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Reduction to H-functions in Radiative Transfer
with a General Anisotropic Phase Function
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The solution of the diffusion problem in an unbounded homogeneous medium, containing the Ku$der
polynomials, and the solution of the reflection function against a semi-infinite atmosphere, containing the
Busbridge polynomials and the H-function, are reviewed. It is shown that the solution of the Milne problem
for non-conservative scattering is expressible in the same polynomials, the characteristic root and the H-function
The derivation is simple with the help of a new integral containing a combination of these polynomials and
the H-function. Some additional constants and the transition to conservative scattering are discussed. In spite
of the simplification reached in this paper, the reduction to H-functions is not recommended as a practical
method if the phase function contains Legendre polynomials of large order.
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1. Problem and History

In this paper we consider some well known
radiative transfer problems, all dealing with homo-
geneous atmospheres with a given, arbitrary, an-
isotropic phase function and a given, arbitrary,
albedo for single scattering. The three main problems,
formulated for non-conservative scattering, are:

1. Diffusion: to find a solution of the form

I(z,u) =e ™ P (u) 1)

showing how radiation diffuses through an un-
bounded medium in the positive z-direction while
maintaining its angular pattern. Here I = specific
intensity, T = optical depth, # = cosine of angle
with positive 7-direction, P (u) = diffusion pattern,
k = diffusion exponent, or root of characteristic
equation, 0 < k < 1. If, apart from the corresponding
diffusion stream in opposite direction obtained by a
trivial change of sign of = and u, several such solu-
tions exist, we consider only the one with smallest %.

I1. Reflection: to find the symmetric function
R (u, po) which expresses the azimuth-independent
term of the intensity reflected in direction — p
from a semi-infinite atmosphere exposed to incident
radiation in direction u,. In neutron scattering this
is called the albedo problem for a halfspace. Here
— p and p, are direction cosines with regard to the
inward normal.

II1. Escape: to find the function m K (u) which
expresses the intensity emerging in direction u=— yu
0= u=1) from a semi-infinite atmosphere in
which the radiation field at large = asymptotically
has the form of an outward diffusion stream (as in
problem I with signs reversed). Neutron physicists
call this the Milne problem for a halfspace; in
astrophysics the term Milne problem tends to be
reserved for the corresponding problem in con-
servative scattering only.

The normalization conventions in all three
problems adopted here will be the same as in van de
Hulst (1968a). In particular it may be noted that
R (4, o) is (4 pu, o)~ times the “scattering func-
tion”” used by Chandrasekbar (1950) and Busbridge
(1960) and is the same as the “‘brightness function”
used in Sobolev’s papers. All three problems can
also be formulated for conservative scattering.
Problem I then has the trivial solution k= 0; II
keeps the same formulation, while III has to be
reformulated for a linear asymptotic dependence
on 7.

It is well known that, if the phase function can
be expressed in a finite number of Legendre poly-
nomials

¢(0)=§ @y Py (cos6) | @)
n=0

both R (u, 4) and K (u) can be expressed in terms
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of one transcendental function H (u). The addi-
tional factors contain polynomials of degree N, the
coefficients of which have to be found separately.
The purpose of this paper is to derive simple, general
interrelations for these polynomials.

The history of this subject shows many suc-
cessfully completed problems but also many publica-
tions in which the authors obviously got lost (or at
least fed up) in a forest of algebra. Chandrasekhar,
extending the H-functions introduced by Ambart-
sumian for isotropic scattering, solved in his book
(1950) the reflection problem for N =1 (non-
conservative) and for N =2 (conservative only).
The Milne-problem for N =1 (non-conservative)
was added as an afterthought in the appendix. In
his work every problem was solved from scratch
and the coefficients in the polynomials were derived
on an ad-hoc basis. Busbridge (1960) presented
more complete properties of the required polynomials
in the case of general N but not a complete recipe
for their solution. Later Horak and Chandrasekhar
(1961) completed the solution for the reflection
problem for N = 2 (non-conservative) in a set of
equations for which the letters in the alphabet did
not suffice. Sobolev (1968b) indicated a simpler
method for general N. Busbridge and Orchard (1969)
gave a complete recipe for general N in the conserva-
tive case, together with some numerical examples
for N = 3. All this time, the complete problem had
in essence been solved in a paper by Kuséer (1958),
which may have escaped attention because of its
concise presentation. I am grateful to Professor
Sobolev for pointing this out to me.

