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Festkorperprobleme 29 (1989)

Coherent electron focusing

C. W. J. Beenakker
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

H. van Houten
Philips Laboratories, Briarcliff Manor, NY 10510, USA

B. J. van Wees
Applied Physics, Delft University of Technology, 2600 GA Delft, The Netherlands

Summary: Theory and cxperiment are reviewed of the classical and quantum me-
chanical focusing by a magnetic field of ballistic clectrons injected through a point
contact in a two-dimensional clectron gas. Two alternative points of view arc em-
phasized. On the one hand, the experiment is a realization of electron optics in the
solid state. The three basic building blocks are a cohctent and monochromatic point
source/detector, an electrostatic mirror with little diffuse scattering, and a magnetic
lens. On the other hand, coherent electron focusing is a resistance measurcment in
the quantum ballistic transport regime, which cxhibits the characteristic features of
this regime in a most cxtreme way. For example, targe magnetoresistance oscil-
lations occur (up to 95% amplitude modulation is obscrved), with a periodicity
which is non-locally determincd by the separation between current and voltage point
contacts. A WKB calculation of the ttansmission probabilities shows that this effect
is the result of the interfercnce of coherently excited magnetic edge states at the
clectron gas boundary. Another example is the absence of local equilibrium: The
measurements show that the point contacts can selectively populate (and detect)
specilic Landau levels, and that this highly non-cquilibrium population is main-
tained over distances of microns.

[ Introduction

Electron focusing in metals was pioneered by Sharvin [I] and Tsoi [2]
as a powerful tool to investigate the shape of the Fermi surlace, surface
scattering, and the electron-phonon interaction [3]. The experiment is
the analogue in the solid state of magnetic focusing in vacuum (e.g. in
a f# —spectrometer). Required is a large mean free path for the carriers
at the Fermi surface, to ensure ballistic motion as in vacuum. The mean
free path (which can be as large as | cm in pure metallic single crystals)
should be much larger than the length L on which the focusing takes
place. Experimentally L = 1072 — 10" em is the separation of two me-
tallic needles (point contacts) pressed on the crystal surface, which serve
to inject a divergent clectron beam and detect ils focusing by the mag-
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netic field. In metals, electron focusing is essentially a classical phe-
nomenon because of the small Fermi wave length Ay (typically 0.5 nm,
on the order of the inter-atomic separation).

The Fermi wave length is 100 times as large in the two-dimensional
electron gas (2DEG) which is present at the inteiface of a
GaAs-AlGaAs heterostructure. This length scale is within reach of
electron-beam lithography, while remaining well below the mean fiee
path in high-mobility material (10 um can be tealized at low temper-
atures in heterostructutes grown by molecular-beam epitaxy). For these
two reasons the quantum ballistic transpott tegime has become accessi-
ble in a 2DEG [4]. In the present paper theory and experiment are re-
viewed of electron focusing in this regime {5 — 8], which turns out {o
be strikingly different from the classical tegime familiar from metals.
This has motivated the new name: colicient electron focusing.

The geometiy of the experiment (FFig. 1) is the transverse focusing ge-
ometry of Tsoi [2], and consists of two point contacts on the same
boundary in a perpendicular magnetic field B. [ In metals one can also
use the geometry of Sharvin [1], with opposite point contacts in a lon-
gitudinal field. This is not possible in two dimensions. } Because the
electron gas is confined to the interior of the heterostructure, one can
not just use a metal needle to fabricate a point contact to a 2DEG. In-
stead, the point contacts are created electrostatically by depositing an
electrode of a suitable shape on top of the heterostructure [9). On ap-
plying a negative vollage to the spht-gate clectrode shown i Fig. | the
electron gas underneath the gate structure is depleted, crealing two
2DEG regions (i and c) electrically isolated from the rest of the 2DEG
— apart from the two narrow and shott constrictions (point contacts)

