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Radiation from arbitrary directions incident on a thick, homogeneous, conservative
atmosphere with isotropic scattering is mostly diffusely reflected. A smaller part diffuses
through the atmosphere and emerges at the other side. Sobolev’s equations, which give
the asymptotic forms of the reflection and transmission functions for large thickness, b,
in terms of the function H(x) known from the theory of semi-infinite atmospheres, are
newly derived. It is shown by two examples that knowledge of these asymptotic forms
makes it possible accurately to interpolate any quantity dependent on b between b = 1

and b = o,

THE PROBLEM

By well-known theory (Chandrasekhar,
1950) the diffuse reflection and transmission
of an arbitrary incident radiation field by a
homogeneous plane-parallel atmosphere with
isotropic scattering can be expressed in
terms of two functions X (b,a,u) and Y (b,a,u).
Here b = total optical depth of the atmos-
phere, a = albedo of each volume element
(@ = 1 is conservative scattering), and u
is the cosine of the angle with the out-
side normal at the top or bottom surface
(USYTEE

We discuss in this paper the manner in
which these functions approach the well-

known limits wvalid for a semi-infinite
atmosphere

})im X(b,a,u) = Hla,u)

lim ¥ (b,a,u) = 0.

b—

This problem has been independently solved
by Sobolev and by Mullikin. The present
paper may nevertheless have some interest
to research workers because:

(a) Sobolev’s solution is not illustrated by
numerical examples. The title of the relevant
Section 7 of Chap. 3 of his book (Sobolev,
1956) is wrongly translated into English
(Sobolev, 1963) so that it seems to refer to

infinitely large optical thickness. (The
original says large optical thickness.) The
most systematic account of the asymptotic
formulas is not given in this book but in a
separate paper (Sobolev, 1957).1

(b) The work by Mullikin (1963, 1964),
based on the use of singular integral equa-
tions, is more general but at the same time
more abstract. The nonmathematical reader
may find the access to these formulations
difficult. Moreover, the asymptotic formulas
have not explicitly been given but may
easily be derived (Mullikin, private
communication).

(¢) The present method, as illustrated by
Tig. 1, makes it possible to visualize exactly
how the radiation diffuses through the layer.

(d) A surprisingly accurate interpolation
method between b = 1 and b = < is sug-
gested here.

(e) Less accurate solutions of the same
problem have been derived independently
in the literature on heat transfer (Viskanta
and Grosh, 1962; Probstein, 1963; Eckert,
1963). I am grateful to Prof. Goulard for
pointing this out to me.

! Reference to this paper should have been made
in the footnote on p. 155 of the English translation
of the book. The publisher’s omission of the date of
the original book combined with the literal transla-
tion “in press’” makes this footnote very puzzling.
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F1e. 1. Source function J, in a semi-infinite atmosphere and J in an atmosphere with optical thick-
ness 10 when perpendicular radiation is incident from the left.

We measure optical depth 7 from the top
7 =0 to the bottom 7 = b and consider
arbitrary radiation with intensity I(0,—u)
incident on the top. We wish to find not only
the emergent radiation fields at top and
bottom, but also the fluxes reflected and
transmitted and the average intensity (or
source function) at any depth inside.

The role of the albedo a may be sum-
marized as follows: For a < 1 absorption
losses occur with every scattering. The
radiation field deep inside the atmosphere
decreases with depth as e, where p is a
well-known function of a (Case, De Hof-
mann, and Placzek, 1953, Table 9; Sobolev,
1963, Table 3.11) and 1/p is called the
“diffusion length.” Beyond a certain value
of b the actual depth of the atmosphere is
irrelevant for practical purposes. The error
in the reflected intensity made by taking
b = o« instead of finite remains below an
approximate 1 or 29 limit if

b>2/(1 — ).

For a > 1 gains occur with every scatter-
ing. When b increases, a critical depth is
reached beyond which the radiation in the
layer is self-sustained and can have nonzero
values even in the absence of incident radia-

tion. The critical relation between b and the
first eigenvalue a is known (Mullikin, 1962;
van de Hulst, 1963) and has the asymptotic
form, for @ near 1, b large:

1 — (1/a) = 72/3(b + 1.42)2.

The eigenvalues of the homogeneous Milne
equation for the semi-infinite atmosphere
form a continuous set, a > 1. Physically,
this means that the diffuse reflection from
an infinitely thick layer with any a > 1 is
undetermined because the appropriate eigen-
function may be added with an arbitrary
factor. These functions have been discussed
by Case, De Hofmann, and Placzek (1953,
Section 18.1).

The remaining case ¢ = 1 is the only one
in which a finite nonzero fraction of the
incident radiation reaches the bottom for
very large b. The further sections treat only
this conservative case, a = 1. We shall now
omit the argument a from the functions
X, Y, H, ete.

INTERENCE FROM INTEGRAL EQUATIONS
The functions X (b,u) and Y (b,u) satisfy
the integral equations

X(b) = 1+ 2 [ B(b,uuo)duo
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Y(bu) = e + 24 [)1 T aite(b,u,m0) dpso,

where
R(b,u,u0) = T—li-no)
[ X (b,u) X (b,po) — Y (b,u) Y (b,u0)]
Taiss(b,u,p0) = mol_h“)

(X ()Y (byso) — Y (b,u) X (by0)].

