REPRINTED FROM:

PHYSICS LETTERS

Volume 91A, No. 6, 20 September 1982

DIFFUSION OF SPHERES IN SUSPENSION:
THREE-BODY HYDRODYNAMIC INTERACTION EFFECTS

C.W.J. BEENAKKER and P. MAZUR
Instituut Lorentz, Rijksuniversiteit te Leiden, Nieuwsteeg 18, 2311 SB Leyden, The Netherlands

pp. 290-291

At
»

NORTH-HOLLAND PUBLISHING COMPANY — AMSTERDAM



Volume 91, number 6

DIFFUSION OF SPHERES IN SUSPENSION:

PHYSICS LETTERS

20 September 1982

THREE-BODY HYDRODYNAMIC INTERACTION EFFECTS

C W.J. BEENAKKER and P. MAZUR

Instituut Lorentz, Ryksunwersitert te Leiden, Nieuwsteeg 18, 2311 SB Leyden, The Netherlands

Receiwved 5 July 1982

We calculate for a suspension the concentration dependence of the (self-) diffusion cocffictent, mcluding terms of sec-
ond order in the density These terms contain two- and three-sphere hydrodynamic interaction effects of comparable size

1. The (self-) diffusion coefficient of spherical par-
ticles i suspension 1s concentration dependent, due
to duect hard-sphere interactions between the paitic-
les and due to a coupling of their motion via the fluid
This coupling 1s called hydrodynamic interaction.
Though properties of suspensions have been studied
extensively [1], all theoretical treatments have taken
the hydrodynamic couplings to be panwise additive
This assumption is ce1tainly valid 1n a dilute suspen-
sion, but it was not all clear whether o1 not thiee-body
hydrodynamic interactions could be neglected at
higher densities.

Recently [2] the many-body hydrodynamic inter-
action problem has been solved in a systematic way.
Using the explicit forms of the two- and thice-sphere
contributions to the mobilities — for a given configu-
ration of the spheres — we will calculate the concen-
tration dependence of the (self-) diffusion coefficient,
mncluding second-order density corrections, The un-
pottance of three-body hydiodynamic interactions
will be evident from our result.

2. Consider NV spheres with radii ¢, and position
vectorsr, (i = 1,2, ...N), moving in an unbounded 1n-
compressible fluid with viscosity n, which 1s otherwise
at rest. If we describe the motion of the fluid by the
Iincarized Navier—Stokes equation, we can express the
velocity u, of sphere i and the velocity of the fluid
v(r) at # as a linear combination of the forces K;, ex-
erted by the fluid on each of the spheresj.

290

N
u;-Z%;;U-K], i=1,2,.N, (1)
=
N
v(r) = —Zi S, K, . )
p=

The mobility tensors p,, and S](r) depend on the
whole configuration of the N spheres, a term 1n B,
which depends on the positions of s spheres 1s said to
reflect s-body hydiodynamic interactions.

The sphere mobilities B, are calculated 1 ref, [2]
as a series expansion 1n the verse interparticle dis-
tance 1/R. Explicit expressions are given up to order
(1/R)7. Up to this order two-, three- and four-body
hydrodynamic interactions contribute. We can derive
the fluid mobilities S,(r) from these sphere mobilities
by considering an extra sphere with position vector
ry+1 =1 and negligible radius gy, q -

S¢)= hm pyy ., 751,28, (3)

aNy+140

3. Consider a homogeneous suspension of & equal-
sized spherical particles (with rads @) 1n a large vol-
ume V. We define average mobilities.
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where ( ) denotes an average over all the allowed
configurations of the NV spheres, with equal weight.
(In (6) the average is only over those configurations
for which there is a fluid at position r.)

The average mobilities are related to the (bulk-) dif-
fusion coefficient D and the self-diffusion coefficient
D, by generalized Einstein relations [3,4}:

D, =p kT, ®)

where dg/0yp| T denotes the derivative of the chemi-
cal potential per particle g with respect to the partial
volume ¢ = % 7a3N/V, at constant temperature T and
pressure p; in (8) k denotes Boltzmann’s constant.
The short-time self-diffusion coefficient Dy describes
the diffusion of a single particle, over distances small
compared to the interparticle separation [5].

4. We have calculated the average mobilities and
the diffusion coefficients as a series expansion in the
partial volume ¢, up to and including terms of order
©2. To this order we need consider only two- and three-
body hydrodynamic interactions. The density expan-
sion of the two- and three-sphere distribution func-
tions is well known [6]. The one-sphere and two-
sphere fluid correlation functions can then be found
by treating the fluid at r as a sphere of negligible radius.
Numerical integration gives *1:

p—S=1(6mna)"1(1 — 5440 +8.5192 + 8.499%),
©

= 1(6ma)~1(1 — 1.73p — 0.93¢% + 1.80p2) . (10)
*1 Use was made of the adaptive stratified Monte Carlo inte-

gration program RIWIAD [7]. Details of the calculations
will be published elsewhere.
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The first of the two terms of order ¢2 is due to two-
body hydrodynamic interactions, while the second
one results from three-body contributions. Using the
result [3]:

00g[opl, 7 =KkT(1 —p)(1 +8p +30p?) (11)

one then finds
D = IkT(6mma)~1(1 + 1.569 + 0.9192) , (12)
D= 1kT(6ma)~1(1 — 1.73¢ + 0.88¢2) . (13)

The terms of order ¢ are well known [3,8,9]. If
we had considered only two-body hydrodynamic in-
teractions, we would have found for the term of order
¢?in D: —7.58¢% and in D —0.93¢2. We have here-
with confirmed the surmise made in ref. [2] that:
“specific hydrodynamic interaction of three spheres
may not a priori be neglected when evaluating the
diffusion coefficient of a suspension which is not
dilute’’. That two-sphere hydrodynamic interactions
do not suffice to describe the properties of suspen-
sions at higher densities has recently also been estab-
lished experimentally, by dynamic light-scattering
measurements of D¢ [10].

We wish to thank Dr. R.H.P. Kleiss for an intro-
duction to RIWIAD.
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