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Abstract—We caiculate the supercurrent through a Josephson junction consistmg of a phase-coherent
metal particle (quantum dot), weakly coupled to two superconductors. The classical motion in the
quantum dot is assumed to be chaotic on time scales greater than the ergodic time teiB, which itself is
much smaller than the mean dwell time rdwell. The excitation spectrum of the Josephson junction has a
gap £eJp, which can be less than the gap Δ in the bulk superconductors. The average supercurrent is
computed m the ergodic regime Te,,,«Ä/A, usmg random-matnx theory, and m the non-ergodic
regime re l [ ,»ft/A, usmg a semiclassical relation between the supercurrent and dwell-time distnbution.
In contrast to conventional Josephson junctions, raising the temperature above the excitation gap does
not necessanly lead to an exponential suppression of the supercurrent. Instead, we find a temperature
regime between £j,<lp and Δ where the supercurrent decreases loganthmically with temperature. This
anomalously weak temperature dependence is caused by long-range correlations m the excitation
spectrum, which extend over an energy ränge ft/T^lg greater than Elwp = /i/Tdwcl]. A similar loganthmic
temperature dependence of the supercurrent was discovered by Aslamazov, Larkin and Ovchmmkov
in a Josephson junction consistmg of a disordered metal between two tunnel barners. © 1997 Eisevier
Science Ltd

1. INTRODUCTION

The dissipationless flow of a current through a superconductor-normal-metal-superconductor
(SNS) junction is a fundamental demonstration of the 'proximity effect': a normal metal
borrows characteristic properties from a nearby superconductor. The energy gap Δ in the
bulk induces a suppression of the density of states inside the normal metal near the Fermi
level, depending on the phase difference φ between the superconductors. The resulting
ψ-dependence of the free energy F implies the flow of a current / = (2e/h)dF/αφ in
equilibrium. In contrast to the original Josephson effect in tunnel junctions, the Separation of
the superconductors in an SNS junction can be much greater than the superconducting
coherence length. Recent experiments on mesoscopic Josephson junctions [1-6] have
revived theoretical interest in this subject [7-9], which goes back to work by Kulik [10] and
Aslamasov, Larkin and Ovchinnikov [11]. (For more references, see the review [12].)

In this paper, we consider the case when the normal region consists of a chaotic quantum
dot. A quantum dot is a small metal particle within which the motion is phase coherent,
weakly coupled to the superconductors by means of point contacts. We assume that the
classical dynamics in the quantum dot are chaotic on time scales longer than the time Terg

needed for ergodic exploration of the phase space of the quantum dot. (In order of
magnitude, Terg = L/vr for a quantum dot of size L without impurities, where UF is the Fermi
velocity.) On energy scales smaller than Ä/rerg, the spectral statistics of a chaotic quantum
dot is described by random-matrix theory [13,14]. On larger energy scales, the non-ergodic
dynamics on time scales below rerg become dominant [15]. The condition of weak coupling
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We now perform a partial Integration and close the Integration contour in the upper half of
the complex plane. The integrand has poles at the Matsubara frequencies \ωη = (2n +
\)inkT. Summing over the residues, one finds that

1=--2kT^- £ Indet[l -9> Α (ϊω η )9> Ν (ίω η )]. (8)
n αφ n=o

This equation is the starting point for our evaluation of the average supercurrent through a
chaotic Josephson junction.

3. SUPERCURRENT THROUGH A CHAOTIC JOSEPHSON JUNCTION

We consider the case when the normal region has a chaotic classical dynamics on time
scales greater than the ergodic time Tcrg. In this section, we assume that rerg « Ä/Δ, so that
we may use random-matrix theory to evaluate the ensemble average of the supercurrent. We
postpone to Section 5, a discussion of the regime rerg ä Ä/Δ, in which the non-ergodic
dynamics on time scales shorter than Terg Starts to play a role. We assume that the normal
metal is weakly coupled to the superconductors, so that the mean dwell time Tdwcl l» Terg. No
assumption is made regarding the relative magnitudes of Tdwen and Α/Δ.

We use a relationship [24,25] between the scattering matrix 5 of the normal metal and its
Hamiltonian H

S(s) = l-2mWt(e-H + inWW^lW. (9)

The Hamiltonian H (representing the isolated normal metal region) is taken from the
Gaussian ensemble of random-matrix theory [26],

P(//)ocexp('--MA-2tr//2Y (10)

where M is the dimension of H (taken to infinity at the end) and λ is a parameter that
determines the average level spacing 8 = λπ/2Μ of the excitation spectrum in the normal
region. (This spacing δ is half the level spacing of //, because it combines electron and hole
levels together.) The matrix H is real and Symmetrie. The coupling matrix W is an M X N
matrix [27,28] with elements

wma = - sm„(2MS)1/2(2r„-' -1 - 217'VF^r;)"2. (ii)
n

Here Γ,, is the transmission probability of mode n in the contacts to the superconductor. For
ballistic contacts F„ = l, while F„ « l for tunneling contacts.

