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ABSTRACT

The observations of Grotrian and Ohman show that the continuous light of the corona consists of two
components: a component K, strongly polarized and showing no Fraunhofer lines, and a component F,
unpolarized and having unbroadened Fraunhofer lines. The former component is believed to arise from
electron scattering; the latter is the subject of this paper.

An analysis of the photometric data on the corona and on the zodiacal light indicates that the F-com-
ponent dominates in the outer corona and suggests strongly that this component is just the extension of
the zodiacal light. Other suggested explanations seem to be insufficient.

A theory of the scattering in interplanetary space is given. The scattering by a solid particle consists
of diffraction and reflection; the first and the most important part has been neglected in earlier discus-
sion. Curves of the surface brightness as a function of the elongation are obtained for particles of various
sizes on the assumption of a constant space density. The assumption that there are no particles within
0.1 A.U. from the sun changes the results only slightly.

Theory and observations are then combined to give the distribution function of the radii, a. It has the
form

n(a) = 3.5 X 10720g72:6,

Particles with radii larger than 0.035 cm are less abundant. In addition, the calculation shows that the
color of the F-corona should be slightly redder than the sun. Comparison with the brightness of the
zodiacal light at 90° elongation shows either that the albedo of the particles is about 1 per cent or that
the space density increases a little toward the sun.

The mean free path in the interplanetary medium is 108 A.U. The mean space density is 5 X 1072
gm/cm?. The largest particles found in this analysis are of the same size as telescopic meteors but about
ten thousand times more abundant. The difference is probably real and indicates the existence of a
quiescent cloud besides the rapidly moving meteors.

Some methods by which the theory outlined in this paper may be confirmed and by which further data
on the real corona may be obtained are suggested. The F-component is eliminated from Baumbach’s
table of electron densities, and a revised table is given.

In 1934 W. Grotrian® discovered that the Fraunhofer lines in the corona are weaker,
but not broader, than the corresponding lines in the solar spectrum. The light of the
corona is therefore thought to consist of two superposed components, denoted by F and
K. The K-component is characterized by the fact that it has no Fraunhofer lines; they
are blurred out by Doppler effect. This component can be explained on the usual assump-
tion that the light is scattered by an atmosphere of free electrons around the sun. On the
other hand, the F-component has Fraunhofer lines which have the ordinary depth and
width. Near the limb it has only a small fraction of the intensity of the K-component, but
it decreases more slowly than does the K-component with increasing distance from the
limb and exceeds the K-component at distances larger than 1 solar radius. Presumably,
the F-component contributes most of the light of the outer corona.

The explanation suggested by Grotrian is that the F-component arises from scattering
by solid particles, possibly related to the particles that cause the zodiacal light. It ap-
pears improbable, however, that such particles could exist in the hot region near the sun.
But the observations themselves appear reliable. Spectrographic observations by J. H.
Moore? have given similar results. Furthermore, the way in which the polarization of the
corona changes with the distance from the limb strongly indicates the existence of an
unpolarized component that dominates in the outer corona. This component may be

1Zs.f. Ap., 8,124, 1934. 2 Pub. A.S.P., 46, 298, 1934.
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identified with the F-component. Recently, polarigraphic observations of the eclipse in
1945 by Y. Ohman? have established beyond doubt the existence of these two com-
ponents. In particular, Ohman has obtained some spectrograms for the different direc-
tions of polarization which demonstrate that the polarization is due wholly to the K-
component. The characteristics of the two components, as summarized by Ohman, are
shown in Table 1.

The last difference in Table 1 is particularly significant. It shows that the F-component
at the 1945 eclipse had no relation to the equatorial streamers* that mark the form of the
corona at a minimum in solar activity. Further, it has also been noticed® that the
isophotes at very large distances from the center are nearly circular. It is therefore quite
likely that the F-component has a perfect circular symmetry both in its inner and in its
outer parts. Consequently, it is possible that this component has no direct connection
with the sun at all and is caused by a diffusing medium somewhere between the sun and
the earth. This suggestion implies that—as far as solar physics is concerned—the corona
outside one or two solar radii from the limb is, for the greater part, a spurious corona.
In view of the present widespread interest in the physical state of the corona, a clarifica-
tion of this problem would be useful.

TABLE 1
CHARACTERISTICS OF THE TWO COMPONENTS OF THE CORONA
K-Component F-Component
No spectral lines Fraunhofer lines
Steep decrease of intensity outward Slow decrease of intensity outward
High degree of polarization Low polarization, or none
Same color as the sun Same color as the sun
Much stronger near the sun’s equator Equally bright in polar and equa-
than near the sun’s pole torial regions

PHOTOMETRIC DATA

Let p denote the angular distance from the center of the sun, measured in solar radii.
Then, according to S. Baumbach,® the surface brightness of the corona in the range
1.02 < p < § can be represented by the formula

0.053  1.425  2.565
H(p) = PR + P + PSR

where H(p) is expressed in the unit which is 10~® times the surface brightness at the
center of the disk; we shall denote this unit by ‘““unitg.”

Grotrian! expresses the results of his measurements in an arbitrary unit, “unite.” By
plotting the curves on a logarithmic scale, it was found that Grotrian’s curve for the F-
and K-components combined coincides approximately with Baumbach’s curve if

log unit ¢ — log unitz = — 2.20 .

