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Abstract. We calculate the jomt probabihty distnbution of the Wigner-Smith time-delay matnx
Q = —iKS~' aS/άε and the scattenng matnx S for scattenng from a chaotic cavity with ideal pomt
contacts To this end we prove a conjecture by Wigner about the unitary invanance property of
the distnbution functional Ρ[5(ε)] of energy-dependent scattenng matnces S (ε) The distnbution
of the inverse of the eigenvalues τ\, , TJV of Q is found to be the Laguerre ensemble from
random-matnx theory The eigenvalue density ρ ( τ ) is computed usmg the method of orthogonal
polynomials This general theory has apphcations to the thermopower, magnetoconductance, and
capacitance of a quantum dot

1. Introductkm

The time delay in a quantum mechanical scattering problem is related to the energy derivative of
the scattering matrix S (ε). Although the notion of such arelationship goes back to the historical
works of Eisenbud [1] and Wigner [2], the first to propose a matrix equation linking time delay
and scattering matrix was Smith [3]. He introduced the Hermitian matrix Q = —ifiS~ldS/de,
now known äs the Wigner-Smith time-delay matrix, and interpreted its diagonal elements äs
the time delay of a wavepacket incident upon the scatterer in one of N scattering channels.
The eigenvalues τ\,..., TM of Q are referred to äs the 'proper delay times'.

In recent years, the issue of time delay and its connection to the scattering matrix has
received considerable attention in the context of chaotic scattering [4-19]. Examples include
the scattering of electromagnetic or sound waves from chaotic 'billiards' and the transport of
electrons through so-called 'chaotic quantum dots' [20]. In both cases the scattering matrix
S and the time-delay matrix Q have a sensitive and complicated dependence on microscopic
Parameters, such äs the energy ε, the shape of the cavity, or (in the electronic case) the magnetic
field. As a result, a statistical approach is justified, in which one addresses the statistical
distribution of S and Q for an ensemble of chaotic cavities, rather than the precise value of
these matrices for a specific cavity.

For the scattering matrix S, there is considerable theoretical [8,21-24] and experimental
[25-28] evidence that its distribution is uniform in the group of N χ Ν unitary matrices,
restricted only by fundamental symmetries, if the cavity is coupled to the outside world via
ballistic point contacts. This universal distribution is Dyson's circular ensemble of random-
matrix theory [29,30]. The fundamental problem is to calculate the distribution of the time-
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delay matnx Q for this case of ideal couplmg Knownresultsmcludemomentsoftr Q [4,12,13]
and the entire distnbution for the case 7V = l [13, 15] of a scalar scattenng matnx

In a recent paper [17] we succeeded m Computing the entire distnbution for any
dimensionahty N of the scattenng matnx We found that the eigenvalues TJ , τ2 , τΝ of
Q are statistically independent of the scattenng matnx S, with a distnbution that is most
conveniently expressed in terms of the mverse delay times y„ = l/f„,

P(Xi, , YN) α Π IX. - Χ/ Π Υ?"'2*-"™'2 (1 D

Here /3 = l, 2, 4 depending on the presence or absence of time-reversal and spin-rotation
symmetry, TH = 2ττβ/Δ is the Heisenberg time, and Δ is the mean level spacmg of the closed
cavity The function P is zero if any one of the y„'s is negative This distnbution is known
in random-matrix theory äs the (generahzed) Laguerre ensemble [30] The eigenvectors of Q
are not independent of S, except in the case β = 2 of broken time-reversal symmetry For any
β the correlations are transformed away if Q is replaced by the symmetnzed matnx

QE = -,^-1/2^5-1/2 (l 2)
3ε

which has the same eigenvalues äs Q The matrix of eigenvectors U which diagonahzes
Qe = U diag (τ\ , , TN)U^ is independent of S and the r„'s, and umformly distributed in
the orthogonal, umtary, or symplectic group (for β = l , 2, or 4, respectively)