We now substitute from equation (9) into equation (1) and then substitute 5̂ N into
equation (8) for the supercurrent. Using also equations (2a) and (2b), we find after some
straightforward matrix algebra that

-^- Σ In det[i<w„ -% + W(iwn)], (12)
άφη=ο
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where we have introduced the 2M Χ 2Μ matrices

" -

The matrix %C - W (ε) is the effective Hamiltonian of Refs [18,29] (where the regime ε « Δ
was considered, in which the ε-dependence of W (ε) can be neglected).

We define the 2M Χ 2Μ Green function

/•(ε)]-1, (14)

which determines the density of states according to

ρ(ε) = -π'1 Im ίτ<§(ε + ΊΟ). (15)

Equation (15) is equivalent to equation (4). The expression for the supercurrent in terms of
G(e) is

2e d ^
/ = -2£Γ—Σ lndet»(iw„)

n άφ,,=0

*A 3C J

Ze -^ . u .

h n=o " αφ

The average supercurrent follows from the average Green function {^(ε)), since W is a
fixed matrix. The average over the random Hamiltonian H (determining ^) is done with the
help of the diagrammatic technique of Refs [30,31]. We consider the regime M,N, ε\/δ » l,
in which only planar diagrams need to be considered. Resummation of these diagrams leads
to a self-consistency equation which is similar to Pastur's equation [32]

(«(ε)) = [ε + W(s) - (Α2/Μ)0>(ε) ®1Μ]~ι. (17)

The symbol ® indicates the direct product between the M X M unit matrix 1l M and the
2 X 2 matrix

-<trif*>

- * hh ( '

We seek the solution of equations (17) and (18) which satisfies

ε^(ε)-*Ϊ2Μΐί ε] »λ. (19)

It is convenient to define a seif energy

=

Η, Μ M\tr<3"e ' ( '

Equations (17)-(20) contain a closed set of equations from which (Σ) can be determined.
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We are interested in the limit M^>°°, λ—»°°, keeping N and ε/δ = 2εΜ/λ.π fixed. In this
limit, the equations for (Σ) become

(Σ"') = (Σ""), <Σ*ΑΧΣΑ'> - (Σ"'}2 = l, (21a)

πρ Ν

— <ΣβΑ> + Σ */ε<Σ'Α> + Δβ'φ,<Σ«>) = Ο, (21b)
/ο y = i

πε Ν

— <Σ""> + Σ *Λε<ΣΑ'> + Δβ-1φ*<Σ"» = 0. (21c)
2ο ,=1

The function Kj (ε) is defined through

iy/ς = (4 - 2Γ,)νΔ2 - ε2 + r/Ae'%£eA> + Δβ-ΙΦ*<ΣΑί> + 2ε<Σεε))· (21d)

(We have substituted from equation (11) for the matrix W.) The boundary condition in
equation (19) becomes ineffective in the limit λ^-co. Instead, we seek the solution of
equations (21) with (Σεβ) = {ΣΛΛ}^· -i for e-»i°°, corresponding to a constant density of
states ρ(ε) = 1/δ for |ε|»Δ. From (Σ), we find ('S) and hence the ensemble averaged
supercurrent (I) is found to be

</} = ̂  £ΓΔ Σ Σ sign^^e'* '̂̂ !̂ )) - ε-'φ»(ΣεΛ(ίωπ)}]. (22)
m n=0j=\

Equations (21) and (22) contain all the Information needed to determine the average
supercurrent through a chaotic Josephson junction.

