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Dynamical Stripe Correlations in Cuprate 
Superconductors. 

J. Zaanen,  O. Y.  Osman ,  H. Eskes  and W.  van  Saar loos  

Lorentz Institute for Theoretical Physics, Leiden University, P,O.B. 9506, 
2300 RA Leiden, The Netherlands 

Based on the recent observation of the stripe instability in Cuprate super- 
conductors~ we present the hypothesis that the normal state finds its origin 
in a particular kind of stripe-quantum fluid. The charged domain walls are 
interpreted as strings on a lattice and the quantum fluctuation of an indi- 
vidual string is driven by a proliferation of kinks. The kink dynamics gives 
rise to meandering fluctuations of the string as a whole. We identify a spe- 
cial string vacuum characterized by a proliferation of charged kinks. This 
state carries a Luttinger-liquid like electronic excitation spectrum. PACS 
numbers: 64.60.-i, 71.27.+a, 74.72.-h, 75.10.-b 

1. I N T R O D U C T I O N  

There is a widespread belief that  the electron-fluid realized in cuprate 
superconductors is unrelated to the normal metallic state described by 
Fermi-liquid theory. Emery and Kivelson were the first to point out the 
possibility that  even the quasiparticle concept itself could be irrelevant in 
cuprates. 1 They suggested the possibility of dynamical phase separation: 
the carriers would segegrate in regions which would persist as fluctuating 
quantities in the metal  and the superconductor. 

Nature seems to have found an even more attractive solution. The car- 
riers form line-like many particle bound states which are at the same time 
anti-phase boundaries in the N6el spin background (charged domain walls). 
It was found some time ago that  these textures correspond with the ground 
states of semiclassical mean field theory in doped Mott-Hubbard insulators. 2 
Subsequently, ordered charged domain wall  structures were found experi- 
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mentally in both  two dimensional nickelates and manganites, which appear 
to be electronically more strongly localized than the cuprates, a Initially, 
these stripes were considered as rather far-fetched in the context of high T~ 
superconductivity, but this changed radically with the experimental discov- 
ery by Tranquada et al. 4 that these stripes actually freeze out at a doping 
concentration x -- 1/8 in a system showing the so-called LTT (low temper- 
ature tetragonal) lattice deformation. 

It was a long standing mystery why at doping concentrations x = 1/8 
the superconductivity vanished in systems showing the LTT deformation 
(La2-xBaxCu04 and La2-x-yNd~SrxCu04). Using neutron scattering, 
Tranquada et al showed that  a static striped phase appears, and because 
the holes are bound to the stripes this state is electrically insulating. A 
strong case can be made that  stripe correlations will persist in the metallic 
state. 4 The arguments are straightforward: (i) the LTT deformation acts as 
a collective pinning potential which is only effective if the fluid is stripe-like, 
(ii) at least the spatial aspects of the dynamical incommensurate spin fluc- 
tuations seen in the metallic and superconducting states fit the expectations 
for a striped fluid. 

We have focussed our attention on the question in how far the experi- 
mental reality in the euprates can be recovered from the ~stripe-only' limit. 
We consider the case where the bare holes are tightly bound into charged 
domain walls. 5 The physics at low energy is then governed by the collective 
quantum- and thermal fluctuations of the domain walls themselves, in ad- 
dition to the degrees of freedom of the spins inside the magnetic domains. 
Specifically, in the light of the experience with incommensurate (domain 
wall) fluids, the most important stripe degree of freedom should be its me- 
andering fluctuation. We showed elsewhere that the peculiar dynamics of the 
spin fluctuations observed in the normal state appears quite naturally in the 
context of the thermal meandering fluctuations in a stripe (incommensurate) 
fluid. 6 At the same time, it is fact that  the vacuum in the high-Tc super- 
conductors carries also excitations which mimiek fermion-like quasiparticles 
and at first sight it is much less obvious what these fermions have to do with 
fluctuating stripes. Here we will summarize our work on a class of models 
( 'quantum lattice strings') 7 which might describe the short time dynamics 
of the stripes. The collective motions of these strings are driven by a micro- 
scopic kink dynamics and there are distinct phases where kinks proliferate 
which carry half a hole. s These kinks seem to form Luttinger liquids and the 
external electron or hole attaches to these kinks in a way which is similar to 
what is found in 1+1D electron systems. The single electron spectral func- 
tion shows distinct cusps which at first sight look like quasiparticle peaks. 
spanning up a big fermi-surface already at low kink concentration. 
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2. Q u a n t u m  la t t i ce  s t r ings  

