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ABSTRACT

A numerical method, based on an integral representation of Maxwell’s equations, is used to calculate scat-
tering properties of model porous aggregates of small particles. It is shown that increasing porosity can lead
to enhanced absorption and emission of radiation and a lower albedo. One application is to show how
strongly the 9.7 um emission feature of a piece of “astronomical silicate” matter depends on its porosity. The
integral method is compared with the well-known coupled dipole approach for the case of a solid sphere. The
validity of the Maxwell-Garnett effective medium theory is shown for certain cases where the individual par-

ticles in the aggregate satisfy the Rayleigh size conditions.

Subject headings: comets — infrared: spectra — interstellar: grains — polarization — radiative transfer

I. INTRODUCTION

There are indications that a large number of porous, or
“fluffy,” particles exist in the solar system. These appear as
interplanetary dust (Giese et al. 1978; Greenberg 1980), and in
the comae of comets (Greenberg and Hage 1990). Micro-
meteorites collected in the atmosphere also have a fluffy struc-
ture (Brownlee, Tomandl, and Hodge 1976), and meteors are
known to have a density too low to be that of solid particles
(Verniani 1973). Important clues concerning these porous par-
ticles can be gained from, among other things, the interpreta-
tion of their thermal emission. The thermal emission of a
particle at a temperature T is given by

F(2, T) ~ C,ulW)B(2, T), M

where 1 is the wavelength, C,,, the absorption cross section of
the particle, and B(A, T) the Planck function. The wavelength
dependence of the absorption cross section determines whether
the particle will produce an emission feature. This quantity
depends on the size, shape, and composition of the grain, so
that modeling of thermal spectra and subsequent fitting of
observations can give information concerning these character-
istics. An interesting and important effect, which is considered
in this paper, is that a particle as a whole may not exhibit an
emission feature even though the material of which it is made
does have a characteristic absorption profile. This was shown
analytically by van de Hulst (1957) for an absorbing particle
with a refractive index m which satisfies |m — 1| < 1. When
such a particle becomes very large compared with the wave-
length, it behaves like a blackbody and its efficiency for
absorption, Q,,, (defined as C,,./G, where G is a mean project-
ed particle area), is then equal to unity, independent of the
wavelength. This effect also occurs for absorbing particles for
which |m — 1] is larger. For example, Figure 1 shows that Q,,,
for spheres with refractive indices m = 1.33 — 0.25i and
m = 1.33 — 0.50i, converges to a value close to unity as the size
parameter x increases (x = 2ra/A, where a is the sphere radius).
For convenience we shall use the term “saturation of the
absorption ” from here on to mean that the absorption cross
section of a particle is not changed significantly by an increase
in its material absorptivity (ie, and increase in
|Im m|). The saturation effect is described by Greenberg and
Hage (1990) for the case of silicate spheres and applied to the

251

interpretation of the thermal spectrum of comet Halley. Using
the fact that porous particles saturate at larger sizes compared
with equally massive solid particles, Greenberg and Hage pos-
tulate the existence of a large amount. of porous dust in the
coma of the comet in order to explain the spectral emission at
3.4 and 9.7 um.

Because of the widespread existence of porous particles in
the solar system there is a need to have a feeling for the optical
properties of such particles. A key question, concerning, e.g.,
the quantitative interpretation of thermal spectra of porous
particles, is, How does C,,, of porous particles behave as a
function of size, refractive index of the component parts, and
porosity? Or, put in another way, to what extent is the scat-
tering by a fluffy aggregate of small particles intermediate
between the behavior of a large, solid particle and the proper-
ties of a cloud of the constituent small particles? Another inter-
esting problem, in relation to the scattering of sunlight, is to
determine the behavior of the albedo of such fluffy structures.
The answers require electrodynamical scattering calculations
for inhomogeneous scatterers. Calculations to obtain the
extinction by aggregates of small particles have been described
by Wright (1987), whose method is approximate and limited to
aggregates which are smaller than the wavelength. Jones (1988)
used very simple shapes (core-mantle spheres) and Maxwell-
Garnett’s effective medium theory (Maxwell-Garnett 1904) to
approximate extinctions of porous particles. In his paper Jones
stressed the need for an exact method to describe the scattering
by porous particles.

The present paper reports results of calculations which illus-
trate the behavior of some optical properties of a special kind
of porous aggregate as a function of porosity, size, and
refractive index. In particular, attention is paid to porous
aggregates such as are thought to exist in the coma of comet
Halley. These calculations are an application of an approx-
imate numerical implementation of the exact representation of
the macroscopic Maxwell’s equations. The well-known
coupled dipole method by Purcell and Pennypacker (1973) is a
different approach to the solution of the electromagnetic scat-
tering problem, which can also be derived from the integral
equation, as shown in the Appendix to this paper. As an appli-
cation we show how the 9.7 um silicate emission band of comet
Halley depends on the porosity of the emitting dust.
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Fic. 1.—Efficiency for absorption for spheres, for two refractive indices, as
a function of the size parameter.

