
Why does a metal-superconductor junction have a
resistance?
Beenakker, C.W.J.

Citation
Beenakker, C. W. J. (2000). Why does a metal-superconductor
junction have a resistance? In . Kluwer. Retrieved from
https://hdl.handle.net/1887/1202
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/1202
 
Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/1202


Chapter 4

WHY DOES A METAL-SUPERCONDUCTOR
JUNCTION HAVE A RESISTANCE?

C. W. J. Beenakker
Instituut-Lorentz, Universiteit Leiden
P. 0. Box 9506, 2300 RA Leiden, The Netherlands

Abstract The phenomenon of Andreev reflection is introduced äs the electronic
analogue of optical phase-conjugation. In the optical problem, a disor-
dered medium backed by a phase-conjugating mirror can become com-
pletely transparent. Yet, a disordered metal connected to a supercon-
ductor has the same resistance äs in the normal state. The resolution
of this paradox teaches us a fundamental difference between phase con-
jugation of light and electrons.

1. INTRODUCTION
In the late sixties, Kulik used the mechanism of Andreev reflection

[1] to explain how a metal can carry a dissipationless current between
two superconductors over arbitrarily long length scales, provided the
temperature is low enough [2]. One can say that the normal metal has
become superconducting because of the proximity to a superconductor.
This proximity effect exists even if the electrons in the normal metal
have no interaction. At zero temperature the maximum supercurrent
that the metal can carry decays only algebraically with the Separation
between the superconductors — rather than exponentially, äs it does at
higher temperatures.

The recent revival of interest in the proximity effect has produced a
deeper understanding into how the proximity-induced superconductivity
of non-interacting electrons differs from true superconductivity of elec-
trons having a pairing interaction. Clearly, the proximity effect does not
require two superconductors. One should be enough. Consider a junc-
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tion between a normal metal and a superconductor (an NS junction).
Let the temperature be zero. What is the resistance of this junction?
One might guess that it should be smaller than in the normal state,
perhaps even zero. Isn't that what the proximity effect is all about?

The answer to this question has been in the literature since 1979
[3], but it has been appreciated only in the last few years. A recent
review [4] gives a comprehensive discussion within the framework of the
semiclassical theory of superconductivity. A different approach, using
random-matrix theory, was reviewed by the author [5]. In this lecture
we take a more pedestrian route, using the analogy between Andreev
reflection and optical phase-conjugation [6, 7] to answer the question:
Why does an NS junction have a resistance?

2. ANDREEV REFLECTION AND OPTICAL
PHASE-CONJUGATION
It was first noted by Andreev in 1963 [1] that an electron is reflected

from a superconductor in an unusual way. The differences between nor-
mal reflection and Andreev reflection are illustrated in Fig. 4.1. Let us
discuss them separately.

• Charge is conserved in normal reflection but not in Andreev re-
flection. The reflected particle (the hole) has the opposite Charge
äs the incident particle (the electron). This is not a violation of
a fundamental conservation law. The missing charge of 2e is ab-
sorbed into the superconducting ground state äs a Cooper pair. It
is missing only with respect to the excitations.

Figure 4-1 Normal reüection by an insulator (I) versus Andreev reflection by a su-
perconductor (S) of an electron excitation in a normal metal (N) near the Fermi level.
Normal reflection (left) conserves Charge but does not conserve momentum. Andreev
reflection (right) conserves momentum but does not conserve Charge: The electron
(e) is reflected äs a hole (h) with the same momentum and opposite velocity. The
missing charge of 2e is absorbed äs a Cooper pair by the superconducting condensate.
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• Momentum is conserved in Andreev reflection but not in normal
reflection. The conservation of momentum is an approximation,
valid if the superconducting excitation gap Δ is much smaller than
the Fermi energy E-p of the normal metal. The explanation for the
momentum conservation is that the superconductor can not exert
a significant force on the incident electron, because Δ is too small
compared to the kinetic energy Ep of the electron [8]. Still, the
superconductor has to reflect the electron somehow, because there
are no excited states within a ränge Δ from the Fermi level. It is
the unmovable rock meeting the irresistible object. Faced with the
challenge of having to reflect a particle without changing its mo-
mentum, the superconductor finds a way out by transforming the
electron into a particle whose velocity is opposite to its momentum:
a hole.

