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Production and detection of three-qubit entanglement in the Fermi sea

C W J Beenakkei, C Emaiy, and M Kindetmann®*
Instituut Lorentz Universitert Leiden PO Box 9506 2300 RA Leiden, The Netherlands
(Recerved 21 October 2003, published 17 Maich 2004)

Building on a pievious piroposal for the entanglement of election-hole pans in the Fermi sea, we show how
thiee qubits can be cntangled without using election-election interactions As in the two qubit case, this
electronic scheme woiks even if the souices aic m (local) thermal equilibrium—in contrast to the photonic
analog The three qubits aie repiesented by four edge-channel excitations 1n the quantum Hall effect (two hole
excitations plus (wo electron excitations with 1dentical channel index) The entangler consists of an adiabatic
pomnt contact {lanked by a pan of tunneling pomnt contacts The 1rreductble three qubit entanglement 1s char
actetized by the tangle, which s expressed in teims of the transmission matrices of the tunneling point
contacts The maxmmally entangled Giecnberger-Horne-Zeitlinget (GHZ) state 1s obtained for channel-
independent tunnel probabilities We show how low-ftequency noise measurements can be used to determine
an uppet and lower bound to the tangle The bounds become tighter the closer the election-hole state 1s to the

GHZ state

DOI 10 1103/PhysRevB 69 115320

I. INTRODUCTION

This paper continues the 1esearch progtam of Ret 1 To
develop methods for quantum entanglement and spatial sepa
ration of quasipaiticle excitations 1 the Fermi sea, with the
special piropeity that they do not requue election-election
mteractions Interaction-fiee entanglement schemes piovide
an altogether different alternative to proposals based on the
Coulomb®® o1 supetconductive paning®'® teraction
Which method will fiist be 1ealized expetimentally 1emains
to be seen Theotetically, there 1s much to exploie 1n parallel
to the expetimental developments

Photons can be entangled without inteiactions, but not 1f
the sources ate in thetmal equilibiium ''~'* What was shown
in Ref | 1s that this optical “no-go theortem” does not apply
to the Fermi sea Entangled election-hole excitations can be
extiacted fiom a degenciate election gas at a tunnel baitier
and then spatially sepaiated by an electiic field—even under
conditions of (local) thermal equilibiium Since this en-
tanglement mechanmism ielies on single-particle elastic scat-
termg, no contiol over election-election teractions 15 1e-
quued

Interaction-fiee entanglement 1n the Fermi sea has now
been studied m connection with counting statistics,'*
teleportation,!® the Hanbwy-Biown—Twiss effect,'® and cha-
otic scattermg 7 All these works deal with the bipartite en-
tanglement of a pau of qubits In the piesent paper we set the
first step towards geneial multipartite entanglement, by
studying the 1nteraction-fiee entanglement of thiee qubits

The pioposed thiee-qubit entangler 1s sketched schemati-
cally in Fig 1 As m the onginal thiee-photon entangler of
Zeilinger et al 8 we propose to cieate thiee-qubit entangle
ment out of two entangled electton-hole pans The key dis-
tmction between the two schemes s that the souices m the
electionic case aie teservous 1n theimal equilibiium, m con-
trast to the single-photon souices of Ret L8 In the next
section we propose a physical teahization ot Fig 1, using
edge channels in the quantum Hall effect A pau of edge
channels 1epresents a qubit, either n the spimn degiee of fiee-
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dom (if the edge channels he n the same Landau level), or 1in
the orbital degiee of fieedom (if the spm degeneracy 1s not
1esolved and the edge channels lie 1n two different Landau
levels)

The ureducible titpaitite entanglement 1s quantified by the
tangle 7 of Coffman, Kundu, and Woottels,m which 1s the
thiee-qubit analog of the concurience *° The tangle 1s unity
for the maximally entangled Gieenbeiger Hoine-Zeilingel
(GHZ) state and vamshes 1t one qubit 1s disentangled fiom
the other two *' We would like to measure 7 by corelating
cuttent fluctuations, following the same 1oute as 1n the bipai-