It is certain that a systematic treatment of these
problems by the van Kampen-Case method based
on complete eigenfunction expansions also generate
the H-functions and the Busbridge polynomials.
Case and Zweifel (1967) treat isotropic scattering
and some simple examples of anisotropic transfer,
based on the work of Mika and others. Formulations
for general anisotropic scattering were presented by
McCormick and Kufler (1966) and in practical
form by Shultis and Kaper (1969) and in full detail
in Kaper, Shultis and Veninga (1970). Among the
extensions of this theory given by Pahor (1966, 1967)
is a complete recipe for determining the Busbridge
polynomials. The formulae presented below could
certainly be derived along that route, but those
familiar with the Chandrasekhar-Busbridge approach
would probably regard this a detour.

The main source of trouble in the traditional
derivations is the necessity to use at the right point
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non-linear relations between the moments of the
H-function, which in turn may be derived from the
non-linear equations satisfied by the H-functions
themselves. Even for N as small as 1 or 2 this may
lead to a real tangle, as an inspection of the papers
cited may show.

Much work has been done on the H-functions
themselves. The characteristic function ¥ (), in
terms of which the H-function is derived, can be
found from the coefficients w, in a manner first
derived by Kusder (1955). A similar recipe is found
in Mullikin (1964 a, b). See also Busbridge (1967) and
Sobolev (1968D).

2. Kuscer Polynomials and Busbridge Polynomials

Two sets of polynomials, apart from the Legendre
polynomials P,(u), occur in this subject. Let
hy=2n+1— w,. The polynomials g;(x) were
defined by Kuséer (1955) by the recursion formula

go®) =1, gi(@)=hex,
(3)

G+1)gj+1(®@) +7gi—1() = byzg;(2) .

They are called the Kuséer polynomials; it may
be noted, however, that the same polynomials had
already been introduced by means of a different
equation in the work of Sobolev (1949). The degree
of g;(x) in the non-conservative case (hy= 0) is j and
the coefficients are rational non-linear expressions
in w,, which are easily found by means of the
recurrence relations (3). These polynomials occur
in the solution of problem I of Section 1. The diffusion
pattern defined there has the form

P(u) = éo @n+1)ga) Pals) (&)

which may also be transformed into

N
P) = 1= 75 5 0aa(y) Palt) (6)

Here y = k! is the largest root of the charac-
teristic equation 7'(z) = 0, where 7'(2) is a function
defined below in Eq. (16). If this root has been
determined, problem I is completely solved by
either Eq. (4) or (5). For small N the form (5) is
usually preferred because it has only N + 1 terms.

The polynomials g, (u) are defined by

00 (1) = 77 {Pal®)

1
+2u (=10 [ B y) Pa0)ds} . (6)
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It is historically fair to call these the Busbridge
polynomials because Busbridge (1960, p. 124) proved
what could be conjectured from Chandrasekhar’s
examples, namely that the functions defined by (6)
are indeed polynomials of degree < N. Please note
that our definition of g, (u) differs from that adopted
in Busbridge’s book by a factor (— 1)® but agrees
with that adopted by Pahor (1966, 1967) and
Sobolev (1968b) and with the definition in Busbridge’s
later papers. The coefficients of these polynomials
cannot be found in a simple manner. Their determina-
tion generally requires first the determination of
the moments of the H-function and even then the
recipe is not simple.

The polynomials thus introduced may be com-
bined into two polynomial expressions of two
variables, which play a somewhat parallel role in
the following derivation. These are

N
G('V: ,u) = é'o w'ngn(v) Pn(.u) (7)
and
N
Fv, u)= Z=,'0 0n(— 1) ¢, (¥) ¢ (p) - (8)

We have already seen that G (y, u) occurs in the
solution of the diffusion problem, Eq. (5). It also is
a key function in Mullikin’s and Sobolev’s papers
and in the Case method. The function F (v, u)
occurs in the reflection function

H(u) H(v) F(u, v)

.R(‘ll, 'p)= 4([["'1’) ’ (9)

which is again a well known equation (Ambartsumyan,
1943; Busbridge, 1960, Eq. (48. 51)).

