ 4 I'L)* (2¢ + L)
1 1 1-T
= <§ - -3 + . 3> Ppoisson (414)
3(1+TL/JY (14 TL)f)

where we have used Eq. (4.12). In Fig. 4 we have plotted the shot-noise power against
the length of the disordered region for various values of the barrier transparency. In
the absence of disorder, there is full shot noise for high barriers (I < 1) and complete
suppression if the barrier is absent (I' = 1). Upon increasing the disorder strength, we
note that the shot-noise power approaches the limiting value P = %Ppoisson independent
of I': once the disordered region dominates the resistance, the shot noise is suppressed
by one-third. Note thatNit follows from Eq. (4.14) that for I' = % the suppression is
one-third for all ratios Z/L.

We have carried out a quantum mechanical calculation of the shot-noise power in
a wire geometry similar to the calculation in Ref. [8]. The barrier can be incorporated
in the Dorokhov—Mello—Pereyra—Kumar equation [36] by means of an initial condition
(see Ref. [41]). We find exactly the same result as Eq. (4.14) in the regime NI" > 1
and NZ/L > 1. For a high barrier (I' < 1) in series with a diffusive wire (L > /) our
results for the shot noise coincide with previous work by Nazarov [9] using a different
quantum mechanical theory. In this limit, the shot noise can be expressed as [9]

1 RrY
P=z|1+2 (7)} Proiscon » (4.15)
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with the total resistance R = Rp + Ry The limiting 1esult (4 15) 1s depicted by the
dashed cuive 1n Fig 4

5. Inelastic and electron—electron scattering

In the previous sections we have calculated the shot noise for seveial types of elastic
scattering In an experiment, however, additional types of scattering may occur In par-
ticular, electron—electron and inelastic election—phonon scattering will be enhanced due
to the high currents which are often requued for noise expeiiments The purpose of
this section 1s to discuss the effects of these additional scatteiing processes As shown
by Nagaev [42] and by Kozub and Rudin [43], this can be achieved by including
additional scattering terms m the Boltzmann—-Langevin equation Here, we will adopt
a different method, following Beenakker and Buttiket [6], 1n which melastic scatteiing
1s modeled by dividing the conductor m sepaiate, phase-cohetent parts which ate con-
nected by charge-conserving 1eservoirs We extend this model to mclude the following
types of scattering

(a) Quasi-elastic scattermg Due to weak coupling with exteinal degiees of fieedom
the electton wave function gets dephased, but its energy 1s conserved In metals, this
scattering 1s caused by fluctuations 1n the electiomagnetic field [44]

(b) Election heating Electron—election scattering exchanges energy between the
elections, but the total energy of the electron system 1s conserved The distiibution
function 15 therefore assumed to be a Fetmi-Duac distuibution at a tempetatuie above
the lattice tempcratuie

(¢) Inelastic scattering Due to electton—phonon teractions the elections exchange

energy with the lattice The electrons emerging from the 1eservon aie disttibuted ac-
cording to the Fermi—Duac distribution (2 1), at the lattice temperature 7 This 1s the
model of Ref [6]
First, we divide the conductor m two patts connected via one resetvon and determine
the shot noise for cases (a), (b) and (¢) After that, we 1epeat the calculation fo1 many
mteimediate 1eservous to take mto account that the scattermg occurs thioughout the
whole length of the conducto

The model 15 depicted i Fig 5 The conductois 1 and 2 aie connected via a 1eser-
vont with distitbution function /() The time-averaged cuitent /,, through conductot
m=1,2 18 given by

I =(Gi/e) [de[fL(e) — fra(e)], L = (Gy/e) /dff[flz(&) — fr(e)]
(51a,b)

The conductance G, = 1/R,, 1s expressed m terms of the tiansmussion matrix t, of
conductor m at the Ferm energy,

N
G = GoTrt, th =Go » T, (52)

in—1
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file) = 1 V’ 2 == )

f1,(e)

Fig. 5. Both ends of the conductor are connecled to an electron rescrvoir. Additional scattering inside
the conductor 1s modeled by dividing it in two parts and connecting them through another reservoir. The
clectron distributions in the left and the right reservoir, f1(e) and fr(e), are Fermi-Dirac distributions. The
distribution f2(e) in the intermediate reservoir depends on the type of scattering.

