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Abstract

For large Fresnel numbers N, unstable laser modes are highly irregular and resemble fractals. To explore this, we
derive an explicit formula for the lowest-loss mode of a one-dimensional laser (i.e. where the cavity is two dimensional)
in terms of edge-diffracted waves, and demonstrate its accuracy for large N. Between the size a of the mirror (outer
scale), and the inner scale a/N, there is no distinguished scale, and the graph of mode intensity has a fractal dimension
close to 2. Near the inner scale, the scaling is scale dependent, and the crossover is described by an explicit formula for a
‘local fractal dimension” D(K), describing the mode on scales near Ax = a/(2nNK). As K increases through the inner
scale K =1, D(K) decreases from 2 when K < 1 to 1 when K > | (reflecting the smoothness of the mode on fine

scales). © 2001 Published by Elsevier Science B.V.

Keywords: Fractals; Unstable lasers; Edge waves; Asymptotics

1. Introduction

In a stable laser, where the cavity is bounded by
concave mirrors, the intensity profile of the lowest-
loss mode, regarded as a function of a transverse
coordinate x perpendicular to the symmetry axis,
is closely approximated by a narrow gaussian, and
the edges of the mirrors play a negligible role [1]. If
one of the mirrors is reversed (Fig. 1), the laser
becomes unstable, and the mode spreads to fill the
space between the mirrors, with energy leaking
away beyond their edges. It was observed many
years ago [2,3] that the profiles of these unstable
modes are irregular, and more so as the wave-
length A = 2n/k decreases.

*Corresponding author. Fax: +44-117-925-5624.

Recently, it was suggested [4,5] that the re-
peated geometrical magnifications associated with
the instability might imply that the modes have a
fractal structure, and an attempt has been made [6]
to calculate the fractal dimension D of the inten-
sity profile by numerical and analytical means. The
self-similarity associated with the magnification
has been studied in Ref. [7].

Our purpose here is to examine more carefully
the scaling structure of the lowest-loss mode of an
unstable laser, over the range from the ‘outer scale’
AxXouter ~ a down to the ‘inner scale’ Axjper ~ AL/a,
where a is the size of the feedback (small) mirror
and L is the distance between the mirrors. On
scales smaller than Axiy,., the mode is a smooth
function of x. As we show in Sections 3 and 4, the
mode is indeed a fractal, in the usual sense that
there is no distinguished scale between Ax,ye, and
AXimner- In Section 4 we show that successive

0030-4018/01/$ - see front matter © 2001 Published by Elsevier Science B.V.

PII: S0030-4018(01)01455-9



394 M. Berry et al. | Optics Communications 197 (2001) 393-402

X
A
A
L > a
v 4
fr>
N >

Fig. 1. A confocal unstable laser cavity. The two mirrors share a
common focal point P. We calculate mode profiles at the small
mirror, that is for |x| < a.

magnifications, provided these do not reach down
t0 AXinner, Will indicate a dimension D = 2. Near
Aximner however, the relation between different
scales becomes nonuniform. It is possible to de-
scribe the crossover behaviour by defining a ‘local
fractal dimension’, depending on wave number,
and we calculate this crossover explicitly. (More-
over, the scaling appears to depend on position as
well as scale.)

To obtain these results, we employ an explicit
analytical expression for the mode (Section 2),
valid in the asymptotic (short-wave) limit in which
the inner and outer scales are well separated. This
is a simplified version of a mathematical tech-
nique devised by Horwitz [2], or of its physical
equivalent, namely the ‘virtual-source’ technique
of Southwell [3]. This method reveals that the fine
structure in the mode is a small-amplitude deco-
ration, arising from edge waves, of the main beam
(the main beam itself is geometrically propagated).
There are two simplifications that enable us to get
a usable formula. First, in the domain |x| < a the
edge waves can be represented trigonometrically,
rather than in terms of Fresnel integrals. Second,
the small-4 asymptotic limit means that multiple
edge diffraction can be neglected.