xB

Fig.1 Schematic layout (left) of the double point contact device for the clection fo-
cusing cxperiments (in a three-terminal measutement configuration). The crossed
squates arc ohmic contacts to the 2DEG. The split-gate (shaded) separates injectos
(1) and collector (¢) atcas from the bulk 2DEG. The fine details of the gate structure
inside the dashed citcle are shown in a scanning clectron mictograph (right). The
bar denotes a length of | gm. In this device the point contact separation s L= 1.5
um. A device with L =3.0 pm was also studied. [ From Ref 8. ]
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under the 250 nm wide openings in the split-gate. The devices studied
had point contact separations L of 1.5 and 3.0 ym, both values being
below the mean free path of 9 pm estimated from the mobility. Because
the depletion potential extends laterally beyond the gate pattern for
high (negative) gate voltages, one can force the constrictions to become
progressively narrower (at the same time reducing the electron gas
density in the constrictions) — until they are fully pinched off. By this
technique it is possible to create point contacts of variable width 1V,
something which is not realizable in a metal. Note that 117 is comparable
in magnitude to Ar (which was 40 nm in the devices studied). These are
guantum point contacts, as evidenced by their conductance which was
discovered to be approximately quantized in units of 202 /1 [10,11].
Illectron focusing can be seen as a transmission experiment in electron
optics. The classical regime then corresponds Lo geometrical optics, the
quantum regime to wave optics. The optical analogy is uselul, both to
understand the experiments and to inspire new ones [12]. An alternative
point of view is that coherent electron focusing is a prototype of a
non-local resistance measurement in the quantum ballistic transport re-
gime, such as studied extensively in narrow-channel geometries |13}
Longitudinal resistances which are negative, not + B symmetric, and
dependent on the properties of the current and voltage contacts as well
as on their separation; periodic and aperiodic magnetoresistance oscil-
lations; absence of local equilibrium — these are all characteristic fea-
tures of this transport regime which appear in a most extreme and bare
form in the electron focusing geometry. Onc reason for the simplifi-
cation offered by this gcometry is that the current and voltage contacts,
being point contacts, are not nearly as invasive as the wide lcads in a
[tall bar geometry [14]. Another reason is that the electrons interact
with only one boundary (instead of two in a narrow channel).

The outline of this paper is as follows. In Sec. 2 the experimental resulis
on electron focusing [5,8] are described as a transmission experiment in
a 2DEG. A theoretical description [6,8] is given in Sec. 3, in terms of
mode interference in the wave guide formed by the magnetic ficld at the
2DEG boundary. In Sec. 4 we discuss the quantum Hall effect in the
electron focusing geametry {7,8] as a non-local resistance measurement.
The theoretical framework uscd to rclate these {wo alternative de-
scriptions is the Landauer-Bittiker formalism [15,16], which treats a
resistance measurement as a transmission experiment. We conclude in
Sec. 5.

2 Mirror, lens, and poin{ source

Flig. 2 illustrates electron focusing in two dimensions as it follows from
classical mechanics. The arrangement combines three basic elements:
mirror, magnetic lens, and point source/detector. The point source (i)
injects electrons with the Fermi energy £y = mv? /2 ballistically into the
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Fig.2

Top: Skipping orbits along the
2DEG boundary. The trajeclorics
are drawn up to the third specular
refiection.  Bottom: Plot of the
caustics, which arc the collection
of focal points of the trajectories.
[ From Ref 8. ]

OB

2DEG. The injected electrons all have the same TFermi velocity vy, but
in different directions. Electrons are detected if they reach the adjacent
collector (c), after one or more specular reflections at the boundary
connecting i and c¢. These skipping orbits are composed of translated
circular arcs of identical radius /yq = hkp JeB, which is the cyclotron
radius in a perpendicular magnetic field B (k.= mvy: [l is the Fermi
wave vector). The focusing action of the magnetic field is evident in
Fig. 2 (top) from the black lines of high density of trajectories. These
lines are known in optics as caustics, and are plotted separately in TVig.
2 (bottom). The caustics intersect the 2DEG boundary at multiples of
the cyclotron diameter from the injector. As the magnetic field is in-
creased, a series of these focal points shifts past the collector. The
electron flux incident on the collector thus reaches a maximum when-
ever its separation L from the injector is an integer multiple of 2/ .
This occurs when B = pBrocus » = 1,2, ..., with '

Broens = 2hkyp Jel . (N

For a given injected current J the voltage V. on the collector is pro-
portional to the incident flux. The classical picture thus predicts a scries
of equidistant peaks in the collector voltage as a function of magnetic
field.

