
Dust flow in gas disks in the presence of embedded planets
Paardekooper, S.-J.; Mellema, G.

Citation
Paardekooper, S. -J., & Mellema, G. (2006). Dust flow in gas disks in the presence of
embedded planets. Astronomy And Astrophysics, 453, 1129-1140. Retrieved from
https://hdl.handle.net/1887/7443
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/7443
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/7443


A&A 453, 1129–1140 (2006)
DOI: 10.1051/0004-6361:20054449
c© ESO 2006

Astronomy
&

Astrophysics

Dust flow in gas disks in the presence of embedded planets

S.-J. Paardekooper1 and G. Mellema2,1

1 Leiden Observatory, Postbus 9513, 2300 RA Leiden, The Netherlands
e-mail: paardeko@strw.leidenuniv.nl

2 ASTRON, Postbus 2, 7990 AA Dwingeloo, The Netherlands
e-mail: gmellema@astron.nl

Received 31 October 2005 / Accepted 21 February 2006

ABSTRACT

Aims. We study the dynamics of gas and dust in a protoplanetary disk in the presence of embedded planets. We investigate the
conditions for dust-gap formation in terms of particle size and planetary mass. We also monitor the amount of dust that is accreted
by the planet relative to the amount of gas, which is an important parameter in determining the enrichment of solids in giant planets
compared to the solid content of the central star.
Methods. We use a new two-fluid hydrodynamics code to solve the flow equations for both gas and dust. For the gas, we use
a Godunov-type scheme with an approximate Riemann solver (the Roe solver). The dust is treated as a pressureless fluid by essentially
the same numerical method as is used for the gas.
Results. We find that it only takes a planet of 0.05 Jupiter masses to open up a gap in a disk with a significant population of mm-sized
particles. Dust particles larger than 150 µm participate in gap formation. We also find that the formation of the gap severely slows
down dust accretion compared to that in the gas. Therefore, it is not possible to enrich a newly formed giant planet in solids, if these
solids are contained in particles with sizes from 150 µm to approximately 10 cm.
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1. Introduction

Dust plays a major role in planet formation, theoretically as well
as observationally. First of all, terrestial planets consist mainly
of solid material. They are giant agglomerates of interstellar dust
particles, and therefore the behaviour of these small particles is
important during the first stages of planet formation. Whether
they grow to kilometer-sized bodies by slow coagulation or
through the gravitational instability of a thin dust layer in the
midplane of the disk (Goldreich & Ward 1973) is still an open
question. A mixture of equal amounts of gas and dust is sub-
ject to streaming instabilities (Youdin & Goodman 2005), and
it is not clear whether the resulting turbulent structure will pro-
hibit gravitational instabilities or enhance them (Johansen et al.
2006). To answer this question, multi-component simulations
are needed in which gas and dust are able to evolve separately.

Secondly, giant planets can be formed either by gas accre-
tion onto a solid core (Pollack et al. 1996) or by direct gravi-
tational fragmentation of the disk (Boss 1997). In the core ac-
cretion model, dust growth is of critical importance to build up
a massive core before the gas disk dissipates. The gravitational
instability model does not rely on the existence of such a core,
but still, accretion of dust in a later stage will determine the
enrichment in solids with respect to the solar nebula, which is
an important observational constraint (Guillot et al. 2004).

Finally, dust is the major source of continuum radiation
in the disk. Therefore, infra-red and sub-millimeter emissions
mainly indicate the density and temperature of the dust disk. The
relation of the dust to the density of the gas disk can be quite
complicated if the disk has a non-trivial structure, especially if
the dust particles are only marginally coupled to the gas.

It is therefore very important to study dust dynamics in
gas disks. Axisymmetric disks can be handled analytically,
and various authors have studied dust migration in these disks
(Weidenschilling 1977; Takeuchi & Lin 2002). Particles move
both inward and outward under the influence of gas drag, de-
pending on their distance from the midplane, but the average
migration is inward (Takeuchi & Lin 2002). Haghighipour &
Boss (2003) studied dust migration in a non-uniform axisym-
metric nebula, and Takeuchi & Artymowicz (2001) investigated
the effect of a sharp disk edge on dust migration. The overall
conclusion is that the structure of the gas disk can have a signif-
icant effect on the dust distribution, and that the distribution of
gas and dust can differ substantially.

When the gas distribution becomes more complicated, one
has to rely on numerical simulations. Suttner & Yorke (2001)
studied dust evolution during the initial collapse of the nebula
with a two-dimensional multi-fluid hydrodynamics code to ob-
tain the large-scale dust distribution. Johansen & Klahr (2005)
studied the effect of MHD turbulence on the dust distribution.
These multi-fluid calculations are computationally very expen-
sive, requiring more than twice the computing time for ordinary
gas-dynamical simulations, even if one solves for only a single
dust particle size.

To compare dust observations with gas-dynamical simula-
tions, but at the same time avoid the large computational effort
of these multi-fluid calculations, one can assume a fixed dust-to-
gas ratio and solve only for the gas dynamics only. The effects
of an embedded planet on a gaseous disk have been studied nu-
merically before by multiple authors (e.g. Kley 1999; Nelson
et al. 2000; Lubow et al. 1999; D’Angelo et al. 2002). Wolf et al.
(2002) used these results to simulate observations of gaps in

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20054449

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20054449


1130 S.-J. Paardekooper and G. Mellema: Dust flow in gas disks in the presence of embedded planets

protoplanetary disks. Their calculations are valid only for the
smallest particles that couple extremely well to the gas.

However, in a protoplanetary disk where grain growth is
very important (see, for example, Dullemond & Dominik 2005),
a significant fraction of the dust population is large enough to be
only marginally coupled to the gas. Paardekooper & Mellema
(2004) showed that including the full gas and dust dynamics
leads to a dramatic evolution of the dust component in the
disk. Planets not massive enough to open up a gap in the gas
disk do so in the dust disk, which should make the orbit of
even 0.05 MJ planets visible to ALMA (the Atacama Large
Millimeter Array).