The scaling behaviour of unstable laser modes
should be contrasted with that of the superficially

similar wave of the Talbot effect. This is the
overlap and interference of many edge-diffracted
waves after diffraction by a Ronchi grating (al-
ternating transparent and opaque bars with sharp
edges); it was recently shown [8] that the transverse
beam profile in almost all planes is a fractal, as
here, but the graph of intensity has D = 3/2 rather
than D = 2. The explanation given here, of the
fractality of unstable laser modes, attests to the
continuing fertility of Thomas Young’s edge waves,
almost exactly two centuries after he discovered
them.

2. The mode formula

According to standard laser theory [l], each
mode u(x) is determined self-consistently by the
requirement that after a round trip of the cavity
(two reflections and two propagations) the wave
returns to its original form, up to a constant mul-
tiplier y (the mode eigenvalue). For a strip reso-
nator where the beam is limited by the width 2a of
the feedback mirror, assuming paraxial propaga-
tion and measuring x in units of a, self-consistency
leads to the integral equation

yu(x) = \/E/_idyexp{%izél(y—ﬂ%)z}u(y),
(1)

where M is the magnification; for an unstable la-
ser, M > 1. This equation applies to any unstable
laser; for the particular case of a confocal laser

(Fig. 1),

2nM>a? 4nM?
M = : A= = N
N/ M+ )il =D

2)

in which the last equality defines the Fresnel
number N. The integral operator in Eq. (1) is
nonunitary, mathematically because of the finite
integration limits x = 41 and physically because
of the loss of light at the edges of the mirror.
Therefore |y| < 1.

We want to solve Eq. (1) in the asymptotic limit
A > 1, in which scaling behaviour emerges (be-
cause the inner and outer scales are widely sepa-
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rated). In this paper we will concentrate on the
lowest-loss mode, namely the solution u(x) with
the largest eigenvalue, for which |y| is closest to
unity.

Numerically, there at least three options, and
we have checked that they lead to identical results.
First, the integral in Eq. (1) can be discretized, and
the lowest-loss eigenvector of the resulting ma-
trix determined by diagonalization. Second, u(x)
can be represented as a truncated Fourier series,
again leading to a matrix diagonalization problem.
Third Eq. (1) can be solved by iteration, starting
from almost any initial function u(x), for example
up(x) = 1:

e (x) = \/%/ dyexp{éiA(y—A%)z}um

up = 1. (3)

The first two methods are poor for large 4. The
third method converges quickly; it is the basis of
the virtual-source technique [3], and also of the
method we use here, following and simplifying [2].

When 4 > 1, the integral in Eq. (3) oscillates
rapidly, and the principal contributions are local-
ized at the single stationary-phase point y = x/M
(which always lies within the range of integration),
and the two endpoints x = +1. The stationary-
phase contribution corresponds to geometrical op-
tics, and dominates numerically. It is obtained by
evaluating the gaussian integral that results from
extending the integration range to infinity, giving

_olx/M) 1

u(x) 8 ———=—, 4
whence the asymptotic eigenvalue is

1
y—— as A — oo. (5)

VM

This unsurprising result describes the geometrical
intensity loss factor 1/M from rays that miss the
feedback mirror after each round trip of the cavity,
because of the magnification. The convergence
onto Eq. (5) is accompanied by oscillations, as
has been noted before [2]. In Appendix A we give
a theory for the dominant Fourier component of
these oscillatory corrections; Fig. 2 shows that
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Fig. 2. Convergence of the largest eigenvalue |y| (thick curve) to
1/ VM (straight line) as A increases, for M = 8, together with
the approximation (A.4) (thin curve).

when added to Eq. (5) this gives an accurate de-
scription of the eigenvalues, even for quite small 4.

The endpoint contributions correspond to
Young’s edge waves; they can be approximated by
local linearization of the phase of the integrand.
For the first stage, this procedure gives (including
the geometrical contribution)

R e
m) ~ = =\ 5 (1—x/M)
exp{%iA(l—i—x/M)z}
(1+x/M) (6)

It is possible to extend Egs. (4) and (6) by in-
cluding higher-order terms in 1/v/4 [2], but for
present purposes the lowest-order theory is suffi-
cient.