In addition to the 'stripe only' hypothesis, we assume that the micro- 
scopic dynamics of the charged domain walls is dominated by commensura- 
tion effects: (i) a lattice commensuration: the holes, and thereby the stripes, 
tend to localize on lattice sites. (ii) An intra-stripe charge commensuration: 
special stability is obtained when every hole adds a definite unit of length 
to the stripe, and this length may depend on the orientation of the stripe. 
Specifically, we assume that the maximum length added by one hole cannot 
exceed 2a, where the link to the next hole is oriented along the (1,0)/(0,1) 
direction (Fig. 1). This corresponds With the charge commensuration ob- 
served in the ordered cuprate striped phase. In addition, one hole adds only 
a length v~a  when the stripe is oriented along a (1,1) and equivalent direc- 
tions, as is the case in the nickelates. As a consequence, adding a physical 
hole to a (1,0) stripe causes a double kink (Fig. 1). By single hole hoppings, 
this double kink (and thereby the hole) delocalizes into a pair of propagating 
kinks. If these kinks proliferate, the stripe as a whole might delocalize. 
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Fig. 1. charge domain wall in the cuprate (left) and the (1,+1) kinks 
assumed to be responsible for the quantum melting of the striped phase. 
Notice that the on-stripe doubling of the unit cell is not seen experimentally, 
and is only indicated for counting purposes. The corresponding quantum 
lattice string configurations are also indicated 

The above can be further abstracted by postulating quantum lattice 
string models. 7 These models describe a collection of N 'holes' forming all 
possible connected one dimensional trajectories on a two dimensional square 
lattice. The connectedness is defined by local rules. The minimal string is 
obtained by insisting that the links between the holes connect either nearest- 
neighbour ((0, 1), (1, 0), 'horizontal') or next nearest neighbour ((1, 1), etc., 
'diagonal') sites on the square lattice (Fig. 2b). The (1, 1) links are the 
maximal length connections in the model, and correspond with the (1,0) 
stripes in the cuprates, while the (1, 0) links in the model are equivalent to 
the (1, 1) kinks in the cuprates. Let x y (~/, ~l ) be the position of hole l. We 
write the classical potential energy as, 

~:ct _-- ] ~  [s _ nfl - 1)5(In~+~ - ' # 1  - 1) 
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+  ,j:0Z c js(Iv +2 - - - - J ) j .  (1) 

The single-link term (K) represent the energy differences between (1, 0) and 
(1, 1) links, while the two-link term (Lij) represents discretized curvature 
energy. The energies of various string configurations are indicated in Fig. 2a. 

The string is quantized by introducing conjugate momenta #~, [r h[ ~c~, #~']~, ] = 

idt,~, ~,~,. A term eia~P causes hole l to hop a distance ,~ in the ~ direction. 
The simplest, nearest neighbouring form for the kinetic energy is, 

l 

where P~t~(l) is a projector restricting the motion of hole I to string config, 
urations. 
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Fig. 2. Energies and tunneling amplitudes of the various local configurations 
of the strings. 

From a theoretical point of view, the above model is rather interesting: 
it describes a I + I D  dynamics, subject to 2+lD boundary conditions via 
the geometric interpretation of the dynamics in terms of strings. The latter 
'embedding' problem renders these string problems to be more rich than mere 
one dimensional problems. To identify the nature of the underlying I + I D  
problem it is useful to neglect the boundary conditions altogether. Consider 
an infinitely long string and single out one point, the "guider point'. The 
motion of this single point becomes irrelevant in the thermodynamic limit 
and one can now consider the problem entirely in terms of the link variables 

xc~y  ~ a c~ (5•1, Vt ) with 5Vt = ~1+1 ~/l ' Hence, this is like a one-dimensional lattice 
with a pair of dynamical variables on every site, taking both the values 
5~7 a = 0, 4-1. Associating these dynamical variables with the Ms states of 
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the local spin, the dynamical problem maps onto a system of two locally 
coupled S = 1 quantum spin chains. 7's 