with 7,/ €[0,1] an eigenvalue of t,t}. We assume small el and kgTp, so that we
can neglect the energy dependence of the transmission eigenvalues.
Current conservation requires that

We define the total resistance of the conductor by
R=Ri +R,. (5.4)

It will be shown that this incoherent addition of resistances is valid for all three types
of scattering that we consider. Our model is not suitable for transport in the ballistic
regime or in the quantum Hall regime, where a different type of “one-way” reservoirs
are required [45]. Recently, Biittiker has calculated the effects of inelastic scattering
along these lines [46].

The time-averaged current (5.1) depends on the average distribution f2(€) in the
reservoir between conductors 1 and 2. In order to calculate the current fluctuations,
we need to take into account that this distribution varies in time. We denote the time-
dependent distribution by f 12{e,1). The fluctuating current through conductor 1 or 2
causes electrostatic potential fluctuations ¢ 2(2) in the reservoir, which enforce charge
neutrality. In Ref. [6], the reservoir has a Fermi—Dirac distribution f n(et) = fole —
eVip —ed (1)), with Ex + eV, the average electrochemical potential in the reservoir.
As a result, it is found that the shot-noise power P of the entire conductor is given by

[6]
R*P = R2P| + R3P;. (5.5)

In other words, the voltage fluctuations add. The noise powers Py and P, of the two
segments depend solely on the time-averaged distribution [4],

P, =26, /dem(l A+ Foll— fo)] 428, /de(fL —feP. (56)

Py =20, .dE[fU(l = f12) + fr(l = fr)] +252/d€(f12 - frR)*. (5.6b)
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Here, S, 1s defined as

S =GoTrt, th(1—t,t) =G, Z 7M1 — 1) (57)

n—l

For example, for a single tunnel barrier we have S,, = G,,, whereas for a diffusive con-
ductor S,, = %G,,, The analysis of Ref [6] 1s easily generalized to aibitiary distribution
f12 Then, we have f,(e,1) = fi2[e — edd12(¢)] It follows that Eqs (55) and (5 6)
remain valid, but f12(¢) may be different Let us deternune the shot noise for the three
types of scattering

(a) Quasr-elastic scattering Here, 1t 18 not just the total current which must be
conserved, but the cutient mn each energy range This requires

G fL(e) + Gafr(€)
G+ Gy 58

fr2(e) =

We note that Eq (5 8) imphes the validity of Eq (54) Substitution of Eq (5 8) nto
Egs (55) and (5 6) yields at zeto temperatuie the result

P= PPmsson (R?S] + RgSZ + RIR% + R%RZ) R*3 (5 9)

For a double-barrier junction m the hmit '), I, < 1, Eqs (4 8) and (59) give the
same result, demonstrating that dephasing between the barriets does not influence the
shot noise This 1s m contiast to the result of Ref [47], where dephasing 1s modeled
by adding random phases to the wave function For the diffusive wie Eq (5 9) imples
P= %Ppmsson, mdependent of the ratio between R; and R, Breaking phase coherence,
but retaining the nonequilibrium electron distribution leaves the shot noise unaltered
The reservoir model for phase-breaking scattering 1s therefore consistent with the results
of the Boltzmann—Langevin approach

(b) Electron heating We model electron—electron scatteiing, wheie energy can be
exchanged between the elections, at constant total eneigy We assume that the exchange
of energies establishes a Fermi—Dirac distuibution f,(e) at an electrochemical potential
Er + eV, and an elevated temperature 71, From current conservation, Eq (5 3), 1t
follows that

R
Vi = —1-23 1% (5 10)

Conservation of the energy of the electron system requires that 7Ty 1s such that no
eneigy 1s absorbed or emitted by the reservoir The energy current .J,, thiough conductor
m 18 given by

g = (%) /d5€[fL(€)—f12(5)], = (923) /d€8[f12(€) ~ /r(e)]
(5 11a, b)
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Since f1, 1s a Feimi-Dnac distribution, Eq (5 11) equals

