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Exact solution for the distribution of transmission eigenvalues in a disordered wire
and comparison with random-matrix theory

C. W. J. Beenakker and B. Rejaei
Instituut-Lorentz, Umversity of Leiden, P. O. Box 9506, 2300 RA Leiden, The Netherlands

(Received 28 October 1993)

We consider the complete probability distribution P({T„}) of the transmission eigenvalues
Τι,Τζ, ...,Ttf of a disordered quasi-one-dimensional conductor (length L rnuch greater than width
W and mean free path /). The Fokker-Planck equation which describes the evolution of P with
increasing L is mapped onto a Schrödinger equation by a Sutherland-type transformation. In the
absence of time-reversal symmetry (e.g., because of a magnetic field), the mapping is onto a free-
fermion problem, which we solve exactly. The resulting distribution is compared with the predic-
tions of random-matrix theory (RMT) in the metallic regime (L -C Nl) and in the insulating regime
(L ^> Nl). We find that the logarithmic eigenvalue repulsion of RMT is exact for T„'s close to
unity, but overestimates the repulsion for weakly transmitting channels. The nonlogarithmic repul-
sion resolves several long-standing discrepancies between RMT and microscopic theory, notably in
the magnitude of the universal conductance fluctuations in the metallic regime, and in the width of
the log-normal conductance distribution in the insulating regime.

I. INTRODUCTION

A fundamental problem of mesoscopic physics is to find
the statistical distribution of the scattering matrix in an
ensemble of disordered conductors. Once this is known,
one can compute all moments of the conductance, and of
any other transport property, at temperatures which are
sufficiently low that the conductor is fully phase coher-
ent. Random-matrix theory (RMT) addresses this prob-
lem on the basis of the assumption that all correlations
between the transmission eigenvalues are due to the Ja-
cobian from matrix to eigenvalue space.1"3 The transmis-
sion eigenvalues Τ^,Τ2, ...,T?f are the eigenvalues of the
matrix product ttf, where t is the N χ Ν transmission
matrix of the conductor. The Jacobian is

(1.1)
^<3

where A t Ξ (l — Tl)/Tl is the ratio of reflection to trans-
mission probabilities (A > 0, since 0 < T < 1), and
β G {1,2,4} is the symmetry index of the ensemble of
scattering matrices. [In the absence of time-reversal sym-
metry, one has β = 2; in the presence of time-reversal
symmetry, one has β — l (4) in the presence (absence) of
spin-rotation symmetry.]

If all correlations are due to the Jacobian, then
the probability distribution P(\i, \2, ..., XN) of the A's
should have the form P oc JJ7Z /(-^)> or equivalently,

P({A„})=Cexp -
L

u(A„Aj) = -ln|A3 - A,|,

0163-1829/94/49(ll)/7499(12)/$06.00

with V = —ß llnf and C a normalization constant.
Equation (1.2) has the form of a Gibbs distribution at
temperature ß~l for a fictitious System of classical parti-
cles moving in one dimension in an external potential V,
with a logarithmically repulsive interaction u. All micro-
scopic parameters (sample length L, width W, mean free
path /, Fermi wavelength Ap) are contained in the single
function V (A). The logarithmic repulsion is independent
of microscopic parameters because of its geometric origin.

The RMT probability distribution (1.2), due to Mut-
talib, Pichard, and Stone,2 was justified by a maximum-
entropy principle for quasi-one-dimensional (quasi-lD)
conductors.2'3 Quasi-lD means L 3> W. In this limit one
can assume that the distribution of scattering matrices is
only a function of the transmission eigenvalues (isotropy
assumption). The distribution (1.2) then maximizes the
Information entropy subject to the constraint of a given
density of eigenvalues. The function V(X) is determined
by this constraint and is not specified by RMT.

It was initially believed that Eq. (1.2) would provide an
exact description in the quasi-1D limit if only ^(A) were
suitably chosen.3'4 However, it was shown recently by one
of uss that RMT is not exact, even in the quasi-lD limit.
If one computes from Eq. (1.2) in the metallic regime the
variance Var G of the conductance G = GQ ̂ n Tn (with
Go = 2e2//t), one finds5

VarG/G0=|/3-i (1.3)

independent of the form of V(X). The diagrammatic per-
turbation theory6'7 of universal conductance fluctuations
(UCF) gives instead

(1.4)

for a quasi-lD conductor. The difference between the
coefficients | and ̂  is tiny, but it has the fundamental
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implication that the interaction between the λ variables
is not precisely logarithmic, or in other words, that there
exist correlations between the transmission eigenvalues
over and above those induced by the Jacobian.