Figure 1 shows the resulting position of these curves and also the curves for the separate
F- and K-components. Since the steep decrease of the K-component continues beyond
p = 2, we may assume that the light beyond p = 3 is almost entirely due to the F-com-
ponent. Thus we have fairly good curves for the F-component in the ranges 1.2 < p < 2
(Grotrian) and 3 < p < 5 (Baumbach). These curves are shown also by the heavy lines
in the upper left corner of Figure 2, in which the p-scale is logarithmic. They can be con-

3 Pop. astr. Tidskr., 27, 133, 1946. § Cf. D. K. Bailey, 4p. J., 87, 74, 1938
, *Photographs in this Journal, 102, 135, 1945. 6 A4.N., 263, 121, 1937.
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nected by a smooth curve with an initial slope of —5 and a final slope of —2.5. We can
accordingly represent this curve by the approximate expression,

0.053  0.20
Hy (P) =——p§j-+-—-pT-

We can now estimate the total light. For the solar disk we may assume a limb-
darkening coefficient of 0.8. Integrating the surface brightness of the various com-
ponents over the entire surface, we find

Idisk = 0.8 X 106,'
Icorona. =1.12 ’

IF-corona =0.34.

-3

| 2 3 4 5

F1c. 1.—Surface brightness of the corona against distance from the center of the sun. B, Baumbach’s
curve; F + K, F, K, Grotrian’s curves for the total light and the separate components.

Consequently, the F-component contributes 30 per cent of the total light of the corona.
It should be noted, however, that the ratio of the two components is not constant. It
varies considerably with the position angle and may also vary from eclipse to eclipse.
Photometry is mostly made in the region of the coronal streamers. Since these streamers
consist of electrons, they belong to the K-corona. It is possible, therefore, that an
unbiased estimate of the light of the F-component would amount to even more than 30
per cent of the total light. On the whole, the accurate photometric separation of the
F- and K-components deserves further attention.

Nothing reliable is known about the surface brightness between elongations 1°20’
(p = 5) and 30° from the sun. Observations in this region, both during an eclipse and
after sunset, are hindered by scattered light in the earth’s atmosphere. For greater
elongations, however, we have measurements of the zodiacal light. During a solar eclipse
it cannot be observed, but it is certainly present. Therefore, apart from the different cir-
cumstances of observation, there is no obvious distinction between the outer corona and
the inner zodiacal light.
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Accurate photoelectric photometry of the zodiacal light has been made by C. T.
Elvey and F. E. Roach.” From their isophotal maps the intensities along the ecliptic
were read. They show a seasonal variation of some 20 per cent around the average, but
the mean curve is well defined in the entire range, 40° < ¢ < 180° (e = elongation).
The unit of surface brightness, unitzz, corresponds to 1 star of the tenth magnitude per
square degree. The sun has the photovisual magnitude® of —26.8, an area of 0.22 square
degrees, and a mean surface brightness of 0.73X10¢ Baumbach units. Combining these
data, we find

].Og unltB =10g unitER-{— 9.50.
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F16. 2.—Surface brightness of the corona and of the zodiacal light on corresponding scales: Curves
F and B are taken from Fig. 1; ER, Elvey and Roach; H, Hoffmeister. The two parts are tentatively
connected by the dotted line, slope —2.4.

Further, there is an extensive set of visual observations by C. Hoffmeister? in the
range 30° < ¢ < 180°. The results are given in a unit which corresponds to one star of
magnitude 2.22 per square degree. A simple reduction gives

log unity =log unitzz+3.11 .

We can now plot the surface brightness of the zodiacal light in the same graph in which
the surface brightness of the corona was plotted. The new curves are shown in the lower
right corner of Figure 2. Though there is a wide gap between the elongations 1°3 and 30°,
a smooth connection between both curves is strongly suggested byithe slopes of the curves
at either end of the gap. Tentatively connecting both ends by a straight line (the dotted
line in Fig. 2), we find that the surface brightness decreases with the inverse 2.4th power
of the elongation.

TAp. J., 85,231, 1937.
8 G. P. Kuiper, 4p. J., 88, 429, 1938.
% Veroff. Berlin-Babelsberg, Vol. 8, No. 2, 1930, and Vol. 10, No. 1, 1932.
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SOME INSUFFICIENT EXPLANATIONS

We may first mention some suggested explanations of the F-component that would
seem inadmissible.

a) First, there is scattering—atmospheric and instrumental—of the coronal light it-
self. Various effects of this type have been discussed by Baumbach!® and by Y. Hagi-
hara.!! However, they cannot explain the presence of the Fraunhofer lines in the F-com-
ponent. We must therefore look for some other mechanism by which photospheric light
can be received without the aid of the free electrons.

b) Direct scattering in the atmosphere of the earth may be excluded for geometrical
reasons. Let the observing station be in the center of the shadow cone. The line of sight
directed to some point of the corona then passes into sunlit regions of space at several
thousands of kilometers above the surface of the earth. At such altitudes there is no
atmosphere that would cause any appreciable scattering.

¢) Baumbach has also made calculation on multiple scattering in the atmosphere.
This effect involves at least two scatterings under fairly large angles. It probably deter-
mines the general brightness of the sky during an eclipse.l? However, the light thus scat-
tered also covers the dark surface of the moon, and there is no reason why it should show
any increase of intensity near the sun’s limb. Moreover, it may be partially polarized.
For all these reasons it cannot explain the F-component.

d) An apparently new suggestion is that we might observe photospheric light that is
diffracted around the edge of the moon. Such light is certainly present; only by a quanti-
tative computation can we show that its effect is negligible. If the sun were a point source
and the moon were a screen with a straight edge, the intensity at the surface of the earth
would have the regular Fresnel-type distribution, F(v). Here v is the distance outward
from the geometric edge of the shadow limit, divided by (bX/2)!/2, where b is the distance
from the moon to the earth. Substituting A = 5000 A and 4 = 380,000 km, we find that
this unit is 10 meters. More than 100 meters outside the edge of the shadow (v > 10)
we have F(v) = 1, i.e., normal illumination. Near the edge of the shadow we have the
typical fluctuations of the Fresnel distribution that can be observed during occultations
of bright stars.!®> More than 100 meters inside the shadow edge (v < —10) we have

0.05

72

It follows that at the center of a band of totality, of width 34 km, the illumination by a
point on the solar limb is 2)X10~® times the normal and the illumination by a point near
the center of the disk is 2)X 1072 times the normal. Integration gives the illumination by
light from the whole solar disk in that case to be 4X10~° times the normal illumination.
This means that the ‘“lunar corona’ has a total intensity 0.0003 times that of the ob-
served corona, i.e., 0.001 times that of the F-component.