In Fig. 3 (top) we show such a classical focusing spectrum, calculated
for parameters corresponding to the experiment discussed below
(L =3.0um, ky=0.15nm™"). The spectrum consists of equidistant fo-
cusing peaks of approximately equal magnitude superimposed on the
ITall resistance (dashed line). The p —th peak is due to electrons in-
jected perpendicularly to the boundary which have made p — | specular
reflections between injector and collector.  Such a classical focusing
spectrum is commonly observed in metals [17], albeit with a decreasing
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Fig.3
Bottom: T[xperimental clectron

107 focusing spectrum (7= 50 mK,
—~ L= 3.0 pm) in thc generalized
< 05} Hall resistance configuration de-
= picted in the inset. The two
= 9 traces @ and b are measured with

interchanged current and voltage

leads, and demonstrate  the

~0.51 . . , . . injector-collector reciprocity  as

! B //\ well as the reproducibility of the
/ y

L i \w fine structure. Top: Calculated
\ Ll'JT['I | classical focusing spectrum cor-

=
o

(
i

& | responding to the experimental
£ 05 J\M i fu\ v o trace @ (50 nm wide point con-
< J'\j \'\j"\ J\"\ j/ JT Y @) tacts wete assumed). The dashed
> = - line is the extrapolation of the
B ) classical Hall 1esistance scen in
-05| _— /. . . T\\I reverse ficlds. | From Ref 8. ]

-03 -02-01 O 01 02 03
B (T

height of subsequent peaks because of partially diffuse scattering at the
metal surface. Note that the peaks occur in one field direction only; In
reverse fields the focal points are at the wrong side of the injector for
detection, and the normal ITall resistance is obtained. The experimental
result for a 2DEG is shown in the bottom half of IFig. 3 (trace a ; {race
b is discussed below). A series of five focusing peaks is evident at the
expected positions. This observation by itself has two important im-
plications:

= A point contact acts as a monochromatic point source of ballistic
electrons with a well-defined energy;

» The electrostatically defined 2DEG boundary is a good mirror with
little diffuse scattering.

Fig. 3 is obtained in a measuring configuration (inset) in which an im-
aginary line connecting the voltage probes crosses that between the
current source and drain. This is the configuration for a gencralized
Hall resistance measurement. Alternatively, one can measure a general-
ized longitudinal resistance, in the configuration shown in the inset of
Fig. 4. One then measures the focusing peaks without a superimposed
Hall slope. Note that the experimental longitudinal resistance (I'ig. 4,
bottom) becomes negative. This is a classical result of magnetic locusing,
as demonstrated by the calculation shown in the top half of Fig. 4.
Biittiker [18] has studied negative longitudinal resistances in a different
(ITall bar) geometry.

On the experimental focusing peaks a (ine structure is evident in Tigs.
3 and 4. The line structure is well reproducible (compare Tigs. 3 and
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1.0 Fig.4
N As Fig. 3, but in the longitudinal
& 051 tesistance configuration. [ From
2 Refl R.]
3 0

ooy

~ 3 v
g os| LT
>0 o

-05 S -

-03 -02 01 0 01 02 03
B (T)

4), but sample dependent. It is only resolved at low temperatures (below
I K) and small injection voltages (the measurements shown are taken
at 50 mK and a few pV AC vollage over the injector). A nice demon-
stration of the reproducibility of the fine structure is obtained upon
interchanging current and voltage leads, so that the injector becomes the
collector and vice versa. The resulting focusing spectrum shown in Fig.
3 (trace b) is almost the precise mirror image of the original one (trace
@) — although this particular device had a strong asymmetry in the
widths of injector and collector. The symmetry in the focusing spectra
is a consequence of the fundamental reciprocity relation derived by
Biittiker [16], which generalizes the familiar Onsager-Casimir symmetry
relation for the resistivity tensor to resistances (see Sec. 4).