In this paper we present a detailed and seif contamed denvation of these results, focussmg
on those parts of the denvation that have not been discussed or were only briefly discussed
in [17] We feel that a detailed presentation of this denvation is important, because it rehes
on an old conjecture by Wigner [31] that had not been proven before m the literature (An
unpublished proof is given in [32]) The conjecture concerns the mvariance of the distnbution
funcüonal Ρ[5(ε)] of the ensemble of energy-dependent scattenng matrices under umtary
transformations S (ε) ->· VS(e)V (with V, V two energy-mdependent umtary matrices) Our
proof of Wigner's conjecture is based on the Hamiltoman approach to chaotic scattenng [33],
which connects the scattenng matnx S (ε) of the open cavity with leads to the Hamiltoman Ή
of the closed cavity without leads It describes the so-called 'zero-dimensional' or 'ergodic'
hmit in which the time needed for ergodic exploration of the (open) cavity is much smaller
than the typical escape time In [24] one of the authors (PWB) used the Hamiltoman approach
to derive the umtary mvariance of the distnbution function P (S) of the scattenng matrix at a
fixed energy This umtary mvariance is known äs Dyson's circular ensemble [29] Wigner's
conjecture is the much more far reaching Statement of the umtary mvariance of the distnbution
functional Ρ [ 5 ( ε ) ]

The outline of this paper is äs follows In section 2 we formulate Wigner's conjecture in
its most general form for arbitrary dimensionality N of the scattenng matrix (Wigner only
considered the scalar case N = l ) The proof follows in section 3 In section 4 we show how
the distnbution of the matrices S and Q follows from this, now proven, conjecture Then,
m section 5, the density of proper delay times is computed usmg the theory of orthogonal
polynomials

Historically, the Wigner-Smith matrix Q α 35/9ε was introduced to study the time
evolution of a wavepacket This apphcation is limited to the average delay time [4], essentially
because knowledge of the füll time dependence also requires higher derivatives of S than the
first Nevertheless, there exist physical observables that are entirely determmed by Q Some
examples that have been discussed in the recent literature are the capacitance or admittance
of a quantum dot [34], and the thermopower [35] In addition to the energy derivative dS/ds,
one may study the derivative of S with respect to an arbitrary external parameter X Such a
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parameter can represent the shape of the cavity, the magnetic field, or a local impunty potential
Recent examples of parametnc derivatives ränge from conductance derivatives [36] and Charge
pumpmg [37] in quantum dots to spontaneous emission [38] and photodissociation [39] in
optical cavities The distnbution of d S / d X can be obtamed by methods similar to those used
for the denvation of dS/de A bnef discussion is given m section 6 We conclude m section 7

2. Probabüity distribution of the scattering matrix and Wigner's conjecture

In order to descnbe the energy dependence of the scattering matrix S (ε), we make use of the
so-called Hamiltoman approach to chaotic scattering [8,33,40] In this approach, the N χ Ν
scattering matrix S (ε) is expressed in terms of an M χ M random Hermitian matrix Ή and an
M χ N couplmg matrix W,

S(s,H) = l -2niW\s-H + mWW^r W (2 1)

The Hermitian matrix Ή models the Hamiltoman of the closed cavity, its dimension M bemg
taken to infinity at the end of the calculation The couplmg matrix W contams matnx elements
between the scattering states in the leads and the states localized in the cavity We distinguish
three symmetry classes, labelled by the parameter β β = l (2) in the presence (absence)
of time-reversal symmetry and ß = 4 in the piesence of both time reversal symmetry and
spin-orbit scattering The elements of Ή are real (complex, quatermon) numbers for ß = l
(2, 4) The symmetnes of Ή imply the followmg symmetnes for S S is unitary Symmetrie
(ß = 1), unitary (ß = 2), or unitary seif dual (ß = 4)

For the problem of chaotic scattering one considers a statistical ensemble of cavities, which
may be obtamed by, for example, varymg the shape of the cavity We ask for the average of
some function f [ S ( s \ ) , , S (ε N}] over the ensemble In the Hamiltoman approach, this
ensemble average is represented by an Integration over the matrix Ή, which is taken to be a
random Hermitian matrix with probabihty distnbution P (H),

r
( f [ S ( s \ ) , , S ( S N ) ] ) = l &ΗΡ(Ή)/[5(ε\,Ή), ,5(εΜ,Ή)] (22)

Usually Ή. is taken from the Gaussian ensembles from random-matrix theory [30],

2 (2 3)

where E\, E2, , EM are the eigenvalues ofH The precise choice of F(E) is not important
in the hmit M —> oo [5,41]

The ensemble average defined by equation (2 2) can also be formulated m terms of a
distnbution function of the scattering matnx 5

,εη,Ξι, , S „ ) f ( S } , , S „ ) (24)

Here Ρ(ε\, ε2, ,εη,$ι, , S„) is the jomt probabihty distnbution of the scattering matrix
S at the energies ε], ε2, , ε/ν The measure dS is the umque measure that is invariant under
transformations