• Energy is conserved in both normal and Andreev reflection. The
electron is at an energy ε above the Fermi level and the hole is at an
energy ε below it. Both particles have the same excitation energy
ε. Andreev reflection is therefore an elastic scattering process.

• Spin is conserved in both normal and Andreev reflection. To con-
serve spin, the hole should have the opposite spin äs the electron.
This spin-flip can be ignored if the scattering properties of the
normal metal are spin-independent.

The NS Junction has an optical analogue known äs a phase-conjugating
mirror [9]. Phase conjugation is the effect that an incoming wave oc
cos(/ca; — ωί) is reflected äs a wave oc cos(—kx — ωΐ), with opposite sign
of the phase kx. Since cos(—kx—ωί) = cos(fco;+Ci;i), this is equivalent to
reversing the sign of the time i, so that phase conjugation is sometimes
called a time-reversal Operation. The reflected wave has a wavevector
precisely opposite to that of the incoming wave, and therefore propagates
back along the incoming path. This is called retro-reflection. Phase con-
jugation of light was discovered in 1970 by Woerdman and by Stepanov,
Ivakin, and Rubanov [10, 11].

A phase-conjugating mirror for light (see Fig. 4.2) consists of a cell
containing a liquid or crystal with a large nonlinear susceptibility. The
cell is pumped by two counter-propagating beams at frequency WQ. A
third beam is incident with a much smaller amplitude and a slightly
different frequency ωό + δω. The non-linear susceptibility leads to an
amplification of the incident beam, which is transmitted through the
cell, and to the generation of a fourth beam, which is reflected. This
non-linear optical process is called "four-wave mixing". Two photons of
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Figure 4.Z Schematic drawing of
optical phase-conjugation by means
of four-wave mixing. The phase-
conjugating mirror (PCM) consists
of a cell filled by a medium with
a third-order non-linear susceptibil-
ity X3· (Examples are BaTiOa and
CS2.) The medium is pumped by
two counter-propagating beams at
frequency ωο· Α probe beam inci-
dent at frequency ωρ = ωό + δω is
then retro-reflected äs a conjugate
beam at frequency wc = ωό — δω.

Pump Prom Ref. [12].

the pump beams are converted into one photon for the transmitted beam
and one for the reflected beam. Energy conservation dictates that the
reflected beam has frequency ωό — δω. Momentum conservation dictates
that its wavevector is opposite to that of the incident beam. Comparing
retro-reflection of light with Andreev reflection of electrons, we see that
the Fermi energy Ep plays the role of the pump frequency WQ, while the
excitation energy ε corresponds to the frequency shift δω.

A phase-conjugating mirror can be used for wavefront reconstruction.
Imagine an incoming plane wave, that is distorted by some inhomogene-
ity. When this distorted wave falls on the mirror, it is phase conjugated
and retro-reflected. Due to the time-reversal effect, the inhomogeneity
that had distorted the wave now changes it back to the original plane
wave. An example is shown in Fig. 4.3. Complete wavefront reconstruc-
tion is possible only if the distorted wavefront remains approximately
planar, since perfect time reversal upon reflection holds only in a narrow
ränge of angles of incidence for realistic Systems. This is an important,
but not essential complication, that we will ignore in what follows.