In this paper we continue our investigation of dust flow in
gas disks around embedded planets, with more attention to de-
tail than in Paardekooper & Mellema (2004). In Sect. 2, we re-
view the equations governing dust flow and gas-dust interaction.
Section 3 is devoted to the numerical method, and we discuss the
initial and boundary conditions in Sect. 4. In Sect. 5, we present
the results. Section 6 is reserved for a short discussion, and we
conclude in Sect. 7.

2. Basic equations

Protoplanetary disks are fairly thin, i.e. the vertical thickness H
is small compared with the distance r from the centre of the disk.
Typically we use H/r = h = 0.05. It is therefore convenient
to average the equations of motion vertically and to work with
vertically averaged quantities only.

The governing equations are then solved in a cylindrical co-
ordinate frame (r, φ), centred on the central star and corotating
with the embedded planet that has a Keplerian angular veloc-
ity Ω.

2.1. Gas

The equations that control the gas evolution are described in de-
tail in Paardekooper & Mellema (2005). We do not solve the
energy equation, but instead use an isothermal equation of state:

P = c2
sΣg, (1)

where Σg is the surface density of the gas and P is the vertically
averaged pressure.

The isothermal sound speed cs is, in hydrostatic equilibrium,
directly related to the disk thickness:

cs = h vK, (2)

where vK is the Keplerian velocity.
We use a constant kinematic viscosity ν, which is set by as-

suming an α-parameter (Shakura & Sunyaev 1973) of 0.004 at
the location of the planet:

ν = αcsH|r=1 . (3)

2.2. Dust

We treat the dust as a pressureless fluid; its evolution is governed
by conservation of mass and, in absence of external sources, con-
servation of radial and angular momentum. These can be written
in the following compact form:

∂W
∂t
+
∂F
∂r
+
∂G
∂φ
= S, (4)

where W is called the state vector and where F and G are the
fluxes in the radial and azimuthal direction, respectively. S is
called the source term.

The components of the state, fluxes, and source-term vectors
can be written in the following form:

W = r
(
Σ, Σvr, Σvφ

)
(5)

F = r
(
Σvr, Σv

2
r , Σvrvφ

)
(6)

G = r
(
Σvφ, Σvrvφ, Σv

2
φ

)
(7)

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

Σr2(vφ + Ω)2 − Σr ∂Φ
∂r + r fd,r

−2Σvr(Ω + vφ) − Σr ∂Φ∂φ + r fd,φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (8)

Here, Σ denotes the dust surface density, vr and vφ the radial and
angular velocity, respectively, Ω the angular velocity of the co-
ordinate frame (corotating with the planet), and Φ the gravita-
tional potential of the central star and the planet. The gravita-
tional potential of the planet is softened over a fraction 0.2 of
the Roche lobe of the planet. The potential also contains terms
due to the non-inertial nature of the coordinate system. The drag
forces are incorporated through fd,r and fd,φ.

The major difference between the equations for the gas and
the dust is the absence of pressure in the latter. In this sense,
the dust fluid behaves like a gas that is always moving with su-
personic velocity. This implies that near shock waves, where the
gas goes from sonic to supersonic flow and where large density
and velocity gradients are present, dust and gas behave in very
different ways.

The basic building block for Godunov-type hydrodynamic
solvers is the Riemann problem, consisting of two stationary
states separated by a discontinuity. If we consider the two states
as belonging to neighbouring grid cells, with the discontinuity
at the interface between the cells, the analytic solution of the
Riemann problem can be used to define an interface flux be-
tween the cells. Popular schemes of this type are the Piecewise
Parabolic Method (PPM, Woodward & Colella 1984) and the
Roe solver (Roe 1981).

For pressureless fluids, the solution to the Riemann problem
differs significantly from the case with pressure. Figure 1 shows
the analytic solutions for the gas (dots) as well as the dust density
(solid line), with initial conditions ρL = 1.0, ρR = 0.5, uL = 0.5,
and uR = 0.25. The gas solution consists of two waves moving
at speeds û − cs and û + cs, where

û =

√
ρL uL +

√
ρR uR√

ρL +
√
ρR

· (9)

If we now let cs → 0 to obtain a pressureless fluid, the separa-
tion between the waves becomes smaller and smaller, until they
overlap at cs = 0. The overlapping waves create a delta-function
singularity that moves with velocity û (e.g. Leveque 2004). The
singularity arises because Eq. (4) is only weakly hyperbolic,
in contrast with the gas hydrodynamical equations, which are
strictly hyperbolic.

Figure 1 deals with the case uL > uR. When uL < uR, the
solution consists of the two states moving away from each other
with a vacuum in between. Note that for both cases, the flux is
well defined everywhere but at the position of the delta function.

The solution to the Riemann problem not only forms the ba-
sis for our numerical method (see Sect. 3), but from Fig. 1 it
is also clear that gas and dust react very differently to physi-
cal shocks, which may lead to gas-dust separation when shock
waves are present in the computational domain.
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Fig. 1. Solution to the Riemann problem with initial conditions ρL =
1.0, ρR = 0.5, uL = 0.5, and uR = 0.25. The solid line represents the
dust density and the dots represent the gas density, both at t = 0.5. For
the gas, the speed of sound was set to 1.0.

2.3. Gas-dust interaction

The interaction between the gas fluid and the dust fluid occurs
only through the drag forces. The nature of the drag force de-
pends on the size of the particles with respect to the mean free
path of the gas molecules. We consider only spherical particles
with radius s. Because the main constituent of the gas is molec-
ular hydrogen, for the mean free path we can write:

λ =
mH2

πρgrH2
2
· (10)

When the particle size is small, compared to λ, we are in the
Epstein regime, whereas s � λ corresponds to the Stokes
regime. For particles that move subsonically through the gas,
the transition occurs around λ/s = 4/9. For typical midplane
densities, particles larger than approximately 50 cm move in the
Stokes regime. In this paper we will focus on particles smaller
than∼1 cm, and therefore we can safely use the Epstein drag law.