5-> V SV (25)

where V and V are arbitrary unitary matnces (V — VT for ß = l and V = VR for ß — 4
where T denotes the transpose and R the dual of a matrix)

Statistical averages of the form (2 2) are completely charactenzed by the W eigenvalues
of W" W For the case of ballistic pomt contacts (or 'ideal leads'), these eigenvalues are all
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equal to ΜΔ/ττ 2 [8, 24, 33]. After application of suitable basis transformations on S and Ή
one therefore has Ψμη = δμπ(ΜΔ)1/2/τΓ for μ = l, . . . , M, n = l, ..., N. In this case, the
distribution Ρ(ε, S) of 5(ε) at one single energy is found to be particularly simple [8,24],

P (ε; S) = constant. (2.6)

Equation (2.6) is the starting point of the 'scattering-matrix approach' to chaotic scattering [5].
The ensemble of scattering matrices that is defined by the probability distribution (2.6) and
the invariant measure dS is Dyson's circular ensemble from random-matrix theory [29].
Depending on the symmetry class, we distinguish the circular orthogonal, unitary, and
symplectic ensembles (COE, CUE, CSE) for β = l, 2, and 4 respectively.

The distribution function (2.6) is invariant under the transformation (2.5). Wigner [31]
conjectured that the unitary invariance extends to the distribution functional P[S(e)], i.e. to
the whole energy-dependent S-matrix ensemble. In other words, Wigner's conjecture is that
(for any n) Ρ(ε\ , . . . , εη ; S\ , . . . , Sn) is invariant under a simultaneous transformation

Sj -> VSjV j = l,...,n, (2.7)

where V and V are arbitrary unitary matrices (V = VT, VR for β = l, 4).

3. Proof of Wigner's conjecture

Our proof of Wigner's conjecture consists of two parts. We first present an alternative random-
matrix approach for the energy dependence of the scattering matrix [16], and then show that
in this approach the invariance property (2.7) is manifest.

In the alternative random-matrix approach, the role of the M χ M matrix Ή is taken over
by an M χ Μ unitary matrix U,

S(s) = i/,, - i/12 (e-
2™/WA + [/a)- t/2,. (3.1)

Here the matrices U\\, U\2, U2], and U22 denote four subblocks of U, of size N χ N,
N χ (M - N), (M - N) χ N, and (M - N) χ (M - N), respectively,

Un U12\ }N

i/21 1/22 ,/ }M-N · ' ^

The energy dependence of S enters through the phase factor exp(— 2πίε/ΜΔ). The matrix U
is distributed according to the appropriate circular ensemble: U is distributed according to the
circular ensemble, COE (CUE, CSE) for β = l (2, 4).

We now show that equation (3.1) with M » N is equivalent to the Hamiltonian approach
(2.1). Equivalence of the circular ensemble and the Hamiltonian approach at energy ε = 0
was proven in [24]. This allows us to write the M χ M unitary matrix U in terms of an M χ Μ
Hermitian matrix H and an M χ Μ coupling matrix W,

U = l + 2 7 r i W t ( H - i j r I V W t r 1 W . (3.3)

The matrix H is distributed according to the Lorentzian ensemble [24], which in the large-
M limit is equivalent to the Gaussian ensemble (2.3). (The Lorentzian ensemble has
F(£) = \(ßM + 2-ß) 1η(Μ2Δ2 + π2£2)).

The coupling matrix W is a square matrix with elements Ψμη = π~ιδβη(ΜΔ)]/2. We
separate W into two rectangular blocks W\ and W2, of size M χ N and M χ (M — N),
respectively,

(3.4)
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and substitute equation (3.3) into equation (3.1). The result is

S (ε) = l -2n\wlte-H-8H + 'ntWlwlrlWl (3.5)

where the M χ M matrix 3H is defined äs

ΧΉ = ( ε ° ^ }N n 6ϊ
V Ο ε-(ΜΔ/π·)ΐ3η(7τε/ΜΔ) J }M - N ' ( ' '

Apart from the term <5Ή, equation (3.5) is the same äs equation (2.1) in the Hamiltonian
approach. The extra term SU is irrelevant in the limit M —»· oo at fixed N, because the
diagonal matrix STi contains only a finite number of matrix elements that are of order ε, the
others being of order ε2/ΜΔ. (One easily verifies that such a perturbation does not change
eigenvalues and eigenvectors of Ή in the limit M -> oo). This proves the equivalence of the
alternative random-matrix approach (3.1) and the Hamiltonian approach (2.1).