Now follow two crucial observations, that will
greatly simplify further iterations. First, the sin-
gularities at |x| = M lie outside the range |x| < 1:
the edges of the shadows are magnified, so they
miss the mirror. This means that the edge waves
are trigonometric functions, rather than the Fres-
nel integrals that result from the exact integration
of Eq. (3). Second, the amplitudes of the edge
waves are smaller by a factor 1/v/4 than the ray
contribution. This means that when incorporating
Eq. (6) into the integration of Eq. (3) to get u,(x),
us(x), etc, it is sufficient to include only the sta-
tionary-point contributions when integrating the
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oscillatory terms: the endpoints will contribute
quantities 1/4 and smaller, and so can be ne-
glected in the asymptotic limit. Physically, this
amounts to ignoring multiple edge diffraction, and
treating the propagation of the edge waves, after
their first creation, as purely geometric, that is, as
edge rays.

The incorporation of these observations into
the iteration of Eq. (3) is based on the following
remarkable identity, describing the geometrical
propagation and magnification of edge waves:

] = e gl -

+(1- y/M”)zot,,} }
JMH a0 |

2 exp{ biA(1 = y/M ), ;
- AOC,,,H I—X/M'Hrl ’ ( )

where ~ denotes the leading-order large-4 con-
tribution, from the stationary-phase point, and
1 1—M?
O = n—1 = —2n" (8)
Zm OM m 1 -M
In conjunction with Eq. (3), this result gives the
nth iteration of the initial wave as

X
un(X) > S < 2nA M ’A“*)

+f<A;,Aas>J), 0

where

exp { 1id(1 —x)z}

1 —x

f(x,4) =

(10)

Numerical explorations of this sum over edge
waves show that when 7 is not too large, Egs. (8)-
(10) give results indistinguishable from those given
by the exact iteration (3). However, when n gets
too large, the approximate and exact iterations
diverge. Now we will explain this phenomenon,
and show that it does not frustrate the application
of Eq. (9) to approximate the mode.

Inspection of the terms in Eq. (9) shows that the
term s = 1 oscillates fastest. As s increases, the

terms oscillate more slowly, until if n is large
enough they eventually become essentially con-
stant in the physical range |x| < 1. When does this
happen? It is reasonable to define the terms as
‘essentially constant’ when the (dimensionless)
wave number

d(phase) Ao,

k(s) =———— =~
=% ~u
which gets smaller as s increases, reaches unity.

This happens when

log{4(1 — M%)}
oait (12)

for large s, (11)

§ = Smax =

For s > spna.x, magnification has so stretched the
edge waves that their diffraction oscillations are
larger than the small mirror. Further iteration
beyond n = sy.x merely contaminates the constant
term 1 in Eq. (9). If too many of these essentially
constant edge wave terms are included (in fact a
number of order n — spax ~ VA4), their sum gets
comparable with the original constant term 1, and
it is no longer justified to ignore the endpoint
terms in their iterations. This is a kind of asymp-
totic resurgence: the high-order ‘oscillatory’ terms
bite back and dominate the constant (i.e. lowest-
order) term.

This failure of approximate iteration for large n
makes it natural to stop the iteration at n = Sy,
and regard the sum as the asymptotic eigenfunc-
tion. Including normalization to order 1/v/4, we
obtain the main result of this section:

Ymax x
4 )
u(x) ( ZnA M

+f<—A;,Aax>])- )

This formula incorporates the geometrical mag-
nification (‘monitor-outside-a-monitor’ effect [7])
and also the phase and diffraction effects essential
to understanding the scaling.

The expectation is that Eq. (13) will get more
accurate as A increases, and it does. This is illus-
trated by Figs. 3 and 4, which show comparisons
of Eq. (13) with eigenfunctions computed by di-
agonalization of the (discretized) matrix in Eq. (1)
or exact numerical iteration of Eq. (3). Note that
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Fig. 3. (a,c,e,g): ‘exact’ mode intensities \u(x)\z, computed by diagonalizing the integral Eq. (1) (a,c) or iteration from Eq. (3) (e,g).
(b,d,f,h): mode intensities computed from the approximation (13). In (a,b), 4 = 100; in (c,d), 4 = 200; in (e,f), 4 = 500; in (g,h),
A = 1000. All calculations are for M = 2.

