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Coulomb-blockade oscillations in disordered quantum wires
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The conductance of narrow wires, defined by a split-gate technique in the two-dimensional elec-
tron gas in a modulation-doped GaAs-Al^Gai-^As heterostructure, is studied experimentally äs a
function of gate voltage, temperature, and magnetic field. Both intentionally (Be doped) and unin-
tentionally disordered wires are investigated. Periodic conductance oscillations äs a function of gate
voltage are found in both Systems, in the regime where only a few hundred electrons are present in
the wire. The dominant oscillations are very regularly spaced, with a period that is quite insensitive
to a strong magnetic field, and persist up to a few kelvin. A strong magnetic field is found to enhance
the amplitude of the oscillations up to values approaching e2//«. The experimental data are analyzed
in terrns of a theory for Coulomb-blockade oscillations in the conductance of a quantum dot in the
regime of comparable level spacing Δ-Ε and charging energy e2 / C , based on the assumed presence of
a conductance-limiting segment in the wire. Good agreement with the experiment is obtained for the
temperatuie dependence of the oscillations, using physically reasonable parameter values. At low
temperatures, a crossover from the classical regime kßT > Δ£ to the quantum regime ksT < AE is
found. The appeaiance of additional periodicities and the onset of irregulär oscillations at very low
temperatures in some of the wires are attributed to the presence of multiple segments. No magne-
toconductance oscillations are observed, in support of the recently predicted Coulomb blockade of
the Aharonov-Bohm effect.

I. INTRODUCTION

The phenomenon investigated experimentally in this
paper was first observed by Scott-Thomas et a/.1 They
discovered that at low temperatures a narrow disordered
channel in a Si Inversion layer may exhibit sfcrikingly reg-
ulär conductance oscillations äs a function of the voltage
on the gates used to define the channel. This is in con-
trast to the aperiodic conductance fluctuations usually
observed in such structures.2 The period of the oscilla-
tions differed from device to device, and did not cor-
relate with the channel length. Based on estimates of
the sample parameters, it was concluded that each pe-
riod corresponds to the addition of a single electron to
a conductance-limiting segment in the narrow channel.
In order to explain thcir observations, Scott-Thomas et
a/.1 originally suggestecl that a charge-density wave or
"Wigner crystal" was formed. From a model due to
Larkin and Lee,3 and Lee and Rice,4 they inferred that
this would lead to a thermally activated conductance be-
causc of the pinning of the charge-density wave by impu-
rities in the narrow channel. The activation energy would
be dctermined by the most strongly pinned segment of
the crystal, and periodic oscillations in the conductance
äs a function of gate voltage or electron density would
reilect the condition that an integer nuniber of electrons
is contained bctween the two impurities delimiting that
specific segment.

As an alternative explanation, two of us have proposed

that the effect is a manifestation of Coulomb-blockade os-
cillations in a semiconductor nanostructure.5 In the dis-
cussion of our experimental results, we limit ourselves
to a comparison with the Coulomb-blockade model, for
which the theory has now been worked out.6"8 A discus-
sion of the Wigner-crystal model has been given in Refs.
9 and 10. The conclusion reached in the present paper is
that the Coulomb-blockade model does provide an ade-
quate and consistent description of our experiments. In
a low-density quantum wire with weak disorder (no tun-
nel barriers), however, a Wigner-crystal may well be an
appropriate description of the ground state.11

The Wigner crystal is a manifestation of long-range
order neglected in the theory of Coulomb-blockade oscil-
lations. However, both the Coulomb blockade and the
Wigner-crystal models have in common that electron-
electron interactions play a central role. In contrast,
some authors have argued that resonant tunneling of non-
interacting electrons can explain the periodicity of the
observed conductance oscillations.12'13 One cannot eas-
ily discriminate between these models on the basis of the
periodicity of the oscillations. Conductance oscillations
due to resonant tunneling through nondegenerate levels
äs well äs Coulomb-blockade oscillations both have a peri-
odicity corresponding to the addition of a single electron
to the confmed region. Other considerations are neces-
sary to demonstrate t)ic inadequacy of a model based
on resonant tunneling of noninteracting electrons. The
most important of these are the large activation energy
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of the minima (exceeding the average single-electron level
spacing ΔΕ1), the absence of spin Splitting of the peaks
in a magnetic field, and the absence of magnetoconduc-
tance oscillations. These considerations will be discussed
in detail in this paper.

Our experimental work has consisted of a study of the
conductance of disordered quantum wires defined by a
split-gate technique in the two-dimensional electron gas
(2DEG) of a CaAs-A^Ga^As heterostructure. We
have investigated the effects of temperature and mag-
netic field on the conductance äs a function of gate volt-
age, äs well äs the magnetoconductance and the Hall re-
sistance in a cross-shaped narrow channel geometry. In
addition, we have varied the channel length, and the de-
gree of disorder. Some of our results have been pub-
lished previously.14 It is the purpose of this paper to give
a more complete account of our experimental work, and
to present a quantitative comparison with the theory6"8

for Coulomb-blockade oscillations in the size-quantized
regime characteristic of semiconductor nanostructures.15

Other observations of the effect have recently been re-
ported by Field et al.9 in a narrow channel in a 2D hole
gas in Si, by Meirav et a/.16 in a narrow electron gas
channel in an inverted GaAs-AUGai^As heterostruc-
ture, and by De Graaf et al.17 in a very short split-gate
channel (or point contact) in a Si Inversion layer. In
addition, Coulomb-blockade oscillations have been ob-
served in the conductance of a quantum clot by several
groups.18"22 This work has been reviewed recently,23 and
will not be discussed here.

This paper is organized äs follows. The split-gate
quantum wires used in our study are described in See. II.
An overview of the experimental results is given in See.
III. We find a rieh and complex behavior, with variations
from device to device, reflecting the mesoscopic nature of
disordered quantum wires. The most characteristic as-
pects of our observations, however, are representative of
all devices that show the conductance oscillations. The
period of the oscillations äs a function of gate voltage
is explained in terms of a theory for Coulomb-blockade
oscillations in See. IV A, using an equivalent circuit to
model the electrostatics of the problem. We can account
for the temperature dependence of the line shape of the
oscillations äs well, äs is discussed in See. IV B. The ef-
fects of multiple segments in the wire are discussed in
See. IV C. Finally, we discuss in See. V those aspects of
the experimental results that are less well understood,
and conclude.

II. SPLIT-GATE QUANTUM WIRES

Our experimental results for the conductance of quasi-
one-dimensional channels have been obtained using nar-
row wires, defined by a split-gate technique in the 2DEG
in a modulation doped GaAs-Al^Gai-^As heterostruc-
ture. By adjusting the negative gate voltage (applied
between the gate on top of the heterostructure and an
Ohmic contact to the 2DEG), the channel width W can
be controlled in a ränge from definition (where W κ,
Wii th, the Lithographie width) to pinch off (where W is

close to zero). In the regime of interest, which is that
close to pinch off, both the electron concentration per
unit length and the channel width vary approximately
linearly with gate voltage.24

Starting point for the fabrication of our samples is a
GaAs-Al^Gai-^As heterostructure, which consists of a
sequence of layers grown on top of a semi-insulating GaAs
Substrate by molecular-beam epitaxy. The first layer is
a thick buffer layer of pure GaAs. The 2DEG is formed
at the interface of this layer with an Alo aaGao 6?As layer
grown on top of it. The latter consists of a 20-nm-thick
spacer layer of pure Alo saGao 6?As, which serves to sep-
arate the electrons from their parent donors in order to
increase their mobility, and a 40-nm-thick Alo ssGao eyAs
layer doped with Si at a concentration of 1.33 x 1018

cm~3. Finally, the heterostructure is capped by a 20-
nm-thick undoped GaAs layer.