J1 =01 +lle=Ki(To — Tin) + pulfe, (5 12a)
Jr= 0o+ polfe = Ky(T12 — To) + palfe (5 12b)

whele py = Ep + %e(V + Vi) and pup = Ef + %eVlz The energy current J;, 1s thus the
sum of the heat current O, and of the particle curient I/e times the average energy [,
of each electron The heat cutient Q,, equals the diffetence n temperature times the
thetmal conductance K, = G, LoT,,, with T, = %(TO + T12) and the Loientz number
Ly = %(kB/e)zn2 Thete aie no theimo-electric contuibutions 1n Eqs (5 1) and (5 12),
because of the assumption of eneigy ndependent tiansmission eigenvalues [48] Fiom
the 1equuement of enetgy conservation, Jy =J;, we calculate the electron tempetature
i the mtermediate teservou

ﬁRmz

T122:TC%+£0 R2

(513)

At zeto temperatuie  the left and 11ght 1eservon and for Ry = R, we have kg7 =
(V/3/2m)e|V| ~ 0 28e|V| For the shot noise at Ty =0, we thus obtam usmg Eqs (5 5)
and (5 6),

] 7" f' 132
P:QCB 12 +2 ]21 {e(f/ — V2) + ks T2[2 In(1 4 e = ") — l]}
+2S2 % {eV +kgTi2[21In(1 + e o MsTi ) — 1]} (514)
2 12 BL12

The shot noise for two equal (R = Ry) diffusive conductois,

P = Ppmsson—l— [1 +In2 +In cosh(ﬂ:/2\/§)} 2~ 038 Ppoisson » (515)
™3
1s shghtly above the one-thud suppiession This shows that the cuiient becomes less
conielated due to election—election scatteting
(¢) Inelastic scattermyg This 1s the model of Ref [6] The distiibution function of
the mteimediate 1esetvon 1s the Feimi—Duac distribution at the lattice temperatuie T,
with an elcctiochemical potential p15 = Ey + eV|y, wheie Vi, 1s given by Eq (5 10)
This 1eseivon absoibs eneigy, 1n contiast to cases (a) and (b) The zeiro-tcmpeiatuie
shot-notse power follows fiom Eqs (535) and (5 6) [6]

RISt + R3S,

P :PPomson R2

(516)
For the diffusive casc, with Ry = R,, one has P = %PpomOn The 1nelastic scattering
gives an additional suppiession [6]

For a double-baitter system 1t 1s plausible to modcl the additional scatteting by a
single 1esetvon between the batttets In a diffusive conductor, however, these scatteiing
processes occuil thioughout the system It 1s theiefore mote tealistic to divide the
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conductor mto M segments, connected by reservoirs. Eq. (5.5) becomes

M
RPP=> R.P,, (5.17)
m=1

where the noise power P, of segment m is calculated analogous to Eq. (5.6). We
take the continuum linmt A/ — oo. The electron distribution at position x is denoted
by f(e,x). At the ends of the conductor f(g,0) = fr(¢) and f(e,L) = fr(e), te.
the electrons are Fermi—Dirac distributed at temperature 7 and with electrochemical
potential x(0) = Er + eV and p(L) = EF, respectively. The value of f(e,x) nside the
conductor depends on the type of scattermg, (a), (b), or (¢), and 15 determined below.
In the expression for P, only the first ierm of Eq. (5.6a) rcmains. It follows from

Eq. (5.17) that the noise power 1s given by

L
4
P:ﬁ/dx%. def(e,x)[1 — f(e,x)], (5.18)
0

where p(x) 18 the resistivity at position x. The total resistance 1s given by

L
1
R:Z/dxp(x). (5.19)
0

For a constant resistivity p we find from Eq. (5.18)

L
P= 1?7 /dx/ds fle, )1 — f(e,x)]. (5.20)
0

This formula has been derived by Nagaev from the Boltzmann—Langevin equation for
1sotropic 1mpurity scattering m the diffusive limit [7]. Our semiclassical calculation
the previous sections 1s worked out 1n terms of transmission probabilities 1ather than n
terms of the electron distribution function. However, one can casily convince oneself
that 1n the diffusive limit and at zero temperature, Eqs (3.6) and (5.20) are equivalent.
The present derivation shows that the quantum mechanical expression for the noise
with phase-breaking rcservoirs leads to the same result as the semiclassical approach.
We evaluate Eq. (5 20) for the thiee types of scatterng