Both functions defined by (7) and (8) lead to the
characteristic function ¥ (u), as follows:

30 =3F(—pp) =YW,

again a combination of known results. The charac-
teristic function is even; P,(u) and g,(u) are even
or odd, according as # is even or odd.

10)

3. A New Integral Relation

The two sets of polynomials obey the following
integral equations
1

P, 1 F(u,v) H(v) P,(v)d
s )
0

A G(2,v) H(v) gu(v) dv
vy —2

T(z) _ 1
I (2) = H(—2) 2

, | 12)
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which have a remarkable similarity. Equation (11)
emerges upon inserting the expression (9) for the
reflection function into the defining Eq. (6); it is a
transcription of Equation (48.4) of Busbridge (1960).
Equation (12) is less obvious. Mullikin (1964b)
derives a linear integral equation for the function

Yn(2) = H(2) ¢a(2) , (13)

which in our notation, and reduced to the case of a
semi-infinite atmosphere and the azimuth-inde-
pendent term (m = 0), reads

1
Gz,
T() yale) = 0@ + 32 [ S22y, (0) v
0

(14)

The same equation is found in Sobolev (1968,
Eq. (27)).
Here

1
Te) =1-— 22 [ Hede (15)
— M
0
It is known from earlier work (Chandrasekhar,
1950; Sec. 39.1) that
T() = g8

H(z) H(— 2) (16)

so that Eq. (12) simply follows.
In the derivations we invariably meet integrals

of the form
1

I(u,2) = f H(z) F(p, 2) G(— 2, 2) 2 de
0

(u +2)(z +2)

17)

In making sample calculations for simple cases
it is usually with this type of integral that we are
led into the algebraic labyrinth. This integral can,
for z %= u, surprisingly be reduced to the simple form

I(ﬂ,z)=z_”{H(,‘) T T H@) }

The proof starts with the separation

(18)

x _ 1 z u
B+a)z+a) z—p (2+¢ - M+w) :
In the term with denominator z + x we keep
G (— 2, ) intact and write F (u,x) out as (8). In the
term with denominator u+ x we keep F(u,x)
intact and write G(— z, x) out as

N
G(—22)= 20 O (— 1) (— 2) Pp(— ),
n=
which is a consequence of (7). A straight application
of relations (11) and (12) then leads to the desired
result (18).
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One additional result may be mentioned, because
we shall presently need it. The form I(— y,— p)
cannot be reduced to the form (18) because of the
equal arguments. But it may be written in the form

I(—y,—y)=4¥Y(H@)T'(v),

where ¥ is the characteristic function, Eq. (10), and
T’ is the derivative of the function introduced by
Eq. (16).

The derivation of Eq. (19), which need not be
given in detail, may be performed by reducing
I(— y,— y + ¢€) by means of (18) and then making
the transition ¢ — 0, using Eq. (10) as well as the
fact that

19)

YH(—y)=0 (20)

which means that H (z) has a pole at z = — y.

The equation equivalent to Eq. (19) for isotropic
scattering is traditionally derived from a contour
integral, in which the residue of this pole gives rise
to the factor 7 (y). The more direct way chosen here
makes it clear why this derivative enters and why
we do not have to worry about the existence of other
poles in deriving this particular quantity.

4. The Solution of the Milne Problem

Van de Hulst (1968a) derived in symbolic form
the simple relations

0=Q—RP,
mK=P— RQ
which in full notation read:

0=P(— u)— ofl R(u,v) P(»)2vdv, (21)

1
mK (u) = P(u) — 6[ R(u,v) P(—v)2vdyv. (22)

These equations describe simple fictitious ex-
periments (van de Hulst and Terhoeve, 1964) and
special forms of these equations are found in many
places in the literature (e.g. Busbridge, 1960, Eq.
(49.7)).

It is obvious that, with P(u) known from (5)
and R(u,») from (9), Eq. (21) can be used for a
check and Eq. (22) for a general determination of
mK (u). Performing the integrations we do indeed
meet integrals of type (17). Replacing these by the
solution (18), the check of (21) follows at once and
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Eq. (22) yields

_yHWF@p,—y) _ H(pFu, —v)
mEW="Fow-—m — BHA—Fm

The factor H(u)/(1 — ky) in this result is well
known (Ambartsumyan, 1944). The added factor is a
polynomial. Its form, F (u, — y)/H (y), which by (8)
is a linear combination of the Busbridge polynomials,
was believed to be a new result until, upon comple-
tion of this paper, it turned out that the propor-
tionality to F (u, — v) had already been derived by
Kuséer (1958).