to obtain the ‘exact’ eigenfunction for 4 = 1000 by 3. Scaling of the edge wave sum
diagonalization requires at least a 2000 x 2000
matrix, whereas Eq. (13) includes only nine edge Since the simple and explicit formula (13) is a

waves. very accurate representation of u(x) when A is
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Fig. 4. Thick curve: magnification of Fig. 3g; (thin curve):
magnification of Fig. 3h. The curves have been displaced ver-
tically for clarity.

large, we can use it to study the scaling behaviour
of the mode. From Eq. (10), the exponent in each
oscillatory term is a quadratic function of x, rather
than a linear function. This gives rise to compli-
cated substructure in the Fourier transform of
u(x), as has been noted already [6] and as we will
discuss in Section 4. To side step this complexity,
we now employ a more natural strategy, based on
linearization of the exponent.

Locally, the (dimensionless) wave number cor-
responding to the term s in the edge wave sum is

d(phase) A(1 —x/M*)oy
k(s;x) = o - Ve
:A(l—x/M‘V)(l—M’z) (14)
Ms — M- :

This will be a useful description of the local os-
cillations near x if there are many such oscillations
in small ranges of x, which is the case when A4 is
large. However, for small x, or for any x when
M?* > 1, we can replace Eq. (14) by the x-inde-

pendent wave number
A(l —M72)
o) =35 = (15)

It is convenient to work not with k(s) but with the
scaled wave number

_ o 2k(s) 2
KoY =20~ ar =

(16)

and its inverse function

) _ log(1 +v1+K?) —logK

s(K log M

(17)
The fastest oscillations (s = 1) correspond to K =
2/(M — M), and the slowest oscillations (k ~ 1,
i.e. s ~ smax 10 Eq. (12)) correspond to K ~ 2/A4.

The wave numbers K form a discrete set, be-
cause s is an integer. However, in several circum-
stances we can regard the spectrum as continuous:
under poor spectral resolution, when s is large
enough, for M close to unity, or by averaging over
a range of 4 as we will describe later. Since the
spacing in s is uniform, we obtain the power
spectrum from Egs. (13) and (17) as

ds(K) ‘
dK

(18)

A short calculation shows that this is proportional
to the universal (that is M-independent) function

1
P(K) = .
(K) K(1+vV1I+K)V1+K?
If u(x) were a fractal function with dimension
D, that is if the graph of Rew, Imu, and also |u|’
(see Ref. [9]) were fractal curves, then P(K) would
be the power law

1
Pfractal(K) - m (20)

(19)

(for derivations of this result, see Refs. [10-12]).
But P(K) is not a pure power law, so that the mode
does not possess the uniform scaling (between the
inner and outer scales) that would correspond to
a pure fractal. Instead, the spectrum (19) varies
from 1/K for small K, that is for the coarsest
scales—corresponding to D = 2 to 1/K? for large
K, that is for the finest scales, where the mode is
smooth—corresponding to D = 1.

This suggests defining a scale-dependent fractal
dimension, inspired by Eq. (20), namely

d log P(K)
dlog K )’ 1)

D(K) = % (5 +

for which a short calculation gives

1/ 1 1
D(K):1+§<1+K2+\/1+—K2>. (22)
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Fig. 5. The scale-dependent dimension D(K) (Eq. (22)) char-
acterizing unstable laser modes.

This formula is our main result. For an unstable
laser with Fresnel number N, D(K) describes
scaling of the lowest-loss mode over scales near
Ax = a/(2nNK). Fig. 5 shows the form of D(K),
decreasing smoothly from 2 to 1.
We should remark that there is some flexibility
in the attribution of a fractal dimension to a
spectrum that is not a power law. Instead of Eq.
(20), we could study the variance V' (X) = ((u(x+
X) —u(x))?), where the average is over x; for a
fractal, this scales as V(X) ~ X*2P [11]. Calcu-
lating V from the spectrum (19), and determining
a local dimension Dy (X) by the analogue of Eq.
(21), leads to Dy(X =2rn/K) different from Eq.
(22), though with similar qualitative behaviour.
On scales well between the outer and inner ex-
tremes, the fractal dimension is D = 2. However,
attempts to measure the fractal dimension by nu-
merical techniques that sample u(x) on succes-
sively smaller scales would eventually be frustrated
by the nonconstancy of D(K), which gets smaller
as the crossover is probed. The dimension fi-
nally reached by such techniques, corresponding to
the finest scales K(s = 1) =2/(M — M™") (cf. Eq.
(16)), would be
20002
Dinin (M) ED<;> =1 +w
M—M! (M2 + 1)
(23)