II. A MODEL FOR FLUFFY AGGREGATES

In this section we derive the model of a porous aggregate
which we have used in our calculations. This model should
primarily be able to represent a fluffy dust particle such as
could exist in the coma of the comet, but it may also represent
various other kinds of porous particles. As a basis, we will use
the model of comets proposed by Greenberg (Greenberg 1982,
1986), in which a comet is pictured as an enormous aggregate
of interstellar dust particles with icy mantles. Studies of the
interstellar dust (Greenberg 1985) indicate that the individual
dust particles have elongated cores of an amorphous silicate,
about 0.1 um thick and roughly 3 times as long. It is inferred
that around this core a mantle of “organic refractory”
material exists which makes the whole grain about 1 gm long
and 0.3 um thick (see Fig. 2a). In the denser molecular clouds
an additional mantle of mostly water ice condenses on the dust
particles. The ultimate result which is used to represent a mean
precometary dust grain is shown in Figure 2b. A consequence
of the model is that when a comet comes close to the Sun,
interstellar dust aggregates of various sizes are blown off its
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F1G. 2—(a) Schematic representation of a typical interstellar dust grain.
(Adapted from Greenberg, Zhao, and Hage 1989.) (b) The same interstellar
grain as it would appear inside a molecular cloud.
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surface, and from these the icy mantles evaporate. The aggre-
gates that are left over, which fill a coma, are loosely packed
aggregates consisting of the particles shown in Figure 2a.
These aggregates must be responsible for the emission
observed from the coma of comet Halley, and so it is for these
fluffy structures that we want to perform representative scat-
tering calculations.

For the purpose of light-scattering calculations a truly
general coma dust particle as pictured above must be described
by a very large number of parameters. These include the size
and shape of the aggregate; the degree of porosity, the sizes,
shapes, positions, and orientations of the subparticles; and the
complex refractive index of the materials in the aggregate. In
order to limit the amount of computation to manageable pro-
portions, it proved necessary to reduce the number of vari-
ables. To accomplish this, we have chosen to model the
cometary dust aggregates in the following way. We consider
such a fluffy particle to be a collection of identical homoge-
neous cubical subvolumes mounted in a cubic lattice within a
cubic volume. All the cubical subvolumes have the same
refractive index and orientation. Porosity is simulated by ran-
domly choosing the sites of the filled subvolumes within the
cubic lattice. This cubic lattice is defined to be the bounding
volume of the aggregate. Examples of such a model particle are
shown in Figure 3. We define a porosity parameter, P, as the
fractional amount of vacuum within the enclosing volume. The
size parameter, X, of the aggregate is taken as 2ma,,/A, where
a.q equals the radius of the sphere having the same volume as
the bounding volume of the aggregate. The size parameter of
the subvolumes, x, is defined in the same way. We have per-
formed calculations for cubic lattices containing from 10° to
543 lattice sites. The wavenumber, k = 2/, was taken to be

)
NS

FiG. 3—Models for porous aggregates. Shown are assemblies of 8 cubic
subvolumes. Top: 8 subvolumes in a 2 x 2 x 2 lattice, representing a solid
aggregate. Middle: 8 subvolumes in a 3 x 3 x 3 lattice, P = 0.7. Bottom: 8
subvolumesin a4 x 4 x 4 lattice, P = 0.875.
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0.3, in units where the length of the lattice spacing (or, equiva-
lently, the size of the subvolumes) equals unity. This corre-
sponds to the subvolumes having a fixed size parameter of
about 0.19 and the aggregates having size parameters between
approximately 1.9 and 10, which is representative of the size
parameters of the coma dust particles with radii between 3 and
16 um for the silicate emission feature which is at 9.7 um. In
our calculations, we have mostly used an orientation of the
cubic lattice such that the incoming plane wave is directed
perpendicularly to a cube face and is polarized parallel to
another face. This restriction has no effect on our basic conclu-
sion. The remaining variables describing a model aggregate are
thus the size parameter, the porosity, which can range from 0
to 1, and the complex refractive index of the individual
particles.