In the Epstein regime, when the relative velocity of gas and
dust is much smaller than the local sound speed, the drag force
is written as:

f d = −ΣΩK

Ts
∆u, (11)

where ΩK is the Keplerian angular velocity, ∆u is the velocity
difference between gas and dust, and Ts is the dimensionless
stopping time (Takeuchi & Lin 2002):

Ts =

√
π

8

ρp svK

ρgrcs
· (12)

Here, ρp is the particle internal density, s is the radius of the par-
ticle, and cs is the sound speed. We have used ρp = 1.25 g cm−3,
and the isothermal sound speed is given by Eq. (2). The gas den-
sity ρg is found by using ρg = Σg/2H.

For particles that move very supersonically through the gas,
the drag force becomes:

f d = −Σ3
4

√
π

8
ΩK

Ts

|∆u|
cs
∆u. (13)

A standard way to connect the supersonic to the subsonic regime
is (Kwok 1975):

f d = −ΣΩK

Ts

√
1 +

9π
128
|∆u|2

c2
s
∆u. (14)

See Woitke & Helling (2003) for the general case.
Only very massive planets of approximately 1 MJ are able to

accelerate the larger particles to velocities that are comparable
to the speed of sound. For the low-mass planets considered in
Paardekooper & Mellema (2004), the subsonic version of the
drag force proved to be sufficient.

Particles with Ts � 1 are well-coupled to the gas, and the
radial drift velocity can be written as (Takeuchi & Lin 2002):

vr,drift = −ηTsvK, (15)

where η is the ratio of the gas pressure gradient to the stellar
gravity in the radial direction:

η = −h2 ∂ log P
∂ log r

= h2

(
1 − ∂ logΣg

∂ log r

)
· (16)

The direction in which the dust moves with respect to the gas is
determined by the sign of η, and in general the pressure gradient
is negative, making η positive, which leads to an inward migra-
tion of the dust particles. However, if there is a large positive
density gradient (∂ logΣg/∂ log r > 1, see Eq. (16)), as there is
near the outer edge of a density gap, the dust particles can move
outward. On the other hand, if there is an extra large negative
density gradient, as is the case near the inner edge of a density
gap, the dust moves inward with higher velocity.

Thus, we expect that near the gap edges, the larger particles
decouple from the gas, altering the dust-to-gas ratio in that re-
gion. Furthermore, the drag forces may not be large enough to
prevent gas-dust separation by shocks. Both processes should
play a role in the dust dynamics near the embedded planet.

3. Numerical method

3.1. Gas and dust advection

For the evolution of the gas component, we use the RODEO
method described by Paardekooper & Mellema (2005). It is
a second-order Eulerian hydrodynamics code, which uses an ap-
proximate Riemann solver (Roe 1981). It derives from a general
relativistic method (Eulderink & Mellema 1995), and it is es-
pecially suitable to treat non-Cartesian, non-inertial coordinate
systems. A module for Adaptive Mesh Refinement (AMR) can
be used to obtain high resolution near the planet.

For the dust, we use the method outlined in Leveque (2004),
which has the advantage of being similar to the method used
for the gas. Below, we only consider the radial direction. The
azimuthal direction is handled in the same way.

For every cell interface, we consider the Riemann problem
defined by a left state WL and a right state WR with correspond-
ing fluxes. When vr,L < 0 < vr,R, the solution to the Riemann
problem gives us a vacuum state at the cell interface, so we set
the interface flux Fint = 0. Otherwise, we compute the shock
speed v̂ from Eq. (9), and compute the interface flux according to

Fint =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FL if v̂ > 0;
(FL + FR)/2 if v̂ = 0;
FR if v̂ < 0.

(17)
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In the first and the last case, the cell interface is respectively left
and right of the delta shock, allowing for an easy definition of the
interface flux. When v̂ = 0, however, the delta shock is exactly at
the cell interface. We then choose to distribute this shock equally
over both cells.

To put this in the language of Paardekooper & Mellema
(2005), we write F = AW, where the matrixA is given by:

A =
⎛⎜⎜⎜⎜⎜⎜⎝
vr 0 0
0 vr 0
0 0 vr

⎞⎟⎟⎟⎟⎟⎟⎠ . (18)

The eigenvalues of this matrix are:

λ1 = λ2 = λ3 = vr. (19)

The corresponding eigenvectors read:

e1 = (1, 0, 0)

e2 = (0, 1, 0) (20)

e3 = (0, 0, 1) .

A vector ∆ ≡ (∆ρ,∆r ,∆φ) can be projected on these eigenvectors
using the following projection coefficients, found by solving the
system Cb = ∆, where C is the matrix with the eigenvectors:

b1 = ∆ρ

b2 = ∆r (21)

b3 = ∆φ.

To approximate the matrixA at an interface of two grid cells, we
use Roe-averages. If we then project the flux difference across
the interface we are considering onto the eigenvectors ofA:

FR − FL =
∑

bkek, (22)

we can then define the first order interface flux just as it was
defined in the gas case:

Fint =
1
2

(FL + FR) − 1
2

∑
σkbkek, (23)

where σk = sign(λk). When λk = 0, we take σk = 0. It is easy to
show that this version of the interface flux corresponds exactly
with Eq. (17). Having the interface flux in this form, we can im-
mediately write down a second-order interface flux that is again
analogous to the gas case:

Fint =
1
2

(FL + FR) − 1
2

∑
(σkak − (σk − νk)ψk)λkek, (24)

where νk = λk∆t/∆r and ψ is the flux limiter. We have used the
same limiter as in Paardekooper & Mellema (2005) for both gas
and dust in all simulations.

3.2. Accretion

We model accretion onto the planet by taking mass away from
the grid at the location of the planet. There are two parameters
governing the amount of mass taken away at each time-step: the
accretion area and the accretion rate. We take the accretion area
to be a circle with a radius equal to a tenth of the Roche lobe of
the planet, and the accretion rate to be such that the time scale
for emptying this region is equal to three fifths of the orbital time
scale of the planet. The same parameters were used in D’Angelo
et al. (2002) and Paardekooper & Mellema (2005).