We have used two sets of samples. In one set (des-
ignated by D in Table I), a planar doping layer of Be
impurities with a sheet concentration of 2 χ 1010 cm~2

was incorporated in the buffer layer during growth, at
25 Ä below the heterointerface. This was done in order
to introduce strongly repulsive scattering centers in the
2DEG (Be is an acceptor in GaAs). Such scattering cen-
ters may act äs tunnel barriers in a narrow channel in the
2DEG.5 The other set of samples (designated by U] was
undoped, but was nevertheless disordered äs well, due
to random fluctuations in the distribution of the ionized
donors in the Al^Gai-^As layer.25

In the wide regions, the Be-doped samples had an elas-
tic mean free path le κ· 0.7 μηι, deduced from the con-
ductivity at T = 4.2 K and the electron sheet density
ns = 2.9 x 1011 cm~2. For the undoped samples these
values were le = 3.9 μιη and ns — 3.0 x 1011 cm~2. This
mean free path does not describe the transport in the
quantum wires near pinch off, when the conductance is
limited by a small number of accidentally strong scat-
tering centers. These are due to negatively charged Be

TABLE I. Channel length and period of the conductance
oscillations.

Channela'b

Dl
D2
D3
Ul
i/2
i/3

Length

(μιη)

4.4
6.2

6.3
0.5

6.2
16.7

Periodc

(mV)

2.7
2.1

2.2

1.0
2.3

a The D channels are intentionally disordered by means of
a planar doping layer of Be near the heterointerface in the
GaAs layer. The U channels are unintentionally disordered.
b Channel Dl is the right section and channel DZ is the middle
section of a miniature Hall bar [see Fig. l(b)].
c The period of the oscillations is given for T = 1.5 K and
5 = 0, except for channel t/2 (T = 50 mK and B = 0) and
for channel D3 (T = 50 mk and D = 5 T). No oscillations
were observed in the shortest channel Ul.
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acceptors close to the 2DEG, and due to statistical fluc-
tuations in the distribution of the remote ionized donors
in the Al^Gai-^As layer. The resulting variations in the
electrostatic potential are enhanced in a narrow chan-
nel because of the reduced screening. Near pinch off,
the channel breaks up into a small number of segments
separated by potential barriers formed by such scatter-
ing centers. This is inferred from our experimental re-
sults, and is supported by model calculations of Nixon
and Davies,25 in which the random positions of the re-
mote ionized donors are taken into account.

The fabrication of the samples proceeds äs follows.
First, the heterostructure is mesa-etched into a rectangu-
lar shape, and twelve alloyed Au-Ge-Ni Ohmic contacts
are formed along its edges. Then, a pattern of six Ti-
Au gate elcctrodes is defined in a two-step process, us-
ing optical lithography for the coarse parts and electron-
beam lithography for the fme details. These gates can be
controlled independently. Figure l shows scanning elec-
tron micrographs of the two narrow-channel geometries
studied. When negatively biased, the gates (light lines)
subdivide the 2DEG into six wide regions (underneath
the dark areas), which are connected by narrow chan-
nels. Two Ohmic contacts are attached to each of these
wide regions. The first geometry [Fig. l(a)] consists of
a set of five narrow channels on a single sample (each of

10 μηη

; i ι.*1"*""·*«,.1··-1 · - ·"· ι- · ι·

10 μνη

FIG. 1. Scanning electron micrographs of the two split-
gate geometries that we have used. The fust (a) defines five
narrow channels of increasing Icngth, L = 0.5, 2.1, 6.2, 6.2,
and 16.7 //m, respectively. The second (b) defines a miniature
Hall bar, with section lengths L = 4.4, 6.3, and 2.4 fim and
side probes having a width of 0.5 μ m. For both geometries,
the lithographic channel width is W| l ti, = 0.5 μηι.

which can be measured independently), while the second
[Fig. l(b)] consists of a miniature Hall bar. At the deple-
tion threshold of the 2DEG directly underneath the gates
(about —0.3 V), the narrow channels have approximately
the lithographic width W\lth = 0.5 μπι. Close to pinch
off the channel width W is reduced to aboul 0.1 μπι, and
the electron density n, is reduced by about a factor of
2. (The estimate for W is based on typical lateral de-
pletion widths of 0.2 μηι/V,15'24'25 and that for n, on
an extrapolation of the periodicity of the Shubnikov-de
Haas oscillations, measured at several gate voltage val-
ues.) The length L of the channels varies (see Table I).

One Be-doped sample (not included in Table I), having
channels of width W\,th = l A< mi was studied äs well.
The results obtained with these channels wcre similar to
those obtained with the narrower channels, except for the
pinch-off voltage, which was about twice äs large. The
periodicity of the dominant oscillations was within the
ränge of values we found in the narrower wires.

III. EXPERIMENTAL RESULTS

Primarily, we have performed measurements of the
conductance äs a function of gate voltage, for a number
of quantum wires of different length. The experiments
were done over a ränge of temperatures and magnetic
fields. In addition, we have measured the conductance
and Hall resistance äs a function of magnetic field, at
fixed gate voltage. The samples were mounted in the
mixing chamber of a dilution refrigerator with a base
temperature of 50 m K. We employed a magnet capable
of generating magnetic fields up to 8 T perpendicular
to the 2DEG. A conventional ac lock-ίη technique was
used to measure the conductance, while the gate volt-
age (or magnetic field) was swept slowly. In order to
ensure linear response, the excitation voltage was kept
below keT/e. We have studied the differential conduc-
tance also, using de bias voltages up to a few mV, but
in this paper we restrict ourselves to the linear response
regime. Experimental data are presented for channels
Dl, D2, and DZ, which are intentionally disordered by a
planar doping layer of Be, and for channels t/2 and t/3,
which are not intentionally disordered.

A. Conductance versus gate voltage:
Zero magnetic field

In Fig. 2 the conductance near pinch off is shown for
two Be-doped quantum wires, Dl and £)2. At T = 1.5
K both channels exhibit well-resolved conductance os-
cillations, which are penodic in the gate voltage. The
oscillations appear to be superimposed on a background
conductance of approximately O. le 2 // i , and have a period
AV gat e « 2.7 mV (Dl) and 2.1 mV (£>2). As the gate
voltage is increased the oscillations disappear gradually.
Whereas the two conductance traces are relatively sim-
ilar at T = 1.5 K, this is not the case at T = 50 m K.
In channel DI the oscillations become better resolved at
this low temperature, while the period is unchanged and
the value of the conductance at the maxima remains ap-
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FIG. 2. Two-terminal conductance vs gate voltage of two
intentionally disordered narrow channels (Dl and D2) at Γ =
1.5 K and 50 mK.

proximately the same. In contrast, the oscillations in
channel Dl are suppressed at 50 mK, and an irregulär
pattern of sharp conductance peaks is observed instead.