What then is the status of the random-matrix theory
of quantum transport? It is obviously highly accurate,
so that the true eigenvalue interaction should be close to
logarithmic. Is there perhaps a cutoff for large Separation
of the A's? Or is the true interaction a many-body inter-
action which cannot be reduced to the sum of pairwise
interactions? That is the problem addressed in this pa-
per. A brief account of our results was reported recently.8

The transport problem considered here has a coun-
terpart in equilibrium. The Wigner-Dyson RMT of the
statistics of the eigenvalues {En} of a random Hamil-
tonian yields a probability distribution of the form
(1.2), with a logarithmic repulsion between the energy
levels.9 It was shown by Efetov10 and by Al'tshuler
and Shklovskii11 that the logarithmic level repulsion in
a small disordered particle (diameter L, diffusion con-
stant D] holds for energy separations small compared
to the Thouless energy Ec Ξ hD/L2. For larger sepa-
rations the interaction potential decays algebraically.12

As we will see, the way in which the RMT of quantum
transport breaks down is quite different: The interac-
tion u(\i,\j) — — ln\Xj — λ; is exact for A j , A j <C l,
i.e., for strongly transmitting scattering channels [recall
that λ < l implies T = (l + X)"1 close to unity]. For
weakly transmitting channels the repulsion is still loga-
rithmic, but reduced by a factor of 2 from what one would
expect frorn the Jacobian. This modified interaction ex-
plains the |-^ discrepancy in the UCF in the metallic
regime,5 and it also explains a missing factor of 2 in the
width of the log-normal distribution of the conductance
in the insulating regime.13

Our analysis is based on the Dorokhov-Mello-Pereyra-
Kumar (DMPK) equation

j-ip, (1.5)

N

l~dL ^ βΝ + 2-βϊ-^
1=1

with ballistic initial condition lim/,_>.o P = Πί ^(^»
which describes the evolution of the eigenvalue dis-
tribution function in an ensemble of disordered wires
of increasing length. Equation (1.5) was derived by
Dorokhov,14 (for β — 2) and by Mello, Pereyra, and
Kumar,15 (for β — l, with generalizations to β — 2,4
in Refs. 16, 17) by Computing the incremental change of
the transmission eigenvalues upon attachment of a thin
slice to the wire. It is assumed that the conductor is
weakly disordered, / 3> λρ, so that the scattering in the
thin slice can be treated by perturbation theory. A key
simplification is the isotropy assumption that the flux
incident in one scattering channel is, on average, equally
distributed among all outgoing channels. This assump-
tion restricts the applicability of the DMPK equation to
the quasi-lD regime L 3> W, since it ignores the finite
time scale for transverse diffusion.

Equation (1.5) has the form of a diffusion equation in
a complicated 7V-dimensional space (identified äs a cer-
tain Riemannian manifold in Ref. 18). For a coordinate-
free "supersymmetry formulation" of this diffusion pro-
cess, see Refs. 19 and 20. The similarity to diffusion
in real space has been given further substance by the
demonstration21 that Eq. (1.5) holds on length scales ^> /
regardless of the microscopic scattering properties of the
conductor.

The diffusion equation (1.5) has been studied exten-
sively for more than ten years. Exact Solutions have been
obtained by Mel'nikov22 and Mello23 for the case N = l
of a single degree of freedom (when J Ξ 1). For N > l
the strong coupling of the scattering channels by the
Jacobian (1.1) prevented an exact solution by Standard
methods. The problem simplifies drastically deep in the
localized regime (L 3> 7V/), when the scattering channels
become effectively decoupled. Pichard13 has computed
from Eq. (1.5) the log-normal distribution of the conduc-
tance in this regime, and has found excellent agreement
with numerical simulations of a quasi-lD Anderson in-
sulator. In the metallic regime (L <S 7V/), Mello and
Stone16'24 were able to compute the irrst two moments
of the conductance, in precise agreement with the dia-
grammatic perturbation theory of weak localization and
UCF [Eq. (1.4)] in the quasi-lD limit. (Their method of
moments has also been applied to the shot noise,25 where
there is no diagrammatic theory to compare with.) More
general calculations of the weak-localization effect26 and
of universal fluctuations27 [for arbitrary transport prop-
erties of the form A = ^n a(T„)] were recently devel-
oped, based on linearization of Eq. (1.5) in the fluctu-
ations of the Ä's around their mean positions (valid in
the large-7V metallic regime, when the fluctuations are
small). The work of Chalker and Macedo27 was moti-
vated by the same |-^ discrepancy5 äs the present paper
and Ref. 8, with which it has some overlap.

None of these calculations suffices to determine the
form of the eigenvalue interaction, which requires knowl-
edge of the complete distribution function. Here we wish
to present (in considerable more detail than in our Ref. 8)
the exact solution of Eq. (1.5) for β = 2.

The outline of this paper is äs follows. In See. II we
solve Eq. (1.5) exactly, for all N and L, for the case β = 2.
The method of solution is a rnapping onto a model of non-
interacting fermions, inspired by Sutherland's mapping of
a different diffusion equation.28 The case β = 2 is special,
because for other values of β the mapping introduces in-
teractions between the fermions. The free-fermion prob-
lem, which is obtained for β = 2, has the character of
a one-dimensional scattering problem in imaginary time.
The absence of a ground state is a significant compli-
cation, compared with Sutherland's problem.29"31 The
exact solution which we obtain has the form of a deter-
minant of an 7V χ 7V matrix. The determinant can be
evaluated in closed form in the metallic regime L <§C 7V/
and in the insulating regime L ~^> Nl. These two oppo-
site regimes are discussed separately in Sees. III and IV.
We conclude in See. V with a comparison of the solu-
tion of Eq. (1.5) with the probability distribution (1.2)
of random-matrix theory.
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II. EXACT SOLUTION

The solution of the Dorokhov-Mello-Pereyra-Kumar
equation (1.5) proceeds in a series of steps, which we
describe in separate subsections.