Although the main problem posed is thus solved,
it is useful to derive two further constants. The
constant m is defined by (van de Hulst, 1968a)

(23)

m = fl {Pu)}*2udu (24)
-1

I find that it can be most conveniently reduced
by applying the identity which in symbolic and
complete form reads

1
m= (mK) P = of mK(u) P(u)2udu .

Substitution of (5) and (23) then leads again to
an integral of form (17), which combined with (18)
and (19) gives the result

m=2p3I(—y,— P)H(y) =8y ¥(y) T'(y) .

(25)

The constant 7, which is related to the extrapola-

tion length ¢, by

l = exp (— 2k q,), (26)
and is defined by
l= of1 K(u) P(— p)2pdp, 27)
reduces, similarly, to
=22 F(=»—7) 28)

m {H(y)}?

Finally, just like Eq. (6) suffices to express the

various moments of the reflection function, the

moments of the escape function, for instance, the

density and flux at the surface, may most easily be
read from

1
0f mK (u) Pp(u) dp = 2(— 1)"g,(— p)[H(p)

(29)
which follows from (23), (11) and (20).

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970A%26A.....9..359V&amp;db_key=AST

FT970ARA © 2. 07 7359V

Vol. 9, No. 8, 1970

5. The Conservative Case

The conservative case, in which wy=1, g, (z) =0,
k=0,y=00,m=0,1l=1, has been excluded from
the previous discussion. It can be solved from
scratch or by transition to the limit # — 0. The only
important change is that in the conservative case
Eq. (22) is replaced by

1
3 3
Ew=gp+5 [R@rrdv, (30)
0

which upon introduction of (9) and the separation

V(e +v)=v— pu+ p?p+9)
leads to the simple result

K(p) = {g0(p) + 2¢2(w)} H(u)4p . (31)

This shows that the solution of the Milne problem
in the conservative case contains only the zero
and second-order Busbridge polynomials. This
result, although not explicitly pointed out by Bus-
bridge and Orchard (1969), can be checked at once
from their formulae. It is also found, with a printing
error in the sign, in Sobolev (1968a, Eq. (60)).

The extrapolation length, defined by (26) and
(27), degenerates upon the transition % — 0 into

to=(1-130)" | E@2utds  (2)

(van de Hulst, 1968a, Eq. (39)). Combining this
with Eq. (31) and with the fact that the Busbridge
polynomials in the conservative case have a degree
< N—1 (provided N > 0), we find that ¢, is a
linear combination of the moments o, of H(u) of
degree 1 < n < N, the coefficients of which follow
from the coefficients in g, () and g, (u).

6. Conclusions

The preceding sections describe the complete
reduction of the problems mentioned in Sec. 1 to a
H-function and two sets of polynomials. Most of the
results rest on known equations, but Eq. (23) fills a
gap in the existing astrophysical literature.

The assessment of these equations on their merit
for fast and convenient computation is an entirely
different problem. The following remarks, though
somewhat sketchy, may serve to indicate when these
equations can be most useful.

1. Generally, a numerical computation along the
lines of this paper would involve the following key
steps. Determination of g,(x) by the recurrence
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relation (3), of the characteristic function ¥ (u) by
(10), and solution of the root y from 7'(y) = 0. We
show elsewhere (van de Hulst, 1970b) that a very
convenient alternative is to base the computation
of y on the requirement
lim g,(y)=0. (33)
n—>00
The diffusion pattern follows from (5) and the
constant m from (25). Again, alternative equations
based on (3), (24) and (33) may be suggested, namely

m=8 2 (0+1)00) s = 47 5 lga()P-
34

The fact that both (33) and (34) suppose g,(y) to
be computed for all #, and not only for n < N, seems
to make these equations unattractive for practical
use. However, the convergence is so fast that a
computational method based on these equations
may be preferable over one dealing with finite series,
especially if N is not very small.