e electron

e !
tunnel Cn

barnier

two-channel
conductor

left entangler right entangler

FIG 1 Schematic desciiption of the cieation of thiee-qubit en
tanglement out of two cntangled election-hole paus in the Fermi
sea The left and ught entangler consist of a tunnel baiier over
which a voltage V 1s applied Fot a simplified desciiption we as-
sume spin entanglement n the state (|1,7.)+]1,! ‘>)/\/5 wheie
the subsciipts e /1 1efer to election and hole spin (The moie genetal
situation 1s analyzed m Scc 1) The two elecuons meet at a polai
1i7ing beam sphtter which fully ttansmits the up spm and fully
1eflects the down spin If the outgoing potts A B contain one elec
tton cach then they must both have the same spin The cotiespond
ing oulgomg state has the loim (|T,,T,,L]L)+|j,,j,,J[J())/\/§
Since the two clections at A B ale constiained to have the same
spin this four-paiticle GHZ state 1epresents thiee independent logi
cal qubats
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FIG 2 Proposed realization of the three-qubit entangler, using edge channels m the quantum Hall effect The left and right point contacts
(scattering matrices S;, Sg) each produce entangled electron-hole pairs 1 the Fermi sea They partially tiansmit and 1eflect both edge
channels, analogously to beam splittets 1 optics The central point contact 1s the analog of a polarizing beam splitter 1t fully transmuts the
mner edge channel and fully reflects the outer one Three-qubit entanglement results 1f theie 1s one excitation at each of the four edges
L,R,A,B The two election excitations at A and B then have the same channel mdex, so they consttute a sugle qubit This qubit forms a
three qubit entangled state with the two hole excitations at L and R

22
tite case 1222 Theie the concunence of the election-hole

pau could be 1elated duectly to second-oirder curtent cortela-
tots thiough the maximal violatton of a Bell
mequality! 19 17—at least m the absence of decoherence **

While thete exists a one-to-one telation between concui-
1ence and Bell mequality for any pute state of two qubts,?
no such telation 1s known for 7 A tiecent numerical
1nvest1gat10nz6 has found a simple set of upper and lower
bounds for 7 Since these bounds become tighter and tighter
as the state appiroaches the GHZ state, they should be of
practical use

The outline of this paper 15 as follows In Secs II and IIT
we constiuct the thiee-qubit state and calculate 1its tangle
Unlike the concuitence, the tangle depends not only on the
transmusston eigenvalues of the point contact entanglers, but
also on the eigenvectois In Sec IV we give the bounds on =
detetmined by the maximal violation of a Bell mequality
Two tipaitite nequalittes ate compated, one due to
Mermim?’ and the other due to Svetlichny 28

The maximization m these inequalities 1s over local uni-
tary ttansformations of the thiee qubits, 1epiesented by 10-
tated Pauli matiices ¢ o (with ¢ a wut vector) In our case
the thud qubit 18 special, because 1t 1s composed of a pau of
elections with the same channel index This defines a pref-
erential basis for the thud qubit In Sec V we deiive that
fourth-order mieducible curient corielatois give a con-
stramed maximization of the Bell mequalities The constramt
1s that the 10tation vector ¢ of the thud qubit lies m the x-y
plane The fiist and second qubits {(each consisting of a single
hole) can be 10tated fieely 1n all thiee duections Smnce the
bounds on 7 aie unaffected by this constiamnt, it 1s not a
problem For generality, we show 1n the Appendix how the
constraint on the axis of 1otation of the thnd qubit can be
temoved by mcluding also information fiom second-oider
cortelatos

We conclude in Sec VI

H. PRODUCTION OF THE ENTANGLED STATE

Figure 2 shows our proposal fot a physical realization of
the schematic chagtam m Fig 1 A three-qubit entangler ot

edge channels n the quantum Hall effect 1s constiucted by
combining a pan of tunneling point contact entanglers fiom
Ref 1 with an adiabatic pomt contact (which acts as a polai-
1zing beam sphittet) Two voltage soutces each excite two
edge channels 1 a nartow eneigy range eV above the Fernm
level (We will distegard the eneigy as a sepatate degiee of
fieedom 1 what follows )