In Fig. 3 we show a corresponding set of results for
two undoped channels, U'2 and t/3. At T — 1.5 K, the
periodic conductance oscillations are observed in channel
£73 only (AV^te « 2.3 mV). Channel U'2 shows a slow
conductance modulation instead. Both channels show
periodic conductance oscillations äs the temperature is
decreased to 100 mK (Al/gate »ä 1.0 mV for U'2). As
is the case in channel D2 in Fig. 2, the oscillations in
channel t/3 become better resolved on lowering the tem-
perature. In addition, a fine structure develops on these
peaks, indicative of a higher-frequency oscillation.

The conductance oscillations for channel t/3 are shown
in more detail in the top panel of Fig. 4, for temperatures
between l and 3 K (the calculated curves in the bottom
panel will be explained in See. IV B). Note that both
the minima and maxima of the oscillations increase with
temperature. At T = 2.5 K the oscillations are smeared
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FIG. 3. Two-terminal conductance vs gate voltage of two
unintentionally disordered narrow channels (t/2 and t/3) at
T = 1.5 K and 100 mK.
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FIG. 4. Top panel: two-terminal conductance vs gate
voltage of channel U3 for T = 3.2, 2.5, 1.6, and l K, from
top to bottom. Bottom panel: conductance calculated from
Eq. (9) for e2/C = 0.6 meV, ΔΕ = 0.1 meV, a = 0.265,
/ϊΓρ'Γ = 0.027pEp, and twofold degeneracy.

out, but can still be resolved.
The results shown in Figs. 2-4 are representative of

all the channels we have studied, except for the shortest
channel ( U l , L = 0.5 μτη). As evidenced by the conduc-
tance, pinch off is typically reached at — l < Fgate £ — 0.8
V. Periodic conductance oscillations are observed in most
of the channels at temperatures of 1.5 K or below, with a
period varying between l and 3 mV for different channels.
We did not find systematic differences between the Be-
doped channels and the channels which were not inten-
tionally disordered. The period does not correlate with
the length of the channel or the degree of disorder (see
Table I), and changes within this ränge when the sam-
ple is thermally cycled. The number of successive oscil-
lations observed is between 20 and 50 for most narrow
channels. At very low temperatures (below 100 mK) it is
found often that the regulär oscillations are replaced by
an irregulär pattern of sharp conductance peaks.

B. Conductance versus gate voltage:
Quantum Hall effect regime

The various effects of a streng magnetic field on the
conductance äs a function of gate voltage are shown in
Figs. 5-9 for channels Dl and DI, and in Fig. 10 for chan-
nel t/2. Figure 5 shows the conductance äs a function of
gate voltage for channel D2, at four values of the mag-
netic field. We find that the period of the oscillations
is insensiiive to the magnetic field, which is illustrated
most clearly by the insets, showing the Fourier spectra
of the conductance traces. Each of these exhibits a sharp
peak at a ß-independenl frequency of about 450 V""1 (at
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FIG. 5. Two-terminal conductance vs gate voltage of
channel D2 at 50 mK in a perpendicular magnetic field. In-
sets: Fourier spectra of the data. The vertical scale of t he
Fourier spectra at B = 0 and 7.47 T is multiplied by a factor
2.5.

B = 7.47 T the frequency h äs increased by a few per-
cent). The amplitude of the oscillations and the average
conductance depend on the magnetic field in a nonmono-
tonic fashion. As the magnetic field is increased, both the
amplitude and average conductance are enhanced above
the zero-field values in magnetic fields of intermediate
strength (2.62 and 5.62 T), followed by a decrease in
still strenger fields (7.47 T). The conductance peaks do
not split, not even in our strengest field of 8 T. In this
particular channel, however, a second peak emerges in
the Fourier spectrum at approximately half the dominant
frequency äs the magnetic field is increased. This second
peak is a result of the amplitude modulation of the peaks
in the gate-voltage scan, which is seen most clearly in the
trace at 5.62 T, where high- and lovv-conductance peaks
alternate in a doubletlike structure. We do not think that
the electron spin is responsible for this effect. Some other
channels were found to exhibit more than two peaks in
the Fourier spectrum. We attribute these multiple peri-
odicities to the presence of more than one segment in the
wire. Finally, we note that vvith increasing magnetic field
pinch-off is reached at less negative gate voltages, but
that the total number of peaks remains approximately
constant.

Figure 6 gives the conductance of channel Dl at T =
4.2 K (a), 1.5 K (b), and 50 mK (c), at various values
of the magnetic field. At 4.2 K [Fig. 6(a)], the oscilla-
tions are almost smeared out in the absence of a magnetic
field, and the conductance increases monotonically with
gate voltage. Surprisingly, at B = 1.24 T the oscillations
can be observed clearly at this relatively high tempera-
ture. The periodic oscillations can be observed best in
the traces at 1.5 K [Fig. 6(b)]. The magnetic-field de-
pendence is similar to that of channel D2, including the
insensitivity of the period to the magnetic field, the ab-
sence of spin-splitting, and enhancement of the amplitude
and average conductance at intermediate field strengths
(l T < B < 5 T). In Fig. 2 we have shown that at 50

mK, and in the absence of a magnetic field, the periodic
oscillations in channel Dl are suppressed. This is evident
in the zero-field trace in Fig. 6(c) äs well, where a pattern
of irregulär conductance peaks is visible, with a typical
spacing about five times smaller than the period of the os-
cillations at 1.5 K. The enhancement of the conductance
in fields of intermediate strength is very pronounced at
50 mK, where the conductance near V^te « —0.8 V ap-
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FIG. 6. Two-terminal conductance vs gate voltage of

channel Dl in a perpendiculai magnetic field. The temper-
atures aie (a) 4.2 K, (b) 1.5 K, and (c) 50 mK. The curves
have been ofFset for clarity.
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FIG. 7. Two-terminal conductance vs gate voltage of
channel Dl at B = 2.52 T, for T = 50 mK and 1.5 K.

proaches the first quantized Hall plateau (G = e 2 / h ) .
In the trace at B = 5.03 T the step region before the
G = e2 /h plateau exhibits quite pronounced oscillations
with the same periodicity äs those at 1.5 K, but with an
amplitude that is almost equal to e~/h. At more nega-
tive gate voltages the regularity of the conductance oscil-
lations is lost. This is also the case in strenger magnetic
fields.

In Fig. 7 the conductance of channel Dl is shown over
a wider ränge of gate voltage, at B = 2.52 T and T = 50
mK and 1.5 K. At gate voltages below —0.83 V the pe-
riodic conductance oscillations can be observed in both
traces. As the gate voltage is increased beyond —0.8 V,
the conductance at 50 mK is seen to increase up to a value
close to the second quantized Hall plateau at G = 2e2//z.
However, a large number of sharp dips in the conduc-
tance are observed in this regime. This structure has van-
ished completely at 1.5 K, and the conductance plateau

075
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Μ

Έ

α

050

025

000

gate

FIG. 8. Left panel: single conductance peak of channel
Dl at B — 6.66 T. The temperatures are 110, 190, 290, 380,
490, 590, 710, and 950 mK, fiom highest to lowest peak. Right
panel: line shape calculated from Eq. (9) for e2/C = 0.53
meV, Δ£ = 0.044 meV, a = 0.265, and /ίΓ;'Γ = 0.065 meV.
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FIG. 9. Single conductance peak of channel Dl at B =
6.66 T. The temperatures are 65, 140, 195, 245, 350, 485, 680,
and 845 mK, from highest to lowest peak.

at 2e2//z is no longer visible. Instead, there is some evi-
dence of a Hall plateau at G = e2/h. In addition, there
is a plateaulike feature near G = -|e2//z, reminiscent of
that reported by Timp ei a/.26 in a four-terminal mea-
surement. Finally, we note that in the regime where the
dips occur, the conductance at 1.5 K is below the aver-
age conductance at 50 mK, while in the regime of the
periodic conductance peaks at more negative gate volt-
ages the ordering is reversed. As discussed in See. V, the
dips in the conductance at 50 mK can be explained by
resonant reflection in the channel.