Alternatively, a quantum string should correspond with a surface 
('world sheet') in Euclidean space time. By means of the Suzuki-Trotter 
mapping one finds that the present string maps onto the problem of two cou- 
pled restricted solid-on-solid (RSOS) models, where the two height flavors 
correspond to r/~ and r/~. In fact, this equivalence between 1+1D quantum 
spin problems and quantum strings was implicitely exploited in the sere- 
inal work by den Nijs and Rommelse, 9 dealing with the S = 1 quantum 
Heisenberg chain. Let the string step forwards always in for instance the x 
direction (5r]~ = 1, VI): the 'directed' string. In this case, a single spin chain 
remains, corresponding with the motions of the string in the y direction. At 
the Heisenberg point of the spin problem, a partial ordering occurs on the 
string: the string as a whole is localized in the horizontal (1,0) direction, 
but diagonal kinks proliferate which loose their positional order, but keep 
their alternating order: on every (1, 1) kink follows a (1, -1 )  kink and vice 
versa, although the number of (1, 0) (horizontal) links between these kinks 
is arbitrary. This topological order explains the incompressible nature of the 
fluid realized in the spin chain. 

The directed strings are characterized by an average direction in space. 
This is unrelated to a symmetry of the model Eq.'s (1,2). Our finite size 
studies suggest that the strings commonly undergo a zero temperature 11 
spontax~eous symmetry breaking to a directed state. Extreme curvature 
is needed for the string to loose its direction and this costs both kinetic- 
and potential energy. We studied systematically the phase diagram of the 
directed string/spin-chain/RSOS surface system. 7 In addition to the six 
known phases, 9 we discovered 4 new phases. Altogether, there are five clas- 
sical phases (e.g. flat strings along (1, 0) or (1, 1) directions), three partial 
ordered phases (like the Heisenberg spin chain) and two quantum delocal- 
ized phases which are both of the free string variety, showing a meandering 
length increasing as the logarithm of the arclength. 

3. T h e  f e rmion ic  exc i ta t ions .  

In the above, an essential aspect is neglected altogether: the embedding 
of the string in 2+1D, and its interpretation as bound state of holes. It is 
natural to consider open spatial boundary conditions, and the allowed string 
configurations are those where both the begin- and end point of the string lie 
on the surface. Consider a L • L square. The longest distance in this lattice 
corresponds with the line connecting two opposite corners, Lrnax = v~L.  
Given N holes, the longest ('fully stretched') string has length v ~ N  and 
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when N : L the string can just span the largest distance in the lattice. As 
a consequence, by local moves (hops of the holes) the string can deform to 
connect any pair of boundaries of the lattice (figure 3). For directed strings, 
the string boundary conditions are automatically taken into account, andwe 
call this the 'saturated string'. Alternatively, it is also possible to :oversatu. 
rate' the string by adding more holes than necessary to cover the diagonal. 
This excess length gives rise to excess curvature, and it is convenient to de, 
fine a 'characteristic' configuration where this curvature is stored in pairs of 
(1, 0) - (0, 1) kinks with regard to an otherwise fully stretched string (Pig. 
3). l~ Although this additional curvature is energetically unfavourable; it is 
controlled by an independent parameter: the thermodynamic potential of 
the holes. As function of this extra parameter, we find a number of addi- 
tional phases which carry fermion-like excitations. 

I/ (a) 
~==:1,: , ~ .  " . 

,~ 

Fig. 3. The saturated string on a 5 • 5 lattice (a) and the string oversaturated 
with one hole (b). The characteristic configurations are indicated, as well 
as configurations which can be reached by a sequence of single-hole hopping 
processes. 

It is interesting to consider the single-electron spectral function, in 
(inverse) photoemission, length is added (removed) from the strings and it 
is natural to assume that the hole is attached (removed) from the string 
in a local process. Specifically, every string configuration {~} is written as 

a N spinless fermion state I{T]}) -- IINla~ Ivac) and the string vacuum is 
---- r / l  

I~0} = E{,7} c~({~})[{~;}). The external electron ctk~ (f~ is planar momentum) 
'attaches' to the string via the addition of a corner as indicated in Fig. 4, 
and this particular process can be expressed by 

x/+v {+)+ + + 

6(~f+l -- V~ -- 1)(~(~Y+I -- ~ -- 1)[{?]}>" (3) 

The extra hole is incorporated by deleting a diagonal link (delta functions) 
and replacing this by a 'corner' formed by a pair of neighbouring horizon- 
tal and vertical links. The operator .~ takes care of the fermion sign, and 
elsewhere we will discuss how the spin of the electron is linked to the orienta- 
tion of the staggered order parameter in the domain from which the electron 
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is removed, s From Eq. (3) together with Eq.'s (1, 2), the photoemission 
spectrum can be calculated. The inverse photoemission follows from the 
conjugate of Eq. (3): adding an electron corresponds to the removal of a 
corner. 