After scattering by the thnee pomt contacts, the four exci-
tations are distiibuted m different ways over the four edges
L,R,A,B We consider only the terms with one excitatton at
each edge This means one excitation (with creation opeiator
a, ) of edge channel 1= 1,2 at the far left, another excitation
a}2 , of edge channel ; at the far 11ght, and two moie excita-
tions a} > aj; of edge channels &,/ at opposite sides of the
cential pomnt contact The polanizing beam splittei ensuies
that k=1[, meaning that the two excitations at A and B have
the same channel mdex They constitute a single qubnt,
which 1s entangled with the two excitations at L and R

To extract the tetms with one excrtation at each edge fiom
the full wave function |W), we project out doubly occupied
edges (Note that if no edge 1s doubly occupied, then the four
excitations must be distitbuted evenly over the four edges)
The piojection operator 1s

P=(1=np iy )(L—ngng)(1—ny g 2)(1=nginga),
21

with number opetator ny ,=aj ,a), The piojected wave
function takes the form

r_ T\ ([ .T
Plw) = ZA (rpoyt )i goytg) pay, ak /aj, 1ap]0),
1]

(22)

which we noimalize to unity
(@)=~ 12Dy, (23)
‘1’:2 (1 U}’L’/U\t[)/\/\(tleo—\’[IilRo')[[g)U\ (24)
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Here 1, ,1 5,1, ,tg ate the 2X2 teflection and trtansmission
matiices of the left and 1ight pont contact, and o, 1s a Pauli
matiix

We tiansform fiom election to hole operatois (6]
=a; ,, b}e ,=ag ) at the left and 11ght ends, and 1edefine the
vacuum accordingly |0")=a} ,a} ,ap ap,/0) The wave
function |d) nansforms mto

|b'y= Zk mbp by ak al 10", 25)
1y
-1 T T 7T

m,=w ! (o1 ,0,t) ulo,1 R0, R (26)

The wave function (2 5) descuibes an entangled state of a
pan of holes at the left and 11ght ends (c1eation operatois b} ,
and b} ), with a single qubit at the center consisting of two
elections shating the same channel index (cieation operatot
@ ,ah,) This thiee-qubit state coriesponds to the maxi-
mally entangled GHZ state (|TT1)+|L11)/V2 if g
=27125,8,; (o1, mote geneally, 1f m,, =2~ "2U,V, with
U,V unitary mattices) The degiee of entanglement in the
geneial case 1s calculated 1 the next section

III. CALCULATION OF THE DEGREE
OF ENTANGLEMENT

To quantify the meducible thiee-qubit entanglement con-
tamed 1n the wave function (2 5), we use the tanglel‘)

=2 E ln,/,‘nl,//r[m”p,‘rm,,r[)/,,e”;8”/8,\,\/8”/8””;81,1):

31

Hete e=10, and the sum 1s over all indices The expiession
between the modulus signs 1s the hyperdetermmant of a
1ank-thiee matiix 2 Substituting Eq (2 6), we find that m
ouw case this hyperdetetminant factorizes mto the product of
two detetminants of 1ank-two matiices,

T:4W‘2|D3t(l LiptRl £)|2

=4w ] T, (1=T, )Tr (1=Tx,)  (32)

Heie T, (,T; , ate the two trtansmission eigenvalues of the
left pownt contact (eigenvalues of 7,¢}), and Ty |, T » ale the
cottesponding quantities to1 the 11ght point contact

The tangle reaches 1ts maximal value of unity 1n the spe-
cial case of channel-independent tiansmission eigenvalues
TL l:TL = TL and TR l:TR ZETR Then ‘47:2TL(1
=T )Tr(1—Tg), hence 7=1—utespective of the value of
T, and Ty In this special case the state |P') equals the
GHZ state up to a local unitary transformation

In the mote genetal case of channel-dependent 7, ,,T;
the tangle 1s less than unity We are mterested in particufar mn
the it that the left and uight pomnt contacts ate weakly
ttansmutting 7, <1, Tp <1 The 1eflection matiices 1,
and 7, ate then approximately unitary, which we may use to
simplity the notmalization constant (2 4) The 1esult to1 the
tangle m this tunneling limit 1s

PHYSICAL REVIEW B 69, 115320 (2004)

4’TL ITL 2TR ITR 2

T= >

; Ut Dl Rt R 1 M

(33)

In contrast to the concurience,' the tangle depends not only
on the ttansmission eigenvalues but also on the eigenvectors
(thhough the denominator 1 Eq (3 3)]