The left panel of Fig. 8 shows the temperature depen-
dence of one of the peaks in the conductance of chan-
nel Dl at B = 6.66 T. At the lowest temperatures, this
was one of the most pronounced peaks present in the
conductance trace äs a function of gate voltage. The
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T = 1 K
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FIG. 10. Two-terminal conductance vs gate voltage of
channel U2 at T = l K, and 5 = 0 and 3.78 T.
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peak height increases with decreasing temperature, and
reaches a value of 0.6e2//t at T = 100 mK. Note the op-
posite temperature dependence for channel t/3 at B = 0
given in Fig. 4. As discussed in See. IV B, the rea-
son for this difference is that the latter data are in the
high-temperature classical regime where fcßTexceeds the
average level spacing AE of the conductance-limiting
segment, whereas the data in Fig. 8 are in the low-
temperature quantum regime kßT < AE. The calculated
traces in Fig. 8, right panel, are discussed in See. IV B.

We often find fine structure developing on the conduc-
tance peaks. An example of this behavior is shown in
Fig. 9, for another peak in the conductance of channel
Dl, a.tB = 6.66 T. For temperatures below 250 mK, the
peak is split into a doublet. The amplitudes of both parts
increase with decreasing temperature, and become bet-
ter resolved äs well, due to a reduction in width. We find
that conductance peaks which show such fine structure
typically are smaller than those that do not (note the
difference in vertical scale in Figs. 8 and 9). As discussed
in See. IV C, this can be understood from the presence
of multiple Segments in the wire.

The conductance oscillations in the samples without
intentional Be doping are enhanced by a magnetic field
similar to those observed in the Be-doped samples. We
give one example, in Fig. 10, for channel t/2 at T = l
K. Only the trace at B = 3.78 T shows rapid periodic
oscillations.

C. Magnetocoiiductaiice fluctuations

Whereas the conductance äs a function of gate volt-
age at fixed magnetic field shows periodic oscillations, no
such behavior is observed when the magnetic field is var-
ied and the gate voltage is fixed. As shown in Fig. 11,
the duality between variations in the gate voltage and
magnetic field, applicable to the quantum ballistic, adi-
abatic, and diffusive transport regimes15 breaks down in
our samples. We have studied the four-terminal longitu-
dinal magnetoconductance GL, using sample D3, which
has the miniature Hall-bar geometry shown in the inset
of Fig. ll(b) [see also Fig. l(b)]. As shown in Fig. ll(a),
the four-terminal magnetoconductance at T = 50 mK ex-
hibits essentially randomstructure, whereas in Fig. ll(b)
it can be seen that the conductance äs a function of gate
voltage for the same sample exhibits periodic oscillations.
[The two-terminal magnetoconductance has no periodic
oscillations äs a function of the magnetic field either (not
shown).] The extreme sensitivity of the magnetoconduc-
tance to a small change in the gate voltage is not surpris-
ing, since the measurements were made for gate voltages
in the regime where the conductance oscillates periodi-
cally äs a function of Vgate [at least for the top two panels
in Fig. ll(a), cf. Fig. ll(b)]. As we will discuss in See. V,
we Interpret the absence of periodic magnetoconductance
oscillations äs a manifestation of the Coulomb blockade
of the Aliaronov-Bohm effect.

The magnetoconductance trace shown in the bottom
panel of Fig. 11 (a) (note the difference in vertical scale)
was obtained at a gate voltage just outside the regime of

periodic conductance oscillations. The large peaks in the
conductance near 2.5 and 6 T in this trace are resistance
minima, reminiscent of Shubnikov-de Haas oscillations in
the quantum Hall effect regime. The latter can be identi-
fied quite well äs the channel width is increased further,
in which case the resistance at the minima approaches
zero, and GL acquires very large values. From a set of
measurements of the Shubnikov-de Haas oscillations at
several values of the gate voltage, we found by extrapo-
lation a value of ns ~ 1.5 Χ 1011 crn~2 for the density in
the channel in the regime of periodic conductance oscil-
lations.

D. Hall resistance

The Hall resistance can be measured within the narrow
channel using the miniature Hall-bar geometry of Fig. 1.
The results for sample D3 are shown in Fig. 12, for the
same set of gate voltages äs in Fig. 11. We find no qual-
itative differences in traces of the Hall resistance versus
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FIG. 11. (a) Four-teiminal longitudinal conductance GL
of channel D3 at T — 50 mK äs a function of magnetic field,
for three values of the gate voltage. (b) GL äs a function of
gate voltage for channel D3 at T = 50 mK, for three values of
the magnetic field. Inset: schematic top view of the miniature
Hall-bar geometry. Contacts l and 4 were used äs current
contacts, and the voltage was measured across contacts 2 and
3.
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B (T)

FIG. 12. Hall resistance of channel L>3 at T = 50 mK, for
three values of the gate voltage. The Hall resistance cannot
be measured when the conductance of the channel is reduced
to zero, hence the interruptions in the traces around 6 T. The
small channel conductance is also responsible for the poor
signal-to-noise ratio of these experimental traces. Contacts l
and 4 were used äs current contacts, and the Hall voltage was
measured across contacts 3 and 5 [see inset in Fig. ll(b)].

magnetic field in the regime of periodic conductance os-
cillations and traces obtained outside this regime. The
Hall resistance cannot be measured in ranges of the mag-
netic field where the conductance is close to zero (cf. Fig.
11). This is the reason for the missing parts in the traces
at Vgate = -0.825 and -0.835 V in Fig. 12.

In all traces in Fig. 12, the quantum Hall plateau at
2e2 /ft can be recognized easily, but the plateau at 4e2//i
is less pronounced. (The spin-split plateaus at odd multi-
ples of e~/h are not resolved in the narrow channels.) In
between the plateaus, quasiperiodic oscillations äs a func-
tion of magnetic field are found (see, for example, near 3
T in the trace at Vgate - -0.78 V). We attribute these to
an Aharonov-Bohm effect involving resonant reflection.
(The Coulomb blockade of the Aharonov-Bohm effect
mentioned in See. III C refers to the two-terminal con-
ductance, not to the Hall resistance.) Below 2 T the Hall
resistance shows random oscillations. For Kgate = —0.825
and —0.835 V, these are time dependent and not repro-
ducible (the signal-to-noise ratio in this regime is poor,
because of the low conductance of the narrow channel).
To the extent that the fluctuations are reproducible, we
attribute these to quantum interference effects familiär
from other studies of narrow channels.27

We also have tried to measure the Hall resistance (at
fixed magnetic field) äs a function of gate voltage. In the
regime of periodic conductance oscillations this is very
difficult for the same reason mentioned above: The Hall
resistance cannot be measured when the two-terminal
conductance is reduced to zero. It therefore cannot be
established experimentally whether periodic oscillations
occur in the Hall resistance. One could argue that this
question is meaningless.