The methods for finding the H-function have
been sufficiently discussed in the literature. A
complete method for finding the polynomials g, (u)
in the conservative case has been spelled out by
Busbridge and Orchard (1969). A method for finding
these polynomials in the non-conservative case was
partially explained in Busbridge’s book (1960,
Sec. 48). It is based on the non-linear integral equa-
tions for g, (u), i.e. our Eq. (11). Here a really simpler
method is to obtain the solution of Eq. (12), which
is linear in ¢,(z) and can be solved separately for
each n. The same method has been recommended
by Pahor (1966, 1967) and by Sobolev (1968b). A
direct recipe for finding the polynomial occurring in
the solution of the Milne problem, Eq. (23), was
given by Russman (1965).

2. For small values of N we can retrace the solu-
tions given in the papers cited in the introduction.
Employing the notation of Horak and Chandrasek-
har (1961) for general non-conservative scattering
with N =2 (see Sobolev, 1968b, for somewhat
simpler expressions) we have

qo(ﬂ)=1+xp+zp”,x=’?, z=”'EH

@ (u) = pu + qu? (34)
) = — % qu) + 3/2 (rp + sp?)

These expressions still hold if we put wy= 0, i.e.,
go to N=1. The value of g,(u) then becomes
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irrelevant and z = ¢ = 0. Writing
a=%wy, b=3%(1— w) e, (35)

and «, for the moments of the H-functions as usual,
we have in this case

b“l
1—aq

z=— (called — ¢ in Chandrasekhar’s

book Secs. 46 and 96)

1—-2
P== a;: (there called q)

(36)
Yp) =a+ bu?

F (s, %) = 0o+ zog(i + ) — (1 — o) @y
F(—y,p) =2 {@— axy) + (az + by) p} .

In combination with Eq. (9) this reproduces the
result found in Chandrasekhar’s book Sec. 46, Eq. (49)
[which should be multiplied by wq/4u p, in order to
agree with our R(u, u)]. Likewise, with Eq. (23)
we reproduce the result in Sec. 96, Eq. (16).

In non-conservative isotropic scattering (N = 0)
the further reduction w, =b=2=0 occurs and only
one constant term

Fu,v) =2 (1) = 0,
remains.

3. For larger values of N the reduction to a
H-function as a method of computation is not very
practical. The theoretical elegance of having to
determine only one transcendental function remains.
But the job of determining the Busbridge polynomials
starts to overshadow that of finding H(u). In the
limit N — oo even the one theoretical advantage is
lost, because also the function F(u, »), defined by
(8), then becomes transcendental.

We recommend that in those cases it is practical
to forget the H-function altogether and, instead, to
find the solution of all problems mentioned in the
introduction by the process of doubling and asymp-
totic fitting (van de Hulst and Grossman, 1968;
van de Hulst, 1968b), whereby accuracies of the
order of 10—3 can equally well be reached.

4. There must be a close similarity between the
actual computation based on the Case-method and
that based on the Chandrasekhar-Busbridge-Mulli-
kin-Sobolev equations presented here, although the
derivation of these equations is rather different. It
seems likely, therefore, that the remarks made above
on the computation for large N hold equally well
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for the Case-method. This is only a conjecture until
detailed comparisons have been made, e.g., with
Kaper ef al. (1970). It should further be kept in mind
that the Case-method at once gives the field every-
where, whereas the equations presented in this paper
give the emerging intensity and require certain ex-
tensions before the radiation field at arbitrary
optical depth can be computed.

5. The availability of numerical results based on
two fundamentally different methods (via the
H-function and by asymptotic fitting) yields an
excellent opportunity to check the numerical ac-
curacy by which either method has been executed.
The results of this comparison are extremely grati-
fying. Isotropic scattering with w,=0.8 gave
agreement within 10-3 (van de Hulst, 1968b). The
extrapolation length for anisotropic conservative
scattering depends on w, and w; in a manner again
reproducible to an accuracy of 10— (van de Hulst,
1970a). More examples will be cited in a forthcoming
book.

In a subject like this, where the same results are often
reached along 2, 3 or 4 largely independent lines, by
authors from different countries, with a view to different
field of application, and in different notations, it is almost
impossible to be fair in selecting the references. I wish to
acknowledge in particular the stimulating discussions with
Dr. H. G. Kaper and Professor Sobolev and the correspondence
with Miss Busbridge in the early stage of this study.
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