IV. THREE-QUBIT BELL INEQUALITIES

The tangle 1s not duectly an obsetvable quantity, so 1t 1s
useful to consider also alteinative measures of entanglement
that aie formulated entnely 1n teims of observables These
take the foim of generalized Bell mequahtxesfog'1 where the
amount of violation of the inequality (the “Bell paiamete1 ™)
1s the entanglement measuie

A. Bell parameters

Bell mequalities for thiee qubits ate constiucted fiom the
cortelator

E(a,b,c)=(P|(a o) (b o)@(c 0)|P)

=2 m)a a),(b &),(c a)ym,,
(41

Heie a,b,c aie 1eal thiee dimensional vectors of umit length
that define a 10tation of the Pault matiices, for example, a

o=aq,0,ta,0,+a o We choose a pan of vectors a,a’,
b,b', and ¢,¢’ for each qubit and constiuct the hinear com-
biations

E=E(a,b,c’)+E(a,b',c)+E(a’,b,c)—E(a’,b',c"),
(42)

E'=E(a’,b' ,c)+E(a'.b,c')+E(ab',c')—E(ab,c)
(43)

Mermimn’s inequahty”’ 1eads |£]<2, while Svetlichny’s
mequality®® 15 [£—E'|<4 The GHZ state violates these n-
equaliies by the maximal amount (|£]=4 and |£—&']
=42 tor suitably chosen 10tation vectois), while the viola-
tion 1s zero fo1 a sepaiable state The maximal violanon of
Meimin o1 Svetlichny’s mequality 1s a measuie of the degiee
of entanglement ot the state These “Bell paiameteis™ aie
defined by

My =max|&

. Mg=max|E—-&'] (4 4)
The maximzation 1s over the vectois a, b, ¢, a’, b', ¢’ for a
given state [d7)

For later use we also define a second set of Bell patam-
eters,

My= max |&, Mi= max [E-&'], (45)

¢ —0=¢ c =0 ¢

115320 3
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FIG 3 Numerically determined maximal vio-
lation of the Mermmn (M;,) and Svetlichny
(Mg) mequalities for the three-parameter state
(4 6) The pumes iefer to a maximization con-
stramed by rotation vectois ¢,¢’ in the 1~y plane
A 1ange of values for the tangle 7 gives the same
maximal violation The solid cuives are the uppet
and lower bounds (48) and (49) The same
bounds apply also to the unconstiained Bell pa-
1ameters My, and Mg 2

with Z a umt vector m the z duection The maximizaton 8
therefole consttamed to 1otatton vectois ¢,¢’ in the x-y
plane (The other 1otation vectois a,a’,b,b’ may vary m all
thiee directions )

B. Relation between tangle and Bell parameters

We seek the ielation between the tangle and these Bell
patametets for states of the form (2 5) These states consti-
tute a thiee-patameter family, with equivalence up to local
unitary tiansformations (The full set of thiee-qubit puie
states form a five-parameter farmly ) A convenient spmor

1epiesentation 1572
cos Bl {cosy\ /O
sme /\smy/\ 1)/’
(46)

olloll

with angles «, 8,y e (0,7m/2) The tangle (3 1) 1s given
terms of these angles by

|®)=cos a

> +sm

7=(sm 2 asm Bsm y)? 47

The special case 8= n/2=y was studied by Scaiani and
Gism >* Even 1 that one-paiameter case no exact analytical
formula could be denived for the maxumal violation of the
Bell mequality The lower bound MM>max(4\/;,2\ﬂ-——7-)
was found numeiically to be vety close to the actual value

In the mote genetal thiee-patameter case (4 6) there 1s no
one-to-one 1elation between tangle and maximal violation of
a Bell mequality Sull, the Bell mequalities ate useful be-
cause they give uppet and lower bounds for the tangle, which
become tighter the laiger the violaton This was found m
Ref 26 for the unconstiained Bell patameters

The bounds hold i the nonclassical terval 2< My,
<4, d<Mg<4 V2 Fora given Bell patameter m this mter-
val the tangle 1s bounded by

max(0,M 5/8— 1) <7< M E/16, (4 8)