(a) Quast-elastic scattering This calculation has previously been performed by Na-
gaev [7] and 1s similar to Section 3. Current conservation and the absence of inelastic
scattering requires

(32
ﬁ/(e,x)zo. (5.21)
The solution 1s

L —
fe0) = =1 (e 0+ T /(L) (5.22)
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Fig 6 The noise power P (divided by the Johnson-Nyquist notse 4kgToG) veisus applied voltage ¥ for a
disordeied wite for modcl (a) of quast elastic scatteting (solid cuive) (b) of election heating (dashed cuive)
(¢) of nelastic scattetng (dash dotted curve) accordmng to Eqs (523) (532) and (535) 1espectively The
uppet left msct gives the clection distuibution in the middle of the wne f(e %L) as a fuonction of energy ¢
for model (a) (b) and (¢) The lower night mset shows the temperatme 7¢(x) as a function of the position
x for model (b) Fou both mscts kgTp — i%(,lV]

The election distribution at x = %L 1s plotted m the left inset of Fig 6 Substitution of
Eq (522) mnto Eq (520) yelds [7]

2
P = [4ksTo + eV coth(el/2ksTo))] (523)

At zeto temperatuie the shot noise 1s one-thud of the Poisson noise The temperature
dependence of P 1s given m Fig 6

(b) Electron heuating This calculation 1s due to Martimis and Devoret [49] Simi-
la1 derivations on the basis of the Boltzmann-Langevin equation have been given by
Nagaev [42] and by Kozub and Rudin [43] The election distitbution function 15 a
Fermi—Dirac distuibution at an elevated tempeiature 7o(x),

_ e—un
f(&,x){1+exp {m}} (5 24)

The cuirent density (1) at v 1s

j(x) = feDD(EF)% /de f(e,x), (525)
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where D 1s the diffusion constant and D 1s the density of states We neglect the
energy dependence of D and D The resistivity p 1s given by the Einsten relation,
p~ ! = e?DD(Er) Current conservation yields
9 =0, (526)
0x
which implies for the electrochemical potential

ux)=Fr + Tev (527)

The eneigy-current density j.(x) ts determined accoiding to

0
12(0) = ~DD(ER) 3 [dzef(ex) = mx e + o), (528a)

OT(x)
Ox
The heat-current density jo(x) equals the temperature gradient times the heat conduc-
trvity x(x) = Te(x)Lo/p Because of encigy conservation the divergence of the energy-

curtent density must be zero,

(5 28b)

Jo(x) = —x(x)

U _ (529)
Ox

Combining Eqs (5 28) and (529), we obtain the followmg differential equation for
the tempeiature

i a2 (VY
672[T°(x) ]4—£—0 (z) (530)

Taking 1nto account the boundaiy conditions, the solution 1s

T(v) = /T3 + /LY — (/L)) V2o (531)

In the nuddle of the wue the clectron temperatute takes 1ts maxunum value For zeio
lattice tempeiatuie (7Tp=0) one has kg7, (%L) =(+/3/2m)e|V| ~ 028e| V| The election
distribution at x = %L 18 depicted 1 the left nset and the election tempelatuie profile
(531) 1s plotted 1n the 11ght mset of Fig 6

Eqgs (520), (524), and (531) yield for the noise power the 1esult

L

P= 2L dx kg T (x)
0
2k To on (kT ¥ V3 V3 eV
= el | = (B0} 0 Y2 arctan | =2 532
Rt [ﬁ(eV>+2n TN 28 Ty (532)

Eq (532) 1s plotted m Fig 6 Fot the lumt ¢V > kgTp one finds [50]

1
P= Z\/gpl’msson ~ 043 PPmsson (5 33)
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Due to the electron—electron scattering the shot noise 1s mcreased The exchange of
energies among the electrons makes the cuirent less correlated The suppression factor
of % 3 1s close to the value observed 1n an experiment on silver wires by Steinbach
et al [50]