III. THEORY

In our notation we will use the same conventions as van de
Hulst (1957), i.e., Gaussian units and a time factor exp (iwt), ®
being the angular frequency. Note that this choice results in a
refractive index with a negative imaginary part. The magnetic
permeability is taken as u = 1. The particle material is then
completely characterized by a complex refractive index
m? = € — 4mia/kc, where € is the dielectric constant, ¢ is the
conductivity, and k = 2r/A; A is the wavelength of the radi-
ation in vacuum and c the speed of light. The vacuum regions
inside and outside of the particle have y = 1,m = 1,and ¢ = 0.
The incident field is a monochromatic plane wave. Generally,
we will use

Ein()') — ie—ikz+i¢ot , (2)

ie., a plane wave of unit intensity traveling in the positive
z-direction and polarized in the positive x-direction. The size of
the particle must be finite, but the shape in not constrained. If
one writes

E(r) = E,(r) + E*(r), €

where E(r) is the total electric field at the point r, E™(r) the
incident plane wave, and E,(r) the scattered radiation, the
macroscopic Maxwell’s equations become

V-Er)=0 4)
and
V2E,(r) + k2E(r) = —k*[m?(r) — 11E(r) . (5)

Equation (5) has the following solution which also satisfies the
boundary conditions (see, for example, Yaghjian 1980 and
Morse and Feshbach 1953):

2
E(r)= Ein("l) + % ‘”. V[mz("z) — 1]E(r,)G(r;, '2)‘13’2 , (6)

where G is the divergence-free Green’s dyadic for the vector
Helmboltz equation, r, is the point of observation, and r, is a
point inside the particle. The integration extends over the
volume of the particle. The physical interpretation of equation
(6) is that every point in the particle which is not vacuum
radiates like a dipole whose magnitude and phase are deter-
mined by the local electric field and local refractive index. In
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full, equation (6) reads
) m3(ry) — 1
E(r\) = E™(r,) — 3 E(ry)
k2 1 1
tin J‘JI) [m*(ry) — 1]{5(r2)<1 TR~ W)
—R[R - E(r )](1 F 2 —3—>}
2 ikR  k*R?
xSRI gy, ™

where R = |r; —r,| and R = (r; — r,)/R. The principal value
of the integral must be taken. Equation (7) is the basic equation
which has to be solved for the vector field E(r) inside the par-
ticle using numerical methods. It is important to note that
because of our choice of conventions, our equation (7) may
contain sign differences compared with the corresponding
expression presented by other workers. Equation (7) is exact
and can be applied straightforwardly to porous particles, since
the particle structure is contained in m(r). For homogeneous
particles the coupled dipole method follows from equation (7)
by making a few simplifying approximations as shown in the
Appendix to this paper.

By integrating the Poynting vector, one finds that the cross
sections for absorption and extinction in terms of the electric
field in the particle are, for an incident wave of unit intensity
(Jackson 1975 or see, e.g., Greenberg 1960 for the scalar wave
quantum mechanical analog),

Caps = —k Hj Im [m*(r)]| E(r) [*d°r ®

and

Cen= —kIm {” [m*(r) — 11E(r) « [E"‘(r)]*dsr}~ ©®

The scattered amplitude is obtained by taking the limit |r, | >
|r, | in equation (7):

k? exp (—ik|r|)
4n |ryl

X J]. [mz("z) - IJ{E(rz) — P[Py - E("z)]}

x exp (—ikr, * #,)d%r, ,

B (r)) =

(10)

where #; = r,/|r|. The scattering amplitudes S;, as defined by
van de Hulst (1957), follow from equation (10). Last, we define
the albedo as

Cext — Cabs

ext

Albedo = 11

IV. NUMERICAL PROCEDURE

We have solved equation (7) numerically to find the vector
field E(r) inside the particle for various situations, using the
method of moments (Harrington 1968). The method of
moments, as used here, involves the choice of a discretization
scheme to convert the linear integral equation (7) into a set of
simultaneous linear equations, represented by the matrix equa-
tion Ay = b. Here A is a known matrix, b a known vector, and
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y an unknown vector. For simplicity we assume that the elec-
tric field is constant inside the cubical subvolumes. Since these
cubical subvolumes have a finite size, we note that a higher
order expansion will probably lead to more accurate results,
but at the cost of increasing the number of equations. The rest
of the integrand in equation (7), describing the interaction
between the subvolumes and defining the matrix elements of A,
is evaluated at the centers of these subvolumes. An exception is
made for the matrix elements which correspond to the inter-
action of a subvolume with itself. In that case the cubical sub-
volume is approximated by an equal-volume sphere, and the
integrand is determined analytically. The net result is that
equation (7) is approximately represented by the matrix equa-
tion

AE, = En . (12)

Here E, and E™ are 6N,-dimensional vectors which contain
the values of the total electric field and the incident field in the
subvolumes throughout the particle, where N, is the number of
subvolumes. Equation (12) must be solved for E,. For a full
description of the method of moments applied to scattering by
a particle in this way, we refer to Livesay and Chen (1974).