Though this effect is now ruled out as a possible explanation of the F-component, we
may ask whether it would still be observable. The diffracted light should be observed as
coming from a brilliant line along the edge of the moon. The theory'4 has not been worked
out in sufficient detail to predict the intensity distribution across this brilliant line. In
order for its surface brightness to exceed the surface brightness of the inner corona, it
should extend over only 0”04. Since this distance cannot be resolved, the effect is unob-
servable.1s

10 4.N., 267, 273, 1939. 11 4nn. Tokyo Asir. Obs., Vol. 1, Nos. 3 and 4, 1939.

12 7. Q. Stewart and C. D. MacCracken, 4. J., 91, 51, 1940. .

13 A. E. Whitford, 4p. J., 89, 472, 1939; 4. J., 52, 131, 1947.

14 A, Sommerfeld, Frank und Von Mises, Diff. Gl. der Physik. (New York, 1943), 2, 845 ff.

15 The effect might be stronger near the beginning and the end of totality. However, even the bright-

F(v) = (27202 1=

ness gradient at the edge of the solar disk, measured by B. Lindblad and calculated by R. Wildt (4. J.,

105, 82, 1947), is not very steep. The corrections for diffraction may amount to 1fper cent at most.
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SCATTERING IN INTERPLANETARY SPACE

The only explanation left is Grotrian’s original hypothesis that the F-component is
due to scattering by solid particles. For convenience we assume that the particles are
spherical. We define!® the scattering function 7(f) of a spherical particle as the amount
of radiation scattered per unit solid angle in a direction inclined at an angle # with the
direction of incidence, divided by the incident radiation that hits the geometrical cross-
section of the particle.

Let J denote the intensity of the solar radiation at a distance R = 1 A.U. from the
sun.

Consider a column of height dA and cross-section o, seen at an elongation € from the
sun (see Fig. 3). Let its distance from the sun be 7 and its distance from the earth be A.

Let the column (o, dA) contain » particles per cubic centimeter with radii a. These
particles receive the flux of solar radiation,

J+(r/R) 2. 0dAn- -md®,
of which the fraction I(6) A~ is scattered to 1 cm? of the surface of the earth. This flux is
seen coming from a solid angle sA=2%, so that the surface brightness of the column is

Hooi =JR2r2nwatl (0) dA .

The total surface brightness at elongation e from the sun is found by integrating Heo
over the entire line of sight EQ. Substituting

sin e sin e
sin 6 and da=R sin? 6

r=R de

and assuming, further, that there are n(a)dae particles per cubic centimeter that have
radii in the interval da, we find for the surface brightness at elongation e:

H(@ =JR(sinod =t [ xarda [Tn(a) 1(0)do. (1)

All earlier theories of the zodiacal light emphasize Seeliger’s statement that the curve
of H(e) for ¢ < 90° does not depend very much on the exact form of 7(f). The main
cause of the increasing brightness toward the sun must then be an increase of the
“optical space density,”

f(n =fmn(a) a’da,
0

with decreasing 7. In particular, the observed law, H(e) ~ €24 would require f(r) ~
r~1-4 and near the sun the optical density would have to be very high.

The error in this reasoning is that it neglects the diffracted light. The light diffracted by
a large particle shows a rapid decrease of intensity with increasing 8. Taking this fact
into consideration, the importance of the two effects is completely reversed. The high
gradient of the surface brightness is entirely due to the form of the scattering function,
I(#), and we need not assume an increase of the optical space density. This will become
apparent from the following analysis.

The intensity of diffracted light may be calculated by means of the usual Fraunhofer
diffraction theory. It can also be derived from G. Mie’s'” electromagnetic theory of the
scattering by spheres of arbitrary size and refractive index. In a recent study!® of this

16 H. C. van de Hulst, “Optics of Spherical Particles” (Thesis, Utrecht, 1946); also published in Rech.
astr. de 'Obs. d’Utrecht, Vol. 11, Part 1, 1946.

Y Ann. d. phys., 25, 377, 1908.
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theory and its asymptotic cases it was shown that ordinary diffraction, reflection, and
refraction together constitute the scattering by a sphere whose radius is much larger
than the wave length. Setting 27/N = % and x = ka, we can write the scattering func-
tion for £ >> 1 in the form '
_- 1(6) =1,(0) +1I.(8).
The first part, due to reflection and refraction, depends on the material of the sphere
but not on x. For instance, smooth, totally reflecting spheres give
1

I,((?) =E.

The second part, due to diffraction, depends on x but not on the material. It is ex-
pressed by the formulat®

1,(8) = —1—x2<1>(x0),

where
®(z) ={227;(z) }?

arl

el 1

|

0° —~ 0 180°
F16. 3 Fic. 4

Fi1c. 3.—Position of scattering element in space; S = sun, £ = earth
F16. 4.—Schematic representation of the scattering function of a totally reflecting sphere

Figure 4 gives a schematic representation of the scattering function. The importance of
the diffracted radiation is further illustrated by the fact that its total amount, found by
integrating I4(0) over all directions, is 1, i.e., just equal to the total amount of reﬂected
and refracted radiation. For absorbing partlcles the latter amount is even less.