It remains to derive the unitary invariance of P[S(s)] from equation (3.1). Since the
matrix U is chosen from the circular ensemble, its distribution is invariant under a mapping
U -» U'UU", where U' and t/" are arbitrary M xM unitary matrices (t/"i/'* = l if β = 1,4).
We now choose

' = ( v ° }}N u"=(v'
\ 0 l J }M-N \ 0

V 0 \ }N
[ / ' = [ ' " ! ' " f/" = l l (37)u — \ r. i l ,»,r Λ Τ ^ l r, Λ ) }M - N

where V and V are arbitrary unitary N χ N matrices (V* V = l if β = l, 4). Invariance
of P(U) under the transformation U —> U'UU" with the choice (3.7) implies, in view of
equation (3.l), invariance of P[S(s)] under the transformation

S (ε) -> V5(s)V (3.8)

which is Wigner's conjecture.
A central role in our proof of Wigner's conjecture is played by the random-matrix model

(3.l), which expresses the energy-dependent N χ N scattering matrix 5(ε) in terms of an
energy-independent M χ M random unitary matrix U. This model was first proposed in [16],
following a more physical reasoning than the formal derivation given above. It is insightful
to briefly repeat the reasoning of [16]. We consider the scattering matrix S at energy ε = 0
and then shift the energy by an amount ε. Equivalently, we can replace the energy shift ε by
a uniform decrease S V = —ε/e of the potential V in the quantum dot. Since the quantum
dot is chaotic, we may localize δ V in a closed lead (a stub), see figure l. The stub contains
M — N ϊξ> N modes to ensure that it faithfully represents a spatially homogeneous potential
drop SV. The scattering properties of the System consisting of the dot, the W-mode lead, and
the (M — ΛΟ-mode stub are described by the (M — ΛΟ-dimensional reflection matrix rs of the
stub and the M-dimensional scattering matrix U of the cavity at energy ε = 0, with the stub

lead

cavity stub
SV = 0 <SV * 0

Figure 1. Physical motivation of equation (3.1), explained in the text.
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replaced by an open lead. The advantage of localizing the potential shift 3V inside the stub is
that the energy dependence of rs is very simple,

rs(£) = -εχρ(-2τπε/ΜΔ). (3.9)

The matrix U is energy independent by construction. It is taken from the circular ensemble,
because scattering from the dot is chaotic. (The matrix rs is not random.) Expressing the
scattering matrix 5(ε) in terms of U and rs(e) then yields equation (3.1).

4. Distribution of the time-delay matrix

In this section we combine Wigner's conjecture for the invariance properties of the scattering
matrix ensemble and the Hamiltonian approach to chaotic scattering, to compute the joint
distribution P(S, Qe) of the scattering matrix 8(ε) and its symmetrized energy derivative

Qe = -iHS-^S-^2. (4.1)
3ε

The matrix Qe is a real Symmetrie (Hermitian, quaternion self-dual) matrix for β = l (2,
4). The joint distribution P(S, Q£) of S and Qe is defined through a relation similar to
equations (2.2) and (2.4),

f[S(B, H), Qe(e, H)} = dS dQe f(S, Qe)P(S, ße)

(4.2)

where f(S, βε) is an arbitrary function of S and βε.
Application of Wigner's conjecture is the key to the calculation of P (S, βε). To see this,

we first consider the distribution function Ρ(ε2 — ε\; S\, S2) of the scattering matrix 5(e) at
the energies ει and ε2, for which the invariance property (2.7) implies

Ρ(ε2 - ει; 5i, S2) = Ρ(ε2 - ε,; VS^V, VS2V) = P (ε2 - ε,; -l, -5~1/2S25~1/2) . (4.3)

For the second equality we have chosen V = V = iS} . I n the limit ε2 — > ει = ε, one
finds from equation (4.3) that the joint distribution P(S, Qe) of the scattering matrix S (ε) and
the symmetrized time-delay matrix Qe does not depend on the scattering matrix S,

P(S,Qe) = P(-l,Qe). (4.4)

Hence, to find P(S, βε) it is sufficient to calculate the integral (4.2) for a function /(5, βε)
of the form

f(S,Qe) = 8(S,-\)f(Qe) (4.5)

where /(βε) is an arbitrary function of Qe and S(S, —1) is the delta function at S = — l on
the manifold of unitary Symmetrie (unitary, unitary self-dual) matrices for β = l (2, 4).