A. Transformation of variables

The DMPK equation (1.5) can be written in the form
of an JV-dimensional Fokker-Planck equation,

, ·) - Σ

D(A) = -

where we have abbreviated s — L/l, 7 = ßN + 2 — ß.
Equation (2.1) is the diffusion equation in "time" s of a
one-dimensional gas of N classical particles with a loga-
rithmically repulsive interaction potential Ω. The diffu-
sion takes place at temperature ß^1 in a fictitious non-
uniform viscous fluid with diffusion coefficient -D(λ).

The position dependence of the diffusion coefficient
is problematic. We seek to eliminate it by a trans-
formation of variables. Let {xn} be a new set of
N independent variables, related to the A's by \n =
f(xn)· The new probability distribution P({xn},s) =
f ({A„}, s) Y[t \f'(xi)\ still satisfies a Fokker-Planck equa-
tion, but with a new potential Ω({ατη}) and a new dif-
fusion coefficient D(x). The potential transforms äs
Ω -> Ω-/3-1 Σ,ΐη)/'(a:,)|, while the diffusion coefficient
transforms äs D —> D/f'(x)2. In order to obtain an x-
independent diffusion coefficient, we thus need to choose
f ( x ) suchthat f ( x ) [ l + f ( x ) ] / f ' ( x ) 2 = const. The choice
f ( x ) = sinh2 χ does this.

We therefore transform to a new set of variables {zn}>
defined by

\n = sinh2 xn, Tn = l/ cosh2 xn. (2.2)

If _
W

= 4

Since Tn 6 [0,1], xn > 0. The probability distribution
of the χ variables satisfies a Fokker-Planck equation with
constant diffusion coefficient,

ι — l

= - X) ln l

(2.3a)

x., - sinh2 xr\

(2.3b)

It turns out that the χ variables have a special phys-
ical significance: The ratio L/xn equals the channel-
dependent localization length of the conductor.3

B. From the Fokker-Planck to Schrödinger equation

Sutherland28 has shown that a Fokker-Planck equation
with constant diffusion coefficient and with a logarithmic
interaction potential can be mapped onto a Schrödinger
equation with an inverse-square interaction which van-
ishes for β = 2. The Fokker-Planck equation (2.3) does
have a constant diffusion coefficient, but the interaction
is not logarithmic. It is not obvious that Sutherland's
mapping onto a free-fermion problem should work for
the non-translationally-invariant interaction (2.3b), but
surprisingly enough it does.

To map the Fokker-Planck equation (2.3) onto a
Schrödinger equation we substitute

P({xn}, s) - exp [-|/3Ω({χη})] , s). (2.4)

This is a Variation on Sutherland's transformation,28

which we used in Ref. 31 in a different context. Sub-
stitution of Eq. (2.4) into Eq. (2.3a) yields for Φ the
equation

,92Ω

öi?

(2.5)

The expression between square brackets is evaluated
follows (we abbreviate £t = cosh2a;I):

äs

ir (2.6)

(2.7)
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In the final equality we have used that for any three dis-
tinct indices i, j, k

C. Proin the probability distribution to the fermion
Green's function

= 1, (2-8)

We seek a solution P({xn}, s \ {yn}) of the Fokker-
Planck equation (2.3) with symmetrized i-function initial
condition

so that the triple sum over k ^ ι -φ j collapses to a
double sum over ι ^ j. Collecting results, we find that
Φ satisfies a Schrödinger equation in imaginary time,

— (2.9a)

-

ß(ß - 2) y> sinh2 2x3 + sinh2 2xz

-~> - 2 '27 (cosh2z., -cosh2xz)
2

(2.9c)

The interaction potential in the Hamiltonian (2.9b) is
attractive for β = l and repulsive for β = 4. For β = 2
the interaction vanishes identically, reducing Ή to a sum
of single-particle Hamiltonians ΉΟ ,

ι d2

4Ndx2 47V sinh2 Ix
(2.10)

(Note that 7 = 27V for β = 2.) It might be possible to
solve also the interacting Schrödinger equation (2.9) for
β = l or 4 by some modification of techniques developed
for the Sutherland Hamiltonian,28^30 but in this paper we
focus on the simplest case β — 2 of broken time-reversal
symmetry.

To complete the mapping onto a single-particle prob-
lem, we need to consider the boundary condition at the
edge χ = 0. (Recall that χ > 0.) Conservation of proba-
bility implies for P the boundary condition (one for each

= 0. (2.11)

According to Eq. (2.4), the corresponding boundary con-
dition on Φ is

lim
9Φ

9xt

= 0,

which in view of Eq. (2.3b) simplifies to

Φ Φ
lim

dxt sinh 2xt

= 0,

(2.12)

(2.13)

independent of ß. Fortunately, the boundary condition
does not couple different degrees of freedom, so that we
have indeed obtained a single-particle problem for ß = 2.