3. THE RESISTANCE PARADOX
We have learned that a disordered medium (such äs the frosted glass in

Fig. 4.3) becomes transparent when it is backed by a phase-conjugating
mirror. By analogy, one would expect that a disordered metal backed
by a superconductor would become "transparent" too, meaning that its
resistance should vanish (up to a small contact resistance that is present
even without any disorder). This does not happen. Upon decreasing the
temperature below the superconducting transition temperature, the re-
sistance drops slightly but then rises again back to its high-temperature
value. (A recent experiment is shown in Fig. 4.4, where the conduc-
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Figure 4-3 Example of wavefront reconstruction by optical phase-conjugation. In
both photographs the image of a cat was distorted by transmitting it through a piece
of frosted glass, and reflecting it back through the same piece of glass. This gives
an unrecognizable image when reflected by an ordinary mirror (leffc panel) and the
original image when reflected by a phase-conjugating mirror (right panel). From
Ref. [13].

tance is plotted instead of the resistance.) This so-called "re-entrance
effect" has been reviewed recently by Courtois et al. [4], and we refer to

4..Ϊ6
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0.5 1.5

temperature (K)

Figure 4-4 Temperature dependence of the conductance of an NS Junction, show-
ing the re-entrance effect. The superconductor is Nb, the normal metal is a two-
dimensional electron gas. A gate creates a strongly disordered region in the 2D gas
that dominates the conductance of the Junction. Upon lowering the temperature the
conductance fast rises and then drops again. Under ideal circumstances the low- and
high-temperature limits would be the same. From Ref. [16].
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that review for an extensive list of references. The theoretical prediction
[3, 14, 15] is that at zero temperature the resistance of the normal-metal-
superconductor junction is the same äs in the normal state. How can we
reconcile this with the notion of Andreev reflection äs a "time-reversing"
process, analogous to optical phase-conjugation? To resolve this para-
dox, let us study the analogy more carefully, to see where it breaks
down.

For a simple discussion it is convenient to replace the disordered
medium by a tunnel barrier (or semi-transparent mirror) and consider
the phase shift accumulated by an electron (or light wave) that bounces
back and forth between the barrier and the superconductor (or phase-
conjugating mirror). A periodic orbit (see Fig. 4.5) consists of two round-
trips, one äs an electron (or light at frequency WQ + δω), the other äs a
hole (or light at frequency ωό — δω). The miracle of phase conjugation
is that phase shifts accumulated in the first round trip are cancelled in
the second round trip. If this were the whole story, one would conclude
that the net phase increment is zero, so all periodic orbits would interfere
constructively and the tunnel barrier would become transparent because
of resonant tunneling.

But it is not the whole story. There is an extra phase shift of —π/2
acquired upon Andreev reflection that destroys the resonance. Since the
periodic orbit consists of two Andreev reflections, one from electron to
hole and one from hole to electron, and both reflections have the same
phase shift — π/2, the net phase increment of the periodic orbit is —π and
not zero. So subsequent periodic orbits interfere destructively, rather
than constructively, and tunneling becomes suppressed rather than en-
hanced. In contrast, a phase-conjugating mirror adds a phase shift that
alternates between +π/2 and — π/2 from one reflection to the next, so
the net phase increment of a periodic orbit remains zero.

barrier

Figure 4· 5 Periodic orbit consisting
of two normal reflections and two
retro-reflections. The net phase in-
crement is zero in the optical case
and —π in the electronic case. Hence
the periodic orbits interfere con-
structively for light and destruc-
tively for electrons. This explains
why the barrier becomes transpar-
ent for light but not for electrons.
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For a more quantitative description of the conductance we need to
compute the probability Ähe that an incident electron is reflected äs a
hole. The matrix of probability amplitudes r^ can be constructed äs a
geometric series of multiple reflections:

tl tl l + 1 11 Γ l t l l 2

rhe = V-t + V-r-ri-t + V- ΓΤΓΤ- H
l 1 1 1 l L l i j

(4.1)

Each factor l/i = exp(—ϊττ/2) corresponds to an Andreev reflection. The
matrices t, tf and r, r^ are the NxN transmission and reflection matrices
of the tunnel barrier, or more generally, of the disordered region in the
normal metal. (The number N is related to the cross-sectional area
A of the junction and the Fermi wavelength Xp by N ~ A/Xp.) The
matrices i, r pertain to the electron and the matrices i^, r t to the hole.
The resulting reflection probability R^e = N~l Tr rher^e *s given by [14]