and is illustrated in Fig. 6. Dy, increases from 1
when M =1 and approaches 2 as M — oo. For

D min(m

1.8
1.6
1.4

1.2

M

2 4 6 8 10
Fig. 6. Dimension Dy, (M) (Eq. (23)) corresponding to the

finest scales of the mode for magnification M.

M =2, for example, Dy, = 37/25=148..., close
to a value observed before [4].

4. Fractal implications

Now we return to the Fourier transform of u(x),
or rather its absolute square, namely the power
spectrum P(k) (note that we here revert to the
original Fourier variable k, rather than the scaled
K). The upper curve in Fig. 7 shows that for a

logloP

lOg 1 O(k/TE)

Fig. 7. Upper curve: spectrum P(k) for the lowest-loss mode
with N =1000, M = 1.4 (i.e. 4 =25656.3, spax = 28). Lower
curve: the spectrum averaged over 100 equally spaced N values
between 900 and 1100. (For clarity, the two curves have been
displaced vertically.)
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given mode P(k) possesses a complicated structure.
Some of this has been interpreted [6] in terms of
the individual magnified Fresnel edge-diffraction
patterns; the edges of the ‘bands’ can be calculated
from Eq. (14) by setting x = +1. The slope —2 of
the straight-line parts of the spectrum was also
noted [6], and interpreted according to Eq. (20) as
implying D = 3/2 for u(x), in contradiction to the
variable scaling described in the previous section.
However, the slope —2 is an artifact, arising
from the extrapolation, to the whole pattern, of
the Fourier structure of the individual edge waves
comprising it. To clarify this, we suppress the in-
dividual edge wave contributions by averaging
over a range of A. As the lower curve in Fig. 7
shows, this smoothing all but destroys the slope
—2. Nevertheless, considerable structure remains.
To get smoother spectra, we could average over a
larger range of values of A, or increase 4. Here we
adopt the latter strategy, choosing a value of M
closer to 1 (cf. Eq. (2)), thereby incorporating
more edge waves (cf. Eq. (12)) and increasing the
overlap of their corresponding Fourier bands.

‘5’ ’ loglo(k/TC)
1 2 3 4 5

0 1 2 3 4 5
loglo(k/n)

Fig. 8. Jagged curve: spectrum P(k) for M = 1.1, averaged over

50 equally spaced N values between 900 and 1100 (for

N = 1000, 4 = 72406.2, smax = 99). Smooth curve: theoretical

spectrum (19), with K (k) given by Eq. (16). Inset: local fractal

dimension D (Eq. (22)), plotted similarly.

As Fig. 8 shows, this results in a much smoother
power spectrum. In the range between the inner
and outer scales, the curve shows a crossover be-
tween two segments with clearly defined slopes —1
and —3, corresponding to the small and large K
limits of the universal scaling spectral function
P(K) (Eq. (19)). This averaged power spectrum is
closely fitted with no adjustable parameters by
P(K) when plotted in terms of log k rather than K.

The crossover occurs near K = 1, that is k =
2N /a. The change of slope appears fairly sharp,
in apparent contrast to Fig. 5, showing smooth
variation of the local exponent of the power
spectrum—equivalent to the local dimension
D(K). This raises an important point. When D is
plotted as a function of log K (inset of Fig. 8) the
crossover region is compressed, and two extremes
are emphasized. The large-k extreme, that is D =
1, merely reflects the ultimate smoothness of u(x)
below the inner scale. But the small-k behaviour,
that is D = 2, is significant: probing the mode, by
successive magnification revealing scales smaller
than the mirror but still much larger than the inner
scale, will indicate an almost constant fractal di-
mension D = 2. However, as the crossover wave
number k =2N/a is approached the measured
dimension will change, as described in the previous
section (Eq. (22)).