The matrix A is not necessarily positive definite. To solve
equation (12) for E,, we have used the FORTRAN routine
SPARSE as given by Press et al. (1986), which implements the
interative conjugate gradient method. Our choice for the con-
jugate scheme to solve equation (12) was inspired by its proven
applicability to similar problems in the past (see, e.g., van den
Berg 1984; Peterson and Mittra 1985). The routine SPARSE
solves the system AE, — E® = 0 numerically to a prescribed
accuracy e, by iteratively finding the minimum of the function-
al | AE, — E™ |2, This procedure does not require the matrix A
to be positive definite.

The number of iterations required is determined by the accu-
racy of the initial guess for E, and by an accuracy criterion e,
which is to be suitably chosen. As a starting vector we have
always taken E, = [3/(m? + 2)]E™. The iteration ends when
the quantity | AE, — Ei"|? becomes smaller than 6| E|2N, €.
The final accuracy of a calculation depends mainly on the
number of iterations and on the resolution, i.e., the number of
subcubes per wavelength in the material. To obtain an accu-
rate result, the resolution must be such that the approx-
imations mentioned above are justified. In practice, the
necessary resolution can be determined by comparing com-
puted results where possible with exact results obtained, for
instance, using the Mie theory for spheres.

We have implemented the whole procedure in FORTRAN 77
on a Convex C1 minisuper computer. The required CPU time
to solve equation (7) for a particular situation is given by t =
cN; N2, where c is a constant and N; is the number of required
iterations. For the Convex C1, ¢ & 4 x 1075 s. The memory
requirement is approximately 384 bytes per subcube using
single precision arithmetic.

V. RESULTS

a) Test Results

We have tested our code in various ways. First, we have
recalculated the electric field values tabulated by Livesay and
Chen (1974) in their Figures 4 and 5 (to 4 and 3 significant
figures, respectively), which they obtained by solving equation
(7) numerically for the case of a finite slab illuminated by a
plane wave. We used the same configuration of subvolumes as
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Livesay and Chen, and we set the error criterion € to 1076, We
found that our results agreed to one unit is the last decimal
with the numbers in their Figure 4. We could reproduce the
numbers in their Figure 5 with a maximum deviation of 0.004
for the x-component of the field and 0.011 for the z-
component. We do not know the cause for these small but
significant discrepancies, but we note that Livesay and Chen
do not specify their method of solving the matrix equation (12).
Nevertheless, this test gives us confidence that we have made
no major programming mistakes, as is confirmed by further
comparisons.

Second, we have applied our code to approximate the scat-
tering by a sphere (m = 1.7 — 0.1i) and compared our results
with numbers calculated with the coupled dipole method (by
Draine 1988) as well as with the exact Mie theory. In our
Figure 4 we reproduce part of Figure 3d of Draine. We have
taken from Draine the points showing the deviation between
the precise Mie results for the extinction by spheres and his
results using the coupled dipole method, obtained with an
ensemble of 1064 dipoles. We replaced every dipole in this
ensemble with a small cube, in which the electric field was
assumed constant. The error criterion was set to € = 10™%. The
results of this procedure are shown as plus signs in Figure 4.
The number of iterations required ranged from 5 (ka/ka ; =
0.15) to 40 (ka/ka,,;, = 1.35). It can be seen that our method
provides a fit to the precise Mie results that is comparable to or
better than the coupled dipole method, for this particular case,
and this appears to be due to the inclusion of a term pro-
portional to k2 in our formalism (see Appendix). For the cases
we have tested, with 0 < X < 5, our results differed from the
Mie calculations by at most 4% for the extinction efficiency.
The albedo and absorption efficiency differed by less than 5%
from the Mie theory for the same range in X using our method.

b) Results for Porous Particles

The symbols in Figures 5a, 5b, 6a, and 6b show the results of
calculations for the model porous aggregates described in § I1.
For these calculations we have set € = 10~ 4, and we used four

2 r T T T LI B R A | T T
E m=17-01 ]
15 C ]
. ]
C ]
e E
Tk 1
g 05 E
5L . ]
C\f_ oY SRR e ]
s F ]
o C ]
-.05F , ]
F © Coupled Dipole Method+
F + Integral Method ]
-1 -
E ]
-15 L L L L4y I L ]
0.1 0.2 0.5 1 2 4