3.3. Source terms

All the source terms except the drag forces are integrated using
stationary extrapolation (Paardekooper & Mellema 2005). The
combination of exact extrapolation for the angular momentum
and approximate extrapolation for the other geometrical source
terms was shown to give reliable results for single-fluid calcula-
tions of the planet-disk problem. Because these results were not
affected by increasing the resolution, we can conclude that using
this treatment of the source terms is accurate enough. However,
when other forces besides gravity are included, it is not guar-
anteed that a stationary solution exists. Simis et al. (2001) found
that the source terms arising in two-fluid calculations are best in-
tegrated analytically. Therefore, the drag forces are incorporated
separately using an ordinary differential equation:

d
dt

(Σu) = f d. (25)

During this step, we keep the dust and gas density fixed. Using
Eq. (14), we can write an ordinary differential equation for the
velocity difference between gas and dust:

d
dt

(∆u) = −α
√

1 + β∆u2∆u, (26)

where α = ΩK
Ts

and β = 9π
128c2

s
. This equation can be integrated

analytically to give

∆u(t) =
2∆u0 exp (−αt)

1 +
√

1 + β∆u20 −
βu20 exp (−2αt)

1+
√

1+β∆u20

· (27)

Note that when β = 0, we recover the ordinary exponential
decay of the velocity difference. Using conservation of total
momentum:

Σu + Σgug = constant, (28)

we can solve for the evolution of the velocities of gas and
dust separately, while keeping the total momentum conserved
exactly.

3.4. Test problem

Gasdynamical codes are often tested against a simple Riemann
problem (Sod 1978), also known as the shock tube. In this sec-
tion, we test the method for dust advection against the Riemann
problem shown in Fig. 1, using a 100-zone grid. We also study
the effect of the interaction between gas and dust. The ini-
tial dust-to-gas mass ratio is 1. The simulations were run until
t = 0.5, which took approximately 50 time-steps.

In Fig. 2, we show the results for three different stopping
times: Ts = ∞ (left panels), Ts = 0.5 (middle panels), and Ts =
0.05 (right panels). We see that for the case of no interaction, we
reproduce the result of Fig. 1 for gas and dust. The delta shock is
smeared over approximately 4 computational cells, but it moves
at the correct speed. Note that because the velocity is less than
the sound speed everywhere, the waves in the gas are not shock
waves, but are simply sound waves.

For the middle panels, the stopping time is comparable to
the sound-crossing time and the dust velocity increases towards
the gas velocity, while by conservation of momentum, the gas
velocity decreases with respect to the left panels. The velocities
approach each other the fastest at the position of the delta shock
which has decreased in amplitude because the gas and dust den-
sities also approach each other.
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Fig. 2. Numerical results for the Riemann problem of Fig. 1 for gas (dots) and dust (solid line). The top row shows the density, the bottom row the
velocity. Left panels: no gas-dust interaction. Middle panels: Ts = 0.5. Right panels: Ts = 0.05.

When we decrease the stopping time by a factor of ten, the
densities and velocities of gas and dust are almost equal every-
where. In the right panels of Fig. 2, there is only a small bump
left of the delta shock, and the gas has lost enough momentum
to the dust to visibly slow down the sound waves. Note that this
only happens because the gas and dust densities were equal ini-
tially. For an interstellar dust-to-gas ratio of 1:100, the gas is not
affected by the dust.

3.5. Limits

The approach presented here cannot be used in all circum-
stances. To begin with, the continuum form for the equations
of motion is only valid if two requirements are met. First, there
need to be enough particles in the volume under consideration
(in our case, one grid cell) to work with average states. Second,
there need to be enough interparticle collisions to make such
an average state meaningful. For a dust fluid, both criteria are
only fullfilled if the particles are well-coupled to the gas (Garaud
et al. 2004). In other words, we can only work with particles for
which Ts � 1 everywhere in the computational domain. For
larger dust boulders, a particle-based method is more appropri-
ate (Johansen et al. 2005; Fromang & Nelson 2005).

On the other hand, when the stopping time is very small, the
source terms due to gas-dust friction become stiff. Even though
we integrate these source terms in an implicit way, which makes
the method stable for these small particles, it does not neces-
sarily give us the correct answer. This is because the gas source
terms due to pressure are dealt with in the advection step, and
pressure is precisely what causes gas-dust separation. Therefore,
even for Ts = 0, the dust would numerically slowly drift inward,
while according to Eq. (15), its radial velocity should be zero.

The range in Ts that we can consider is therefore also bounded
from below. The time scale for the advection (the hydrody-
namical time-step, determined by the Courant-Friedrichs-Lewy
(CFL) condition) should not be much larger than the time scale
for gas-dust coupling. Combining the two limits, we can con-
clude that we can only consider particles for which the stopping
time satisfies:

ΩK∆t ≈ Ts � 1. (29)

In practice, for the gas densities considered here (see Sect. 4),
Eq. (29) limits the particle size from below at approximately
150 µm and from above at approximately 1 cm. In all our simula-
tions we checked that lowering the time-step ∆t did not influence
the results.

It is important to realize that Eq. (29) should hold true every-
where on the grid. When the gas density changes significantly,
for example due to the formation of a gap, the stopping time can
vary by orders of magnitude. The condition Ts � 1 for gap-
opening planets makes the simulations very expensive. To do
the calculations in a reasonable amount of time, we restrict our
parameter space to non-gap-opening planets. Note, however, that
gap-opening planets also pose problems for particle-based meth-
ods because very many particles are needed to achieve enough
resolution inside the gap.

The two-dimensional nature of these simulations also puts
conditions on the size of the parameter space we can consider.
When the Roche lobe of the planet is smaller than the disk thick-
ness, three-dimensional effects come into play, lowering accre-
tion and migration rates for example (D’Angelo et al. 2003).
However, global three-dimensional multi-fluid calculations are
beyond current computational resources. Furthermore, because
of dust settling, the dust disk will be much thinner than the gas
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disk, depending on the particle size. The two-dimensional ap-
proach will therefore cause fewer discrepancies in the dust distri-
bution. Still, one has to be very careful when interpreting results
for planets with M < 0.1 MJ.

4. Initial and boundary conditions

The standard numerical resolution we use is (nr, nφ) =
(128, 384). This way, the cells close to the planet are of equal size
in the radial and in the azimuthal directions. We do not resolve
the Roche lobe using a low resolution like this, but this resolu-
tion is sufficient to capture the long-term global evolution of the
disk. For the runs with dust accretion, we used 4 levels of AMR
to achieve a resolution that is 16 times higher near the planet.