P({xn},0 N\

The sum in Eq. (2.14) is over all 7V! permutations of
1,2, ...,7V. Eventually, we will take the limit {yn} —> 0
of a ballistic initial condition, but it is convenient to first
consider the more general initial condition (2.14). In this
subsection we use the mapping onto a Schrödinger equa-
tion of the previous subsection to relate the probability
distribution P({xn}, s \ {yn}) to the 7V-fermion Green's
function G({xn}, s \ {?/„}).

We first note that, since exp(— /3Ω) is an s-independent
solution of the Fokker-Planck equation (2.3), exp(— |/?Ω)
is an s-independent solution of the Schrödinger equation
(2.9) [in view of the mapping (2.4)]. For a particular
ordering of the o;n's, the function Φ ο c* exp(— |/3Ω) is
therefore an eigenfunction of the 7V-fermion Hamilto-
nian Ή with eigenvalue U. Antisymmetrization yields
the fermion eigenstate

Φο({*η}) = Cexp [-f /3Ω({χη})] JJ (3.15)

with C a normalization constant.
We obtain the 7V-fermion Green's function G from the

probability distribution P by the similarity transforma-
tion

G({xn},s\{yn})

(2.16)

To verify this, we first observe that G is by construction
antisymmetric under a permutation of two χ or two y
variables. For a given order of the xra's, the function G
satisfies the Schrödinger equation

dG
= (H- U)G, (2.17)

in view of Eqs. (2.4), (2.9a), and (2.15). Finally, Eq.
(2.14) implies the initial condition

N

—
ι=1

with σπ the sign of the permutation. Hence G is indeed
the TV-fermion Green's function.

The relation (2.16) holds for any ß. In the remainder
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of this paper we consider the noninteracting case β = 2.
The eigenstate (2.15) then takes the form

*o({z«}) = C JJ(sinh2 Xj - sinh2 a*) J|(sinh2xi)
1/2.

(2.19)

The TV-fermion Green's function G becom.es a Slater de-
terminant of the single-particle Green's function GQ,

eUa

G({xn}, s \ {yn}) = — Det G0(xn, a\ym), (2.20)

where Detanm denotes the determinant of the N χ Ν
matrix with elements anm. The function G o ( x , s \ y )
is a solution of the single-particle Schrödinger equation
—dGo/ds = Ή-oGo in the variable x, with initial condi-
tion G(x,0 y) = δ(χ — y). In the following subsection
we will compute the single-particle Green's function GO.
The probability distribution P, for β = 2, then follows
from Eqs. (2.16), (2.19), and (2.20):

U (sinh2

 Xj ~ sinh2

 Xi) J] (sinh 2z;)1/2

P({xn},s\{yn}) = 1-.
Π (sinh2

 yj - sinh2

 Wi) J](sinh 2j/i

DetGo(zn,s|ym). (2.21)

D. Cornputation of the Green's function

To compute the Green's function G0 of the single-
particle Hamiltonian (2.10) we need to solve the eigen-
value equation

_ J_ *Lj,(x) _ _L Vfo) = e^(x), (2.22)

with the boundary condition dictated by Eq. (2.13),

lim (^ - -r-r—Ί = °- (2·23)χ-+ο V dx smh2z/

We have found that the Substitution

·φ(χ) = (sinh2z)1/2/(cosh2z)

transforms Eq. (2.22) into Legendre's differential equa-
tion in the variable z = cosh2z,

Tz

The boundary condition (2.23) restricts the Solutions of
Eq. (2.25) to the Legendre functions of the first kind
Pv(z). The index v is given by v = — | + |ifc with k a

real number. (These Legendre functions are also known
äs "toroidal functions," because they appear äs Solutions
to the Laplace equation in toroidal coordinates.) The
numbers z/, k, and e are related by —v(y 4-1) = Νε + \
and ε = ^k2/N. We can restrict ourselves to k > 0, since
the functions P_i + i i f c and P_i_i i f c are identical.

We conclude that the spectrum of HO is continuous,
with positive eigenvalues ε = |fc2/JV. The eigenfunctions
V>fe(ic) are real functions given by

(2.26)xPi( i fc_1)(cosh2a;).

(2.24) They form a complete and orthonormal set,

dkil)k(x)tj}k(x') = 2πδ(χ - z'),

- k'),

(2.27)

(2.28)

in accordance with the Inversion formula in Ref. 32. The
single-particle Green's function GO has the corresponding
spectral representation

G0(x,s\y) = (27Γ)-1 [°°dk exp(-\k2

S/N}i>k(x)l>k(y)
Jo

fOO

= |(sinh2o;sinh2j/)1/2 / dk exp(-ifc2s/AT)fctanh(|7rÄ;)Pi(.fc_1)(cosh2a;)P|(ji._1)(cosh2y). (2.29)
J o

E. Ballistic initial condition

Equations (2.21) and (2.29) together determine the probability distribution P({a;n}, s {yn}) with initial condition
(2.14),
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inh2 Xj - sinh2 xt) TT(sinh 2a;,)

P = C(s)1-

x Det / dk exp(-|fc2s/Ar)A;tanh(^fc)Pi ( l f c_1 )(cosh2a;n)Pi ( l f c_1 )(cosh2y ;

L«/o

/

OO /»OO /»OO

dki l dk-2 · · · l dkfj

i^J l J° ^°

ττ Γ - , ο ι DetPi/ l f e _1N(cosh2j/m)
V TT f"·—' 1Ϊ-2-/ΛΓΜ. i„„U/l_7. \D / U 1™ \ l 2^K" 1 ^ V 7x i i r

^<3

(2.30)

We have absorbed all χ and ?/ independent factors into
the function C(s), which is fixed by the requirement that
P is normalized to unity,

/•OO /»OO /»OO

/ dx! l dx2··· dxNP =
Jo Jo Jo

(2.31)

In the second equality in Eq. (2.30) we have applied the
identity Det (bnanm) — (Πι ^)Detanm to isolate the fac-
tors containing the y variables.