We now turn to the evaluation of the integral (4.2), with / of the form (4.5), using the
Hamiltonian approach. We note that (2.1) can be rewritten äs

5 = -l + — — Κ=πΨ^—^— W. (4.6)
Ι + Ί Κ ε -H

The energy derivative of S is given by

(4.7).
3ε l + \K (ε - U)2 l + ΊΚ
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We decompose the Hermitian matnx H in equation (4 2) mto its eigenvalues and eigenvectors
Ή = ψΕψ*', where E is the diagonal matnx contammg the eigenvalues Ep of Ή äs entnes
and ψ is the orthogonal (unitary, symplectic) matnx of the eigenvectors of Ή for β — l (2, 4),

( f ( S , βε)) = ί άψ Ι d£, d£M J M ( E ) P ( E ) f [ S ( s , ψΕψ\ Qs(e, ψΕψ*)]

M (48)

= Π
p<a

Here di/f is the invariant measure on the orthogonal (unitary, symplectic) group and JM(£) is
the Jacobian for the variable transformation H —> ψ, Ε [30]

We now make the special choice (4 5) for f ( S , QE) In teims of the matrices ψ and E,
the matnx K from equation (4 6) reads

* έί r· - E*
Inspectmg (4 6), we see that the hmit 5 -> — l corresponds to the case when all N eigenvalues
of K diverge or, equi valently, when at least N out of M eigenvalues Ep of Ή tend to the energy
ε Let us label these eigenvalues E\, , EN, i e \EP — ε -+ 0 in the hmit S -> —l for
p = l , , W In this hmit, the sum in (4 9) can be restricted to the first N terms and neither
5 nor d S / d s depends on the eigenvalues Ep or on the matrix elements i//mp with m > N or
p > N Therefore we can perform the Integration with respect to the latter, resultmg in

(S(S,-l)f(Qe))= l dße/(ße)P(-l,ß s)

= ίόΦΡ(Φ) j ΑΕλ dENP(Ei, ,EN)S(S,-l)f(Qe) (410)

where Φ is the N χ Ν matrix contammg the rescaled eigenvector elements ψηρΜ
1/2 for

l ^ m, p ^ N, the Integration measure αΦ = Y[mp=id^mp, Ρ(Ψ) is the distribution
of Φ after Integration over the remaming matrix elements of \j/, and P(E\, , E/v) is the
distribution of the eigenvalues E\, ,E/y after Integration over the remaming eigenvalues Ep,
p > N Near S = — l we have from equations (4 6), (4 7), and (4 9),

5 = - l + ^Tri/A^^'diagtEi -ε, , ΕΝ - ε)Φ~' (411)

Qe = ΤΗΦ^'Φ"' (4 12)

where TH = 2nh/A is the Heisenberg time In the hmit M ~^> N, the matrix elements of Φ
are Gaussian distributed with zero mean and unit variance [30],

Ρ(Φ) α e x p [ — ( ß / 2 ) tr ΦΦ1'] (413)

Becauseofthedeltafunction<5(5, — l),it issufficienttoknow P(E\, , EN)for\Ep—s\ -> 0,
p = l, ,N In this case, P(E\, ,EN) is entirely determmed by the Jacobian
JN (Ei, , E /v), up to a numencal factor which results from the Integration over the remaimng
M — N eigenvalues ofH,

N

P(E\, , EN) ex T~\ \E — Ea\ß (414)

We have now succeeded in transforming the integial (4 2) over an M χ M matrix Ή to
the integral (4 10), which is formulated m terms of N χ N matrices only At this point, it is
convement to rewnte the Integration over the N eigenvalues E\, , EN äs a matnx Integration
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to avoid the singularity of P(E\, . . . , £/v) at E\ = . . . = EH = ε. To this end we exploit
the fact that the distribution of Ψ is invariant with respect to a transformation of the type
Ψ — > Ο Φ, O being an orthogonal (unitary, symplectic) matrix for β — l (2, 4). We apply this
transformation for arbitrary O and average over O with respect to the invariant measure dO.
Then, we substitute the Hermitian W χ 7V-matrix H = Ot diag (E\ , . . . , EN)O — ε and the
corresponding Jacobian exactly cancels the singular level-repulsion factor of P(E\ , . . ., EN),

> « JdVP(V)JdHS(S,-l)f(Qe)