MEL6—1<7<ME/32 49)
The numerical 1esults shown m Fig 3 demonstiate that the
same bounds apply also to the constiained maximization
These bounds do not have the status of exact analytical 1e-
sults, but they ate 1eliable representations of the numeiical
data As expected,”® the same violation of the Svethichny
mequality gives a tightet lower bound on the tangle than the
Meimin mequality gives

V. DETECTION OF THE ENTANGLED STATE

For the entanglement detection each contact to giound X
=[L,R,A,B 15 1eplaced by a channel mixer (1epiesented by a
unitaty 2X2 matitx Uy), followed by a channel selective
curtent meter [y, (see Fig 4) Low-fiequency cunent fluc-
tuations 8ly (w) aie conelated for diffeient choices of the
Uy, and the outcome 1s used to determine the Bell patam-
eters These corelatois can be calculated using the geneal
theory of Levitov and Lesovik

All second- and thitd-oider correlators mvolving both
contacts L and R vamsh The fiist nonvamishing cornelator
mvolving both L and R 15 of fouth oider,

(1, (wy)6lg (@3) 814 ((w3)Slg (wy)))
4

=(65V//1)27T§( Zl a),,) Cyu (51)

n=

NG 4 Schematic diagiam of a channel mixer U, followed by
a channel-resolved curtent detector, necded to mcasute the Bell
patameters Each contact to giound mn Fig 2 1s 1eplaced by such a
device (with X=L,R,A B)

115320 4
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Hete ({ )) denotes the nieducible pait of the corielator,
defined geneially by

<<§.Xl 5)&25)(’;5\4)) :<5Xl 57C2(5\\,’;5Y4> - <5\1 5XZ><5X3 5\4>
_<5X1 5\;)<5x25x4>—<5x1 5X4>

X<5X25Az> (5 2)

The polarizing beam splitter ensuies that there 1s only a
single 1ndependent ireducible corelator with 1espect to
vattatton of the indices k and /

C,on=C,n=—C,1n=—C,n1=(, (53

We obtam the following expiession for C,, 1n tetms of the
ttansmission and 1eflectton matiices

C,=2Re{af(ty [UL) (trr JUR) 1 (101 LUD 3 (trr U)o, )
(54)

a=U; Uy pn, B=UgUgs (55)

We wiite aS=¢

We wish to telate the curtent cortelator to the matiix of
coefficients m, ; that chatacterizes the thiee-qubat state (2 5)
This becomes possible 1n the tunneling limzit, when r, and 1,
may be approximated by two unitary matitces We apply to
Eq (2 6) the identity'®

Uo,=(DetlU)o,U", (506)

valid for any 2 X2 unitaty matiix U Note that the determu-
nant Det U 1s simply a phase factor e'® We find

Cl/=2wl§|ReelQ/ﬁ,/1/ﬁ”2, 57

-~ __ *

17117k—2/ Ul Ug iy (58)
"

The weight w n the tunneling hmit can be obtamned
by measuring sepaiately the current ito contacts A and
B when etther the left o1 the tight voltage souice 1s
switched off If the 1ight voltage soutce 1s off, then we
measure the mean curtents IL,,Az(eZV/h)(tTLtL)Zz and
IL_,B:(ez\///z)(t}ﬂL)“ Simtlaily, 1if the left voltage
source 1s oft, we measuie [thz(ez\//h)(t,et,'e)“ and
Ip_p=(e?VIR)(tpth),, The weight factor 1s given by

w=(e*V/) (I plgon+1—alr—sp) (59

We ate now 1eady to express the Bell patameters of Sec
IV A mn teuns ot cunent contelators We define the linear
combination

F(UL,UR,é.v)=11)_](C11+C22'C13—C3|) (5 10)
Usmg Eq (5 7) we aitive at
F(UL,UR,Q“):{QE I}Z”A(U'LCT Up), (Ugo UR)”,
X(o,cos -+ smld) om0, (511)

PHYSICAL REVIEW B 69, 115320 (2004)

where {=|¢|e'® Note that (U o U) with umtary U and
a o with unit vectot a are equivalent representations of 10-
tated Pault matiices We indicate this equivalence 1elation by
witing (U'o U) " =ay o