Now it remains to take the limit {yn} -t 0 of a ballistic
initial condition. The limit is tricky because it involves a
cancellation of zeros of the determinant in the numerator
with zeros of the alternating function in the denominator.
It is convenient to first write the alternating function äs
a Vandermonde determinant,

IJ(sinh2 y, - sinh2 yt) = Det (sinh2 ym)n~l. (2.32)

Next, we expand the Legendre function in powers of
sinh2 y,

P | ( l fc_1)(cosh2y) = (2.33)
p=l

The factors cp(k) are polynomials in k2, with CI(Ä;) = l
and

1^-^ - l)!]"2 (k2 + l2)
(2.34)

for p > 2. In the limit y — > 0, we can truncate the
expansion (2.33) after the first N terms, that is to say,

im,
-sinh2yz)

Det

= lim

N

LP=1

Det (sinh2 ym)n~l
. (2.35)

The numerator on the right-hand side of Eq. (2.35) fac-
tors äs the product of two determinants, one of which is
just the Vandermonde determinant in the denominator,
so that the whole quotient reduces to the single determi-
nant Detcm(fcn). This determinant can be simplified by
means of the identity

=c 0 Det( fc 2 )2\m-l (2.36)

with CQ a numerical coefHcient. Equation (2.36) holds
because the determinant of a matrix is unchanged if any
one column of the matrix is added to any other column,
so that we can reduce the polynomial cm(k} in k2 of de-
gree τη — l to just its highest order term fc2^"1-1) times a
numerical coefHcient.

Collecting results, we find

lim
JJ (sinh2?/., -sinh2 j/ t)

= c0 Det (k2

n

2\m-l

(2.37)

Substituting into Eq. (2.30), and absorbing the coeffi-
cient CQ in the function C(s), we obtain the probability
distribution P({xn}, s) for a ballistic initial condition,

P({xn}, s) = C(s) J"J(sinh2 x,, - sinh2 xt)

x Det / dk exp(-ifc2s/^)tanh(|7rfc)fc2 m-1Pi ( l f c_1 )(cosh2a;n)| .
\_J 0

(2.38)
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This is the exact solution of the DMPK equation for the
case β = 2.

III. METALLIC REGIME

A. Probability distribution

The solution (2.38) holds for any s and N. It can
be simplified in the regime l <C s <C N of a conduc-
tor which is long compared to the mean free path / but
short compared to the localization length Nl. This is
the metallic regime. The dominant contribution to the
integral over k in Eq. (2.38) then comes from the ränge
k > (N/s)1/2 > 1. In this ränge tanh(^fc) -»· l and the
Legendre function simplifies to a Bessel function,33

P^fc-i)(cosn2a;) = Jo(kx)

for k > 1. (3.1)

The k Integration can now be carried out analytically,

s: dk 1 J0(kxn)

= |(m-l)!

(3.2)

with Lm-i a Laguerre polynomial. We then apply the
determinantal identity

OetLm^(x2
nN/s) = cDett*2)™-1 = c[](z2 -z2),

l<J

(3.3)

with c an z-independent number [which can be absorbed
in C(s)}. Equation (3.3) is derived in the same way äs
Eq. (2.36), by combining columns of the matrix of poly-
nomials in x2. Collecting results, we find that the general
solution (2.38) simplifies in the metallic regime to

P({xn}, s) = C(s) JJ [(sinh2 x, - sinh2 z,)(*2 - *,2)]
z<J

x [J [exp(-a;2/V/S)(a;tsinh2a;l)
1/2] . (3.4)

l

In the remainder of this section we use the probability
distribution (3.4) to compute various statistical quanti-
ties of interest. For that purpose it is convenient to write
P äs a Gibbs distribution,

P({xn},s) = C(e)exp -

(3.5a)

u(xl,x]) = — l In | sinh2 x3 — sinh2 x% \ — | In

V(x,s) = ±Ns~lx2 - |ln(xsinh2x),

„2 „21

(3.5b)

(3.5c)

B. Eigenvalue density

The mean density (p(x))a of the χ variables is defined
äs the ensemble average with distribution P({xn},s) of
the microscopic density p(x):

N

Ρ(χ) = (3.6)
n=l

flOO |»O

(p(x)}8= l dxi
Ja Jo

/»OO

· dxNP({xn},s)p(x).
Jo

(3.7)

The mean density is determined to leading order in 7V by
the integral equation

- / dx'(p(x'))au(x,x') - V (z, s) + const. (3.8)
Jo

The additive constant (which may depend on s but is
independent of x) is fixed by the normalization condition

i: dx (p(x))s — N. (3.9)

Equation (3.8) can be understood intuitively äs the con-
dition for mechanical equilibrium of a fictitious one-
dimensional gas with two-body interaction u in a con-
fining potential V. Dyson34 has shown that corrections
to Eq. (3.8) are an order N~lluN smaller than the
terms retained, and are β dependent. These correc-
tions are responsible for the weak-localization effect in
the conductance.26 Here we consider only the leading-
order contribution to the density, which is of order N
and which is independent of ß.