α ίαΨΡίΨ) f ό#<5(Ψ^1//φ-1)/[τΗΨί~1φ-1]. (4.15)

(The proportionality sign indicates that we have omitted a normalization constant.) Three
more variable transformations are needed to calculate the integral (4.15). First, we replace

the Integration variable H by H' = Ψ1""1 //*"'. The Jacobian αεΙ(Φφϊ)(Λ^+2-^)/2 of this
transformation can be derived using the singular value decomposition of Ψ [42]. The integral
(4.15) becomes

(δ (S, -1)/(βε)> oc ία

= i αΨ exp[-(/3/2) tr ΦΨ1'] αεΙ(ΦΦ1')(Λ'/'Η"2~'!)/2/ Γ^Φ1""' Φ~'1 . (4.16)

Next, we note that the integrand depends on the Hermitian matrix Γ = ΦΨ^/ΤΗ only, and
replace the Integration variable Ψ by Γ = ΦΦΪ/ΤΗ· The Jacobian of this transformation
[43,44] provides an extra factor α ά&1(Γγ/2~ιθ(Γ), where 0(Γ) = l if all eigenvalues of Γ
are positive and Θ(Γ) = 0 otherwise. Finally, we replace Γ by its inverse Q = Γ~'. Since
this variable transformation has a Jacobian det(Q)PN+2~ß , we arrive at

(S(S, -l)/(ßs)> oc dQ 0(ß) det(Qr3ßN/2~^p εχρ[-/8τΗ tr Q ~ l / 2 ] f ( Q ) . (4.17)

Using equations (4.4) and (4.10) we thus find the joint probability distribution P(S, Qe) of
the scattering matrix S and the symmetrized time-delay matrix Qe,

P(S, ße) = />(-!, ße) = e(Qs)dst(Qer'>ßN/2~2+ßsxpi-ßTHtrQ-l/2]. (4.18)

The corresponding distribution of the eigenvalues τ\, . . . , τ χ of <2ε, the proper delay
times, then reads

oc \τη - rmf θ(τη)τ-3βΝ^-^ exP[-/3rH/(2r„)]. (4.19)
n<m

Alternatively, the distribution of the rates χ7· = 1/τ7· is given by

. . . , γΝ) α |/„ - Xml'' β^»)>/»/'Λ'/2βχΡ[~'8τΗ'/"/2]· (4'20)

This distribution is known in random-matrix theory äs the generalized Laguerre ensemble [30].
The eigenvectors of Qe are uniformly distributed according to the invariant measure of the
orthogonal (unitary, symplectic) group.

5. Density of proper delay times

The distributions (4. 19) and (4.20) have a form which allows one to apply the Standard technique
of orthogonal polynomials [30] to determine the density or the correlation functions of the
eigenvalues of Qe (or Γ = βΓ1). The W-dependent exponent is somewhat unusual and implies
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that the set of orthogonal polynomials is different for each value of W. Such ensembles have
been studied in mathematical physics [45,46].

We restrict ourselves to the simplest case β = 2 of broken time-reversal symmetry. For
a simphfied notation, we use the dimensionless escape rates x„ = y„rH = rH/r„ which are
distnbuted accordmg to

p ( x \ , ,xN) α wN(x)=xNe~x. (5.1)

The generalized Laguerre polynomials L\ '(x) are orthogonal with respect to the weight
function WN(X). The method of oithogonal polynomials relates the correlation functions of
the Jt„'s to these polynomials. Here we consider only the density

N

p ( x ) = l dxi .. .dxN p(x\,.. .,χΝ)^δ(χ - x„)
/

oo
(

which is given by the series

(5-2)

(5.3)

Using the recurrence relation [47]

(n + VL™(x) = (
• (N) (5.4)™ 00 = (2n + N + l - x)L^(x) - (n + N)L^_\(x)

with LQ ^00 = l and L j (x) = N + l — x, it is possible to evaluate equation (5.3) efficiently
for small N. For large N, one can use an asymptotic expansion of the Laguerre polynomials
to find the closed expression

l /
p ( x ) = -—^/-N2 + 6Nx-x2. (5.5)

(5-6)

2πχ

The corresponding density for the proper delay times τ = τ\\/χ thus reads

The limit N -> oo is rapidly approached for N > 3, see figure 2.