We call B the (diffuse) reflection function
and Taisr the diffuse (nondirect) part of the
transmission function. They also satisfy the
differential equations

30X (b,u)/0b = y(0)Y (b,w)

oY (bu)/0b =
- (1/11-) Y(b)/") + y—l(b)X(brﬂ):

where

ya®) = % [ Ybw) du/u.

We may first observe that the term e/,
which represents the directly transmitted
radiation in the physical interpretation of
this integral equation (van de Hulst, 1948),
becomes numerically insignificant for large
b. If this term is omitted, the integral equa-
tions are identically satisfied by

X(bp) = [1 — uf(D)H(w)
Y(b)l‘) = “f(b)H(l-‘))

where f(b) is an arbitrary function. I'or we
find by direct substitution

R(b,pp0) = [1 = (b + wof(B)IR( ,u,u0)
Taite(b,p,u0) = (0 + wo)f(B)R(0 u,m0),
with

R(< ,u,u0) = [1/4( + wo)}H (u)H (ko)

and the integral equations for X and Y are
satisfied, because of known integral prop-
erties of the H functions. Since direct
transmission is supposed negligible, the
total transmission function equals Ta;¢s.

It is easily checked that the various rela-
tions between the moments of the X and
Y- functions are also satisfied, again with
neglect of the term representing direct
transmission.

We now have y_.(b) = f(b). Hence both

DE HULST

differential equations reduce to df/db =
—f2 so that

f(&) = 1/(b + constant).

The value of the constant will be found in
the next section to be

2q() = 1.42089218.

THE Source Fuxcrion

The source function J(r) in a plane-
parallel, homogeneous atmosphere with iso-
tropic scattering is a times the specific
intensity at depth r averaged over the full
solid angle 4m, including the similarly de-
fined average, J1(r) of the (weakened) direct
radiation from external and/or internal
sources. It satisfies Milne’s equation

T
J() = Jir) + §A J@)E\(|r — z|)dx.

We now specify radiation incident on the
top with intensity I(0,—u) normalized to a
flux 7 falling on a unit area of the top surface,
so that

10, =20 = 1
and
1
i) = da [ 10, —w)eivd.

Again we restrict the discussion to con-
servative scattering (a = 1). We make use
of two known results for semi-infinite atmos-
pheres (b = «).

1. A constant outward net flux #F cor-
responds to the source function

J(r) = §Flr + ¢(7)]

and emerges from the atmosphere with the
intensity

IOu) = (V3/4)FH(u).

2. Incident intensity as specified above
gives rise to the source function (suffix s
refers to semi-infinite atmosphere):

i) = 4 [ 10~ )W (ru)du

and the radiation emerges again with the
diffusely reflected intensity
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1
I(0,p) =/ R( o ,u,u0)1(0, — po)2uoduo

R

The functions ¢(r), “Hopf’s function,” and
H(u) are treated in all standard texts on
radiative transfer. For an accurate table of
q(r) see Kourganoff (1952, p. 138). W(r,u),
which we call the “point-direction gain,” is
a less familiar function. It is in essence the
same as Sobolev’s “probability for quantum
exit,” p(r,u), the relation being (for arbitrary
albedo a)

plarp) = (a/4m)W(a,ru).

We prefer the different name (and normaliza-
tion) because it refers equally to the two
reciprocal physical meanings which can be
attached to the function and because it
gives a slight simplification in the formulas.
A three-figure table of W(r,u)/H (1) is given
by Sobolev (1963, p. 139). Some more ac-
curate values and moments of W(r,u) were
derived by van de Hulst (1964). The neces-
sary relations in the present context are
those forr = 0 and r — o«

W0,u) = H(w)
W(m) = uV/3H(u).

In order to employ these results we first
observe that the Milne equation for finite b
may be formally written as one for b = « if
we specify that J(r) = 0 for + > b and re-
quire the equation to be valid only in the
interval 0 < r < b. We now propose a solu-
tion written in the entire range (0,«) as

J(r) = Julr) — Juln),

where the first term is identical to the known
solution for a semi-infinite atmosphere men-
tioned above and J,.(r) is associated with the
known net-flux solution as follows:

§F[r + q(r) + q(=) — q(b —1)]
0<r<d
3F[b + 2q( )]

> b.
We shall verify that this is an accurate solu-
tion if (and to the same accuracy as) it is
possible to define a range of depths in the
atmosphere which is far enough from the

Jn(f) =
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top and bottom surfaces to replace both
q(r) and ¢(b — 7) by ¢(), Ji(r) by 0 and
Ju(r) by

fwwfmfnomwmw

If these conditions are satisfied, and if J(7)
is made O for 7 > b, which fixes the value of
F at

(4/3)J ()
F= b+ 2¢()’

then we observe that:

(1) For small and intermediate 7, J{(r)
satisfies the Milne equation because J,(r)
is a solution of the nonhomogeneous equa-
tion and J,.(r) is a solution of the homo-
geneous equation.