Substituting the functions u(x,x') and V(x,s) from
Eq. (3.5) into Eq. (3.8), and taking the derivative with
respect to x to eliminate the additive constant, we obtain
the equation

s Γ°

27V/
sinh 2x

sinh2 x - sinh2 x' x2 - x'2

0(l/N). (3.10)

We note that

,s ,
/ dx'(

Jo V

sinh 2z 2x

sinh2 x — sinh2 x' x2 — .

sinh(s + x
= ln

sinh(s — z)
ln

s + x

s — x

O(x/s) for s »l, s »z. (3.11)

It follows that the uniform density

7V

s
(3.12)

with β = 2 understood. is the solution of Eq. (3.10) in the regime s ^> l, s ^> x.
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[The function θ (ζ) equals l for ξ > 0 and 0 for ξ < 0.]
The result (3.12) was first obtained by Mello and Pichard,
by direct Integration of the DMPK equation.4 To order
7V, the χ variables have a uniform density of Nl/L, with
a cutoff at L/l such that the normalization (3.9) is sat-
isfied. In the cutoff region χ ~ L/l the density devi-
ates from uniformity, but this region is irrelevant since
the transmission eigenvalues are exponentially small for

C. Correlation function

The two-point correlation function K(x,x',s) is de-
fined by

K(x,x', s] = (p(x))a ( p ( x ' ) ) s - ( p ( x ) p ( x ' ) ) s . (3.13)

We compute the two-point correlation function by the
general method of Ref. 5, which is based on an exact
relationship between K and the functional derivative of
the mean eigenvalue density (p) with respect to the eigen-
value potential V:

*(„,·..)-i.'<*·»·
ß6V(x',s)'

(3.14)

Equation (3.14) holds for any probability distribution of
the form (3.5a), regardless of whether the interaction is
logarithmic or not. In the large-JV limit the functional
derivative can be evaluated from the integral equation
(3.8). The functional derivative S(p)/SV equals the solv-
ing kernel of

- / άχ'φ(χ')η(χ,χ') = φ(χ) + const, (3.15)
Jo

where the additive constant has to be chosen such that
φ has zero mean,

j; ά χ φ ( χ ) = 0, (3.16)

since the variations in (p) have to occur at constant N.
Because of Eq. (3.14), the integral solution

,.00

φ(χ)= dx'βΚ(χ,χ')φ(χ') (3.17)
Jo

of Eq. (3.15) directly determines the two-point correla-
tion function. It turns out that K(x,x') = K(x,x',s) is
independent of s in the metallic regime.

The integral equation (3.15) can be solved analyti-
cally by the following method. We extend the func-
tions φ and φ symmetrically to negative x, by defining

φ(—χ) Ξ φ ( χ ) , φ(—χ) = Φ(χ). We then note that the
decomposition

ux, x = -

U(x) — ln|2a;sinha;|,

(3.18a)

(3.18b)

transforms the integral equation (3.15) into a convolu-
tion,

/

oo
dx' φ(χ') U(x - χ') = 2φ(χ) + const, (3.19)

-oo

which is readily solved by Fourier transformation. The
Fourier-transformed kernel is

/

oo
dxeikxU(x) = - — [l + cotanh(i7r|fc|)].

-oo I K I

(3.20)

The fc-space solution to Eq. (3.19) is φ (k) =
which automatically satisfies the normalization (3.16). In
x space the solution becomes

/

oo
dx' K(x - χ ' ) φ ( χ ' )

-00

J l \\C (m T«'\ J-. K" ('l* -L Ύ*'Μ Α\( Φ^\ ί^. ΟΙ ^

κ(χ} = i Ldke'ikx W)= i Γ* w- (3-21b)

Combining Eqs. (3.17), (3.20), and (3.21), we find that
the two-point correlation function is given by

K(x, x') = K(x - x') + JC(x + x'),

k cos kx

(3.22a)

T-7T, (3-22b)
+ cotanh(|7rfc)

with β = 2. The inverse Fourier transform (3.22b) eval-
uates to

= j-j Re [(x + iO+Γ2 ~(x + «r)-2] , (3.22c)

where 0+ is a positive infinitesimal.
We derived8 these expressions for the two-point corre-

lation function for the case β = 2. A direct Integration
of the DMPK equation by Chalker and Macedo27 shows
that the function K(x,x') has in fact the l/ β depen-
dence indicated in Eq. (3.22), äs expected from general
considerations.5

D. Universal conductance fluctuations

Now that we have the two-point correlation function,
we can compute the variance VarA = (A2) — (A)2 of
any linear statistic A = Ση=ι α(χη) οη the transmission

eigenvalues (recall that Tn = cosh~ xn)· By defmition

/«oo /«oo

VarA = - / dx l dx'a(x)a(x')K(x,x'). (3.23)
Jo Jo
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Substituting Eq. (3.22) we find