Let us first consider the saturated strings. Because of the dynamics, 

these strings are for realistic parameters (positive curvature energies) di- 
rected and the density of corners has to vanish because otherwise the cur- 

vature they induce would destroy the directedness. Since the presence of 

corners is associated with the presence of unoccupied elecron states, it fol- 

lows that directed saturated string vacua correspond with filled band systems. 
It is still possible to add holes, and there is an interesting relationship be- 

tween the nature of these hole states and the overall geometric properties 
of the string vacuum. The states directed along the (1, 0) direction can be 

thought of as a horizontal classical string, seeded with (]:, :I:i) kinks. The 

external hole can only attach to these kinks and this results in a step-like 

kink, as indicated in Fig. 4: the total number of occupied electron states is 
given by the number of diagonal kinks. In addition, the final state kink can- 

not delocalize by nearest-neighbour hops: strings directed along the (1,0) 
direction carry a relatively small number of localized electron states. This 
changes drastically when the string is directed along the diagonal, the fully 
stretched case. A hole can be added at every link, causing a corner (Fig. 
4, see also Fig. 1). By single hole hops, this corner decays in a pair of 
freely propagating (1, 0) and (0, 1) kinks which carry both half of the hole. 
As will be discussed elsewhere in more detail, the one-hole spectral function 
corresponds with the convolution of the kink spectral functions, subjected 
to kinematical constraints, in analogy with the spectral functions found for 
I + I D  interacting electron systems. 

It turns out that the above simple arguments hold as well in the more 
complicated string vacua: (under)saturated strings do not carry unoccupied 
electronic states and the kinks responsible for the delocalization of the holes 
only propagate well in fully stretched strings. This variety of strings are 
therefore electronic insulators, although the strings themselves might still 
be delocalized in space. This changes drastically when the strings are over- 
saturated (Fig. 3). Of particular interest is the case where the parameters 
are choosen such that the saturated string would orient itself along the di- 
agonal. Forcing in more holes leads to a proliferation of the charged kinks 
((1, 0), (0, 1) links) in the string ground state. Because these kinks can only 
propagate freely when the string is directed along the diagonal, the (1, 1) di- 
rected string phase is further stabilized in the oversaturated cases. One way 
to visualize the string vacuum is by drawing string configurations as lines 
with a wids proportional to the probability amplitudes ]a({r]})l 2, accumu- 
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Fig. 4. A string directed in the (1, 0) direction is characterized by a finite 
density of diagonal kinks, disordering the (1,0) classical string. External 
holes can only attach to these kinks and the resulting corner defect cannot 
delocalize by nearest-neighbour hops (top). If the string is directed along a 
diagonal direction, however, the corner caused by the external hole decays 
into two freely propagating kink excitations (bottom), 

lating the contributions of the different string configurations on the links on 
the lattice. In Fig. 5 we show this for a string on a 6 x 6 lattice, oversatu- 
rated with 1 hole. Although the string can cover the whole plane, it quite 
clearly breaks the symmetry to orient itself along the diagonal direction. 

T/V 

Fig. 5. Link representation of the vacuum of a (1, 1) directed string on a 
6 x 6 lattice, oversaturated with one hole (t = 1, K = 4, Lll  = -0.8, L12 = 
-3 ,  L22 = -2) .  