1.5

h* l

0.5

0.5 1.5

NT/TH

Figure 2. Density of proper delay times Shown are the
densities for W = l (füll Ime), N = 3 (dashed hne), both
computed from equation (5 3), and the limit N —> oo
(dotted hne) given by equation (5 6)
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5

32
h

0
0.5 l

Nt/rH

1.5

Figure 3. Density of partial delay times, from [13] Shown are the densities for N = l (füll line),
N = 3 (dashed line) and N = 100 (dotted line) The hmit N » l corresponds to a Gaussian with
mean l and width l /-/N

It is instructive to compare the density of the proper delay times r„ with the density of
partial delay times studied by Fyodorov, Sommers, and Savin [4,13]. The partial delay times
t„ are defined in terms of the eigenvalues e"*" of the scattering matrix S,

t„ = n- (5.7)

Compared to the definition of proper delay times äs eigenvalues of the Wigner-Smith matrix,
we see that for the partial delay times the order of the operations of energy derivative and
diagonalization is reversed. This order is irrelevant for the sum Ση

 τ» = Σ,, *«> corresponding
to the first moment of the density, but higher moments are different (unless N = l). The density
of partial delay times was obtamed in [4,13] by the supersymmetric approach,

p(t) =
l . N+2

,-W (5.8)
(N - l)rH

Notice that this density corresponds to the contribution from the first Laguerre polynomial
in the summation (5.3). For N ^ 2, there are also contnbutions from higher-order Laguerre
polynomials and therefore the two densities do not coincide. In figure 3, the density of the
partial delay times is shown for N = l, 3, 100. For W » l,equation(5.8)becomesaGaussian
of mean l and width l / V W . The qualitative difference between ρ ( τ ) and p (t) is due to the
absence of level repulsion for the partial delay times. Unlike for the proper delay times, we
do not know of a physical quantity that is determmed by the partial delay times.

6. General parametric derivatives

So far we have restricted our discussion to the energy derivative of the scattering matrix. It is
also of interest to know the derivatives with respect to external parameters. Examples of such
Parameters are a magnetic field, the shape of the cavity, or a local potential. In this section we
present and prove an extension of Wigner's conjecture to the ensemble of scattering matrices
S(e, X) that depend both on energy and on an external parameter X, and then use it to compute
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the distribution of the symmetrized derivative

QX = -ί<Γ'/2^μ-./2. (6.1)

In the Hamiltonian approach, the parameter dependence of the scattering matrix is
modelled through equation (2.1) with a parameter-dependent random Hermitian matrix Ή(Χ),

S ( s , X ; H ) = l-2niW'[s-mX) + ̂ WW']-lW H(X) = U + XH' . (6.2)

The matrix Ή! is a random Hermitian, Gaussian distributed, Symmetrie (antisymmetric) matrix
if X denotes a shape change (magnetic field), or Ή'~ = <$,>($ ;> if X denotes the local potential
at site r. (In random-matrix theory, the site r is represented by an index l ^ r ^ M, see
e.g. [38]). As we argue below, the invariance property (2.7), which was conjectured by Wigner
for the ensemble of energy-dependent scattering matrices, is also valid for the more general
ensemble of parameter- and energy-dependent scattering matrices 5(ε, Χ). That is to say,
the distribution functional P[S(e, X)] of the ensemble of matrix-valued functions S(s, X) is
invariant under transformations

S(s, X)-> VS(e, X)V' (6.3)

where V and V are arbitrary unitary matrices (V* V = l if β = 1,4). The proof of
this invariance property follows similar lines to that in section 3: First, one shows that the
Hamiltonian approach (6.2) for the ensemble of parameter-dependent scattering matrices is
equivalent to a formulation [48] in terms of unitary matrices of a form similar to equation (3.1),

S(s, X) = t/π + t/n [εχρ[-2ττί(ε - ΧΉ.')/ΜΑ] - t/22]~' t/2i- (6.4)

Second, one verifies that in the formulation (6.4) the invariance property (6.3) is manifest,
completing the proof.

Using the invariance property (6.3), we can now compute the distribution of βχ. For
simplicity, we restrict ourselves to the case that the matrices Ή and H' have the same, Gaussian,
distribution. As in the case of the energy derivative of the scattering matrix, see section 4, it is
sufficient to consider the special point 5 = — 1. From equations (4.6) and (6.2) we find that at
S = -l

Qx = Φ^Ή'ψ-1 P(#')ocexp(-)8tr#'2/16) (6.5α)

μ.ν

Repeating the Steps outlined in the previous section, we find that the distribution of βχ is
Gaussian with a width set by βε,

P(S, Q£, ßx) oc (det ß£)-
2^-3+3^2exp - tr ^ß;1 + (τ^ ßx)2 . (6.6)

The reason why the time-delay matrix βε sets the scale for the matrix β χ characterizing the
response to the external parameter X can be understood in a picture of classical trajectories [49] :
for long delay times, the scattering properties are more sensitive to a perturbation of the System
than for short delay times. Such an explanation in terms of classical trajectories is valid in the
semiclassical limit N -» ooonly. Our exact result (6.6) makes the relation between time delay
and parameter response precise in the fully quantum mechanical regime of a small number of
channels N.