(¢) Inelastic scattering The electron distribution function 1s given by

-1
f(ex) = {1 +exp F;T‘;(O’Q} } , (5 34)

with p(x) according to Eq (527) For the noise power we obtamn from Egs (520)
and (5 34)

o 4kB To
- R
which 1s equal to the Johnson—Nyquist nowse for arbitrary ¥ (see Fig 6) The shot
noise 1s thus completely suppressed by the melastic scatteing [6, 13,42,43,51,52]
These calculations assume a constant cross-section and tesistivity of the conductor
One mught wonder, whether vatiations 1n cross-section and tesistivity, which will cer-
tainly appeair 1 experiments, change the one-thud suppiession for the case of elastic
scattermg and the }—‘\/§ suppression for the case of electron-heating In Appendix D,
it 1s demonstiated how this can be calculated on the basis of Eq (5 18) It 1s found
that the tesults [Eqs (5 23), (532), and (5 35)] ate independent of smooth variations
m ctoss-section and 1esistivity We thus conclude, that both the one-third suppiession
as well as the %\/5 supptession aie 1n principle observable m any diffusive conductor

P (535)

6. Conclusions and discussion

We have derived a geneial foimula for the shot noise within the fiamewoik of the
semiclassical Boltzmann—Langevin equation We have applied this to the case of a
disordeted conductor, wheic we have calculated how the shot noise crosses over fiom
complete suppiession m the ballistic limit to one-thiud of the Poisson noise m the dif-
fusive imit Fuithetmote, we have applied owr foirmula to the shot noise 1n a conductor
consisting of a sequence of tunnel bairiets Finally, we have considered a disoidered
conductor m seiles with a tunnel bariier For all these systems, we have obtained a
sub-Poissonian shot-noise powei, 1 complete agieement with quantum mechanical cal-
culations 1n the Iiteratuie This establishes that phase coheience 1s not tequued for the
occurrence of suppressed shot noise 1 mesoscopic conductors Moieovel, it has been
shown that for diffusive conductors the one-thud supptession occuis quite genetally
This phenomenon depends neither on the dimensionality of the conducto1, nor on the
microscopic details of the scattering potential

We have modeled quasi-elastic scatteting (which bieaks phase cohetence), elec-
tion heating (due to election—eclection scatterng), and inelastic scattering (due to, e g,
electton—phonon scattering) by putting chaige-conserving reservous between phase-
cohetent segments of the conductor If the scatteimng occuis thioughout the whole
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length of the conducto1, we end up with the same formula for the noise as can be ob-
tamed directly from the Boltzmann—Langevin approach [42,43] In the case of election
heating, the shot noise 1s %\/5 of the Poisson noise, which 1s slightly above %Ppmsson
for the fully elastic case The experiments of Refs [11,50] are likely in this election-
heating regime We have demonstrated that both the one-third suppression and the 41\/5
suppression are msensitive to the geometry of the conductor, as long as the transport
1s 1n the diffusive regume For futwe wotk, 1t might be worthwhile to take the effects
of electron heating and imelastic scattering mto account through the scatteling terms
m the Boltzmann—Langevin equation, as has been done in Refs [42,43], m order to
calculate the crossover between the different regimes

In both the quantum mechanical and semiclassical theories the elections aie treated
as noninteracting particles Some aspects of the electron—electron interaction are taken
mto account by the conditions on the reservoirs m Section 5, where fluctuations n the
electrostatic potential enforce chatge-neutrality We have shown that these fluctuations
suppress the noise only 1n the presence of nelastic scattering Coulomb tepulsion is
known to have a strong effect on the noise 1n confined geometries with a small capaci-
tance [39,53] This 1s relevant for the double-batrier case tieated m Section 4 Theoties
which take the Coulomb blockade mto account [39, 53] predict a shot-noise suppiession
which 1s periodic m the applied voltage This effect has recently been observed fo1 a
nanoparticle between a surface and the tip of a scanning tunneling mictoscope [54] Tn
open conductols we would expect these mteraction effects to be less important |55]