IV. COULOMB-BLOCKADE OSCILLATIONS

In this section we analyze those features of our ex-
perimental results that may be considered to be generic,
rather than sample specific. The most conspicuous are
the conductance oscillations periodic in the gate volt-
age. The value of the period, its insensitivity to a strong
magnetic field, the absence of spin-splitting, and the ab-
sence of magnetoconductance oscillations, can all be un-
derstood on the basis of a general formula6 expressing the
condition for a conduclance peak at T = 0, see See. IV A.
The temperature dependence of the amplitude and width
of the oscillations is analyzed in terms of a kinetic theory
for the conductance of a quantum dot in the regime of
comparable charging energy and level spacing.7 This is
the subject of See. IV B. In these two subsections we as-
sume that the Coulomb-blockade oscillations arise from
a single conductance-limiting segment. In See. IV C we
briefly consider the effects of multiple segments in series.

A. Periodicity

We model the conductance-limiting segment in the
narrow channel äs a quantum dot, which is weakly cou-
pled by tunnel barriers to two leads [see Fig. 13(a)]. The
dot contains a set of energy levels Ep, measured rela-
tive to the bottom of the potential well in the dot. In
the absence of charging effects, a conductance peak due
to resonant tunneling occurs when the Fermi level Ep
in the leads lines up with one of the levels in the dot.
To determine the location of the conductance peaks äs

(b)

Cgate/2

FIG. 13. (a) Schematic conductance band diagram of a
disordered quantum wire containing a conductance-limiting
segment (a quantum dot with a discrete energy spectrum).
The leads are thought to have a continuous energy spectrum.
(b) Equivalent circuit of quantum wire and split gate. The
mutual capacitance of leads and gate is much larger than that
of dot and gate (Cga.te), or dot and leads (Cdot), and can be
neglected.
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a function of gate voltage requires only consideration of
the equilibrium properties of the System.6 The condition
for the Nth conductance peak is

E*N=EN i)— = EF (1)

Here C is the capacitance of the dot, and 0ext represents
the electrostatic potential difference of the dot and leads
due to external charges (see below). The left-hand side
of Eq. (1) defines a renormalized energy level E^. The
average renormalized level spacing AE* = AE + e1 /C
is enhanced above the average bare level spacing AE by
the charging energy. In the limit e2/C <C AE, Eq. (1)
is the usual condition for resonant tunneling of noninter-
acting electrons. In the limit e /C ~^> AE, Eq. (1) is
the condition for a peak for classical Coulomb-blockade
oscillations in the conductance.28""32

Experimentally, we study the Coulomb-blockade oscil-
lations äs a function of gate voltage rather than Fermi
energy Ep. To determine the periodicity from Eq. (1),
we need to know how Ep and the set of levels Ep de-
pend on c/>ext. The external charges determining 0ext are
supplied by the ionized donors in the doped AUGai_xAs
layer and by the gate electrodes (with an electrostatic
potential difference (/>gate between gates and 2DEG). We
have

; / , l /O\

where a (äs well äs C) is a rational function of the ca-
pacitance matrix elements of the system. For split-gate
quantum wires it is reasonable to assume that on average
the electron gas densities in the dot and leads increase
equally fast with ^gate, both being affected equally by
the gates. In that case E p — EN has approximately the
same value at each conduclance peak. The period of the
oscillations now follows from Eqs. (1) and (2),

e
~^C

(3)

To clarify the meaning of the parameters C and a, we
represent the System of the dot, gates, and leads by the
equivalent circuit of Fig. 13(b). The mutual capacitance
of gates and leads does not enter our problem explicitly,
since it is much larger than the mutual capacitances of
the gate and dot (Cgate) and the dot and leads (Cdot)·
The capacitance C determining the charging energy (N —
^)e2/C is formed by Cgate and Cdot in parallel,

C — Cgate 4~ Cdot (4)

The period of the oscillations corresponds to the incre-
ment by e of the charge on the dot with no change in the
voltage across Cdot· This implies = e/Cgate, or

α =
C,gate

C (5)
gate

Thus, in terms of the electrostatic potential difference
between gate and leads, the period of the conductance
oscillations is A^gate — e/Cgate- Note that this result

applies regardless of the relative magnitudes of AE and
e2/C.

The experimental gate voltage is the elecirochemical
potential difference Vgate between gate and leads, i.e.,
the difference in Fermi levels, rather than the eleciro-
staiic potential-difference iÄgate, i-e-, the difference in
conduction-band bottoms. In one period, the change
in Fermi energy in the dot and leads (measured relative
to the local conduction-band bottom) is approximately
equal to AE. The change in Fermi energy in the (metal)
gate is negligible, because the density of states in a metal
is much larger than in a 2DEG. We thus find for the os-
cillation period in terms of the electrochemical potential
difference

AE
-

e

AE
-

e (-'gate
(6)

Note that Cdot does not affect the periodicity.
In the case of a twofold spin degeneracy, the level spac-

ing — Ep in the dot alternates between 0 and AE,
where AE is the spacing of the degenerate levels. This
leads to a doublet structure in the oscillations äs a func-
tion of Ep. To determine the peak spacing äs a function
of gate voltage we approximate the change in Ep with
</>gate by 3£>/<9<£gate ~ C&a.teAE/2e. We then obtain
from Eqs. (1), (2), (4), and (5) that the spacing alter-
nates between two values:

Δ*& = 7^

Cgate

(7)

(8)

The average spacing equals e/Cgate, in agreement with
Eq. (3) (derived for nondegenerate levels). To obtain
AVgate one has to replace the term e/Cgate in Eqs.
(7) and (8) by e/Cgate + AE/1e. If the charging en-
ergy dominates (e 2 /C ^ AE) one has equal spacing

A0gate — A(?i>gate

 = e/Ggate, äs for nondegenerate levels.

In the opposite limit ΔΕ ^> e2/C, one finds A^a{e = 0,

and A^gate = 2e/Cgate instead. Thus, the period is effec-
tively doubled, corresponding to the addition of two elec-
trons to the dot, instead of one. This is characteristic for
resonant tunneling of noninteracting electrons through
spin-degenerate energy levels. An external magnetic field
resolves the spin degeneracy in this case, leading to a
Splitting of the conductance peaks which increases with
the field. This is not observed in our experiments.

We now apply these results to our experimental Situa-
tion. We recall that no correlation is found between the
periodicity of the oscillations and the channel length, and
that the conductance oscillations are observed when the
width is reduced below W ~ 0.1 μπι, in which case the
electron dcnsity is 1.5 χ 1011 cm"2. A 3-pm-long channel
then contains some 450 electrons.