The invariance property (6.3) and the Gaussian distribution (6.6) also hold if the scattering
matrix depends on more than one external parameter. If the scattering matrix depends



102 P W Brouwer et al

on parameters X\,..., X„, the matrices Qxt (j — l , . . . , « ) all have the same Gaussian
distribution, with a width set by the symmetrized time-delay matrix Qe,

P(S, Qe, ßXl, . .

xexp | -^ t r [ r H ßr l
 + -»Hß71ßx;^] - (6.7)

7. Conclusion

In summary, we have presented a detailed derivation of the joint distribution P (S, Qe) of the
scattering matrix S and the symmetrized time-delay matrix Qe — —ihS~l/2(dS/ds)S~l/2 of
a chaotic cavity with ideal leads. Our result, which was first reported in [17], reads

P(S, Qs)cxe(Q£-)det(Q£r-+exp(-ßrHtiQ7l/V (7.1)

where rH = 2?rfi/A is the Heisenberg time and Δ is the mean level spacing in the cavity.
The distribution P(S, ße) depends on the eigenvalues τ\,..., τ^ of Qe only; it does not
depend on S, or on the eigenvectors of QE. Our derivation was based on an old conjecture by
Wigner [31], which we have proved in this paper, that the distribution functional P[S(s)] of the
ensemble of energy-dependent scattering matrices is invariant under unitary transformations.
We generalized Wigner's conjecture to the dependence of S on an external parameter X and
derived the distribution of parametric derivatives.

Throughout this paper we assumed ideal coupling of the chaotic cavity to the electron
reservoirs. This requires ballistic point contacts. For the case of non-ideal coupling, i.e.
if the point contacts contain a tunnel barrier, the distribution of the scattering matrix S is
given by the more general Poisson kernel instead of the circular ensemble [24,50]. For this
Situation, application of Wigner's conjecture is not correct and our method cannot be used
to determine P(S, Qe). A possibility to overcome this difficulty is to separate the direct
and the fully ergodic scattering processes, by expressing the scattering matrix for non-ideal
coupling äs a composition of an N χ N scattering matrix 5erg of a fully ergodic and chaotic
scatterer and a scattering matrix 5dir of dimension 2N χ 2Ν describing the direct scattering
processes [24,42,51],

S = r + t'(l-Sasr'rlSagt (7.2)

where the matrices r, r', t, and t' are N χ Ν submatrices of S,kr,

5dir =(r

t '', V (7.3)

The energy dependence of Sd,r can be neglected on energy scales corresponding to the invefse
dwell time inside the cavity. Thus one obtains a relation between the statistical distributions
of the time-delay matrices for the cases of non-ideal and ideal coupling. What remains is the
cumbersome mathematical problem of performing the corresponding transformation of the
different matrix variables. To our knowledge, no closed-form formula for the joint distribution
of S and QE is known, except for the case N — l [51].

The supersymmetric approach used in [4, 12, 13, 33] is typically more general and
systematic concerning the issue of non-ideal coupling, since there the particular symmetries of
the scattering matrix ensemble in the ideal coupling case are not directly exploited. On the other
hand, this technique is usually restricted to the computation of certain Green function averages
only, and does not give access to the füll distribution of the time-delay matrix. We believe
that, in principle, in the supersymmetric approach it should be possible to determine averages
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of the form {tr(g")} for arbitrary n (and hence the density of delay times) and for arbitrary
couphng, without havmg to increase the dimension of the supermatnces involved. However,
in order to obtain access to the füll distnbution of the matrix Qs, or at least to moments of
the type ((tr ß)n), one has to mcrease the dimension of the supermatnces accordmgly, which
makes it apparently impossible to go beyond the case n = 2 [4,12,13]. It is amusmg that
the (now proven) half-a-century old conjecture of Wigner provides a route to the simple result
(71) that seems unreachable by later supersymmetnc techniques
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