ka/kali

F1G. 4—Deviations of the approximate values for Q.. from the precise
values obtained with Mie theory. Diamonds: values obtained using the coupled
dipole method and an ensemble of 1064 dipoles. Plus signs: values obtained
using eq. (7) and an ensemble of 1064 cubes. This figure, excluding the crosses,
was adapted from Fig. 3d of Draine (1988) [(ka).,;, = 3.70]. Note that we use a
negative imaginary part in the refractive index.
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FiG. 5—a) Absorption cross section for various porous aggregates. Symbols show results obtained by solving eq. (7). The curves were calculated using
Maxwell-Garnett effective medium theory in combination with Mie theory. The refractive index of the material is either m = 1.33 — 0.25i or m = 1.33 — 0.5i. The
number N denotes how many subvolumes (which have a size parameter of 0.19) are contained in the aggregates. At P =0, N = 103, N = 153, and N = 203
correspond to solid aggregates with size parameters equal to 1.9, 2.8, and 3.8, respectively. The unit of area in which the absorption cross section is shown is equal to
one face of a subvolume. (b) Same as (a) but showing the albedos of the aggregates.

different refractive indices. The number of iterations required
ranged from 2 to 10. Figures 5a and 5b pertain to the absorp-
tion cross sections and albedos, respectively, of aggregates con-
taining subvolumes which all have m = 133 —0.25i or
containing subvolumes all of which have m = 1.33 — 0.5i.
Figures 6a and 6b show the results for aggregates which have
inclusions with m=17-025 or inclusions with
m = 1.7 — 0.5i. The area of one face of a subvolume is used as
the unit area in Figures 5a and 6a.

Consider the three-armed crosses closest to the lowest curve
in Figure 5a. These crosses give the results of calculations for
aggregates all of which are built up of 1000 cubical subvolumes
(in this case with m = 1.33 — 0.25i) but which have different
porosities. At P =0 these 1000 subvolumes, each with
x = 0.19, are packed together in a 10 x 10 x 10 cubic lattice,
forming a solid cube with a size parameter X ~ 1.9. The points

: : . - . [ — : . .
800 -
] -A-- m=17-050i, N=1000 0
5 b | --EF- m=1.7-0.50i, N=3375 _
= | —~— m=1.7-0.25i, N=1000 s
B 600 | —%— m=17-025i, N=3375 A
0n | O e |

O Y 5 U
120} F S J
g 'D ,——“'—'—/< E
© 400 |- L—\> .
S [ —
= r 4
= » |
@ 200 F A N AW
< I L\‘\M 1
0 L : . . " ! . n i . | ]

0 0.5 1
POROSITY

F1G. 6a

at P> 0 represent aggregates containing 1000 subvolumes
which are now randomly mounted in a cubic lattice that is
larger than 10 x 10 x 10. For example, an aggregate with
porosity P =~ 0.545 is obtained by randomly distributing the
1000 cubical subvolumes on a cubic 13 x 13 x 13 lattice. We
have used a random number generator available on our com-
puter to calculate the coordinates of the filled subvolumes in
the lattice. Thus, increasing P from 0 to 1 means going from a
solid aggregate to a cloud of particles, while maintaining a
constant amount of material.

The buildup of Figures 5a and 6a is as follows. The three-
armed crosses and triangles closest to the bottom two curves in
these figures correspond to aggregates containing 1000 sub-
volumes. The crosses and squares closest to the middle two
curves in Figure 5a and to the top pair of curves in Figure 6a
correspond to aggregates containing 3375 subvolumes. Finally,

ALBEDO

--/A-- m=1.7-0.50i, N=1000 A

© m=1.7-0.50i, N=3375 N
0.2 | —k— m=1.7-0.25i, N=1000 \
| | —¢— m=1.7-0.25i, N=3375

0 0.5 1
POROSITY

FiG. 6b

FIG. 6.—a) Absorption cross section for various porous aggregates. Symbols show results obtained by solving eq. (7). The curves were calculated using
Maxwell-Garnett effective medium theory in combination with Mie theory. The refractive index of the material is either m = 1.7 — 0.25i or m = 1.7 — 0.5i. The
number N denotes how many subvolumes (which have a size parameter of 0.19) are contained in the aggregates. At P = 0, N = 10 and N = 15° correspond to solid
aggregates with size parameters equal to 1.9 and 2.8, respectively. The unit of area in which the absorption cross section is shown is equal to one face of a subvolume.
(b) Same as (a), but showing the albedos of the aggregates.
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the stars and pentagons close to the top pair of curves in
Figure 5a are the results of calculations made for aggregates of
8000 subvolumes. Figure 5b applies to the same aggregates as
Figure Sa, but shows their albedos. As in Figure 5a, the
bottom, middle, and top groups of results correspond to aggre-
gates containing 1000, 3375, and 8000 subvolumes. Figure 6b
shows the albedos of the aggregates used in Figure 6a. The
ordering is as follows: crosses, 3375 subvolumes; three-armed
crosses, 1000 subvolumes; squares, 3375 subvolumes; triangles,
1000 subvolumes.