As mentioned before, we use an aspect ratio of h = 0.05,
and the initial gas surface density distribution is constant, with
Σg = 34 g cm−2. This surface density is appropriate for a disk
with 0.01 M
 within 100 AU at approximately 7 AU, between
the location of Jupiter and Saturn in the solar system, or at 13 AU
in the Minimum Mass Solar Nebula. Note, however, that the
fundamental parameter is the stopping time, and our results can
therefore be scaled to disks of arbitrary mass by adopting a dif-
ferent grain size for a given Ts.

The initial dust-to-gas ratio is 0.01. Our distance unit is the
radius of the planet’s orbit, and in this unit the inner boundary is
at r = 0.4 and the outer boundary at r = 2.5.

It is easy to see that for a constant surface density the stop-
ping time is also constant:

Ts = 0.0461
( s
cm

)
, (30)

where the size of the particles s is given in cm.
The gas rotates with a slightly sub-Keplerian velocity due to

the radial pressure gradient (note that even when there is no den-
sity gradient, there is a pressure gradient caused by the gradient
in the sound speed). The dust rotates exactly with the Keplerian
velocity, initially. All radial velocities are taken to be zero.

The constant kinematic viscosity is set so that α = 0.004
at r = 1 in all models. For the disk described above, the criti-
cal planet mass for gap opening is about 1 Jupiter mass (1 MJ)
(Bryden et al. 1999). We varied the mass of the planet between
0.001 MJ and 1.0 MJ.

The boundary conditions are the same as in Paardekooper &
Mellema (2005), deriving from Godon (1996). They are specif-
ically designed to be non-reflecting, so that all waves generated
in the simulated region leave the computational domain without
influencing the interior.

5. Results

5.1. Axisymmetric disk

To begin with, we consider a disk without a planet. The ana-
lytic solution for the drift velocity is given in Eq. (15). Figure 3
shows this analytic solution for particles of 1 mm, as well as the
numerical solution after 10 orbits of the gas at r = 1. The an-
alytical solution is indistinguishable from the numerical result,
showing that the method handles the large source terms arising
due to the small Ts very well. The angular velocity of the dust
is always equal to the angular velocity of the gas. The Coriolis
force starts to play a role only when the relative radial velocity
becomes very large.
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Fig. 3. Relative radial velocity of gas and dust (1 mm) in a disk without
a planet. The dots represent the numerical solution, and the solid line
represents Eq. (15).
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Fig. 4. Close-up on a spiral density wave, with relative velocity arrows
superimposed. Outside of the spiral wave, the dust drift is directed in-
ward, according to Eq. (15). Close to the spiral, the particles move to-
wards the centre of the wave. For 5 mm dust particles, as shown here,
the maximum relative velocity is 2.6 × 10−6, in units of the orbital ve-
locity of the planet.

5.2. Dust response to a spiral wave

An embedded planet perturbs the gas disk by launching spiral
density waves. In this section, we investigate the dust response
to such a single wave. In Fig. 4, we show a close-up on part of
the spiral pattern generated by the planet. The velocity arrows
indicate the relative velocity of gas and dust. In the upper right
direction, the density and velocity of the gas are close to their
initial values, and in this region, the dust drifts slowly inward,
according to Eq. (15). In the lower left part of the figure the dust
particles drift inward again, but at a higher speed, due to the
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Fig. 5. Surface density of gas and dust (s = 0.1 cm) after 500 orbits of
a 0.1 MJ planet at φ = 0 (opposite to the planet). The dust density is
multiplied by 100. The dots indicate the positions of the 2:3, the 3:2,
and the 2:1 resonances.

lower gas density. At the location of the spiral wave, gas den-
sity and velocity are such that the dust always moves towards
the centre of the wave. This is not surprising in view of Eq. (16),
which states that in an axisymmetric disk, dust particles will al-
ways move towards the highest pressure. Note that even in this
perturbed disk, the angular velocities of gas and dust are still
almost equal: the particles move only radially through the gas.
Therefore, the dust response to a spiral wave is the same as the
response to an axisymmetric density wave, but stretched in the
radial direction. The effect of a density wave, as shown in Fig. 4,
remains very local and is of minor importance for the global disk
evolution.

5.3. Global disk evolution

Paardekooper & Mellema (2004) showed that planets of ∼0.1 MJ
are able to decouple the evolution of the gas disk and the dust
disk. More specifically, they showed that the dust particles tend
to move away from the orbit of the planet, creating a deep annu-
lar gap. Furthermore, the final dust disk appeared to be structured
near mean motion resonances. In this section, we further explain
the mechanism for structuring the disk.

First of all, Fig. 5 shows a radial density cut through
a disk perturbed by a 0.1 MJ planet after 500 orbits. Again, as
in Paardekooper & Mellema (2004), we see a clear gap and
a density enhancement at the position of the 2:1 mean motion
resonance.

Note that since Ts � 1, the dust particles are never influ-
enced by the planet directly at the radii of the indicated res-
onances, they only react to the gas density and velocity. The
mechanism for structuring the dust disk is therefore intrinsically
different from ordinary resonance capture, which is the usual ex-
planation for the existence of the Plutinos in the Kuiper belt (Luu
& Jewitt 2002).
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Fig. 6. Azimuthally averaged radial acceleration a of dust particles after
100 orbits of a 0.1 MJ planet. The close-up shows a in the outer region
of the disk. The 2:1 mean motion resonance is visible as a small bump
in a.

In Fig. 6, we plot the radial acceleration of dust particles,
excluding the drag force:

a = r(vφ + Ω)2 − ∂Φ
∂r
· (31)

Figure 6 shows the azimuthally averaged a, with a close-up on
the outer region of the disk. The first thing to note is that the
dust is always accelerated inward, except for the region around
r = 1.1. Inside the planet’s orbit, the acceleration is very nega-
tive, indicating that the dust will quickly move toward the inner
boundary.

The large inward and outward accelerations near r = 0.9 and
r = 1.1, respectively, are due to the inner and outer edges of the
density dip carved in the gas. The pressure gradient at the outer
edge is large enough to push the dust outward. The densest ring
outside the planet’s orbit forms where a switches sign at r = 1.3.
Particles approach this location in the disk from both smaller and
larger radii, which leads to a strong dust accumulation.