The fine structure on the focusing peaks in Figs. 3 and 4 is the first in-
dication that electron focusing in a 2DEG is qualitatively different from
the corresponding experiment in metals. At higher magnetic fields the
resemblance to the classical focusing spectrum is lost, sce Tig. 5. A
Fourier transform of the spectrum for B = 0.8 T (inset in Fig. 5) shows
that the large-amplitude high-ficld oscillations have a dominant
periodicity of 0.1 T, which is approximately the same as the periodicity
Biocws 0f the much smaller focusing peaks at low magnetic fields (Broeys
in Fig. 5 differs from Fig. 3 because of a smaller L = 1.5 gm ). This
dominant periodicity is the result of quantum interference between the
different trajectories in I'ig. 2 which take an electron from injector to
collector. [ In Sec. 3 we show this in a mode picture, which in the WKB
approximation is equivalent to calculating the interferences of the
(complex) probability amplitude along classical trajectories. The laiter
ray picture is treated extensively in Ref. 8. ] The theoretical analysis
implies for the experiment that:

» The injector acts as a ceherent point source with the coherence
maintained over a distance ol several microns to the collector.
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10 Fig.5
Experimental clectron focusing
spectrum over a larger field
range and for very narrow
point  contacts  (cstimated
width 20 — 40 nm; T'= 50 mK,
0 20 L= 1.5pum). The inset gives
frequency (i/T) the ijnic)r transform : for
B > 0.8T. The high-ficld os-
cillations have the same domi-
nant  periodicity as  the
low-ficld focusing pcaks — but
with a much larger amplitude.
[ From Ref 8. ]

[$)]
i

V /1 (kQ)

3 Edge states and skipping orbits

Magnetic edge states [19,20] are transverse modes of a wave guide of
width ~ [y formed by the magnetic field at the 2DEG boundary. The
edge states at the Fermi level are labelled by a quantum number
n=12.. N, with N = ky: [y [2 the total number of propagating modes
or edge channels (for simplicity we ignore here the discreteness of N).
An injector of width below Ay excites a coherent superposition of these
propagating modes (plus evanescent modes, which using the ray treat-
ment of Ref. 8 are found to give only a small contribution for the large
ky. L considered, and will be neglected here). The wave function W is
of the form

N

Yix,y) = Z aty, fry () eik”y . (2)

n=1

lere k, is the wave number for propagation of mode n in the y —direc-
tion (along the 2DEG boundary, see Fig. 2 for our choice of axes),
Ju (x) is the transverse amplitude profile of mode n, and a, its excitation
factor. Tor kp L > | the phase factors exp(ik, L) vary rapidly as a
function of n. Constructive interference of modes at the collector then
requires that k, L differs by multiples of 2z for a series of n. To find
out what this condition implies for the magnetic field, we determine &,
in WKB approximation (which should be sufficiently accurate for this
purpose).
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Consider again the classical skipping orbits (Fig. 2). The position
(x, y) of the electron on the circle with center coordinates (.Y, V) can be
expressed in terms of its velocity v by

x= X+ vy Jog, y=Y—v,]o,., (3)

with w,= eB/m the cyclotron frequency. Note that the separation X
of the center from the boundary is constant on a skipping orbit, only
the center coordinate ¥ parallel to the houndary changes at each
specular reflection. The canonical momentum of the electron is
p=myv —eA. In the Landau gauge A = (0,Bx,0) we have

Pe=mvy, p,=—eBX. 4)

The wave number & corresponds classically to the canonical momentum
component p, = fik, so that in view of Eq. (4) we have the correspond-
ence k= — (eB/h) X. Since the motion projected on the x —axis is peri-
odic, one can apply the Bohr-Sommerfeld quantization rule [21]

717 fppdx+y=2mn. ®

The integral is over one period of the mation, # is an integer, and y is
the sum of the phase shifts acquired at the two turning points of the
motion. The phase shift upon reflection at the boundary is n (for an
infinite barrier potential, to ensure that incident and reflected waves
cancel); The other turning point is a caustic of the skipping orbits with
constant X, leading to a phase shift of — x/2 |22]. This totals to
y=mn/2. Using also Eqs. (3) and (4) we may thus write Eq. (5) in the
form