The separation of I(6) into the parts I4(6) and I,(6) is not possible when «x is small.
For transparent particles, e.g., water drops, the limit of correctness of the ordinary dif-
fraction theory is at about x = 20 (Van de Hulst, 0p. cit., chaps. vii and viii). For
totally reflecting particles it is at about x = 3 (3bid., chap. vi), and for metallic particles
we may put the limit near x = 5 (ibid., chap. ix). We may assume that also for particles
with a rough surface the ordinary diffraction theory is valid if x > 5. In this case we may
choose for I,(8) one of the classical phase functions.’® On account of the present definition
of I(6), we have to multiply the usual expressions for these phase functions by v/,
where « is the albedo, and to replace the scattering angle by its supplement. For a sphere
with Lambert’s phase function we then have

I,(8) =§—:2(sin 9 — 6 cos 0) .

18 Tn textbooks one may find this formula with the argument x sin 6 and with an additional factor
cost 8/2. It would seem that the difference has no meaning: for small 8 it vanishes and for large 8 the
presence of the reflected and refracted light renders the distinction inessential (Van de Hulst, op. cit.,
chap. v).

19 E. Schoenberg, Handb. d. Ap., 2, Part I, 159, 1929.
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In our further analysis we assume that #(a) is the same function throughout the plane of
the earth’s orbit. Equation (1) may then be written in the form

- H () =R [ n(a) aF (o) da, (2)
. 0

where
€

= (T4 . 3
Flo) === [T4nI(0)do (3)
Apart from the factor 7, the function F(e) is proportional to the surface brightness due
to particles of a given size. Our next step is therefore to calculate the functions F(e) for
particles of various sizes and surface conditions. Again we may separate F(e) into the
parts Fy(e) and F,(e).

TABLE 2
FuNCTIONS CONNECTED WITH THE DIFFRACTED LIGHT
z i &(z) ¥(z) z P(zg) ¥(z)

O, v 1.0000 1.698 S ) 0.0172 0.0301
1. 0.7746 0.779 6. ... 0.0085 0.0156
2. 0.3336 0.225 T 0.0000 0.0127
3. 0.0511 0.055 8. 0.0035 0.0112
4. ... 0.0011 0.040 9. 0.0030 0.0074

10, ............ 0.0001 0.0061

The function F4(e) depends on x. Substituting for 74(f), we obtain

Fd (5) = x¥ (xf) ’
with .
¥ (2) =ﬁ d(z)dz .-

Since the diffraction theory is accurate only for small values of 6, we have omitted the
factor ¢/sin € and extended the range of integration to «. The functions ®(z) and ¥(2)
are tabulated in Table 2; the values of the latter function have been obtained by numeri-
cal integration. It may be mentioned®® that ¥(o) = 16/37 and that for large values of 2
the function ®(z) fluctuates around the values 4/w3% = 1.27273, while ¥(z) fluctuates
around 2/mz? = 0.64z72. The surface brightness of the light diffracted by large particles
is therefore proportional to €%, which is more than sufficient to allow for the observed
intensity gradient of the corona and the zodiacal light.

The function F.(e¢) depends on the composition and the surface condition of the
spheres. For polished spheres we have

e(r—e)
F,(e) =———=;

sin €
this is approximately constant, varying between 2.45at e = w/2and 3.14at e = Oor .
If the spheres reflect the light according to Lambert’s phase function, we obtain

F,-(G) =7

€
sin e

i(2—|—2 cosetesine).
3

20 Cf. G. N. Watson, Bessel Functions (Cambridge, England: Cambridge University Press, 1944},

p..389, .
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Table 3 shows the values of this function, together with the values of 7,(f) ; the tabulated
values are for v = 1. Again we see that F,(e) does not change its order of magnitude in
the entire range of directions. Therefore, the surface brightness of the reflected light is
approximately proportional to ¢

The values of F(e) thus calculated are shown together as the solid curves in Figure 5.
The curve for polished totally reflecting spheres has only theoretical interest. For the

TABLE 3
FUNCTIONS CONNECTED WITH LAMBERT’S PHASE FUNCTION
] I,40) Fr(0) ] I.(6) Fr(8)
0............... 0.0000 3.40 105.............. 0.097 5.25
5. .. .0004 3.44 120, ... L .129 5.77
30.. ... .0032 3.54 135, ...l .160 6.35
45, ...l .0102 3.74
60..... ... .0231 4.00 150, ... 187 7.00
165. .. ........... .205 7.71
5. 0424 4.36 180.. ... .. 0.212 8.39
90............... 0.0674 4.76

o)
1 4
log Fley 7|3
L
1
a
-
AN
- P I — A
1 ] 1 1ot
£= 34 34’ 5°7 10°  30° 60°90° 180°

F1c. 5.—Theoretical scattering curves for particles of various sizes. Both scales are logarithmic;
F(e) is proportional to e, the surface brightness. The solid curves are derived on the assumption of a
homogeneous density throughout space, the dashed curves on the assumption that there are no par-
ticles within 0.1 A.U. from the sun. Left, the diffraction part for various values of x; right, the reflection
part for polished spheres (a) and for Lambert spheres with albedo 0.1 (5).

actual particles we assume that Lambert’s phase function is valid and that the albedo
is 0.10; this value of v may be a suitable estimate for metallic or stony particles. The
complete curve of F(e) for particles of a given size consists now of three distinct parts.
For € < €, F(e) has the constant value 1.70 x; for e < € < ¢; it decreases proportionally
to €2; and, finally, for € > e reflection is the main source of scattered light and F(e) is
again approximately constant, having a value between 0.4 and 0.8. The surface bright-
ness in these three regions is proportional to €71, €73, and €7}, respectively. Table 4 shows
the values of ¢ and e; they have been computed on the assumption that A = 4400 A,
E=14X10"°cm™.
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One serious objection may be raised against the foregoing calculations. The factor
(sin €)~! in formula (1) arises from the fact that the particles are more strongly illumi-
nated, the nearer they are to the sun. Obviously, this relation must break down for very
small values of €, because solid particles cannot exist in the regions close to the sun. By
fairly complex calculations? one can estimate the distances in which particles of various
sizes and thermal properties can approach the sun. However, we shall make here the
simple assumption that there is a region of radius 0.1 A.U. around the sun which is void
of particles and that outside this region the density is uniform as before. A black body

-at 0.1 A.U. from the sun would have a temperature of 870° K.