Acknowledgements

We thank M H Devoret and R Landauer fo1 valuable discussions This teseaich
has been supported by the “Nederlandse o1ganisatic voor Wetenschappelijk Onderzoek”
(NWQO) and by the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM)

Appendix A. Thermal noise

In this appendix 1t 18 shown how theimal f{luctuations can be incoiporated m the
theoty These are 1gnored in Sections 3 and 4 where zeio tempetatuie 13 considered
At nonzero temperatures we need to take into account the time-dependent fluctuations
n the occupation of the states 1 the 1eservoirs The foimal solution of the Boltzmann—
Langevin equation (2 4) can bc written as

!
Sf(rK 1) = /dt’ /dr’ /dk’ G(r, k.1, K, 1 — £ ) K1)
—00 1%

f
+ /dt’/dy/ /dk’vxg(r,k,r',k',r—t')(Sf(r’,k’,t’)

oo St k >0
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t
+ /dz’/dy’ /dk’|vrig(r,k,r’,k’,z—t’)éf(r’,k’,t’), (A1)

o0 Sk I <0

wheie V denotes the scattering region of the conductor The second and thud term
describe the time-dependent fluctuations of states originating fiom the reservon which
are 1ignoted m Eq (2 17) The corielation function of the incoming fluctuations which
have not yet teached the scattering 1egion [1e for the left lead x,x" < xp, ki, k] >0
and for the 1ight lead a,2" = xg, &y, k. < 0] follows fiom Eqs (2 8) and (2 9)

OF KOS K ) =) olr — v —v(t — /)] 6(k — k')
x fLr(E)1 — fLr(e)] (A2)

The deuvation of the noise power proceeds similar to the detivation of Eq (2 17)
Substitution of Eq (A 1) mto Eqs (2 11) and (2 12) and using both the corielation

functions (2 5) and (A 2), yields

262

pP= Gy v/dr /dk /dk’ T(r,K)T(r, k" )J (1, k,K)

T / dy / dk o, (6K Fu(o)1 = 1()]

Sy k >0
+/dY/dk|v\|[1 = TP frE — fr(e)] (A3)
Sy 1 <0

Let us apply Eq (A 3) to the case of mmpuiity scatteting, tieated in Section 3 for
zero tempelatute By changing vauables according to Eq (3 1) and by substitution of
Eqs (26) and (3 3), we obtain

1
~ ~t
P =24 /d\ /deD(a)/gE / dsi Way [T(wi) = T(n, @2
Sd d
0

L@ = fLE] = T(x, =) + fr(e)[1 = fr()] T, — #)
+ ) = frEFPT(y, =1 — T(v,— )]}

2624 /dsmem(e)[l - e | L on 10,0
—26%*4 /dsD(E)fR(e)[l - fR(E)]/?;vn\[l — T(L, B, (A 4)

whete we have used Eq (32) and W, =W,. Eq (A 4) can be simplified by means
of the 1elations

!
Jou [ 2 [ S e - TP = [ S () - 0.0,
d d Sd
° (AS)
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/dx

—— / f—f‘ ne [T3(L, R)T(L, — i) — T*(0,R)T(0, — A)], (A.6)

d

dﬁ’

Waw [T(x, 1) — T(x, 8)PT(x, — i)

which can be derived fiom Eq. (3.2). For the distribution function we apply the 1dentity
fo(l — fo)=—kgTy 8f0/0c and define

F(VTy) = /dE[fL(e’:‘)—fR(E) —eIVIcoth <%> — 2kgTy . (A7)

Collecting results, we find for the noise power the expression

P 2F(VT0)G0N/ /dn/dn an [T(x, ) — T(x, 2]

VESqU4—1

xT(x, — M)[1 — T(x,— )] + 4k Tp GON/ n, T(L, fi) (A.8)

Ud—1

At zero voltage, Egs. (3.4) and (A.8) reduce to the Johnson-Nyquist noisc P =4k T G.
At zero temperature, Eq. (A.8) reduces to Eq. (3.6) Applying Eq. (A.8) to impurity
scattering for the case d =1 of Section 3, we obtain

2G eV 1 1
r={oren (s )1 - i) o [ il
(A.9)

The voltage dependence of the noise 1s plotted m Fig. 7 for various values of L/Z.
The result for the diffusive limut 1s equal to Eq. (5.23). Also depicted 1s the classical
result for a smgle high tunnel barrier (I" < 1),

eV
P = 2el|l|coth A.10
e|l| co <2kBTo>’ (A.10)

which can be derived within our theory by combining the results of Section 4 with the
analysis of this appendix.