An analytic solution of equations (21) is possible in certain limiting cases. Here we discuss
the case of high tunnel barriers, T,«l, for all y. Then we may approximate Kj =
(1/4)Γ,(Δ2 - ε2)'172 and find

<Σ"> = <ΣΛΛ) = - ε(ΥΔ2 - ε2 + £Τ)[|Ω|2 Δ2 - ε2(νΔ2 - ε2 + £Τ)2Γ1/2, (23a)

{Σ''Λ) = ΩΔ[|Ω|2 Δ2 - £

2(VA2 - ε2 + £τ)
2]"'/2, (23b)

(ΣΛε) = Ω*Δ[|Ω|2 Δ2 - ε2(νΔ2 - ε2 + Ετ)
2] ~1/2, (23c)

Ω(Ψ) = ̂ - Σ Γ,β'\ £τ = ̂ - Σ Γ, = Ω(0). (23d)
2π/ =, 2π/=ι

The energy £T is related to the mean dwell-time through ET = A/2Tdwen. (The dwell-time is
defined äs Tdwe„ = (Ä/W)(o>/oie)(lndetS(£)), see Ref. [33].) The excitation gap in the
spectrum of the Josephson junction is of order |Ω(φ)| when T d w e n»ft/A [18]. Substitution
from the above equations into equation (22) yields the supercurrent

(24)
e „=o νί ΐ -r w„

where

Λ Σ^=ι I\

is the conductance of the Josephson junction when the superconductors are in the normal
state.

For arbitrary transmission probabilities Γ;, it is necessary to solve equations (21)
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Fig. 2. Average supercurrent at zero temperature, computed from equations (21) and (22) for the case
ΛΊ = N2 = N/2, Γ, = Γ, for all j. Left panels· Γ = 1; nght panels Γ = 0.1. The upper panels show {/> m the short
dwell-time regime for £Γ/Δ = l (bottom curve), 10 and 100 (top curve). The bottom panels show </) m the long
dwell-time regime for £Τ/Δ = 0.01 (top curve), 0.1 and l (bottom curve). The conductance G = (2e2/h)NT/4 and
the Thouless energy £Ί = ΝΓδ/2π. Notice that </) is m umts of ΟΔ/e m the top panels and m umts of GET/e m the

bottom panels.

numerically. We have studied the case when both point contacts have an equal number of
modes (N} = N2 = N/2), and that all transmission probabilities are equal (Γ, = Γ, for all 7).
The average supercurrent at zero temperature for Γ = 0.1 and Γ = l is shown in Fig. 2.

4. ERGODIC REGIME

The general result in equation (22) describes the supercurrent in the ergodic regime
T e r g«ft/Δ. Within this regime, we can distinguish two further regimes, depending on
whether the dwell time Tdwel, = h/2ET is short or long compared with Α/Δ. We discuss these
two regimes in two separate subsections.

4.1. Short dwell-time regime

In the short dwell-time regime (when Tdwel l«Ä/A or, equivalently, ΕΤ»Δ), the
magnitude of the critical current Ic = ηΐ3χψ/(φ) is set by the energy gap Δ in the bulk
superconductor: Ic = GA/e at zero temperature. The temperature dependence of Ic can be
neglected äs long äs &Γ«Δ, i.e. for temperatures Trauch less than the critical temperature
Tc of the bulk superconductor. In the case of tunneling contacts, evaluation of equation (24)
with ΕΎ » Δ » kT yields

= (26)

The conductance G was defined in equation (25), the function K is the complete elliptic
integral of the first kind, and we abbreviated

1/2 / Ν

Σ Γ,Γ,) (Σ r (27)

The parameter γ equals l for two identical point contacts with mode-independent tunnel
probabilities.
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The result in equation (26) could also have been obtained directly from the general
formula for the zero-temperature supercurrent in the short dwell-time regime [19]

which relates {/) to an integral over the transmission eigen values t of the junction in the
normal state, with density p (i)· The transmission eigenvalues density for a chaotic cavity
with two identical tunneling contacts (M = N2 = N/2, Γ, = Γ;+Λν2, for j - 1,2,..., N/2) is given
[34] by

N/2 Γ (2 — Γ }

One can check that equation (28) agrees with equation (26) with y = l if Γ, « l, for all;'. For
two identical ballistic point contacts (Λ/Ί = N2 = N/2, Γ, = l, for all ;'), the density is
p(t) = Ν(2π)~ι[ί(1 - t)]~m [35, 36], which yields

GE(i arsinh[tan(0/2)], i cotan(<£/2)). (30)· . - , . / Ο Λιπη sm((p/2)

Here G = N/4 and E is the elliptic integral of the second kind.