The effect on F(e) is easily calculated; we denote the revised values by F’(e). For
€ > 5°7 we have F’'(¢) = F(e), because the line of sight does not pass through the empty
region. For e < 5°7 the range of integration in formula (3) has to be changed. It now
consists of two parts, one extending from e to 6, and the other extending from 6, to =.
Here 6, and 6. are the sharp and obtuse angle, respectively, defined by

sin §;=sin 6, =10sine.

TABLE 4

ANGLES BETWEEN WHICH THE SURFACE BRIGHTNESS CHANGES
_ PROPORTIONALLY TO ¢?

a x € & a ’ % ‘ €1 | €

7X10%cm. ........ 10 35 25° 7X1073cm. ....... 1,000 2011 225
TXI0™ ..l 100 21 8° X102, L 10,000 0:2 47

Obviously, the correction is largest if € is very small. In that case we have §; = 10e and
0, = m — 10e. The revised expression for the diffracted light is then

Fj(e) = x{¥ (ve) —¥ (10xe) }.

Only for xe < 0.1 the second term has a serious effect; the expression then reduces to
Fj(e) =9x%.

For moderate values of xe the correction can be derived from Table 2. For large values
of xe the second term is just 1 per cent of the first one, so that the correction is negligible.

This result reveals an interesting fact: As long as we deal with the outer portions of
the diffraction pattern, the brightness observed at small elongations from the sun is due to
particles that are not relatively close to the sun. The explanation is apparent from equation
(2). The effect that the particles near the sun are more strongly illuminated is overcom-
pensated by the effect that the particles closer to the earth diffract the light more effec-
tively because of the smaller angle.

Conversely, the reflected light is contributed mostly by that part of the line of sight
that is nearest to the sun. The exclusion of the empty region has therefore a serious effect
on F.(e). It is sufficient to write down the revised formulae for the case where € and 0, are
small. These formulae are

Polished spheres : F/ () =7 — 0,4+ 0, —e =19,
Lambert spheres : F! (e) = 8y (x — 0,) =26.7ve.

2 H, N. Russell, 4. J., 69, 49, 1929.
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The values of F’(e) are shown by the dashed curves in Figure 5. It is seen that for very
small angles the F’(e) of each component is proportional to e, so that the corresponding
surface brightness is a constant. For the reflected light this occurs as soon as e < 597 but
for the diffracted light it occurs only when € < e/4. The surprising result emerges that
those parts of the curves which are most effective in determining the scattering by a
mixture of particles of Varlous sizes are just the parts that are not affected by the absence
of particles in the hot region around the sun.

THE DISTRIBUTION FUNCTION OF THE RADII

We shall now investigate what information about the interplanetary particles can be
gained from a comparison of the photometric data and the theoretical scattering curves.
First, we assume that the photometric data are exactly represented by the straight line
in Figure 2. The equation of this line is

H(e) =1.2X1077%24, (4)

where H is expressed in unitsg and e in radians. We may anticipate that the distribution
function of the radii has the form

n(a) da =Ca?da (a1<a<ay). (5)

We confine ourselves to-elongations < 30°, for which the reflected light may be neglected.
Equation (2) then becomes

H(e) = 1R [ 'Carka¥ (kae) da .

After replacing the limits of integration by 0 and «, we obtain

H () = JRCC,kr3er75, (6)
where

Cp=£mz—P+3W(z) dz.

Comparison of equations (4) and (6) gives p = 2.6. By numerical integration it was
found that Cy = 2.1. If ¥ is replaced by ¥’ (empty region around the sun), the value
is only 4 per cent less.

The intensity J may be expressed in the present units by writing it as the product of
the mean surface brightness of the sun and the solid angle subtended by the solar disk.
These factors are 0.8 X108 units, and 0.64X 10~*steradians, respectively, so that J = 51.
By substituting further the values R = 1.5X10' and E=14 X 105 (A = 4400 A),
equation (6) is reduced to

H(e) =3.5X102Ce24,

so.that equation (4) is satisfied by C = 3.5 X 10~2

The factor k (= 27/\) appears in equation (6) with the exponent —0.4. This means
that the F-corona and the zodiacal light at small elongations should be a little redder
than the sun. This result may seem surprising at first sight. It should be noted, however,
that the total light diffracted by a large particle is independent of wave length (and
equal to the light falling on its cross-section®). The outer parts of the diffraction pattern
are relatively red, while the inner part is relatlvely blue; the intermediate parts are the
most effective parts in the present solution.

The predicted color difference between the corona and the sun is even smaller than the
difference between the center and the limb of the sun. Therefore, it may easily have

# Van de Hulst, op. ¢ii., chaps. ii and v.
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escaped detection. Accurate photometry at two widely different wave lengths would
seem desirable for a check. Radiometric observations by V. B. Nikonov?® have indeed
indicated an infrared excess of the corona; however, the observation is very uncertain.

We shall next discuss the surface brightness in the immediate neighborhood of the
sun. The curve marked F in Figure 2 shows an increase over the dotted line, which repre-
sents the exponential relation (4). An obvious explanation for such an increase is given
by the sun’s size. In order to confirm this explanation quantitatively, we may formulate
the following problem: Given the surface brightness of diffuse light at an angular distance
p from a point source of intensity 1 equal to p~¢, what will be the surface brightness at
the angular distance p from the center of a luminous disk with radius 1 and total inten-
sity 1? The answer to this problem is expressed by the integral

1 27 1 _
f(p) =;j; d¢_£ (pP*+7r2—2rpcosep) ~2r dr.