By~ pdx=2n(n— ), n=12,.. N. )
ho 4

This quantization rule has the simple geometrical inferpretation [20]
that the flux enclosed by one arc of the skipping orbit and the boundary
equals (n — 1/4) times the flux quantum /ife (see insets in Fig. 6).

iq. (6) determines, for a given magnetic field, the energy L= mv? /2 as
a function of the quantum number » and the wave number
k= —(eB[h) X. To carry out the integration in Eq. (6) we express y in
terms of x by means of Eq. (3). The resulting energy spectrum £, (k)
is given by

(arccos E—E(1 — 52)”2> = 2n (n — 4L), E=hk2mE)y” W’, (N

ho,

and is plotted in Fig. 6 (solid curves). Also plotted in [Fig. 6 Is the exact
solution of the Schrédinger equation (dashed curves, taken from Ref.
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Fig.6 Fncrgy spectium 75, (k) of magnetic edge states at an infinite barticr potential
boundary. Note that ki, = —X//,, with X the scparation of the orbital center from
the boundary and I, = (hfeB)"? the magnetic Iength. The inscts show classical
skipping orbits for positive and negative k. In the semi-classical approximation the
magnetic flux through the shaded areas is quantized. The 1esult from Eq. (7) (solid
curves) is indistinguishable from the exact solution (dashed curves, from Ref. 23),
unless k is within 1//, of the transition from skipping to cyclotron orbits (dotted
curve), [From Ref. 8.]

23). The (semi-classical) WKB approximation (7) is indistinguishable
on this scale from the exact solution, except just before the transition
from skipping orbits to bulk cyclotron orbits at X = mv/eB (dotted
curve in FFig. 6). The quantized wave numbers k, at the Fermi energy
satisly E, (k,)= Fy, so that k, is determined by Eq. (7) with the sub-
stitutions L= £y, & =k, [kp . As shown in Fig. 7 the resulting depend-
ence on 1 of the phase %, L is close to linear in a broad interval,

k, L = constant — 2nn B[ Bryens + ke L X order (1 — 2/1/N)3 . &)

It follows from this expansion that if B/ B IS an integer, a fraction
of order (1/k: L)' of the N edge channels interfere constructively at the
collector. Because of the /3 power, this is a substantial fraction even
for the large kp L ~ 10* of the experiment. The relevant states have
quantum number 7 in an interval centered around N/2, corresponding
classically to skipping orbits which reach the boundary at approxi-
mately right angles. The edge states outside the domain of linear
n —dependence of the phase give rise to fine structure without a simple
periodicity.
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+kpl Fig.7
Phase k,L of the cdge
channels at the collector,
calculated from  Eq. (7).
slope —2mB/ By Note the domain (])f Elrz-
e proximately linear n —de-
~ pendence of the phase,
tesponsible for the oscil-
lations with Biocus —
periodicity. [ From Refl 8. ]

phase k L

L

~
=

—

13
kT‘ 1cycl
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To determine the amplitude of the oscillations in the collector vollage,
we need to know the excitation factors of the modes by the injector and
the transmission amplitude through the collector. In Ref. 8 we calcu-
lated these quantities using a point-dipole injector and a transmission
amplitude proportional to the derivative 89/dx of the unperturbed wave
function at the collector — thereby neglecting the finite width of the
injector and collector point contacts. The result obtained there can be
written in the form

N
Ve _ h b Z ik, I )
I 2 N -

In TFFig. 8 we have plotted the focusing spectrum from Eq. (9), corre-
sponding to the experimental Fig. 5. The inset shows the Fourier
transform for B > 0.8 T. There is no detailed one-to-one correspond-
ence between the experimental and theoretical spectra. No such corre-
spondence was to be expected in view of the sensitivity of the
experimental spectrum to small variations in gate voltage (which defines
the point contacts and the 2DEG boundary). Those features of the ex-
perimental spectrum which are insensitive to the precise measurement
conditions are, however, well reproduced by the calculation: We recog-
nize in Fig. § the low-ficld focusing peaks and the large-amplitude
high-field oscillations with the same periodicity. | The reason that the
periodicity Broeys in Fig. 8 is somewhat larger than in FFig. S is most likely
the experimental uncertainty in the effective point contact separation
of the order of the split-gate opening (250 nm). | The high-field oscil-
lations range from about 0 (o 10kQ in both theory and experiment.
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Fig.8 Focusing spectium calculated frtom Eq. (9), for patameters cortesponding to

the experimental Fig. 5. The inset shows the Fourier ttanstorm for B = Q.8 T.
Infinitesimally small point confact widths arc assumed in the calculation.