The limiting values for P =0 and P ~ 1 can be calculated
independently and used as a check. At P = 0, the values of C,,,
and the albedo should be close, but not exactly equal, to those
of spheres with an equal volume and the same refractive index.
At porosity P=1—6, with 6 <1, C,,, should approach
exactly the sum of the absorption cross sections of the individ-
ual subvolumes. The albedo at this extreme should equal the
albedo of a single subvolume. The limits at P =1 are also
shown.

Figures 5a and 6aq illustrate the following points. Relatively
compact particles in the considered size range may not show a
change in absorption cross section (i.e., saturation has set in)
when the imaginary part of the refractive index changes, i.c.,
if the material of which they are made becomes more, or
less, absorbing. Compare, for example, the points for
m =133 — 0.25i and m =133 — 0.5i in Figure 5a at zero
porosity. On the other hand, aggregates which contain the
same amount of material but which are significantly porous
show a change in absorption cross section nearly proportional
to the change in | Im m|, just like particles in the Rayleigh limit
with a moderate index of refraction. Notice that a significant
rise in absorption as a function of porosity only starts at a
fairly high value of P. Furthermore, the degree of saturation
depends on the size of the aggregates relative to the wave-
length. This is illustrated by, e.g., the pairs of points for
m=133 —0.25i and m =1.33 — 0.5i which are relatively
farther apart at a certain porosity for the smaller aggregates
than for the larger aggregates for most of the range in P. Physi-
cally, the saturation of C,,, for absorbing, relatively compact,
and large particles is related to the fact that the incident wave
does not penetrate completely into them, so that not all
material inside can absorb energy. For a fixed refractive index
and porosity, the larger the aggregate, the smaller the fraction
of its volume which effectively absorbs energy. This volume
fraction decreases in such a way that the absorption efficiency
goes to a value close to unity as the size tends to infinity. All in
all, Figures Sa and 6a show that a relatively large and solid
particle, made of a material which has an intrinsic absorption
profile, may not show a corresponding absorption or emission
band, whereas a sufficiently porous aggregate containing an
equal amount of the same material will. As far as the albedo of
the aggregates is concerned, Figures 5b and 6b show that the
major result of increasing the porosity of an absorbing aggre-
gate, whilst keeping all other variables the same, is a decrease
in the albedo. The decrease in albedo sets in at around
P ~ 0.75 in these figures.

The curves shown in Figures 5a —6b were computed not by
solving equation (7) but by representing a porous aggregate by
a sphere equal in volume to the bounding volume of the aggre-
gate and using an effective refractive index to calculate its
optical properties. The scattering calculations for spheres were
done using standard Mie theory. The effective refractive index
was determined using Maxwell-Garnett’s effective medium
theory (Maxwell-Garnett 1904; Bohren and Huffman 1983),

HAGE AND GREENBERG

Vol. 361

taking vacuum (m = 1) as the so-called matrix material and the
filled subvolumes as the “inclusion.” The effective refractive
index, m,,, is then given by equation (13):

31 — PYm? — 1)/(m® + 2)
I—( =P —1m+2)

It can be shown that the absorption cross section computed in
this way has the same limiting values at P~ 1 and P =0 as
given above, as long as the basic units in the aggregate are
assumed to satisfy x < 1. In particular, at P = 0, it follows
from equation (13) that m,, = m, and we have a solid sphere as
above. In the limit P>1—-6=1—V_,;;,/V and § < 1, where
V is the bounding volume of the aggregate and V,,; the
volume of all the subparticles together, we have, using equa-
tion (13),

my, =1+

(13)

36(m? — 1)/(m* + 2)
1 — 8m? — 1)[(m? +2)
The absorption cross section of a spherical volume V having a

refractive index m,,, with m2, — 1 < 1 (van de Hulst 1957) is,
using 6 = Vqa/V,

-1
2 ~ < . a4
m, =1+ 1+ 35(€+ 2) (14)

m? —1
Cabs = —kV Im (m:v - 1) = _3szolid Im <m2_+3> s (15)

and the absorption by a cloud of N small spherical particles
(which have nearly the same cross section as equal-volume
cubes, as long as x < 1) with refractive index m and radius a
which obey the condition x < 1is (van de Hulst 1957)

4n m? —1 m? —1

—3Nk<?)a3 Im <m2 " 2) = _3szolid Im (;;2_'_—2) s (16)
which is the same as equation (15). Figures 5a to 6b show that
the agreement between the two approaches depends on the size
parameter and refractive index, but is generally good. The
maximum deviations between the curves and the symbols
shown are 5%, 7%, 9%, and 6% for Figures 5a, 5b, 6a, and 6b,
respectively.