It should be noted that we are allowed to consider the sun as a luminous disk instead of
a luminous sphere because it was stated earlier that the effect of particles close to the sun
is negligible. For the case ¢ = 2, analytical integration gives

F(p) = —In(1—p2).

TABLE 5
INCREASE OF LOG H(p) DUE TO THE SUN’S SIZE
Calc. Calc. Obs. ) Calc. Cale. Obs.
e g=2 g=2.5 g=2.4 e g=2 g=2.5 g=2.4
1.2.......... 0.23 0.32 0.41 1.6......... 0.10 0.18 0.18
1.4.......... 0.14 0.23 0.27 2.0......... 0.06 0.10 0.01

Further, a graphical integration for the case ¢ = 2.5 was made. The disk was divided
into about six parts, separated by concentric circles around a point at a distance p from
its center; the areas of these part were measured and multiplied by the appropriate factor
p'~2% and the products were added. Table 5 gives the resulting values of log f(p) — log
(079, i.e., the increase of log H(e) over the exponential relation. The corresponding
increase shown by the photometric data is given in the last column. The observed in-
crease seems a little steeper than the calculated ones, and this difference would be en-
hanced if the limb darkening were taken into account. Yet the measurements of the
F-component near the sun are not accurate enough to consider the differences as real.

We may conclude that the exponential relation (5) holds, down to the smallest angle
for which observations were made. This angle—now measured from the limb—is about
0.2 solar radii, i.e., 0.001 radian. The definite integral C, ¢ decreases by 20 per cent if the
upper limit of integration is taken as 5 instead of as . If 20 per cent is taken for the
observational tolerance, this means that the approximation which we made is correct
if kase > 5. It is correct down to e = 0.001 if ka; > 5000, i.e., a2 > 0.035 cm.

The surface brightness at large angles requires a quite different discussion. For e > 30°
the diffracted light comes mainly from very small particles, for which the diffraction
formula is not accurately valid. Further, the reflection comes in as an additional cause
of scattering. However, we may assume that for e > 60°, reflection is the only effect to

23 Bull. Abastumans Obs., 7, 33, 1943.
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be taken into account. Substituting the value F.(e) = 4.4, valid for Lambert spheres
and e near 75°, and assuming again the distribution function of the radii given by equa-
tion (5), we find from equation (2) that

3_ pu—
(a; *— a% p)

(3 =)

Since 3 — p = 0.4, we may replace ¢; by 0. The photometric curve in the range
60° < e < 90° is approximately represented by the equation

H() =1.0X1077%1.

H () =1JRe14.44C

Equating these expressions and using the values of the constants derived earlier, we find

v =0.0013g704,

which, in combination with the lower limit of a2, gives
v <0.005.

This result is a little lower than we had expected. Since meteorites and meteoric dust
are often black,? however, a fairly low albedo appears not impossible. In addition, there
are several possibilities to widen the margin. First, the phase function of the moon would
make the reflected light about three times weaker than it would be on account of Lam-
bert’s phase function. Furthermore, we may expect that an irregular form of the particles
would enhance the diffracted light without causing a proportional increase of the re-
flected light. Finally, almost any change in the surface brightness may be effected by
assuming that the density varies through the plane of the ecliptic.

For example, we may consider as an extreme case the one in which the distribution of
the radii has the form (4) within 0.5 A.U. from the sun, and space is empty outside this
region. The surface brightness for e > 30° is then zero. For ¢ < 30° it is found by adding
a factor 27=* = 0.38 to the right-hand member of equation (5). The resulting value of
C is then 2.6 times the previous value. This model would therefore explain the surface
brightness of the corona without leading to too high a value for the surface brightness of
the zodiacal light.

Summarizing the results, we may say that the photometric data are well represented
by theory if we assume: (a) that the albedo is about 0.1; (b) that the distribution of
radii has the form

n{(a) =Ca™26 (5a)

but that particles with dimensions >1 mm are less abundant than would follow from
this formula; and (¢) that C is about 10720 near the orbit of the earth, 5X10~2%at 0.5 A.U.
from the sun and 0 within 0.1 A.U. from the sun.

A few words may be added about the zodiacal light at elongations >90°. Part of the
variation of brightness in this region may be due to real density variations. This explana-
tion is likely, since there are also seasonal variations in the position of the axis and of the
Gegenschein® that seem to have some relation with the orbit of Jupiter.? In addition, the
scattering angles are different from the angles that are effective in the region of small
and medium elongations. Consequently, the zodiacal light at large elongations offers a
problem which has only little relation to the problem treated above.

24T found no values of the albedo mentioned.
% C.T. Elvey, Ap. J., 77, 56, 1933. 26 Hoffmeister, 0p. cif.
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DENSITY OF THE INTERPLANETARY MEDIUM AND RELATION TO METEORS

We return to the original solution, in which the density was supposed to be homoge-
neous. Using the values p = 2.6, C = 3.5 X 10~%% and a; = 0.035 cm, we find that the
mean free path among the interplanetary particles is
rCasy *\™ 6
('—0.—4—' = 10 A-U .

Roughly the same value follows directly from the ratio of the total intensity of the
corona to the total intensity of the sun. It shows that the interplanetary dust cloud is
extremely transparent and justifies our assumption that interaction between the scatter-
ing particles may be neglected.

The space density is

4rsCayt

Wl 5X107% gm/cm?,

where s, the density of the particles, is taken to be 5. P. van Rhyn?” estimated a density

" of 510718 gm/cm? near the earth. The difference of a factor of 1,000 is mainly due to the

fact that Van Rhyn assumes arbitrarily that the zodiacal light is caused by rocks with
radii of about 50 cm, which is more than 1000 times larger than the radii following from
the present investigation.