Compating Eqs (4 1) and (5 11) we thus conclude that

F(U,; ., Ug ,§)=|§[E(aU[,bUR,c), c=(cos (,sm Q,0)
(512)

The two couelators £ and E are equivalent provided that the
unit vectot ¢ lies in the x-y plane The unit vectots @ and b
ale not so constramed

The Bell patametets My, and Mg follow fiom

My =4max|F(U, ,Ug ,{"V+F(U Up, ) +F(UL,Ug, &)

—F(U,, Uk, 6", (5 13)

Mé=4maxlF(UL!URaé‘,/)—i—F(UL!U[,{’é,)_*‘F(Ul,"UR:SV)
—F(ULUg &)= F(ULUg,H)=F(U,Ug.L')

—F(UL,Ug &)+ F(U; Ug 0 (514)

The maximization 15 over the 2X2 umtaly matiices
Uy Ug Uy Ug, Uy, Ugp, Uy, Uy (We have used that the
maximum 1s 1eached for |Z],|'[=1/4)

Equations (5 13) and (5 14) demonstiate that the mreduc-
ible fourth-order curtent correlators measuie the constiained
Bell parameters My The constiamt 1s that the rotatron
vectol of the thnd qubit lies m the x-y plane As discussed n
Sec IV B, these quantities contam essentially the same m-
formation about the tangle of out thiee-qubit state as the
unconstrained Bell patameteis My g

One might wonde1r whethes 1t 1s possible at all to expiess
the unconstiamed Bell patameters 1n terms of low-fiequency
curtent corielators The answer 1s Yes, as we show 1 the
appendix The constiamt on the rotation of the thud qubit
can be 1emoved by mcluding also products of second-oider
cortelatols

VI. CONCLUSION

We conclude by listing similatities and diffeiences be-
tween the scheme fo1 thiee-qubit entanglement 1n the Fermi
sea piesented heie and the two-qubit scheme of Ref 1 This
compatison will also pomt to some duections for future 1e-
seaich

(1) Both schemes 1equuie netther election-election intei-
actions notr single-patticle souices Elastic scattering fiom a
static potential and sowces n thermal equilibiium suffice
This sets apait the present solid-state piroposal fiom existing
quantum optics proposals,'® which 1equue either nonlinear
media o1 single-photon souices to pioduce a GHZ state

(2) The scheme of Ref 1 1s capable of pioducing the most
geneial two-qubit entangied purte state, by suttably choosing
the scattermg matiix ot the tunnel baimer The present
scheme, m contiast, 1s limuted to the production ot the thiee-
parameter subset (4 6) of the most general five-paiameter
tanuly of thiee-qubit entangled puie states 2 This subset 1s
chatacterized by the propeity that ttacing over the third qubit

115320-5
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tesults 1n a mixed two-qubit state which 1s not entangled
The origin of this restiiction 1s that the thiee-qubit state 1s
constiucted out of two sepaiate entangled election-hole
paus

(3) The two-qubit entangler can produce maximally en-
tangled Bell pans as well as paitially entangled states, as
quantified by the concutience Similaily, the thiee-qubit en-
tangler can produce maximally entangled GHZ states as well
as states that have a smaller degtee of tripartite entangle-
ment, as quantified by the tangle 19 However, n the thiee-
qubut case thete is a second class of states that are mieducibly
entangled and cannot be obtained fiom the GHZ state by any
local operation 2! These so-called W states are not accessible
by owr scheme It would be mteresting to see 1f there exists
an 1nteraction-free method to extiact the W state out of the
Feimi sea, o1 whether this 1s impossible as a matter of piin-
ciple

(4) The concunience of the election-hole pair can be mea-
sured using  second-oider low-frequency  cuirent
cortelators ' '® We have found that the tangle can be deter-
mined fiom fouith-order correlators, but the method pre-
sented heie only gives upper and lower bounds The bounds
become tight 1f the state 1s close to the maximally entangled
GHZ state,?® so they are of practical use Sull, it would be of
mntetest to see if there exists an alteinative method to mea-
sure the actual value of the tangle, even if the state 1s far
fiom the maximally entangled limit