(2) For small and intermediate b — 7, the
equation is homogeneous and J.(r) is a
solution because it has the form 3F[(b — )
+ q(d — 7)] for < b and O for r > b.

The physical significance of F is that oF
is the net flux carried through the atmos-
phere from top to bottom: it is subtracted
from the flux = which would be reflected
from the top by a semi-infinite atmosphere
and it emerges as a net flux at the bottom.

For unidirectional incidence

Jo() = (V/3/4)H (o),
F = H(uo)/V/3lb + 2¢()].

Figure 1 illustrates this solution by an actual
example, namely perpendicular incidence on
a layer with b = 10. The “intermediate
range” is about from » = 3 to 7. We have
Jo(0) = (v/3/4)H(1) = 1.2591 and F =
4J:(0)/11.4209 = 0.1470, which means that
nearly 159 of the incident flux emerges from
the bottom.

Having thus found the source density we
can immediately write the emergent in-
tensities, for convenience referring to uni-
directional incidence. These are:

Top:
I(O;”’) = R(byIJ'yV'U) =
(R(% u,m0) — V/3/4)FH (u)

_ H()H(po) _ _HwH (w)
4(u + po)  4[b + 2¢()]




340 H. C. VAN

Bottom:

I(b,— ) = T(byuyuo) = %FH(@
_ H@WH@)
4[b + 2¢(==))

These are indeed the forms derived in the
second section with

J(b) = 1/[b + 2¢()]
INTERPOLATION

Most numerical data about scattering by
finite layers in the published literature are
confined to b < 1. Extrapolation of such

DE HULST

results to larger b is hazardous. However, the
formulas for large b just derived make this
into an interpolation which gives surpris-
ingly accurate results in a simple manner.
This may be illustrated by two examples.
In the conservative case, if the incident
radiation follows Lambert’s law, the trans-
mitted fraction of the incident flux is

Lw=UTU =1,
and the reflected fraction is
T1=1‘—t1= LTRL’TZTC=§.

Here we have simply listed some notations
under which the same function of b, which
is important for calculating the influence of

TABLE 1
MoMmEeNTs oF Y (b,u) INTERPOLATED FOR THICK LAYERS BETWEEN b = 1 AND ¢
b & %_i" 8 %_%bw
0 1 1 1 1
0.05 (0.95484 1.0098 0.9130 1.0520
0.10 0.91566 1.0171 0.8578 1.0792
0.15 0.88073 1.0229 0.8142 1.0983
0.20 0.84906 1.0278 0.7772 1.1135
0.25 0.82013 1.0318 0.7448 1.1261
0.50 0.7040 1.0455 0.6254 1.1660
1.00 0.5534 1.0570 0.48370 1.2014
2 (0.3900) (1.064) (0.3384) (1.223)
4 (0.2459) (1.066) (0.2130) (1.2302)
10 (0.1322) (1.066) 0.1011042 1.23054
100 (0.013146) (1.066) 0.01138523 1.230566
o 0 1.06566914 0 1.23052876

a () means interpolated values.

1.2 =

1.0 i | 1 1

[ | | |
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0.5

linear scale of Ez(b) 0

Fic. 2. Interpolation graphs for quantities depending on atmosphere thickness b.
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a planetary solid surface below a scattering
atmosphere, has appeared in different publi-
cations (Chandrasekhar and Elbert, 1952;
Mayers, 1962; van de Hulst, 1948, 1963).
We now find by simple integration that

4

ti = 4f(b) = ﬂﬂ*@

for large b. This suggests that we use the
function 1/(t; — 2b) for interpolation. Table
I and Fig. 2 show that this works quite well.
The choice of F.(b) as absecissa is not based
on theory, but proves to be convenient to
make the graph about linear. This graph
leaves no doubt that, e.g. at b = 2, the
difference can be estimated within 0.29,
hence {, within 0.08%, and r, within 0.069,.
This accuracy rapidly increases with in-
creasing b.

As a second example, Table I and Fig. 2
show values of

1
NTU = 8o = 2yo = [ Y(buw)dy,
0

which physically means the fraction of the
total flux transmitted through the atmos-
phere if the incident radiation comes from
an isotropic source (or a layer of such
sources) above the atmosphere. The asymp-
totic expression is

Bo = 2f(b)/V/3 = 1/(0.8660b + 1.2305),

which suggests interpolation of the quantity
1/8o — 0.8660b, which reaches the limit

V3. q(=) = 1.2305 for b— . For curi-
osity it may be noted that this limit also
equals 3/2a,, where @, is the second moment
of the function H(u). The table of Mullikin
(private communication), from which the
values for & = 10 and 100 are taken was
computed with six-figure accuracy; probably
it is more accurate to use simply the asymp-
totic formula for any b > 10.

Similar interpolation methods may be
applied to the other moments, or to the
functions Y(b,u) or the differences H(u) —
X(b,u) for any fixed u. An important con-
clusion is that there would be little point in
calculating elaborate tables for the X and
Y functions beyond b = 3, because four-
figure accuracy and better can¥be ‘reached
by simple interpolation.
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