The thickness of the dust cloud perpendicular to the plane of the ecliptic may be about
0.1 A.U. The total mass of the particles within the orbit of the earth then is 5X 108 gm,
i.e., 10~° times the mass of the earth. This mass is far too small to produce observable
effects on the motion of the planets.

Perhaps the most interesting problem is the relation of these particles to the meteors.
The following discussion is based on F. Watson’s?® analysis of meteor frequencies. Wat-
son’s formula (1’) gives the relation between mass, velocity, and magnitude of the meteor,
based on calculations by E. Opik.? If M = mass in grams, m, = magnitude reduced to
the zenith, and the geocentric velocity is 56 km/sec, this relation becomes

log M =—1.1—0.4m,. (7)

For instance, a second-magnitude meteor has a mass of 0.012 gm. Assuming a density of
5, we have, further,
logM =1.3+31log a,
so that
loga=—0.8—0.133m, .

It follows that the naked-eye meteors (—1.5 < m. < 5) are caused by particles with
radii in the range 0.25 > a > 0.03, while the range for telescopic meteors (5 < m, < 9)
is 0.03 > a > 0.01. The particles that cause the F-component of the corona, according
to the preceding analysis, have radii up to 0.03 cm. The largest particles among them
correspond, therefore, to the telescopic meteors.

Let N be the number of particles per cubic centimeter and let the number in a given
interval of mass, radius, or magnitude be denoted by dN. Watson’s Figure 2 gives the
number of meteors of a given magnitude that daily enter the entire atmosphere of the
earth. Assuming again a geocentric velocity of 56 km/sec, we find that this number is

21 Pyb. Astr. Lab., Groningen, Vol. 31, 1921.
28 Harvard Ann., 105, 623, 1937. 29 Tariu Pub., Vol. 29, No. 5, 1937.
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10298 times the number per cubic centimeter. The straight line in this figure is therefore

represented by

dN

1.(29.8 = 1 (Q4-41+0.60m;
mz

Since dm, = 10°% ¢! da, this relation can be reduced to

%’_z 10—28.5g—5.5 (8a)

A similar result is found from Watson’s Figure 4: the total number per cubic parsec in a
given interval of log M is

10%5.5 d—N = 1(029.0—1.40 log M
d (log M) '
which is reduced by means of d(log M) = 10%a—'da to
ﬂz 10—282g-5.2 (85)
da
TABLE 6
NUMBER OF PARTICLES IN INTERPLANETARY SPACE
L0G dN /da
e DIFFERENCE
(Cw) e (5)—(8)
() (82) (8b)
0.10............. 1.5 <-—-16.9 -23.0 -23.0 <6.1
03 5.2 —15.6 —20.3 —20.4 4.8
0.01............. 9.0 —14.3 —17.5 —17.8 3.4
These results may be compared with the result of the present paper:
d
N =10-1955-2.6 (5)
da

Table 6 shows the values of log dN/da for some values of a in the region where both
determinations are valid. The differences shown in the last column are considerable:
the number of particles with sizes between 1 mm and 0.1 mm in inter planetary space is about
10,000 times larger than can be inferred from the number of telescopic meteors.

Before drawing further conclusions we shall estimate just how reliable this result is.
The constants in equation (5) do not depend on any arbitrary estimates; the resultant
numbers may be accurate within a factor two. As we have seen earlier, it is also very
unlikely that the F-corona can be explained in any different way. The meteor data are
more flexible; in particular, the question of the meteor velocities is still a matter for con-
troversy. Fortunately, it does not matter for the present estimate whether the particles
come from interstellar space or belong to the solar system: in either case they must be
present in interplanetary space. Therefore, even drastic corrections of the velocities
cannot change the order of magnitude of the estimated density. Further, Watson’s
counts refer to sporadic meteors; the number of shower meteors should still be added.
However, there are fewer shower meteors than there are sporadic meteors, for the
telescopic magnitudes in particular. Therefore, no appreciable change results from this
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correction. Independent counts cited by Watson and a later paper by J. D. Williams3°
confirm the general order of magnitude. The total uncertainty would amount to about
a factor of 10. The only way to change appreciably the estimates derived from equation
(8) is to assume that the physical theory of meteors? leads to masses which are much too
small. At present this possibility seems unlikely.

Taking, then, the italicized result as significant, we may inquire into its meaning. An
obvious explanation is that only a very small fraction of the interplanetary particles
have velocities high enough to cause visible meteors. The majority of the particles might
move in approximately circular orbits in the same way that the planets and the asteroids
do. The dynamical relation of this system to the meteor streams and to the sporadic
meteors is not clear. We may, however, mention that a particle moving in some cometary
orbit would hit a particle of the quiescent cloud once in 108 or 107 years. One may there-
fore conclude from the existing motions that there is some supply from outside the solar
system, even if the direct evidence for interstellar meteors is considered doubtful. Fur-
thermore, the existence of such an interplanetary medium may have implications for the
motion of comets and for the cosmogony of the solar system.

THE REAL CORONA: SOME SUGGESTIONS

After this discussion of the “spurious” corona, we may ask how the best information
about the ‘“real”” corona can be obtained. First, we shall have to make quite certain that
the F-component has indeed no direct connection with the sun. This might be confirmed
by observations that would narrow the gap shown by Figure 2. Measurements of the
zodiacal light might be extended to 10° from the sun if proper precautions were taken
to eliminate twilight. The brightness of the corona, on the other hand, may be measured
to considerably larger distances from the sun than has been done so far. The most serious
disturbance is the light scattered from outside the eclipse cone. From the measurements
by J. Stebbins and A. E. Whitford® with a potassium cell, it would follow that the sur-
face brightness of the sky during an eclipse is about one four-hundredth that of the full
moon, i.e., 10724 unitsg. Since the skylight has the regular blue color, it might be reduced
by a factor 25 by observing in the infrared about 1u; a further factor of 2 or more may
be gained by observing from an aircraft. The sky brightness would then come down to
10~*1 unitsg, so that, according to Figure 2, it would equal the brightness of the corona
at 4° from the sun.