(5) Low-fiequency notse measwements can detetmine the
degiee of entanglement within the context of a quantum me-
chanical description, but they cannot be used to 1ule out a
desciiption 1n terms of local hidden vaniables That requuies
trme 1esolved detection > For the tunnel baitier entangler the

detection time should be less than the nveise e/T of the
mean curtent, cortesponding to the mean time between sub-
sequent curtent pulses Foi ow thiee-qubit entangler the 1e-
quuement 15 moie stringent The detection time should be
less than the coheience time h/eV, coriesponding to the
width of a cunient pulse This s the same condition of ul—
tracoincident detection” as i the quantum optical analog

(6) We have testiicted ourselves to entanglers m the tun-
nehing 1egime In the two-qubit case, 1t 1s possible to measute
the concurience even if the ttansmission pirobabilities of the
entangler aie not small compated to unity 7 A similar gen-
eialization 1s possible 1n the three-qubit case (cf the Appen-
dix)
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APPLNDIX: RELATION BETWEEN UNCONSTRAINED
BEI L PARAMETERS AND CURRENT CORRELATORS

To relate the unconstiained Bell patameters My, and M.
to low-fiequency cunent fluctuations we need to consider

PHYSICAL REVIEW B 69, 115320 (2004)

also second-order cortelators These have the general form

(8l (@) 8]y (w2))=(*VIR)278(w,+w) K\,
(Al)

with X,Y e{L,R,A,B} and ¢,je{1,2} We seek the combi-
nation

KRKEP+ KPR =K,y (A2)

involving all four contacts It 1s determined by the tiansmis-
ston and 1eflection mattices of the left and 1ight pomt con-
tact,

1/ K= E

UA)kp UB)I/)(tL’LUL)/u(tR'RUR ])/l
(A3)

We now take the tunneling limt to telate the current cor-
relatots to the matiix of coefficients (2 6) Using the 1dentity
(56) we find

KI/ klzwg ’([JA)kp(UB)I/)’TZI/1)|2 <A4)
The weight w can be detetmimed fiom the mean currents, as
explained 1n Sec V, o1 altematwely fiom w=2%, /K,, i

The two 1eal numbers |a|*>=|U, ,|?(1—|U, |*) and
|BIP=|Ug [P0 —|Ug ;|*) m Eq (54) can be determined
separately by measuting what fiaction of the mean curient m
contacts A ot B ends up n channel 1 We use this to con-
struct the function

FUL,Ug, 2 |al)=2w B8] "Ci+Cpn—Ci—Cay)

:2]6{'2 l7lll/k(ULU'.,UL)"’;(U}}O' UR);/,

X(O"ACOSQ"‘O')SID Q)kkl’]l,!/lkl , (AS)
with af=|a||Ble’ Compaiing Eqs (4 1) and (AS) we see
that

F(U,,Ug ,Q,|a|)=2|a]E(aUl,bu,\’0)’

c=(cos ,sm1,0) (A6)

Equation (A6) has the constramnt that ¢ 1s in the x-y plane
In o1der to access also components of ¢ mn the z duection we
include the product of second-otder cotrelators

G(U; Ug,&)=w™' X (=) (=1y*!
typ k=12
(_1)A+1K1/ I8

=Z m, (U,o Uy, (Ugo UR)”
X(g()' )/\/\’]”l’/’/\l’ (A7)

with £€=2|U, ;|°=1 Adding F and G we anive at
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F(UL’UR’Qaial)+G(UL’URag):E(aU[7bUR:c):

¢=(2]|alcos O,2|a|sin Q, &) (A8)
Note that ¢*+4|al?=1, so ¢ 15 a unit vector—as 1t should
be
By vaiymng over the umitary matirces Uy, Ug, and Uy,
one can now determine the unconsttamed Metmin and
Svetlichny paiameters (4 4), using only low-fiequency notse
measuiements

PHYSICAL REVIEW B 69, 115320 (2004)

Equation (A8) stull 1equues the tunneling 1egime
(T, ., Tg ,<<1) It1s possible to 1elax this condition, by add-
ing products of mean curients to the second- and fouith-
oider rieductble cortelators The entue expiession then takes
the foim of a fouith-oider reducible corielator, which 1s di-
tectly 1elated to a Bell mequality formulated in terms of
equal-time cortelatots of the curtents at contacts L,R,A,B
This 15 analogous to the calculation of the concurience m
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