This maximum amplitude is not far below the theoretical upper bound
of hj2¢? =~ 13 kQ, which follows from LEq. (9) if we assume that all the
modes interfere constructively. This indicates that a maximal phase co-
herence is realized in the experiment, and implies that:

= The experimental injector and collector point contacts resemble the
idealized point source/detector in the calculation;

= Scaltering events other than specular scattering on the boundary can
be largely ignored (since any other inclastic as well as elastic scattering
events would scramble the phases and reduce the oscillations with
Brocus — periodicitly).

It follows from Lq. (9) that il inferference of the modes is ignored, the
normal quantum Hall resistance s#f2Ne? is obtained. This is ot a general
result, but depends specifically on the properties of the injector and
collector point contacts — as we will discuss in the {ollowing section.

4 Quantum point contacts as Landau level selectors

Mode interference becomes unimportant il the magnetic field is suffi-
ciently strong, and the point contacts are sufficiently wide, that the
electrostatic potential in the point contact region does not cause scat-
tering between the modes. The requirement for such adiahatic transport
is that the potential varies slowly on the scale of /[,y (in the quantum
Iall effect regime where N ~ [ and E,. ~ hw,, the cyclotron radius is
the magnetic length /, = (h/eB)"?). In this field regime the form of the
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}"y‘y Fig.9
j},ﬂ‘f}/// Schematic potential landscape,

K’%j B showing the 2DEG boundary
‘A‘ ‘ channels arc cxtended along
cquipotentials (Eq. (10)), as indi-

\\ i // 7l and the saddle-shaped injector

‘ / and collector point contacts. In a

"‘“/ / “‘\ ‘ )" cated hete for n = 1,2 (the arrows
i

‘\ strong magnetic ficld the cdge

i.v' , | , i e e U
Iy, point in the direction of motion).
0‘ / ] ,“ e22 In this case a Hall conductance

A (X Y

S l" s of (2¢* iy N with N=1 would
L .i \'% be measured by the point con-
= s 4 tacts — in spite of the presence

L2 . B .
L y of 2 occupicd Landau levels in
“ é{%;f/}/ X the bulk 2DEG.

electrostatic potential ¥(x, y) defining the point contacts becomes im-
portant, and the point injector/detector model used in the previous
section — while adequate at fower magnetic fields — is insufficient.
Schematically, F(x, y) is represented in Fig. 9. Fringing fields from the
split-gate create a potential barrier in the point contacts, so that ¥ has
a saddle form as shown. The heights of the barriers £, I, in the
injector and collector are separately adjustable by means of the voltages
on the split-gates, and can be determined from the conductances of the
individual point contacts [24]. The width of the point contacts does not
play a role, because it is larger than /. The adiabatic transport is
along equipotentials as indicated in TFig. 9 (arrows point in the direction
of motion, determined by the potential gradient). The energy of (he
equipotential is the gwiding center energy L, which is given for edge
channel n by

Eg=Ep—(n— —é— ) hog (19)

(Zeeman spin-splitting of the energy levels should be included at large
magnetic fields, but is ignored here for simplicity). The edge channels
can only be transmitted through a point contact if I exceeds the po-
tential barrier height (disregarding tunneling through the barrier). The
injector thus injects N, =~ (Er — E )hw, edge channels into the 2DEG,
while the collector is capable of detecting N, = (£ — I )/hw. channels.
Along the boundary of the 2DEG, however, a larger number of
N = Er [ho, edge channels, equal to the number of bulk Landau levels
in the 2DLEG, are available for the current transport. The selective
population, and detection, of Landau levels leads to deviations from the
normal Tlall resistance.