To calculate Cdot and Cgate is a rather complicated
three-dimensional electrostatic problem, hampered fur-
ther by the uncertain dimensions of the conductance-
limiting segment. Experimentally, a typical spacing of
the conductance peaks is AVg at e ~ 2.3 mV, so that from
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Eq. (6) we estimate Cgate ~ 0.7 χ 10 16 F, ignoring the
contribution of the finite level spacing to the period in
gate voltage (AE is typically much smaller t, h an e2/Csate,
see below). The length L of the segment may be esti-
mated from the gate voltage ränge between channel def-
inition and pinch-oiF, 6Vgate ~ e?i3M^hth-^/C'gate, where
ns = 2.9 χ 1011 cm""2 is the electron density in the chan-
nel at definition. From the above estimate of Csate and
using SVsate ~ l V, we estimate L ~ 0.3 μη. The re-
sulting value for the capacitance per unit length C&ate/L
is consistent with what one would expect for the mu-
tual capacitance per unit length of a wire of diameter
W running in the middle of a gap of width W\lth in a
metallic plane33 (the thickness of the A^Ga^^As layer
between the gate and the 2DEG is s mall compared to
Wii th) : Cgate/L ~ 4jre/2arccosh(Wi l t h/WO ~ 3 χ ΙΟ"10

F/m.
The level spacing in the segment is estimated at AE ~

2ττ?ζ"/mLW ~ 0.2 meV (for a twofold spin degencr-
acy). Since each oscillation corresponds to the addi-
tion of a single electron to the dot, the maximum num-
ber of oscillations following from AE and the Fermi en-
ergy Ep ~ 5 meV when the dot is formed is given
by 2Ef/AE ~ 50, consistent with the observations.
From the fact that the oscillations are still observable
at T = 1.5 K, albeit with considerable thermal smearing,
we deduce that in our experiments e 2 / C + AE ~ l meV.
Thus, C ~ 2 χ 10-16 F, C'dot = C- Cgate ~ 1.3 χ ΙΟ""16

F, and α = Cgale/C ~ 0.35. The mutual capacitance of
dot and leads (C'dot) mav be approximated by the sclf-
capacitance of the dot, which should be comparable to
that of a two-dimensional circular disk33 of diameter L
(which is the largest linear dimension of the elongated
conductance-limiting segment), C'dot ~ 4eL ~ 1 . 4 x l O ~ 1 6

F, consistent with the above estimate.
We conclude that the periodicity of the conductance

oscillations in our experiment is explained consistently by
the theory for Coulomb-blockade oscillations, in a regime
where e2/C* is larger t h an the bare Icvcl-spacing AE by
about a factor of 4. According to Eq. (6), the period is
governed by e/Cgate, which exceeds AE/e by an order of
magnitude, thus providing part of the explanation of the
regularity of the oscillations. A finite temperature kgT >
AE further regulates the spacing of the oscillations, see
See. IV C.

As an alternative explanation of the conductance os-
cillations, resonant tunneling of noninteracting electrons
has been proposed.12'13 As mentioned in the Introduc-
tion, there are several compelling arguments for rejecting
this explanation. Firstly,14 the measured activation en-
ergy of the conductance minima would imply a bare level
spacing AE ~ l meV if charging effects would be ab-
sent. Since the Fermi energy Ef is 5 meV or less, such a
large level spacing would restrict the possible total num-
ber of oscillations in a gate voltage scan to a maximum
of 2Ep/AE ~ 10, considerably less than the number ob-
served experimentally.1 '1 4 Secondly, one would expect a
spin Splitting of the oscillations in a strong magnetic field,
which is not observed.9 Finally, the fact that no oscilla-
tions are found äs a function of magneiic field9'14 all but
rules out resonant tunneling of noninteracting electrons

äs an explanation of the oscillations äs a function of gate
voltage.

B. Amplitude and line shape

Equation (1) is sufficient to determine the periodicity
of the conductance oscillations but not their amplitude
and width, which requircs the solution of a kinetic equa-
tion. The nonlinear response regime has been studied by
Averin, Korotkov, and Likharev.34 The linear response
solution of present interest was obtained by Beenakker,7

and generalizes earlier results by Kulik and Shekhter29

in the classical regime. Results equivalent to Ref. 7 have
been obtained independently by Meir, Wingreen, and
Lee,8 by a different methocl. In this subsection we give
the general formula for the conductance and summarize
the underlying assumptions. Using this formula, we cal-
culate the conductance for our experimental conditions,
and compare it to our data.

Reference 7 applies to a quantum dot which is weakly
coupled by tunnel barricrs to two electron gas reservoirs.
A continuum of states is assumed in the reservoirs. The
tunnel rates from level p in the quantum dot to the left
and right reservoirs are denoted by Tl

p and Γ£, respec-
tively. It is assumed that, near the Fermi energy in the
quantum dot, both the level spacing AE and the thermal
energy kgT are much grcater than the intrinsic width of
the energy levels hT = Λ(Γ' + F r). This assumption al-
lows a characterization of the state of the quantum dot
by a set of occupation numbers, one for each energy level.
It is assumed also that inelastic scattering takes place ex-
clusively in the reservoirs, not in the quantum dot. (The
effects of inelastic scattering in the dot are cliscussed in
Ref. 7.)

By solving the kinetic equation in linear response, it is
found that

/"*

U(N)-U(N-l)

(9)

Here Peq(N,np = 1) is the joint probability that the
quantum dot contains N electrons and that level p is oc-
cupied (see the Appendix), f ( x ) = [l + exp(x/kßT)]~l

is the Fermi-Dirac distribution function, and U (N) =
(Ne)'2/2C — ./Ve(/>ext is the charging energy. The product
of distribution functions expresses the fact that tunnel-
ing of an electron from an initial state p in the dot to
a final state in the reservoir requires an occupied initial
state and an empty final state.

Limiting cases of Eq. (9) are discussed in Ref. 7 (see
also Ref. 23). The conductance Gmm in the minima of the
oscillations depends exponentially on the temperature,
G mm c* exp(~~^act/kßT), with activation energy7

This result holds for equal tunnel rates to two sub-
sequent energy levels. The renormalized level spacing
AE* = AE + e2/C, thus equals twice the activation
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energy of the conductance minima. The exponential de-
cay of the conductance at the minima of the Coulomb-
blockade oscillations results from the suppression of tun-
neling processes which conserve energy in the interme-
diate state in the quantum dot. Tunneling via a vir-
iual intermediate state is not suppressed at low temper-
atures, and becomes important when kßT < /ιΓ.35'36 In
the opposite case these virtual tunnel processes can be
neglected.

In Fig. 4 we compare a calculation based on Eq. (9)
with experimental traces for channel Dl, discussed in
See. III A. To obtain good agreement we assume that the
tunnel rates for successive spin-degenerate levels increase
linearly äs Γ< = Γ£ = 0.027iAE/h, where ΔΕ = 0.1
meV is the spacing of these levels. Both the increase
of the tunnel rates with energy and the low number of
electrons assumed to be present in the dot are necessary
for obtaining a good agreement with the experiment. (In
the calculation, the first conductance peak corresponds
to an occupation of the dot by zero or one electron.) The
capacitances were chosen so that e2/C = 0.6 meV and
a = 0.265. These values are consistent with the estimates
given above. The Fermi energy in the leads was assumed
to increase with gate voltage such that it is on average
equal to the energy of the highest occupied level in the
dot at T = 0 (cf. See. IV A). The data in Fig. 4 are in the
classical regime (kßT > ΔΕ], where the peak height is
roughly independent of temperature, whereas the width
of the peaks increases with T. This is reproduced by our
calculations.

On lowering the temperature, we enter the resonant
tunneling regime kßT < A.E. As long äs kgT > /ιΓ,
the width of the peaks is proportional to T and the peak
height is proportional to l/T. The peak height thus in-
creases on lowering the temperature, up to a value of
order e2/li, reached when kpT is of order Λ Γ . A theory
for the regime kßT < Λ Γ is not available presently, but
we surmise that the maximum peak height is e2//», for
the case of equal tunnel barriers. This is consistent with
our experimental observations, which do not show con-
ductance peaks exceeding this value. [The largest con-
ductance peaks found experimentally approach e2//i, see
Fig. 6(c) (channel Dl, at 5 T).]