The close-up in Fig. 6 indicates the outer 2:1 mean motion
resonance, which shows up as a bump in the radial acceleration
at r = 1.6. Note that a is still negative near the resonance, so
the dust keeps moving inward. However, near the resonance, the
dust particles are decelerated, and therefore the dust piles up at
that location. From Fig. 5, we can also see that the density peaks
just outside the gap are close to, but not exactly located at the po-
sition of the 3:2 and the 2:3 resonance, showing that the mech-
anism by which they are formed is different. In contrast to the
region close to the shallow gas gap, there is no apparent pres-
sure gradient near the 2:1 resonance to structure the dust disk.
Nonetheless, the resonance does show up in the acceleration in
Fig. 6, and it is therefore the velocity field rather than the density
of the gas that makes the dust move into the 2:1 resonance.

The adopted initial gas surface density is correct for a dis-
tance of 13 AU in the Minimum Mass Solar Nebula (MMSN).
For this location of the planet, the initial dust mass between
r = 1.2 and r = 1.5 is 5.4 Earth Masses (M⊕). After 500 orbits
of the planet, the dust mass in this region has grown to 10.9 M⊕,
an enhancement of more than a factor of 2 (see Fig. 5). This may
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have serious implications for building planetesimals (boulders
with sizes larger than 10 centimeters) in this region.

We have not included dust diffusion in our models. Turbulent
transport of small dust grains is not yet fully understood, but it
can be described by diffusion for the smallest particles (Johansen
& Klahr 2005). To see what effect diffusion has on dust-gap for-
mation, we gave the dust fluid the same turbulent diffusion co-
efficient as the gas, and included the viscous force terms in the
dust source update. It turned out that dust diffusion affects the
dust density distribution only at the 1% level, indicating that this
is not an important process. However, the largest particles we
consider may be subject to vortex trapping in turbulent eddies
(Johansen & Klahr 2005), and for these particles, the diffusion
approach may not be entirely valid.

5.4. Dependence on particle size

We have seen that particles of 1 mm decouple from the gas due
to the disk perturbation induced by a small planet. As we exam-
ine smaller and smaller particles, we expect a certain minimum
particle size for this decoupling to occur because smaller par-
ticles couple better to the gas. We can make a simple estimate
for this smin by looking at the region in the disk near r = 1.1,
where the dust experiences the largest positive acceleration amax.
According to Fig. 6, amax = 0.005. The radial gas velocity in
a standard accretion disk is

vr,g = −3ν
2r
· (32)

The gas radial velocity in a disk with a planet is similar.
Balancing the outward acceleration with the radial drag force
gives an equilibrium velocity difference between gas and dust of

∆vr = amax
Ts

ΩK
· (33)

When this velocity difference is larger than the radial gas ve-
locity, dust particles can be accelerated outward around r = 1.1,
creating a low density gap and a high density ring. The minimum
stopping time for this to occur is

Ts,min =
3ΩKν

2ramax
· (34)

For our disk parameters, this implies a minimum particle size
of approximately 500 µm. Note, however, that although smaller
particles will not be pushed outward, they will travel inward at
a different speed near the edge of the gas dip. As in the case
for the 2:1 resonance, where in spite of the acceleration being
negative everywhere a dust ring still arises, these particles will
eventually create a gap, but on a much longer time scale.

Figure 7 shows the radial dust density for four different par-
ticle sizes after 100 orbits. First of all, it is clear that the larger
particles react even more dramatically on the planet. The three
bumps at r = 0.7, r = 1.3, and at corotation all grow very fast
with increasing particle size. After 400 orbits, the dust-to-gas
ratio of 5 mm particles at r = 1.3 is enhanced by more than an
order of magnitude. The width of the dust gap does not depend
on the size of the particles.

The outer disk (r > 1.1) reaches a quasi-static state af-
ter approximately 100 orbits. From then on the only evolution
is in the further growth of existing features. The inner disk is
slowly cleared, however, but on a time scale that is set by the
unperturbed motion of gas and dust. If we take Eq. (32) for the
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Fig. 7. Radial density cut opposite to the planet for four different par-
ticle sizes after 100 orbits of a 0.1 MJ planet. The dust densities are
multiplied by 100.

velocity of the gas and Eq. (15) for the relative velocity, we can
write the following for the dust velocity:

vr = −
(
3
2
α + Ts

)
h2vK. (35)

This gives a time scale for clearing the region inside r = 1 of
approximately 50 000 orbits.

Looking at the distribution of 0.1 mm particles in Fig. 7, we
see that even these well-coupled particles start to create a clear-
ing in the inner disk. However, since this planet is not strong
enough to keep all the dust outside of r = 1.3, the inner disk is
still fed from outside. Particles larger than 500 µm are able to
create a fast gap for this planet. This agrees with the estimate of
Eq. (34). Based in Fig. 7, we estimate that particles larger than
150 µm will open up a dust gap within 500 orbits.

5.5. Dependence on planetary mass

Smaller planets do not dramatically perturb the disk, so we ex-
pect that a minimum planetary mass for dust-gap opening also
exists. In this section, we consider only 1 mm particles.

Figure 8 shows the radial dust distributions for four differ-
ent planetary masses. The smallest planet is not able to pro-
duce a density dip near its orbit, so the gas density is equal to
1 everywhere except in the spiral waves. From Fig. 8, we con-
clude that a planet of 0.05 MJ is the lowest-mass planet that is
able to create a gap, albeit on a longer time scale than for more
massive planets.

The highest mass planet in Fig. 8 is on the edge of creat-
ing a gap in the gas disk. As a result of the lower gas density,
the stopping time for particles near the orbit of the planet is rel-
atively large, which allows for the strong evolution near r = 1.
The time scale for dust-gap formation for this planet is about half
the time scale for gas-gap formation, which is approximately
100 planetary orbits. Also, due to the strong spiral waves, the
2:1 mean motion resonance plays a major role; the resonance
is able to suck material up from both sides, leading to a less
pronounced peak near r = 1.4 and to an empty region around
r = 1.8. Figure 9 shows the dust surface density for this planet.
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Fig. 9. Surface density of 1 mm dust particles after 100 orbits of
a 0.5 MJ planet.