VarA =
l + cotanh(|7r&)'

,00

a(k] = 2 / dxa(x) coskx,
Jo

or equivalently,

ΛΓ A l Γΐ Γ; l(da(X}\ ida(X>

Var A = ——· dx dx —-̂  '
2/?7T2 J0 J0 \ dx J

(3.24a)

(3.24b)

dx'

χ In
l + 7T2(x — X1Λ-2

(3.24c)

L-,

To obtain the variance of the conductance G/Go =

nTn (with G0 = 2e2//i), we substitute a(x) =
cosh 2 x, hence a(fe) = πA;/sinh(|7rfc), hence

(3.25)

in agreement with Eq. (1.4). In the same way one
can compute the variance of other transport proper-
ties. For example, for the shot-noise power35 P/Po =
ΣηΤη(1 - Tn) (with Po = 2e\V\G0 and V the applied
voltage) we substitute a(x) — cosh~2x — cosh~4x, hence
a(k) = |πΑ;(2 - fc2)(sinh f Trfc)"1, hence

Var P/Po = äÜB (3.26)

in agreement with the result obtained by a moment
expansion of the DMPK equation.25 Another exam-
ple is the conductance GNS of a normal-superconductor
junction, which for β = l is a linear statistic,36

O = Ση2Τη(2 - T«)~2· We substitute a(x) =
2 cosh"4 o; (2 - cosh"2 z)2 = 2coslT2(2x), hence a(k) =

), hence

VarGNS/G0 = ̂ -^.15 7Γ*
(3.27)

Finally, for the variance of the critical current Ic of a
point-contact Josephson junction (which is also a linear
statistic for β = l)37>38 we compute

Var/c/70 = 0.0890, (3.28)

with /o = βΔ/Ä and Δ the superconducting energy gap.
As in the previous subsection, we note that our results

are derived for β — 2, and that the 1/ß dependence of
the variance in Eq. (3.24) needs the justification provided
by the calculation of Chalker and Macedo.27

IV. INSULATING REGIME

The solution (2.38) can also be simplified in the regime
l <C N -C s of a conductor which is long compared to
the localization length Nl. This is the insulating regime.
It is sufficient to consider the ränge xn ^> l, since the
probability that χ < l is of order N/s which is <C 1.
The appropriate asymptotic expansion of the Legendre
function is

Pi ( l f c_1 }(cosh2a;) = (27rsinh2x)~1/2

xRe f o r x » l .

(4.1)

For s /N ^> l, the dominant contribution to the integral
over k in Eq. (2.38) comes from the ränge k -C 1. In
this ränge tanh(|7rfc) —> ^irk and the ratio of Gamma
functions in Eq. (4.1) simplifies to

/π)"1 for k -C 1. (4.2)

The k Integration can now be carried out analytically,

r°
/

Jo
dk (4.3)

with Äam-i a Hermite polynomial. We then apply the
determinantal identity [cf. Eq. (3.3)]

P({xn}, s) = C(s) TT [(sinh2 x, - sinh2 x l)(x2 - z2)]

Det Jizm-iiin

(4.4)

with c an x-independent number. Collecting results, we
find that the general solution (2.38) reduces in the insu-
lating regime to

JJ [exp(-x27V/S)xz(sinh2xt)
1/2] . (4.5)

(This formula was cited incorrectly in Ref. 8.)
The result (4.5) can be simplified further by ordering

the xn's from small to large and using the fact that l <C
xx <?C #2 <C · · · -C xjv in the insulating regime (s 3> N).
The distribution function then factorizes,



7508 C. W. J. BEENAKKER AND B. RAJAEI 49

JV

P({xn},s) = C(s) Hexp [(2t - l)x. - x2

zN/s]
z=l

' JJ exp [-
i=l

l - Xl)
2} .

(4.6)

The a;„'s have a Gaussian distribution with mean xn —
|(s/7V)(2n - 1) and variance \s/N. The width of the
Gaussian is smaller than the mean spacing by a factor
( N / s ) 1 / 2 , which is < l, so that indeed l < χι < x2 <
• · · <C xjV) as anticipated.

The conductance G/Go = J^n cosh~2 xn is dominated
by a;i, i.e., by the smallest of the xn's. Since x\ 3> l
we may approximate G/Go = 4exp(— 2xi). It fol-
lows that the conductance has a log-normal distribu-
tion, with mean (m G/Go } = — s /N + 0(1) and variance
Var In G/Go = 2s /N. Hence we conclude that

Var In G/Go = -2{lnG/G0>, (4.7)

in agreement with the result obtained by Pichard,13 by
directly solving the DMPK equation in the localized
regime.

The results obtained here are for the case β = 2.
Pichard has shown that the relationship {4.7) between
mean and variance of In G/Go remains valid for other
values of ß, since both the mean and the variance have a
l/β dependence on the symmetry Index.