To test to what extent Eq. (9) can describe our ex-
perimental results in the quantum regime kßT < Δ.Ε, we
have calculated the peaks shown in the right panel of
Fig. 8. (The data in the left panel of Fig. 8 was ob-
tained in the presence of a magnetic field of 6.66 T, so
that we assume no spin degeneracy in the calculation.)
Equation (9) reproduces the temperature dependence of
the peak height and width quite well, for temperatures
between 190 and 950 m K. The parameter values used
are e2/C = 0.53 meV, ΔΕ = 0.088 meV, a = 0.265,
and /ιΓ' = ΛΓΓ = 0.065 meV, which are consistent with
the values used for the calculations shown in the bottom
panel of Fig. 4. The Zeeman spin-splitting energy is not
known, due to uncertainties in the g factor, but is taken
equal to \ΔΕ in the calculations. The resulting set of
equidistant nondegenerate levels is spaced at 0.044 meV.
We note, however, that the parameter values used imply
that kßT < Λ Γ for the calculated peaks in Fig. 4, so that

Eq. (9) is strictly not valid, and instead a theory should
be used which takes the finite broadening of the levels in
the quantum dot into account.

The data obtained in the absence of a magnetic field
at very low temperatures [see Figs. 2 and 6(c)] is proba-
bly in the quantum regime äs well. An analysis of these
data is hampered by the presence of multiple segments
in the wire, äs discussed in See. IV C. A streng magnetic
field reduces the backscattering probability in the chan-
nel, which may explain why the conductance at low T is
less affected by their presence. The agreement between
theory and experiment in Figs. 4 and 8, for a reason-
ably consistent set of parameter values, and over a wide
ränge of temperatures, Supports our Interpretation of the
conductance oscillations periodic in the gate voltage äs
Coulomb-blockade oscillations in the regime of compara-
ble level spacing and charging energy.

C. Multiple segments

In an attempt to investigate the effects of multiple seg-
ments in the wire, we consider the conductance of two
decoupled quantum dots of different size in series. This
simple model can illustrate some aspects of the experi-
mental data. Among these are the observation of regulär
oscillations at relatively high temperatures, which are re-
placed by irregularly spaced peaks at millikelvin temper-
atures, and the Splitting exhibited by some of the regulär
peaks on decreasing the temperature.

The calculations proceed äs follows: Using Eq. (9) we
calculate the conductances GI and Go of the two dots
individually. The resulting conductance of the dots in se-
ries is obtained via Ohmic addition (G~l — G^1 +G71),
i.e., it is assumed that the dots are separated by a reser-
voir. The parameter values for the first dot were cho-
sen equal to those used to model the peak in Fig. 8:
e2/Ci = 0.53 meV and c*i = 0.265, but with twofold-
degenerate levels, randomly spaced within a bandwidth
of 25% around the average spacing ΔΕΊ = 0.088 meV.
The tunnel rates were chosen to vary randomly within
a bandwidth of 50% around the average tunnel rates
hT' = hTr = 0.065 meV. The parameter values for the
second dot were obtained using a scaling argument. It
is assumed that the relevant capacitances C and (7gate
are approximately proportional to the length L of the
conductance-limiting segment (see See. IV A), while the
average level spacing ΔΕ oc l/L and the parameter a
is independent of L. The second dot was chosen to be
approximately 2.7 times äs long äs the first dot, and ac-
cordingly we have used e2/C2 - 0.097 meV, α·2 = 0.273,
ΔΕ2 = 0.033 meV, and ΛΓ' = /ιΓΓ = 0.065 meV (the en-
ergy levels and tunnel rates were chosen randomly within
the same bandwidths äs for the first dot). The results of
the calculations are shown in Fig. 14.

Figure 14 illustrates several points. At the relatively
high temperature of 1.5 K, the conductance oscillations
are very regulär. The reason is that at this tempera-
ture the oscillations of the second dot are smeared com-
pletely, because e2/Ci > > Additionally,
since kgT > ΔΕ1 the period is determined by an average
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FIG. 14. Calculations of the conductance oscillations of
two quantum dots in series, separated by a reservoir. The
temperatures are 1.5 K, 240 mK, and 130 inK. The parametei
values are given in the text.

Icvel spacing and tunnel rate, rather than by a part icular
level Separation and tunnel rate for each individual peak.
As the temperature is decreased, the quantum regime
kßT < AE is entered (in particular for the first dot), and
the oscillations of the second dot become important since
kßT < e2/C-2. The resulting irregularity in the conduc-
tance äs a function of gate voltage is apparent from Fig.
14. In addition, it shows that at low temperatures a split
of the peaks can result from differences in period and ac-
tivation energy of the oscillations in the two dots. As in
the experimental data, peaks exhibiting such a Splitting
are smaller than peaks that do not split. In contrast to
the experimental data, however, the split peaks decrease
rather than increase (sec Fig. 9) with decreasing temper-
ature. This may be due to the the intrinsic broadening
of the transmission resonances through the dot, which
becomcs important for kßT < ΛΓ and which is not ac-
counted for by the calculations (cf. Sec. IVB).

An alternative model of a large and small quantum dot
which are directly coupled (not via a reservoir, äs in our
calculation), has recently been studied by Glazman.37

They find a crossover from pcriodic Coulomb-blockade
oscillations to aperiodic fluctuations at low temperatures,
when kßT is smaller than the level spacing in both quan-
tum dots. A conductance peak then requires that the
levels in both the quantum dots line up, which occurs at
random.

V. DISCUSSION

In this section we discuss those aspects of the data that
are not so well understood, äs well äs the connection with
other work. Our disordered quantum wires exhibit peri-
oaic conductance oscillations äs a function of gate volt-
age. This effect has also been observed in electron and
hole gases in Si (Refs. l, 9, and 17) and in the electron
gas in GaAs.14'16 In contrast, earlier work by Fowler and
co-workers38 and by Kwasnick ei a/.39 on narrow inver-

sion and accumulation layers in Si has revealed sharp
but aperiodic conductance peaks. Structure reminiscent
of their results is visible in some of our samples at low
ternperature (50 mK), in zero or very strong magnetic
fields [cf. Figs. 2 (lower left panel) and 6(c) (traces for
B — 0 and 7.59 T)]. How can these observations be rec-
onciled? We surmise that the explanation is to be found
in differences in strength and spatial scale of the poten-
tial fluctuations in the wires. Coulomb-blockade oscilla-
tions require two large potential spikes, which delimit a
conductance-limiting segment in the quantum wire [Fig.
13(a)], containing a large number of states. The random
conductance fluctuations seen previously38'39 are thought
instead to be due to variable ränge hopping between in-
dividual localized states, distributed randomly along the
length of the channel.40"42 As proposed by Glazman37

the periodic Coulomb-blockade oscillations of multiple
segments in series can transform into sharp aperiodic
fluctuations at low temperatures. This may explain our
observation (Fig. 2) that periodic oscillations are found at
temperatures around l K, whereas irregulär structure oc-
curs at millikelvin temperatures. On increasing the Fermi
energy, a transition to the diffusive transport regime oc-
curs eventually, regardless of the type of disorder. Then
both the Coulomb-blockade oscillations and the random
conductance fluctuations due to variable ränge hopping
are replaced by the "universal" conductance fluctuations
characteristic of the diffusive transport regime.2'43'44

In very short channels (0.5 μιη long and l //m wide)
Fowler et a/.45 have found well-isolated, temperature-
independent (below 100 mK) conductance peaks, which
they attributed to resonant tunneling. At very low tem-
peratures a fine structure was observed, some of which
was time dependent. A numerical Simulation46 of the
temporal fluctuations in the distribution of eleclrons
among the available sites also showed fine structure if
the time scale of the fluctuations is short compared to
the measurement time, but large compared to the tunnel
time. It is possible that a similar mechanism is respon-
sible for some fine structure on the Coulomb-blockade
oscillations in disordered quantum wires äs well.