Note that the resonance-induced gaps at r = 0.55 and r = 1.8
are as deep as the gap near the planet’s orbit. Observationally,
it may be difficult to distinguish a single-planet system like this
from one with multiple planets.

Because of the conditions discussed in Sect. 3.5,
a 0.5 MJ planet is the maximum planetary mass we can
accurately model with a two-fluid calculation. However, based
on the relation between the radial acceleration a and the
resulting dust distribution (compare Figs. 5 and 6), we can still
make a few remarks concerning higher-mass planets.

0.5 1.0 1.5 2.0
r

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

a

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Σ

a

Σ

Fig. 10. Azimuthal averages of the radial acceleration a (solid line)
and gas surface density Σ (dashed line, shown for 0.4 ≤ r ≤ 1.8) for
a 1 MJ planet after 400 orbits.

First of all, we expect similar things to happen for
a 1 MJ planet as for a 0.5 MJ planet, only in a more extreme form.
Secondly, we noted in Sect. 5.3 that the dust ring just outside the
gap forms where a changes sign from positive to negative. In
Fig. 10, we show a together with the gas surface density Σ for
a 1 MJ planet. The gas gap clearly stands out, and we see that a
changes sign at the outer edge of the gap around r = 1.4. A
dust ring at that location would coincide with the outer edge of
the gas gap. Therefore, a possible dust gap would have the same
width as the gap in the gas disk.

Also from Fig. 10, we see that a is structured up to r ≈ 2.5,
which is larger than for the 0.1 MJ planet (see Fig. 6). For
a planet at Neptune’s orbit (semi-major axis 30 AU), the reso-
nant structure in the dust disk can therefore extend to at least
75 AU.

5.6. Flow within the Roche lobe

The flow of dust deep within the Roche lobe (RR) of the planet
is relatively simple. Due to the strong pressure gradient in the
direction of the planet, the relative velocity of the dust particles
is always directed towards the planet. In other words, if we take
a cylindrical coordinate frame (s, θ) centred on the planet, then
∆vs = vs,d − vs,g is always negative.

In Fig. 11, we show this relative velocity as a function of
distance to a 0.1 MJ planet for 1 mm particles. The first thing to
note is that the relative velocity changes sign very close to the
planet. That is because this was a run with gas and dust accre-
tion, and therefore most of the gas inside 0.1 RR was removed
(see Paardekooper & Mellema 2005, for the accretion proce-
dure), leading to a reversed pressure gradient locally. Outside
the accretion area, dust moves slowly towards the planet with re-
spect to the gas. The spread in velocities stems from the fact that
the gas density distribution around the planet is not symmetric
with respect to the planet (D’Angelo et al. 2002).

If we take the average relative velocity in the Roche lobe as
4.0 × 10−4 in units of the Kepler velocity at the location of the
planet, then we get a time scale to clear the Roche lobe of dust of
less then 100 orbits for particles of 1 mm. This is an important
time scale for accretion, as we will see in the next section.
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Fig. 11. Scatter plot of the relative velocity in the direction of
a 0.1 MJ planet. The distance to the planet is in units of the
Roche lobe RR, and the unit of relative velocity is the Kepler veloc-
ity at the position of the planet. The size of the dust particles in this
simulation is 2 mm.

5.7. Gas and dust accretion

We now turn to the interesting problem of dust accretion. The ac-
cretion of dust particles compared to the gas is important for the
final enrichment of gaseous giant planets. When the dust accre-
tion rate is higher than 0.01 (the initial dust-to-gas ratio) times
the gas accretion, the planet will get enriched in solids, and when
the dust accretion is lower than 0.01 the gas-dust mixture that is
accreted onto the planet is relatively gas-rich. In the discussion
below, we multiply the dust content of the disk by 100, so that
gas and dust accretion can be directly compared.

The mass range we can consider is limited because for
Mp < 0.1 MJ, three-dimensional effects start to play an impor-
tant role (D’Angelo et al. 2003), while planets larger than ap-
proximately 0.5 MJ open up a deep gas gap in the disk, which
we cannot treat in the fluid approach. Therefore, to eludicate the
basic principles that govern dust accretion and to provide a start-
ing point for future, more detailed simulations, we only consider
a 0.1 MJ planet.

In the left panel of Fig. 12, we show the accreted mass of
gas and dust in units of gas and dust disk masses as a function
of time. The accretion of gas (solid line) was extensively dis-
cussed in Paardekooper & Mellema (2005) and is shown here
only for comparison. After approximately 200 orbits, it reaches
a constant value of 1.5 × 10−4 gas disk masses per orbit.

The accretion rates for dust particles of different sizes show
a different behaviour. In the first few orbits, relatively more dust
is accreted than gas, which means that the dust mass that is ac-
creted is larger than 0.01 times the gas mass that is accreted. This
is the stage where the immediate surroundings of the Roche lobe
are cleared of dust, due to the strong pressure gradients in the
planetary atmosphere. Later, the competing process of dust-gap
formation sets in, and consequently, dust accretion slows down.
In the end, for all particle sizes, relatively more gas is accreted
than dust, which means that the planet will not be enriched in
solids of these particular sizes.

The right panel of Fig. 12 shows the ratio of accretion rates
for the different particle sizes to the gas accretion rate. We see
that initially the accretion rate of dust is higher than 0.01 times
the accretion rate of the gas or all particle sizes, corresponding

to the Roche lobe clearing mentioned before. If we look at the
accretion rate of 1 mm particles, after the first sharp peak, the
accretion rate stays almost constant for 30 orbits, after which
the process of gap formation sets in, and the accretion rate slowly
declines. After 300 orbits, the accretion rate for the dust is less
than half the accretion rate of the gas, and it is still declining.

For the larger particles, we see a larger initial accretion rate
because these more weakly coupled dust particles move up the
strong pressure gradient near the planet more easily. However,
for larger particles, gap formation sets in earlier, as well, and
it will eventually win. A particle size of 2 mm results in the
largest accreted mass of dust in this first stage of accretion. For
4 mm particles, gap formation sets in before the planet can ac-
crete a significant amount of surrounding dust. However, in the
long run, more small than large particles will have been accreted,
as can be seen from the left panel of Fig. 12.