One unexplained observation should be mentioned. On two occasions Moore?? found
that the Fraunhofer lines in the spectrum of the corona showed a red shift of about 20
km/sec. This observation conflicts with the present explanation of the F-component.
Even if the diffracting particles had large radial motions, the Doppler effect would not
influence the diffracted light. However, the free electrons probably are ejected from the
sun with a speed?? of the order of 1 A.U. per 4 days, i.e., 400 km/sec. Consequently, the
Fraunhofer lines of the K-corona should have a red shift of this amount. These lines are
broadened into very shallow, nearly invisible depressions. Grotrian3* finds that their
broadening between 1’ and 5’ from the limb corresponds to a mean random velocity of
4000 km/sec. At the levels of 10’ and 20’ from the limb, where Moore’s observations
were made, the broadening might be considerably less, though still large enough to make
the lines very shallow. Superposition of the displaced shallow lines over the undisplaced
narrow lines of the F-corona might then cause an apparent shift of the latter, especially
if the dispersion is low.

30 4p. J., 92, 424, 1940.

L Ap. J., 87, 225, 1938.

%2 Pyb. A.S.P., 35, 333, 1923, and 45, 147, 1933.

3 K. O. Kiepenheuer, 4. J., 105, 408, 1947. 34 7Zs. f. Ap., 3, 199, 1931, and 8, 124, 1934.
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In several papers on the physical state of the corona, reference is made to the electron
densities derived by Baumbach.® They have been computed on the assumption that the
entire brightness of the corona is due to electron scattering. However, on our present
ideas the F-component should be excluded. We may obtain the corrected values for the
electron density in the following way.

With little change in the numerical values we can write the brightness of the F-com-

ponent in the form

0.053 |, 0.30
Hy (P) =—2—_5+——'§—-
P P

This formula contains the same powers of p as Baumbach’s formula for the total bright-
ness, viz., p2%, p~7, and p~'7; the coefficients are the fractions 1.00, 0.21, and 0.00 of the
coefficients for the total light. The corrected formula is therefore obtained by multiplying
these coefficients by the factors 0.00, 0.79, and 1.00, respectively. Baumbach’s analysis

TABLE 7
CORRECTED ELECTRON DENSITIES
108 N(r) 10-8 N (r)
r I r f

ol New old New
| 0.94 458 430 || 2.2......... 0.47 2.50 1.2
1.03......... .92 311 290 2.4......... .39 1.79 0.7
1.06......... .90 229 210 2.6......... J31 1.35 0.42
1.10......... .88 156 137 2.8, ........ .26 1.10 0.29
1.2.......... .83 70.4 58 30......... .21 0.91 0.19
1.3.......... .79 38.4 30 3.5......... (.11) 0.63 (0.08)
1.4.......... .74 23.8 18 4.0......... ( .07) 0.51 (0.04)
1.6.......... .67 11.1 7.5 50......... (0.03) 0.38 (0.01)
1.8.......... .61 6.1 3.8 6.0.........|.......... 0.25 |..........
20.......... 0.54 3.7 2.0 80........ .| vt 0.16 |..........

shows that the same factors should be applied to the formula for the source function,
F(r) (Baumbach’s formula [6]). The new values of F(r) are computed and found to be a
fraction, f, of the original values. Since the geometrical conditions are not changed, f
is also the correction factor for the electron densities, N (7). Table 7 shows the results.
Near the limb the correction is small; beyond » = 3 the correction is so large that the
electron density becomes very uncertain.

The F-component is only roughly eliminated in this way. The resulting picture of an
electron density which is constant in spherical shells around the sun is certainly much
too simple. One of the reasons why the data compiled by Baumbach fit so nicely to a
single curve is undoubtedly just the presence of the constant F-componerit. The K-
corona alone probably shows much stronger fluctuations. We may also expect that the
coronal streamers, especially their outer parts, actually show more distinct features than
are seen on the usual photographs. Taking one calibration spectrum (e.g., along the
polar axis) and assuming that the F-component has circular symmetry, one might cor-
rect the isophotes of the total light so as to obtain the isophotes of the K-component. A
more reliable method would be the use of various calibration spectra along different
lines. It would be still better to exclude the F-component directly from the observations.
This might be effected by observing the corona, or a part of it, through a filter transmit-
ting a wave-length interval of about 5 A around the center of the H- or K-line. The
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F-corona would then be cut down by a factor of 6, while the K-corona would show in
approximately full strength.

Addendum, March 31.—1In a paper just received, C. W. Allen® gives the same explana-
tion of the F-corona as that proposed in the present paper. Allen’s paper is particularly
important, since it gives new data, obtained at the eclipse of October 1, 1940. A few
further points that lend support to the present explanation may now be noted: (a) The
F-corona seems slightly reddish according to Allen’s measurements, in agreement with
our formula (6); (b) the discrepancy suggested by our Table 5 vanishes when Allen’s data
are used instead of Grotrian’s; and (¢) Allen finds no confirmation of the unexplained red
shift.

The ratio of the F-component to the total intensity found by Allen is smaller than the
ratio found by Grotrian at the same distance from the limb. We may suggest that the
difference is due to the K-component; this component may have been weak in 1923
(minimum of solar activity) and strong in 1940 (3 years after maximum). Future eclipse
expeditions should consider the separation of the two components as a major point of
their photometric program.

% M.N., 106, 137, 1947.
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