Appendix B. Noise at arbitrary cross-section

Let us verify that the noise power does not depend on the location x of the cross-
sectron at which the current 1s cvaluated The fluctuating current through a cross-section
Sy at cootdmate x 18 defined by

SI(t,x) = ﬁ/dy /dk 0. 81 (1,K,1), (B 1)
S,
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Fig 7 The noisc power P (divided by the Johnson—Nyquist noise 4kpTyG) veisus applied voltage V for a
disordered wue (bottom to top) in the ballistic limit L/¢ — 0, the intermediate regime L// =1, and m the
diffusive lumt L/ — oo, as given by Eq (A 9) The dashed line 1s the noise n a tunncl bartier, according
to Eq (A 10)

and leads to
o0

P(x,x') =2 / de (SI(t,x) SI(0,x")) . (B.2)

We use the following relation
Jar fay face, 00 rokos ) = T(x0. ko) — OG0 ). (B.3)
o S

which follows from Egs. (2.14) and (2.15). Here, @(x) 1s the unit-step function. Eval-
uating Eqg. (B.2) along the lines of Section 2, we find

7 2 ? ' ! /
P(x,x') = (7;-)—[; / dro / dk, / dk J (ro, ko, k})
x[T(ro, ko) — Olxo — x)] [T(ro, kg) — Oxo — x)] . (B-4)

We use the fact that the mtegral over k or over k' of J(r,k, k) vanushes, Eq. (2.7),
and find that P(x,x") 1s mdependent of x,x'.

Appendix C. Nonisotropic scattering

We wish to demonstrate that the occurrence of one-third suppressed shot noise 1n the
diffusive regime 1s mndependent of the angle-dependence of the scattering rate. We write
Wiar =w( - 8 )vg, with arbitiary w. In the diffustve limut, the transmussion probability
1s given by

T(x,0)=T(x)+t(n), (C.1)
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/dx/ d“/@i W [T(x 1) — T06 8)PT(x, — )

=5 / dn m [T2H(L, R)T(L, — i) — T%(0,R)T(0, — )], (A 6)
Sd

which can be dertved fiom Eq (3 2) For the distribution function we apply the identity
fo(l — fo)= —kaTy 0f/0c and define

F(V,TO)E/dE[fL(E)—fR(e) —elV’coth( elVl > — 2kg Ty (A7)

2kp T
Collecting 1esults, we find for the noise power the expiession
L
p = Z - T0)GoN /dx /dﬁ /dﬁ’ W [T(x,8) — T(x, )]

US4 Ud—1

XT(x, — A1 — T(x, — A')] + 4kpTy GoN / Ud" nT(L, i) (A8)
d 1

At zetro voltage, Eqs (3 4) and (A 8) reduce to the Johnson-Nyquist noise P=4kg TG
At zeio temperature, Eq (A 8) reduces to Eq (3 6) Applying Eq (A 8) to impuuity
scattering for the case d = 1 of Section 3, we obtain

2G eV I 1
p= 3o (s - ) o P )
(A9)

The voltage dependence of the noisc 1s plotted mn Fig 7 fot vartous values of L/’
The result for the diffusive limit 1s equal to Eq (523) Also depicted 1s the classical
result fo1 a single high tunnel baitter (I' < 1),

eV
P = 2¢l/| coth ( ) (A 10)

2k Ty

which can be detived within our theoty by combining the 1esults of Section 4 with the
analysis of this appendix

Appendix B. Noise at arbitrary cross-section

Let us venfy that the noisc power does not depend on the location x of the cioss-
section at which the curient 1s evaluated The fluctuating curient thiough a cross-section
S¢ at coordmate x 1s defined by