5. Concluding remarks

The scale-dependent scaling behaviour revealed
by our analysis is an asymptotically emergent
phenomenon: it requires large A, yet is essentially
determined by corrections to the geometrical-
optics limit. The full scaling behaviour is subtle
and complicated and would be more complicated
still if we had included the weak dependence on
x (cf. the remarks after Eq. (14)). In a way this
phenomenon evokes the length of England’s coast-
line, that contributed to the discovery of fractals
[13]: on ever-finer scales, the length increases. For
coastlines, the length changes between scales ac-
cording to a fixed law, over a very large range. By
contrast, in unstable laser modes the scaling be-
tween scales is not exactly constant. Although
many physical systems exhibit fractal scaling only
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over a limited range of length scales, the unstable
laser provides a rare example where the crossover
can be calculated explicitly.

Our scaling predictions can be tested experi-
mentally. The simplest procedure would be as
follows. (1) Measure the mode intensities |u(x)|*
for an ensemble of unstable lasers with a range of
parameters near given values of N and M. (2) For
each laser, calculate the power spectrum of |u(x)|*
(which should have similar fractal structure to the
power spectrum of u(x) itself). (3) Average these
power spectra over the ensemble of lasers. (4)
Compare a log-log plot of the averaged power
spectrum with the predictions of Eq. (19), and
identify the limiting fractal dimensions 2 and 1 (as
illustrated in Section 4), and the crossover beha-
viour near k = 2N /a. We anticipate that for very
large A—greatly exceeding those in our simula-
tions—the predicted scaling behaviour will be ap-
parent in individual modes, without the need for
averaging over an ensemble.

Scale-dependent scaling near the inner scale
should not be confused with multifractality [14].
This is much wilder behaviour, where regions with
different fractal dimensions are themselves frac-
tally distributed. It would be interesting to explore
the possibility that unstable laser modes have
multifractal aspects, but we have not done so.

Nevertheless, the scaling behaviour of unstable
lasers is more subtle and complicated than in
superficially similar situations. We have already
mentioned the apparent resemblance between un-
stable laser modes and the waves in the Talbot
effect, but in the Talbot effect the scaling is uni-
form (albeit interestingly spatially anisotropic
[8]), so the wave is genuinely fractal. Mathemati-
cally, the mode formula (13) looks similar to the
Weierstrass—Mandelbrot function [11]. Both in-
volve repeated magnifications. However, in the
Weierstrass—Mandelbrot case the oscillatory terms
are trigonometric exponentials, so the function is a
Fourier series, and the scaling is uniform, whereas
for laser modes the phases of the oscillatory terms
are quadratic, and the coefficients o, destroy the
uniform scaling.

For the lowest-loss modes u(x,y) of unstable
lasers with two-dimensional mirrors, the oscilla-
tory structure at each point (x,y) can still be rep-

resented as a finite sum of waves, associated with
edge rays originating from points where lines
through (x,y) intersect the edges and their images
perpendicularly, and this sum can be used to de-
termine the scaling behaviour. The theory has in-
teresting geometrical aspects, and will be published
separately.
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Appendix A. Oscillatory behaviour of the eigen-
value

In terms of the iterates u,(x), defined by Eq. (3),
the eigenvalue is determined by the limit

) = Tim Y1) (A.1)

=00 Uy (X)

For large 4 we can use the asymptotic approxi-
mation (9). The only difference between u,(x) and
.1 (x), apart from the extra factor 1/v/M re-
sponsible for the leading-order behaviour (5) of
the eigenvalue, is an additional term in the edge-
wave sum, with index s =n+ 1. Using Egs. (8)
and (10), we have

52 o) + 1 (= gt

2 1
————exp} ~id(1 =M% s asn— oco.
VI—M—2 {2

—

Thus Eq. (A.1) gives
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and hence, for the modulus

o L]
)) 7\/M
1 72 1 1
X COS EA(I—M )+Zn +047).
(A.4)
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