These considerations can be put on a theoretical basis by applying the
general Landauer-Biittiker formalism [15,16], which relates resistances
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to transmission probabilities into current and voltage probes. Consider
the geometry in I'ig. | of a three-terminal conductor with point contacts
in two of the probes. The probes are connected by perfect leads to res-
ervoirs which have a constant electro-chemical potential. We denote by
1 and p. the chemical potentials of the two reservoirs connected, re-
spectively, to the injector and collector point contact, and by sy the
chemical potential of the third reservoir (the current drain). Tollowing
Bittiker [16], we can relate the currents I, (e = i,¢,d) in the three leads
to these chemical potentials via the transmission probabilities 7, .,
(from reservoir o to reservoir §) and reflection probabilities R, (from
reservoir o back to the same reservoir),

/ .
_—l__]ot:(Na_'Roc)/‘a_Z]/f—>oc:“ﬂ’ (1

2e
B#a

N, being the number of occupied modes in the lead . We now impose
the condition that the collector draws no net current, which implies
I.=0 and I;=— I, and choose our zero of energy such that py=0.
One then finds from Eq. (11) the two equations

,Uc=*“'TiLC‘—/‘i: = = RY = Tel e (12)
Ne— Re 2e
and obtains for the ratio of collector voltage V.= ji. /e (measured rela-
tive to the voltage of the current drain) to injected current f the result
Ye_ 22 _Tioe (13)
Ii h Gi GC -0 '

Here 6= Qe* |0 Tio o Toeiy, and Gi=Qe* [N, — R) and G.=
(2 |)(N, — R.) denote the conductances of the injector and collector
point contact, respectively. The injector-collector reciprocity in electron
focusing, demonstrated in TFig. 3, is manifest in Eq. (13), since G; and
G, are even in Band [16] T, .(B)=T,,;(—B).

In the electron focusing geometry the term & in q. (13) can be neg-
lected, since T,_, ;~ 0. An additional simplification is possible in the
adiabatic transport regime. We consider the casc that the barrier in one
of the two point contacts is sufficiently higher than in the other, to en-
sure that electrons which are transmitted over the highest barrier will
have a negligible probability of being reflected at the lowest barrier.
Then T,_, . is dominated by the transmission probability over the highest
barrier, T, .~ min (N, — Ry, N.— R.). Substitution into Eq. (11) gives
the remarkable result that the I1all conductance Gy = I | V., measured in
the electron focusing geometry can be expressed entirely in terms of the
contact conductances G; and G, ,

Gy~ max (G, G.). (14)
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Fig.10.
2 Tixperimental correlation between the
Cn conductances G,, G, of injector and
Gy=dezh collector, and the IHall conductance
1 3 Gy =1 [V, shown to demonstiate the
! validity of Fq. (14) (T= 1.3 K, L=
1.5 pm). The magnetic ficld was kept
0 —= . - fixed (top: B=25T, boltom:
B=38T ). By increasing thc gate
/ voltage on onc half of the split-gate
defining the injector, G, was varied at

G =2e2h constant G.. [ Ftom Ref 7. ]
C

(2e2/h)

CONDUCTANCE

26 22 18 14
GATE VOLTAGE V)

Eq. (14) tells us that quantized values of Gy, occur not at (2¢2[h) N, as
one would expect from the N Landau levels in the 2DEG — but at the
smaller value of (2¢2 /h) max (N, , N:) . Moreover, there is no quantized
Ial conductance unless the largest of the two contact conductances is
quantized. As shown in IFig. 10, this is indecd observed experimentally.
Notice in particular how any deviation from quantization in
max (G, G;) is faithfully reproduced in Gy;. The implication of this
experiment is that:

= Point contacts can be used to selectively populate and detect Landau
levels at the 2DEG boundary;

= Adiabatic transport (i.e. transport in the absence of inter-Landau
level scattering) has been realized over a distance of 1.5 um along the
2DEG boundary.

As discussed by Biittiker [25], the fundamental origin for deviations
from the normal quantum Ilall effect is the absence of local equilibrium
among the edge channels. Selective population is indeed an extreme ex-
ample of a non-equilibrium population. Recent related experiments
(26,27] have demonstrated that a non-equilibrium population of edge
channels can be maintained on even longer length scales, possibly as
large as several hundred microns. It remains a theoretical challenge to
explain these surprisingly long relaxation lengths.