Because Mie theory combined with Maxwell-Garnett effec-
tive medium theory works so well for our model fluffy aggre-
gates, we have extended our calculations for the fluffy particles,
but now using equation (13) and Mie theory for spheres instead
of solving equation (7) for each aggregate. The advantage is, of
course, that Mie theory calculations require much less com-
puter time than calculations using the integral equation (7). We
show an application in Figures 7a, 7b, and 7c. Each curve in
these figures gives the thermal flux around 9.7 ym emitted by
one silicate aggregate with a certain porosity and a tem-
perature of 420 K. The fluxes are calculated using equation (1)
and using the optical constants for (amorphous) “ astronomical
silicates ” as given by Draine (1985). In a single figure all aggre-
gates have the same amount of solid material but differ in their
porosity. All the curves have their maximum normalized to
unity.

It can be seen from Figures 7a—7¢ that the higher the poros-
ity, the sharper the silicate emission becomes. At P = 0.99, the
emission for the cases shown is close in shape to the emission of
a particle in the Rayleigh limit (x < 1), which produces the
narrowest feature possibile. At the other extreme, spheres with
a radius of greater than, say, 5 um and with P = 0 hardly show
an emission band at all, but emit like a blackbody, because the
absorption has saturated.
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FiG. 7—Thermal emission by equal-mass, porous silicate spheres at a tem-
perature of 420 K. (a) Porous spheres having the same amount of material as a
solid sphere with a radius of 2.5 um. (b) Same, for a radius of 5 um. (c) Same, for

aradius of 10 um.

VI. DISCUSSION

We can apply the curves in Figures 7a—7c¢ to the emission
observed from the coma of comet Halley as follows. The 9.7
um silicate emission band of the comet as observed by
Bregman et al. (1987) on 1985 December 12, has a full width at
half-maximum (FWHM) of roughly 3.5 um. The band is a
composite of emission by amorphous and crystalline silicate
(see Greenberg, Zhao, and Hage 1989 for a discussion of this),
so that the FWHM of the emission by amorphous silicate
alone is very probably less than 3.5 um. Let us now suppose
that the emitting particles can be represented by our model of
fluffy aggregates, and let us use as a constraint that the FWHM
of the emission is at most 3.5 yum. We can see from Figure 7a
that aggregates having the same volume of material as
compact spherical particles with a radius of 2.5 um and

T =420 K must be at least 63% porous to fulfill the con-
straint. For larger aggregates, containing the same amount of
material as solid spheres with radii of 5 and 10 um, we find
minimum porosities of 83% and 93%, respectively. Particles
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containing the same amount of material as a solid sphere with
a radius of &1 um or smaller (not shown) need not be porous
to emit an emission band with a FWHM narrower than 3.5
pm. Decreasing the temperature to 320 K (the color tem-
perature of the comet dust at the time of observation) raises the
required minimum porosities to 82%, 93%, and 97% because
of the change in the Planck function. Adding an impurity to
the aggregates, e.g., adding an absorbing carbon-rich coating
on the pure silicate subparticles, may increase the required
porosities if the extra material tends to depress the silicate
emission. Therefore, if the emitting particles in the coma of
comet Halley can be represented by the type of particles we
have considered, then they must be either smaller than about 1
um in radius or fluffy.
As a few extra checks on the model of porous aggregates, we
have performed additional calculations for the particles used
for Figures 5a-6b, but now taking different polarizations and
directions of the incident beam and also using different random
placements of the subvolumes. The resulting differences in
cross sections compared with those of Figures 5a—6b are small
(less than about 5% in all cases checked). To check the validity
of the combined Mie theory and Maxwell-Garnett approach in
Figures 7a—7c, we have calculated a few points on the curves by
solving equation (7). The resulting difference in FWHM, calcu-
lated from equation (7) for a 90% porous aggregate, was 5%.
The practical upper limit on the size range we have con-
sidered is constrained by the available amount of computer
time, but we believe that we have considered a sufficient range
in aggregate size to give some insight into the behavior of
porous aggregates. The results presented in Figures 5a—6b also
depend on the refractive index. We have chosen the real part of
the refractive index equal to 1.33 and 1.7 because both of these
values make calculations feasible, but also because 1.33 is a
representative number often used in scattering calculations
and 1.7 can be considered as representative of silicates at
around A = 9.7 um. The typical features of absorbing aggre-
gates we have found, namely, enhanced absorption and a lower
albedo when the porosity is high, will still apply for other
refractive indices to a certain degree, as long as the subparticles
in the aggregate are not totally nonabsorbing or metallic. The
properties of other porous aggregates can be calculated using
the Maxwell-Garnett theory, provided that the subparticles in
the aggregate are small compared to the wavelength. We
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expect that aggregates containing absorbing subparticles that
are not small compared with the wavelength will also show
enhanced absorption and a lower albedo, but in that case the
approximation using Maxwell-Garnett theory will break
down.