4.2. Lang dwell-time regime

In the long dwell-time regime (when Tdwcii » Λ/Δ or, equivalently, ΕΎ « Δ), the magnitude
of the critical current is set by the Thouless energy, but retains a logarithmic dependence on
Δ, so that 7C — (G£T/e)ln(A/£T). The temperature dependence of 7C can be neglected so long
äs kT « ET. If kT » Ετ (but still T « Tc) the critical current decreases, though only
logarithmically, so that 7C = (GET/e)\n(A/kT). For the case of tunneling contacts, we find
from equation (24) the expressions

G£T . / 2Δ/£Τ \
<7) = - sin φ In χ . 2,,.0J, kT«ET, (31a)

e \ V l - 2

(/} = ̂  sin φ [in (J^) + cEulcr], kT » ΕΎ, T « Tc, (31b)

where cEuicr~0.58 is Euler's constant. For ballistic contacts, we do not have such simple
expressions äs these, but the parametric dependence of / on Δ, ET and kT is the same äs for
tunneling contacts (see Fig. 2).

The logarithmic dependence on Δ of the supercurrent when ΕΎ « Δ arises because the
Thouless energy ET is not an effective cutoff for the Matsubara sum in equation (8) or,
equivalently, for the energy Integration of equation (7). Spectral correlations exist up to
energies of order h/Terg» ΕΎ. These long-range spectral correlations are responsible for the
weak decay Σ'^^Ι/ω of the self-energy and ρ-δ" '«1/ε 2 of the density of states. The
superconducting energy gap Δ has to serve äs a cutoff energy for the otherwise
logarithmically divergent equations (7) and (8), which explains the logarithm In Δ in
equations (31a) and (31b).

5. NON-ERGODIC REGIME

When Tdwe„ £ Ä/Δ, a random-matrix theory of the Josephson effect is no longer possible,
because the non-ergodic dynamics on time scales shorter than Terg Start to play a role. To
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study the average supercurrent in this non-ergodic regime, we return to equation (8). On
Substitution of equations (1) and (2), we obtain an expression for / in terms of the scattering
matrix 5" of the normal region

O -rr x

I = —kT%FM (32a)
e „=o

α(ίω)25(ϊω)ε'φ5*(-ίω)ε-ίφ}. (32b)
h αφ

The evaluation of the scattering matrix at the imaginary energy Ίωη is equivalent to the
evaluation of the scattering matrix at the Fermi level in the presence of absorption, with rate
l/Tabs = 2w„/A = (2n + lyinkTlh. We first consider temperatures kT»ET. Since ω,,»
ΕΎ = Ä/2rdwel| for all n in this high temperature regime, absorption is strong, Tahs « Tdwen.
The formal correspondence between Matsubara frequency and absorption rate helps to
understand that, to lowest order in Tabs/Tdwell = Ετ/ω, the diagonal elements of 5(ίω) are
given by the reflection amplitudes of the tunnel barriers in the contacts, S}J = (l - Γ,)1/2,
while the off-diagonal elements satisfy

dTFi/T)exp(-26>r/Ä), i*j. (33)
j/<=\ ι k -Ό

The function Ptl is the classical distribution of dwell times for particles that enter the
quantum dot through mode / and exit through mode z. Because of the smallness of
(\ΞΙ}(ίω)\2) = Ο(ΕΎ/ω), it is sufficient to keep only the lowest order term in an expansion of
(F((i))) in the off-diagonal scattering matrix elements,

h ;+.[1-«(^)2(1-Γ,)][1-α(ίω)2(1-Γ ;)]· ^ ;

Equations (32a), (32b), (33) and (34) permit a semiclassical calculation of the average
supercurrent in the non-ergodic regime for temperatures kT » ET, where random-matrix
theory fails. The only input required is the classical distribution of dwell times.

On time scales greater than rerg, the distribution Pu is exponential with the same mean
dwell time Tdwc,| = h/2Er, for all ij:

(35)

The non-chaotic dynamics on time scales shorter than rerg enter through a non-universal
form of Ρ,} for τ Ä Terg. We consider the case of a ballistic dynamics (size L of the normal
region much less than the mean free path €). The ergodic time Tcrg — L/vF is then a lower
cutoff on P,p since the minimum dwell time L/vF is the time needed to cross the System
ballistically. A qualitative estimate of (/) is obtained if we set Ρ,,(τ) = 0 for T<L/vF and
approximate it by equation (35) for larger times. Substitution of this dwell-time distribution
into equation (33) gives

ω»ΕΎ, i^j. (36)
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We next compute (F(a>)} from equation (34), replacing α(\ω) by its value -i for ω « Δ. The
result is

GE
<F(w)> = - - exp( -2wL/nvp)sm φ, (37 a)

ω

, 2e2 Σ£, Σ;%. + ι Γ,Γ/2 - Γ,)-'(2 - Γ,)"1

~ -- ~ -
,

' ( '

Notice that G = G for the case of high tunnel barriers (Γ,«1, for all /). We can now
calculate the average supercurrent from equations (32a) and (32b). Equation (37a) is valid
for ET « ω « Δ, Ετ « hvr/L « Δ, and is sufficient to determine the supercurrent in the
temperature ränge ET«kT«k. Substitution from equation (37) into equation (32) gives

GE
ET « kT « hvFIL « Δ, (38a)

ΕΎ « hvF/L « kT « Δ. (38b)
e

Equations (38a) and (38b) have the same temperature dependence äs the result of Ref. [11]
for the double-barrier SNS junction.