(4.2)

We have used the relationship ίί^ + rr^ = l, dictated by current conser-
vation. The conductance GNS of the NS junction is related to R^e by
[17, 18]

(4.3)

In the optical analogue one has the probability R± for an incident light
wave with frequency ωό + δω to be reflected into a wave with frequency
WQ — δω. The matrix of probability amplitudes is given by the geometric
series

tl tl tl l Γ tl]
2

Jt " · * ' ! * ' « ' · * · ' . " I 'S m l " 'i 1 1 i L i j

l Γ II"1

= V- l-rir f T t. (4.4)
i L i j

The only difference with Eq. (4.1) is the alternation of factors l/i and
i, corresponding to the different phase shifts exp(±ivr/2) acquired at the

phase-conjugating mirror. The reflection probability R± = N~l Trr±rj.
now becomes independent of the disorder [19],

N V l - rrt
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The disordered medium has become completely transparent.
It is remarkable that a small difference in phase shifts has such fax

reaching consequences. Note that one needs to consider multiple reflec-
tions in order to see the difference: The first term in the series is the
same in Eqs. (4.1) and (4.4). That is probably why this essential differ-
ence between Andreev reflection and optical phase-conjugation was not
noticed prior to Ref. [19].

4. HOW BIG IS THE RESISTANCE?

Now that we understand why a disordered piece of metal connected to
a superconductor does not become transparent, we would like to go one
step further and ask whether the resistance (or conductance) is bigger
or smaller than without the superconductor. To that end we compare,
following Ref. [14], the expression for the conductance of the NS junction
[obtained from Eqs. (4.2) and (4.3)],

with the Landauer formula for the normal-state conductance,

η. (4.7)
n=l

The numbers TI, T2, . . . T ff are the eigenvalues of the matrix product t t f .
These transmission eigenvalues are real numbers between 0 and l that
depend only on the properties of the metal (regardless of the supercon-
ductor). Both formulas (4.6) and (4.7) hold at zero temperature, so we
will be comparing the zero-temperature limits of GNS and GN·

Since x2/(2 — x)2 < χ for χ e [0, 1], we can immediately conclude that
GNS < 2GN· If there is no disorder, then all Tn's are equal to unity,
hence GNS reaches its maximum value of 2GN- For a tunnel barrier all
Tn's are <C l, hence GNS drops far below GN- A disordered metal will
lie somewhere in between these two extremes, but where?

We have already alluded to the answer in the previous section, that
GNS — GN for a disordered metal in the zero-temperature limit. To
derive this remarkable equality, we parameterize the transmission eigen-
value Tn in terms of the localization length £n,

Tn = 0 * . , (4-8)
^
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where L is the length of the disordered region. Substitution into Eqs.
(4.6) and (4.7) gives the average conductances

4e2 Γ00

(GNS)L = -r-N l dC^L(C)cosh-2(2L/C), (4.9)
h JQ

Op roo
(GN)L = -j-N dC^(C)cosh-2(L/C). (4.10)

h JQ

(For Eq. (4.9) we have used that 2 cosh2 x—1 = cosh 2α;.) The probability
distribution PL(() of ζ is independent of L in a ränge of lengths between
/ and N l [5]. It then follows immediately that

)2L. (4.11)

Since GN oc l/£, according to Ohm's law, we arrive at the equality of
GNS and GN·

The restriction to the ränge / -C L -C Nl is the restriction to the
regime of diffusive transport: For smaller L we enter the ballistic regime
and GNS rises to 2GNJ For larger L we enter the localized regime, where
tunneling takes over from diffusion and GNS becomes <C GN-

5. CONCLUSION
We have learned a fundamental difference between Andreev reflection

of electrons and phase-conjugation of light. While it is appealing to think
of the Andreev reflected hole äs the time reverse of the incident electron,
this picture breaks down upon closer inspection. The phase shift of —π/2
acquired upon Andreev reflection spoils the time-reversing properties
and explains why a disordered metal does not become transparent when
connected to a superconductor.
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