VII. CONCLUSIONS

Solving the integral equation (7) for our model of fluffy par-
ticles has proved to be a workable approach to calculate the
scattering by porous aggregates. The method agrees well with
the approach using Maxwell-Garnett effective medium theory
in combination with Mie theory. With a few test cases we have
indicated that the absorption cross section and the albedo of
aggregates containing randomly placed inclusions with a small
size parameter are well described using the latter approach.
The extinction can also be computed to the same accuracy in
this way. We conclude that the results show that vacuum has
to be used as the matrix material in the Maxwell-Garnett
theory, if scattering by fluffy aggregates is to be computed.
Using vacuum as inclusions produces good results at P ~ 0,
but gives the wrong limiting value as P goes to unity.

It is not to be expected that the Maxwell-Garnett theory
also applies to porous aggregates containing inclusions that
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are not small compared with the wavelength. That problem
could, in principle, be tackled by solving equation (7), but the
approach is eventually limited by the fact that the amount of
computer time required increases with the sixth power of the
typical linear size of the scattering particle. Solving equation (7)
using the method described in this paper is not limited to
porous aggregates. An interesting application might be, for
example, to calculate the optical properties of particles with a
rough surface. It is also possible to calculate the polarizing
properties of a variety of scattering particles using equation (7).

We have tested our method for a small number of cases by
comparison with results of the Mie theory and the coupled
dipole method for spheres. The accuracy of the present method
was comparable to or better than the accuracy of the coupled
dipole method in these cases, but further calculations must be
done to establish reliably the relative accuracies of both
methods.

We are indebted to P. M. van den Berg for essential theoreti-
cal support and J. van Kats of Convex Computer BV for pro-
gramming advice. We thank H. C. van de Hulst, J. W. Hove-
nier, and M. S. de Groot for their helpful suggestions during
the course of this work.

APPENDIX

In this appendix we briefly show how the basic equation used in the coupled dipole method can be derived from the integral
equation (7). We approximate a scattering particle by an ensemble of identical, small cubical subvolumes and take the electric field
to be homogeneous in each subvolume. If, instead, we take the subvolume containing r, to be an equivalent volume sphere with
radius g, the integrand for this subvolume can be calculated analytically (see, for example, Livesay and Chen 1974). The result is that
equation (6) becomes

. 2(r) —1 2 k?
Er,) = E™(r,)— % Er) + 3 [m?(ry) — 1][(ika + 1) exp (—ika) — 1]1E(r, + oo Y Jf [m*(r,) — 1]E(r,)G(r,, ry)dr, .
i Vo
' (A1)
The summation is over all subvolumes which make up the particle, and the integrals must be evaluated for each subvolume. It may
be assumed that G(r,, r,) is nonvarying inside each subvolume also, and m is a constant inside the particle and equal to zero

elsewhere. Then the integrals drop out of equation (A1), and what remains is that the electric field in a subvolume j can be expressed
as a summation over the electric field values in the other subvolumes, as follows:

m? —1
E
,{1+ ;

where the indices serve to number the quantities pertaining to the different subvolumes and 8V is the volume of & subvolume.
Equation (A2) can be written in terms of the total dipole moment of the subvolumes, p;, by using the relation p; = E; 5V (m? — 1)/4=,
with the following result:

2
- % (m? — 1)[(ika + 1) exp (—ika) — 1]} =Er 4 % Y (m* — VEG, oV, (A2)

1 2
p,{; -3 [(ika + 1) exp (—ika) — 1)} =Er+k Y pGy;, (A3)
where we have used 8V = (4n/3)a’. We note that « = [3(m* — 1)/4n(m® + 2)]6V is the same a used in the coupled dipole method, as
defined by Purcell and Pennypacker (1973). Taking ka < 1, equation (A3) becomes

o2 T
p,-[l — a(; -3 lk3)] = (E} + k2 zi:p,-GU) .

If the terms proportional to o on the left-hand side are omitted, equation (A4) is the same as the basic expression used in the original
coupled dipole method (disregarding differences in sign due to our choice of conventions; see § III). Equation (A4) is different from
the basic equation used by Draine (1988), who added the radiation reaction to the original coupled dipole formulation, only through
the term ak?/a (disregarding differences in sign). By recomputing a few points in our Figure 4, excluding the term ak?/a from the
calculations, we found essentially the same deviation from the Mie theory as Draine. This difference in the formalism is therefore the
reason that the method presented here reproduced the scattering by a sphere with m = 1.7 — 0.1i more accurately at larger k than
the coupled dipole method as it was used by Draine.

(A4)
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