We now turn to low temperatures kT ;£ ET. In this temperature regime, the Matsubara
sum in equation (32) contains terms with ωη ·& ET, for which the off-diagonal scattering
matrix elements S,,(iw,7) are not small and the approximation of equation (34) is no longer
valid. However, since £T«ft/To r g, these Matsubara frequencies are well within the validity
ränge of random-matrix theory. Therefore, we can use the results of Section 3 to compute
(F(w)} for ω& ΕΎ and the semiclassical formula in equation (34) for ω ä ET. These two
results match at ω — ΕΎ, because the validity ränge ω « Ä/rerg of random-matrix theory and
the validity ränge ω » ΕΎ of the semiclassical theory overlap (assuming Terg « Tdwcn =
Ä/2£T).

For the case of high tunnel barriers, random-matrix theory gives [cf. equation (24)]

while the semiclassical formula of equation (34) gives

lSI"
(O

exp(-2<uLMt>F), £τ«ω«Δ. (40)

(The function Ω(φ) was defined in equation (23d).) The two results in equations (39) and
(40) have a common ränge of validity £T « ω « hvF/L within which they can be matched.
The result is a formula valid for all ω « Δ, for a ballistic quantum dot with high tunnel
barriers:

, ω «Δ. (41)

After Substitution from equation (41) into equation (32) we obtain the average supercurrent
in the low-temperature regime

sin φ 2 - c^> kT
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Table l Parametnc dependence of the zero-temperature cntical current /c on the three time scales Tdwcll, fcrg and
ft/Δ The Thouless energy ET =

4 X e/G Weak couphng (Tdwell» fcrg) Strong couphng

Ergodic (Te l l i«Ä/A) Non-ergodic (TCII

Short dwell time (Td w e l |«ft/Δ) Δ — Δ
Long dwell time (Tdweu »ft/Δ) £τ1η(Δ/£.,) £, 1η(Α/£Ίτ ) £τ

(The parameter γ was defined m equaüon (27).) The results m equations (38) and (42) cover
the enüre temperature ränge below Tc.

6. CONCLUSIONS

In Table l, we summanze the parametnc dependence of the cntical current at zero
temperature on the three time scales Tdwen, Terg and ft/Δ. We show the three new regimes for
a weakly coupled normal region (Tdweu » Terg), and have included for companson also the
two old regimes for a strongly coupled normal region (rdwell = T^rg). Apart from a loganthmic
factor, the cntical current is given by Ic~ (G/e)mm(ft/Td w c l l,A) m each of the five regimes.
There is an additional loganthmic dependence on min(Tdwen/Terg,TdwUiAM) in two of the
three new regimes. Upon raismg the temperature, the cntical current is suppressed at a
characteristic temperature given by mm(ft/Tcrg,A). At lower temperatures, /c has a
loganthmic Γ-dependence so long äs Γ a Ä/TdweH and becomes Γ-mdependent at still lower
T.

In this work, we did not address the sample-to-sample fluctuations of the supercurrent, but
calculated only the ensemble average. For strongly coupled diffusive Josephson junctions
(Tdweii ~ Terg> L » £), the root-mean-squared of the fluctuations is a factor e2/hG smaller than
the average cntical current [19,37]. Prehminary calculations in the ergodic regime indicate
that the same is true for weakly coupled Josephson junctions (rdwU1» Tcrg), i.e. the r.m.s.
fluctuations of /c are given by the entries m Table l multiphed by e/h.

We close with a remark on quantum dots with an integrable classical dynamics, such äs
rectangular or circular balhstic cavities. For energies ε Α ΕΎ, the excitation spectrum of an
integrable Josephson junction is quite different from its chaotic counterpart [18]. The density
of states p (ε) of a chaotic cavity m contact with a superconductor shows a gap of size ET

around the Fermi level ε = 0, while p (ε) vamshes hnearly when ε—>0 for a rectangular or
circular cavity It is an interesting open problem to compute the supercurrent through an
integrable cavity and compare with the results for the chaotic case obtamed in this paper.
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