As long as the string is directed along the (1, 1) direction, the charged 
kinks ((1, 0) ~ h, (0, 1) --, v links) themselves form a simple I + I D  system; 
(i) with respect to the (1, 1) 'vacuum', both types of kinks can propagate 
fl'eely, (ii) the kinks cannot pass each other, and they can be considered as 
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hard-core particles carrying two flavours (h and v), subject to short range 
repulsive interactions (the curvature energies. Obviously, the charge com- 
pressibility becomes finite in such a system, and at least the (1, 1) directed 
oversaturated string is a one dimensional metal. In addition, a large Fermi- 
surface is expected to open up at a finite charged kink density. In order to 
investigate these matters in further detail, we calculated the single-electron 
spectral function numerically. In Fig. 6 we show the result which comes clos- 
est to a Fermi-liquid spectral function. A rather sharp peak is seen, which 
disperses as function of momentum, to cross the Fermi-energy at momenta 
roughly halfway the Brillioun zone both in the (1, 1) and (1, 0) directions, 
spanning up a large open Fermi-surface. 
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Fig. 6. Occupied- (full lines) and unoccupied part (dashed lines) of the 
single electron spectral function, as function of momentum in units of 7r 
along (1, 0) (top) and (1, 1) (bottom) directions in the Brillouin zone, for 
a (1, 1) directed string on a 12 • 12 lattice saturated with four holes (t = 
1 , K  = 0, L l l  = -1 ,L12 = 0, L22 = 0). 

We assumed in the calculation an ordering of the kink flavours h - v - 
h - v  . . . .  , which would actually correspond with a polarization of the spins 
of the excess holes in the stripe interpretation. An unpolarized stripe would 
correspond with an ordering h - h - v - v  . . . .  . We have also calculated the one 
electron spectral function for such a string, finding much the same behaviour 
as in Fig. (6), although the peaks are broader. Lowering the hole density 
has a similar effect. The width of the peaks increases, especially at larger 
momenta,  but even at the smallest hole densities we find a sudden appearence 
of unoccupied states at momenta corresponding with the Fermi-surface of 
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the non-interacting system. Elsewhere we will analyze the nature of the 
single particle spectral function of oversaturated strings in more detail, s 

4. C o n c l u s i o n s .  

The model described in the above is most likely a gross oversimplifi- 
cation of physical reality. Nevertheless. it might be that  it catches some 
generic features of quantized stripes. (a) Microscopically, the fluctuations 
of the stripes are driven by the fast motions of kinks, with an associated 
energy scale which might well be O(0.1) eV. The overall mot ion of the stripe 
is the result of the concerted motions of the kinks and this leads to a slow 
down: the string as a whole fluctuates very slowly compared to the motions 
of kinks. (b) For the same reasons, the stripe has a tendency to order. Al- 
though strings exists which are nominally delocalized, there is a very strong 
tendency for the string to take a part icular  direction in space. The string 
corresponds with a surface in Euclidean space-time, and it is well known 
that  surfaces roughen without  a proliferation of overhangs. (c) In  order to 
remove holes Iocally from stripes, extreme local curvature is needed which on 
its tu rn  would destroy the directedness: directed strings do not carry unoc- 
cupied electron states and are therefore electronic insulators. This changes 
radically when the string is forced to carry more length than is needed to 
span the lattice: the oversaturated string which is found after 'doping'  the 
stripe with excess holes. Away from the saturation point, the string does 
not posses a preferred length and the charge compressibility becomes finite: 
doped stripes are metals. Since the charge is confined to move on a 1D tra- 
jectory it is not surprising that  such a stripe shows the generic features of a 
I + I D  metal, as a large Fermi-surface already at a low doping concentration. 

It is interesting to ask if anything of this can be teated in the context 
of high-T~ superconductivity.  Isolated strings have a special stability at the 
saturat ion point, and the doping mechanism has to be related to the physics 
of the dense string liquid. As pointed out by L5w et al, 12 relatively weak long 
range repulsive interactions will tend to cause an inter-stripe commensura-  
bility: the stripes want to keep a fixed distance. According to very recent 
experiments this seems to be the case both in the static striped, phase: as in 
the superconductors  itselfi la The incommensurabili ty of the spin peaks seen 
in the neutron scattering grows roughly proport ional  to x for x = 1/8. to level 
off for larger x. Hence. it seems that  at x = 1/8 the inter-stripe commen- 
surability takes over from the intra-stripe commensurabil i ty {the sa tura ted  
strings). For x > 1/8 there are two possibilities: either the excess holes 
become free. as proposed by Salkola et al, 14 or the holes are incorporated in 
the strings according to the above strong-coupling perspective. I{ should be 
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possible to discriminate between these possibilities. For instance, in strong 
coupling one expects quasi-one dimensional characteristics: the carriers are 
in first instance confined to move along lines, but the lines themselves (the 
strings) are delocalized in space. 
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