5 Conclusion

In Sec. I we emphasized that the length scales relevant for the clectron
focusing experiment are very different in a metal and in a 2DEG. Both
the ratios Ar/L and Ay /W are much larger in a 2DEG, typically by
factors of 10* and 107, respectively. As we showed in Sces. 2 and 3,
coherent electron focusing is possible in a 2DEG because of this rela-
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tively large value of the Fermi wave length. The adiabatic transport
discussed in Sec. 4 is also made possible by the large Ap, since now
leya = hfeBAr can become comparable to W at magnetic fields of a few
Tesla. To achieve the same in a metal would require fields over 100 T,
The difference in cnergy scale between a metal and a 2DEG manifests
itself in the dependence of the focusing spectrum on the voltage drop
over the injector. In metals, electrons are injected at energies above Ey:
which are generally much less than £y ~ 5eV [28]. In contrast,
Er ~ 10meV in a 2DEG, and DC-biasing the small AC injection
voltage used in the electron focusing experiment should lead to a no-
ticeable shift in the focusing peaks, in analogy with a f§ —spectrometer.
In the simplest model one would have (cf. [LEq. (1))
Biocus o< (Ep + Ve )”2 , so that for a DC bias Vpe= 1 mV one would
expect a 5% shift in the focusing periodicity — provided the hot
electrons remain ballistic. This is indeed observed [29], although devi-
ations from this simple behavior are found for larger DC biases (possi-
bly related to the non-linear current-voltage characteristics of the point
contacts themselves[30]). The observation of hot-electron transport
over several microns is remarkable, and unexpected from related work
in different systems [31].

The main result of the theoretical analysis of coherent electron focusing
in Sec. 3 is the demonstration of high-field oscillations with
Broeus —periodicity, but much larger amplitude than the low-field focus-
ing peaks. This is also the feature of the experimental focusing spectra
which is insensitive to small changes in gate vollage and which is found
in both the devices studied. The theory can be improved in several
ways. This will affect the detailed form of the spectra, but probably not
the fundamental periodicity. Since the exact wave functions of the edge
states are known (Weber functions), one could go beyond the WKB
approximation. This will become important at large magnetic fields,
when the relevant edge states have small quantum numbers. In this
regime one would also have to take into account a possible B — de-
pendence of Ey relative to the conduction band bottom (due to pinning
of the Fermi energy at the Landau levels). It would be interesting to
find out to what extent this bulk effect is reduced at the 2DEG bound-
ary by the presence of edge states to fill the gap between the Landau
levels.

Another direction of improvement is towards a more realistic modelling
of the injector and collector point contacts. Since the maximum ampli-
tude of the theoretical and experimental oscillations is about the same
(compare Figs. 5 and 8), the loss of spatial coherence due to the finite
point contact size does not seem to be particularly important in this
experiment (infinitesimal point contact width was assumed in the cal-
culation). On the other hand, the experimental focusing spectrum does
not contain as much rapid oscillations as the calculation would predict.
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Energy averaging due to a [linite temperature is not the reason for this
difference (temperatures on the order of 10 K are necessary to smear
out the rapid oscillations). We surmise that the rapid oscillations are
reduced by the collimaiion effect proposed originally [32] to explain the
non-additivity of the resistance of two opposite point contacts in series
[33] (and more recently invoked [34] to explain the quenching of the
Hall resistance in a narrow-channel geometry [13]). Both the (laring of
a point contact to form a horn, and the presence of a potential barrier
in the point contact region tend to collimate the injected electron beam
[32]), so that electrons are predominantly injected at right angles to the
boundary. The quantum mechanical correspondence discussed in Sec.
3 then implies that such a point contact excites (and detects) predomi-
nantly the edge channels with quantum number n close to N/2, at the
expense of channels with smaller or larger n. Since the former edge
channels are responsible for the oscillations with Bp.s —periodicity,
while the latter give rise to rapid aperiodic oscillations (see Fig. 7 and
the accompanying discussion), the collimation effect provides one
mechanism for the absence of rapid oscillations in the experimental fo-
cusing spectrum.
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