The planet clears the outer part of the gap of 4 mm particles
in approximately 100 orbits (see Fig. 7). At this point, the ac-
cretion rate curve levels off at a value of 0.2 Ṁgas, but around
150 orbits, it starts to decrease again. Accretion around this time
comes from the dense ring at r = 1, which will slowly diffuse
into the inner disk. After it is gone, dust accretion will be negli-
gible compared to gas accretion.

6. Discussion

Dust gaps opened by low-mass planets have some interesting
observational and theoretical consequences. In Paardekooper
& Mellema (2004), it was shown that the Atacama Large
Millimeter Array (ALMA) will provide the resolution to ob-
serve these gaps in protoplanetary disks at the distance of the
Taurus starforming region. Observationally, the relatively large
particles we consider are only important at mm-wavelengths. To
create gaps and inner holes in disks that can be detected at infra-
red wavelengths, more massive planets are needed to remove the
smallest particles.

Next, we will explore some more possible consequences for
planet formation. Before we can make any quantitative state-
ments about the importance of the limited size range we con-
sider in this paper, we need to determine what fraction of the
total dust mass these particles represent. If we look at the size
distribution from Fig. 7 of Dullemond & Dominik (2005) we
see a bimodal distribution (dust and planetesimals), with a tran-
sition around particles of 10 cm. It is interesting to note that
for typical mid-plane densities, a size of 10 cm gives rise to
Ts ≈ 1 (see Eq. (30)), which is the upper limit for which the
fluid approach is valid. Boulders larger than 10 cm are not influ-
enced by the gas as much as the smaller particles, and therefore
will not participate in gap formation due to pressure gradients,
while particles smaller than 150 µm are too well-coupled to the
gas to form a gap (see Sect. 5.4). From Fig. 7 of Dullemond
& Dominik (2005), we estimate that half of the total mass of
particles smaller than 10 cm is in particles larger than 150 µm.
Furthermore, about 30% of the total dust mass is in particles with
sizes between 150 µm and 10 cm.

The above estimate implies that the inner disk is denied 30%
of the amount of solids it would receive from the outer disk with-
out the presence of the planet. If (terrestrial) planets are still
being formed in the inner disk, it may slow down this process
considerably.

Dust piles up outside the planet’s orbit the (see Fig. 5). In
Sect. 5.3, we mentioned that after 500 orbits of the planet, the
amount of dust had already doubled. Because the planet acts as
a barrier for particles moving inward, more and more dust will
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stream into the resonance from the outer disk. It is interesting to
note that this is in the region where the Kuiper Belt resides with
respect to Neptune. This large amount of dust may well have
influenced planetesimal formation in that region.

If an already-formed giant planet is present in the inner disk,
this planet is also denied 30% of the amount of solids it would
be able to accrete without the presence of the outer planet. One
could imagine that in the present configuration of our Solar
System, with three dust-gap-opening planets outside 5.2 AU, the
amount of solid material accreted by Jupiter would be dramati-
cally small, even without the mechanism outlined in Sect. 5.7.

Depending on the dust size distribution in the disk, the low
relative accretion rates for mm-sized particles found in Sect. 5.7
will have a significant effect on the final composition of the
planet. Our results show that the accretion rates for these parti-
cles are, on the long run, more than an order of magnitude lower
than the gas accretion rate. This will significantly affect the final
enrichment in solids for giant planets, even more so if a dust-
gap-opening planet exists in the outer disk.

In other words, if, as is standard in planet-formation mod-
els, one considers gas accretion and the accretion of planetes-
imals separately, the gas that is accreted is relatively poor in
solids (by a factor of 2) compared to the solar value. This pro-
cess works against the usual enrichment scenarios for the giant
planets (Gautier et al. 2001a,b; Owen et al. 1999). However, as
was mentioned before, we cannot make firm statements about
planets of higher mass. More definitive conclusions about dust
accretion onto giant planets require further study.

Dust growth may also play an important role in structuring
the disk. When the growth time scale τg is long compared to the
dust-gap-formation time scale, what effectively happens is that
particles will be removed from the dust gap as soon as they be-
come large enough. This means that the gap will also be cleared
of the smallest particles on a time scale τg. However, the process
of dust growth in disks is not understood well enough to make
any quantitative statements about it.

It is important to realize that the dust-gap-formation process
basically only needs a shallow gas dip formed by an embed-
ded planet. As long as more complicated disk models includ-
ing magnetic fields and radiative transfer do not change this

gas structure, the basic picture outlined in this paper will not
change. Three-dimensional effects may be important, however,
because gas and dust behave differently in the vertical direction:
dust particles will settle to the midplane, while the gas forms a
pressure-supported structure. Angular momentum transport, and
therefore also gap formation, is reduced in three-dimensional
models, compared to vertically integrated models, but because
of settling effects, the dust will mainly interact with gas near the
midplane where the planetary potential is strongest. It is not clear
how these competing processes will affect our results; three-
dimensional, multi-fluid simulations are needed to answer that
question.

7. Summary and conclusions

In this paper, we have elaborated on the findings of Paardekooper
& Mellema (2004), who showed that intermediate mass planets
are able to open dust gaps in gas disks. We have shown how
the formation of the gap depends on particle size and planetary
mass, indicating that particles larger than 150 µm and planets
larger than 0.05 MJ are needed to open a gap in a typical proto-
planetary disk. Planets larger than 0.5 MJ clear a gas gap around
their orbit, increasing the stopping time Ts locally by 2 orders
of magnitude, leaving the dust inside the gap largely decoupled
from the gas. If the planet clears a gas gap, the dust gap will be
of equal width.

Within the Roche lobe of the planet, the pressure gradient
is such that solids will quickly move to the centre of the plan-
etary atmosphere, allowing for a very high dust accretion rate.
However, this enhancement is more than counterbalanced by the
local depletion of dust due to the formation of the dust gap. In
the end, much more gas can be accreted compared to solids.
This may have serious consequences for the enrichment of
giant planets.
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