A curious phenomenon that we have found is the ef-
fect of a perpendicular magnetic field on the amplitude
of the periodic conductance oscillations. The height
of the conductance peaks is enhanced for intermediate
field strengths (l T <B< 5 T), but decreases again
at stronger fields. The largest isolated peaks [found in
channel Dl at 5 T, see Fig. 6(c)] approach a height of
e2/h, measured two terminally. A similar enhancement
of the amplitude of the Coulomb-blockade oscillations
by a magnetic field was observed in a quantum dot.20

One explanation is that the inelastic scattering rate is re-
duced by a magnetic field. In the low-temperature regime
kßT < hT this presumably increases the peak height and
decreases the width (see Ref. 7). In disordered quantum
wires the magnetic suppression of backscattering pro-
vides another mechanism for an enhancement of the peak
height because of the resulting reduced series resistance
in the wire. Finally, the strong magnetic field regime in
a wide high-mobility 2DEG is the realm of the fractional
quantum Hall effect and the magnetic-field-induced trän-
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sition to the Wigner crystal. It is possible that the sup-
pression of the Coulomb Blockade oscillations for B > 6
T is related in some unknown way to these phenomena.

For noninteracting electrons, one would expect to ob-
serve Aharonov-Bohm oscillations in the conductance of
a quantum dot äs a function of magnetic field in the
quantum Hall effect regime. The reason is that such a
dot has effectively a ring geometry if the magnetic length
lm = (H/eB)1/2 is much smaller than the dot radius, due
to the presence of circulating edge states. The Aharonov-
Bohm (AB) effect in such a dot may be interpreted äs
resonant tunneling through zero-dimerisional states.47>48

In the absence of Coulomb interaction, the period AB
of the AB oscillations for a hard-wall dot of area A is
AB = h/eA (it may be larger for a soft-wall confining
Potential47). Such oscillations have indeed been observed
in large quantum dots,47'49·50 but in our experiment at
high magnetic fields, no periodic oscillations with the es-
timated AB κ 0.1 T are found. Our observations are
consistent with the Coulomb blockade of the Aharonov-
Bohm effect.6 Each AB oscillation corresponcls to an in-
crease of the number of electrons in the dot by one. One
can show from Eq. (l) that the period of the AB oscilla-
tions is enhanced due to the charging energy, according

(a)

tob

AB* = Δ5 l
CAE (H)

where AE is the energy level spacing of the circulat-
ing edge states. From our high-field experiments we
have estimated e2/C'AE κ 10 (cf. Fig. 8), so that
AB* « 10Δ5 κ l T. The rapid AB oscillations in the
magnetoconductance are therefore suppressed, notwith-
standing the fact that oscillations can still be observed
easily in a conductance trace äs a function of gate voltage.
The insensitivity of the period of the latter oscillations to
a strong magnetic field is explained by the fact that the
renormalized level spacing AE* & e~/C is approximately
B independent.

In one of our channels (Dl, see Fig. 7) we have ob-
served a crossover from resonant transmission at G <
e2//z (conductance peaks), to resonant reflection at G >
e2/h (conductance dips) at T = 50 mK. To explain the
difference, we show schematically in Fig. 15 the bound-
aries of the quantum wire (thick lines), with the thin
lines representing the edge channels which are formed in a
strong magnetic field.15 Electrons can tunncl between the
edge channels when they are close togcther, äs indicated
by the dashed lines. In Fig. 15(a) a conductance-limiting
segment is formed because of the presence of two po-
tential barriers or constrictions, and the conductance ex-
hibits periodic Coulomb-blockade oscillations (See. IV).
The temperature scale of these oscillations is set by the
charging energy, which is relatively large. At less negative
gate voltages, the guiding center energy of the edge chan-
nels near the Fermi level may exceed the height of the po-
tential barriers. The edge channels are then transmitted
adiabatically through the wire [Fig. 15(b)]. Backscatter-
ing can now occur due to tunneling between edge chan-
nels at opposite edges. This will happen predominantly
near the potential barriers (dashed lines). The backscat-

(b)

(c)

FIG. 15. Schematic view of the edge channels (thin lines)
in the quantum wire, with a conductance-limiting segment
(a), and without such a segment (b), (c).

tering can be enhanced resonantly due to constructive
interference among these tunneling paths, leading to dips
in the conductance. The streng temperature dependence
of the conductance dips in Fig. 7 implies a low activa-
tion energy, indicating that charging effects do not affect
the resonant backscattering significantly. Alternatively,
resonant backscattering may occur also due to the pres-
ence of a circulating edge state in the center of the quan-
tum wire, associated with a single potential spike.51 This
mechanism is illustrated in Fig. 15(c). Experimentally
we cannot discriminate between the two mechanisms.

In summary, we have reported on an experimental
study of the periodic conductance oscillations äs a func-
tion of gate voltage in split-gate disordered quantum
wires in the 2DEG in a GaAs-AUGa^^As heterostruc-
ture. From the persistence up to a few kelvin of the
dominant oscillations, and from the insensitivity of the
period to a strong magnetic field, it is concluded that
they are Coulomb-blockade oscillations. The appearance
of additional periodicities and the onset of irregulär con-
ductance fluctuations at very low temperatures in some
of the wires is attributed to the presence of multiple
Segments in these wires. We have compared the tem-
perature dependence of the periodic conductance oscilla-
tions to a theory for Coulomb-blockade oscillations in the
classical regime kßT > AE and in the quantum regime
kßT < AE. Good semiquantitative agreement with this
theory is obtained, using physically reasonable param-
eter values, although our lowest temperature data ap-
pear to be in the intrinsically broadened resonance regime
kßT < ΛΓ, for which a theory has not yet been worked
out. The effect of a perpendicular magnetic fiele! on the
oscillations is to enhance their amplitude at intermedi-
ate field strengths (between about l T and 5 T), but to
suppress them at stronger fields. This remains to be un-
derstood. In contrast to the traces of the conductance
äs a function of gate voltage, the magnetoconductance
traces at constant gate voltage show no periodic oscil-
lations. Since the conductance-limiting segment in our
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wires is essentially a quantum dot, we Interpret this äs
experimental evidence for the Coulomb blockade of the
Aharonov-Bohm eiTect.
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APPENDIX

The joint probability Peq(N,np = 1) appearing in Eq.
(9) is defined in terms of the equilibrium distribution
function of electrons among the energy levels, which is
the Gibbs distribution in the grand canonical ensemble:

= Z~1exp\-

-NEF (AI)

where {rcz·} = {ηι,η-ζ,...} denotes a specific set of occu-
pation numbers of the energy levels in the quantum dot.
(The numbers n; can take on only the values 0 and 1.)
The number of electrons in the dot is N = Σί ηί
is the partition function,

U(N)
i = l

-NEF (A2)

The joint probability Peq(N,np — 1) that the quantum
dot contains TV electrons and that level p is occupied is

Peq(N,np = 1) (A3)
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