SI(t,x) = (3% /dy /dkv\bf(r,k,l), B 1)
S
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Fig 7 The noise power P (divided by the Johnson Nyquist noise 4kgToG) veisus applied voltage V for a
disordered wire (bottom to top) 1n the ballistic limit L/ — 0, the ntermediate 1egime L/7 = 1, and n the
diffusive lumit L/Z — oo, as given by Eq (A 9) The dashed line 1s the noise 1n a tunnel barier, according
to Eq (A 10)

and leads to
o>

P(x,x') =2 / dr (81(t,x) SI(0,x")) (B 2)

—OQ

We use the following 1elation
/dt /dy /dk vy G(r, K, 19, Ko, 1) = T'(ro, ko) — O(xg — x), (B3)
0 s

which follows fiom Eqs (2 14) and (2 15) Here, ®&(x) 1s the unit-step function Eval-
uating Eq (B 2) along the lines of Section 2, we find

2
Px,x) = (22%)(, /dro / dko / dk} J (ro, ko, ki)
X[T(ro, ko) — O(xg — 1) [T(ro, kg) — O(xp — x')] (B4)

We use the fact that the mtegial over k or over k/ of J(r,k,k’) vanishes, Eq (2 7),
and find that P(x,x’) 1s independent of x, v

Appendix C. Nonisotropic scattering

We wish to demonstiate that the occurience of one-thid suppiessed shot noise m the
diffusive 1egime 1s mndependent of the angle-dependence of the scatteing 1ate We wiite
Won =w(i 0 )vp, with aibittary w In the diffusive limut, the transmission probability
1s given by

T,n)=T(x)+t(n), (C1)
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where T(x)=x/L and #(n,) of order /L, with [ dit(n,)=0 The conductance 1s given
by the Drude result, Eq (3 8), where the normalized mean free path 7 can be deived
as follows Upon mtegration of Eq (3 2a) over dfin, and substitution of Eq (C 1),
one obtains

di ,dT df’ N /
S_:ll I’lf dECX) _ / . ?I;_ nlw( n n ) [[(nx) — Z‘(I/lv):l (C 2)

Comparison with Eq (3 4) yields

-1
7= Udl{/~ﬂwa1~nﬂ (3)

From Eq (3 2a) 1t also follows that

I /ﬁ/mWMPNMW

:w—/—mﬂmm
Ox Sd

_ZGUF Vg1 dT(X)

o G()N.S‘d dx ’
where we have used Eqs (3 4) and (C 1) By substitution of Eq (C4) into Eq (3 6)
and neglecting terms of order //L, we find

Cc4

d7(x) 1
= =P 018801 >
o i (C5)

P = 2PPolsson /d-x T(X)[l -

independent of w

Appendix D. The effect of variations in cross-section and resistivity

In Section 5, we have calculated the shot noise n a diffusive conductor for several
types of scattering It has been assumed that both the aiea of the cross-section 4 and
the resistivity p are constant along the conductor Below, we biiefly desciibe how the
calculations are modified by taking mnto account a non-constant, but smoothly varying
area A(x) and resistivity p(x)

Ouw starting pomt 1s Eq (5 18) It 1s convenient to change vanables from x to 7,
defined according to

Y

1 [, , A()
= [d
n Ro/x 207 (D1)

In other words, # 1s the ratio between the iesistance of the conductor fiom 0 to x
and the total 1esistance Eq (5 18) thus becomes
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1
P=3 [dn fasrenn - ren. (D2)
0

It 15 now straightforward to repeat the calculation for the diffusive conductor in Sec-
tion 5. It follows, that all the results [Eqs (5.23), (5 32), and (5.35)] remamn unaltered
Here, we will just illustrate how the calculation for the case of electron heating 1s done.

Starting from Eq (5.24) we find for the current at position #

1 0

I(n)= TR o u(n) (D.3)

From current conservation {/(n)=I for all # €[0, 1]} 1t follows that the electrochemical
potential 1s

H(n) = Ep + (1 — eV . (D4)

The energy current 18 given by

I L 0
1) =205~ 0 1) ). (D.5)

Similar to the detivation mn Section 5, we thus find

L) = /T3 +n(1 — )V?/Lo, (D6)

from which 1t follows that the noise 1s given by Eq. (5.32), as before.
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