V. COMPARISON WITH RANDOM-MATRIX
THEORY

The random-matrix theory of quantum transport2'3 is
based on the postulate that all correlations between the
transmission eigenvalues are due to the Jacobian (1.1).
The resulting distribution function (1.2) has the form of
a Gibbs distribution with a logarithmic repulsive inter-
action in the variables \n = (l — Tn)/Tn. There exists a
maximum-entropy argument for this distribution,2'3 but
it has no microscopic justification. In this paper we have
shown, for the case of a quasi-lD geometry without time-
reversal symmetry, that the prediction of RMT is highly
accurate but not exact.

In the metalhc regime (L -C Nl), the distribution is
given by Eq. (3.5). In terms of the λ variables (λ Ξ
sinh2x), the distribution takes the form (1.2a) of RMT,
but with a different interaction

, λ.,) = — | In |Äj —| — l In |arcsinh2Ä.7

— arcsinh2Ät' |. (5.1)

For λ -C l (i.e., for T close to unity) «(λ^λ.,) ->
— In [λ., — λ,|, so we derive the logarithmic eigenvalue
repulsion (1.2b) for the strongly transmitting scattering
channels. However, for λ ss l the interaction (5.1) is non-
loganthrmc. For fixed λ, -C l, ιι(λι,λ.,) as a function of
λ., crosses over from — 1η|λ., — λζ | to — |1η|λ., — λζ | as
λ., -> oo (see Fig. 1). It is remarkable that, for weakly

FIG. 1. Interaction potential ΐί(λτ, λ.,) for λ, = 0 as a func-
tion of λ., Ξ λ. The solid curve is the result (5.1) from the
DMPK equation. The dashed curve is the logarithmic repul-
sion (1.2b) predicted by random-matrix theory. For λ -C l
the two curves coincide For λ —> oo their ratio approaches a
factor of 2.

transmitting channels, the interaction is twice as small as
predicted by considerations based solely on the Jacobian.
We have no intuitive argument for this result. The re-
duced level repulsion for weakly transmitting channels
enhances the variance of the conductance fluctuations
above the prediction (1.3) of RMT. Indeed, as shown in
See. III D, a calculation along the lines of Ref. 5, but for
the nonlogarithmic interaction (5.1), resolves the |-̂ |
discrepancy between RMT and diagrammatic perturba-
tion theory, discussed in the Introduction. The discrep-
ancy is so small because only the weakly transmitting
channels (which contribute little to the conductance) are
affected by the nonlogarithmic interaction.

In the insulatmg regime (L 3> -/W), the distribution is
given by Eq. (4.5). In terms of the Ä's the distribution
takes the form (1.2a) of RMT, but again with the nonlog-
arithmic interaction (5.1). Since In λ 3> l in the insulat-
ing regime, the interaction (5.1) may be effectively sim-
plified to ιι(λι; λ.,) = — | In |λ., — \t , which is a factor of
2 smaller than the interaction (1.2b) predicted by RMT.
This explains the factor-of-2 discrepancy between the re-
sults of RMT and of numerical simulations for the width
of the log-normal distribution of the conductance:13

RMT predicts Var In G/G0 = - (In G/G0), which is twice
as small as the correct result (4.7).

We conclude by mentioning some directions for future
research. We have only solved the case β = 2 of bro-
ken time-reversal symmetry. In that case the DMPK
equation (1.5) can be mapped onto a free-fermion prob-
lem. For β — 1,4 the Sutherland-type mapping which we
have considered is onto an interacting Schrödinger equa-
tion. It might be possible to solve this equation exactly
too, using techniques developed recently for the Suther-
land Hamiltonian.29'30 From the work of Chalker and
Macedo27 we know that the two-point correlation func-
tion in the large-./V limit has a simple l/ß dependence on
the symmetry index. This poses strong restrictions on a
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possible β dependence of the eigenvalue interaction.
Another technical challenge is to compute the exact

two-point correlation function K(x,x',s) frorn the dis-
tribution function P({xn},s). Our result (3.5) for P is
exact, but the large-7V asymptotic result (3.22) for K
ignores fine structure on the scale of the eigenvalue spac-
ing. (This large-TV result for K corresponds to the regime
of validity of the diagrammatic perturbation theory of
UCF,6'7 while the exact result for P goes beyond pertur-
bation theory.) In RMT there exists a technique known
äs the method of orthogonal polynomials,9 which permits
an exact computation of K.3g A logarithmic interaction
seems essential for this method to work, and we see no
obvious way to generalize it to the nonlogarithmic inter-
action (5.1).

It might be possible to come up with another
maximum-entropy principle, different from that of Mut-
talib, Pichard, and Stone,2 which yields the correct eigen-
value interaction (5.1) instead of the logarithmic interac-
tion (1.2b). Slevin and Nagao40 have recently proposed
an alternative maximum-entropy principle, but their dis-

tribution function does not improve the agreement with
Eq. (1.4).41

To go beyond quasi-one-dimensional geometries (long
and narrow wires) remains an outstanding problem.
A numerical study of Slevin, Pichard, and Muttalib42

has indicated a significant breakdown of the logarith-
mic repulsion for two- and three-dimensional geometries
(squares and cubes). A generalization of the DMPK
equation (1.5) to higher dimensions has been the sub-
ject of some recent investigations.43'44 It remains to be
seen whether the method developed here for Eq. (1.5) is
of use for that problem.
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