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ABSTRACT

By extending work done long ago by Limber, and by Limber and Mathews, we derive approxi-
mate relations for the standard deviation of log My/L; and other virial parameters of groups of
galaxies caused by (a) the projection of randomly oriented galactic velocity vectors on the line of
sight and separation vectors on the celestial sphere and () the changes in the orbital radius vectors
and velocities of galaxies as they move in a two-body or a homogeneous mass distribution of the
group. Using these results and the estimated uncertainties in observational data, we find that the
observed standard deviation of log Mvyq/Lr for groups, and the observed correlation between
My/Ly and the virial velocity dispersion (¥), are too large to be explained by the combined
contributions of projection and quasi-equilibrium effects, plus uncertainties in galactic radial
velocities, galactic masses, group luminosities, and distances. Either certain observational and/or
theoretical errors are very much larger than is currently believed, or there exists a +2 o range of
a factor of 30 in the cosmic Myq/Ly.

The hypothesis that the large values of {(Myr/Ly) of groups and clusters are caused by the
existence of a cosmological force with negative cosmological constant (A) is untenable because
(@) it predicts a much more centrally concentrated density distribution in rich clusters than is
observed, (b) it predicts a dependence of virial velocity dispersion on radius of gyration of groups
which differs from that observed, and (c) the observed range in the calculated values of A for
individual groups is larger than can be accounted for by observational and statistical uncertainties
alone.

Subject headings: cosmology — galaxies: clusters of — galaxies: redshifts

I. INTRODUCTION

Observationally derived virial mass to light ratios of groups of galaxies (Myy/Ly) cover a large range of values
and are correlated with virial velocity dispersion (V) (e.g., Rood, Rothman, and Turnrose 1970). Can this range
and correlation be explained entirely by observational, theoretical, and statistical uncertainties ? Rood and Dickel
(1978, herein called Paper I) concluded from a comprehensive but tedious analysis with the best available data
that they probably could not—a cosmic range and correlation may exist. In Paper I, estimates from observational
data were made of uncertainties in galactic radial velocities (v), galactic masses (m), group luminosities (Lr), and
group distances (d). Results of computer N-body simulations of bound groups kindly provided by Dr. E. L. Turner
were used to estimate the effect of the projection of galactic velocities on the line of sight and separations on the
celestial sphere (called the projection effect, p), and the effect of changes in the orbital radius vectors and velocities
of galaxies as they move in their orbits (quasi-equilibrium effect, e). While the N-body results probably yield
realistic estimates of the pe effects, they should be complemented by necessarily more approximate but also more
fundamental analytical estimates which provide a check. The present paper contains analytical derivations of
standard deviations of virial parameters (§§ II and III) and contributions to correlation coefficients (§ IV) caused
by pe effects. The results of Paper I are found to be confirmed (§ IV). The equations are also used to examine the
hypothesis that the large {Mvyr/L) values of groups and clusters are caused by the presence of a cosmological
force with negative cosmological constant (A). This hypothesis is found to be untenable (§ V). Hypotheses to
explain the observed virial properties of systems of galaxies are discussed in § VI.

Although we have considered numerous sources of uncertainty in our analysis, we have not dealt with the
problem of ambiguous assignment of galaxies in groups. We have treated the STV groups (identified by Sandage
and Tammann 1975 and de Vaucouleurs 1975) and TG groups (identified by Turner and Gott 1976) (further
details in Paper 1) as if (a) their membership assignment is unambiguous and (b) they are discrete groups. This
is probably not the case, but the reliable evaluation of uncertainties caused by this problem is an extensive project
in itself. Results of the comprehensive study by Soneira (1979) on the role of selection effects in group identification
and My,/L; estimates could possibly be applied for this purpose. The uncertainties caused by difficulties with
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group membership could then be readily added to the analysis, because the theoretical framework and derivations
presented in this paper remain valid.

II. PROJECTION EFFECTS

Consider a group of galaxies with randomly oriented velocity and separation vectors. An estimate of a virial
parameter from line-of-sight velocities, projected separations, and the application of average projection factors
(Limber and Mathews 1960) will typically be different for different directions of observation. The virial parameter
as derived from randomly chosen directions will show a dispersion (standard deviation) about the mean value,
which is the mean error of the estimated virial parameter caused by random projection effects, o,(x).

In Appendix I, o,(x) is derived for x = log,, V (the virial velocity dispersion defined by Rood, Rothman, and
Turnrose 1970), x = log R (the virial radius), x = log Myz/L; = log V2R/GL, (the virial mass-to-light ratio),
and x = log R, (the radius of gyration). It is assumed that the velocity and separation vectors are randomly
oriented, independent of galactic mass, and uncorrelated with one another. The derivations of the mean errors are
logical extensions of the derivations of average projection factors by Limber and Mathews (1960). The mean
errors are derived from the straightforward application of probability functions. We find

o,(log V) = 1/[C(5N)*?], )
0.816

o,(log R) = CONN = DR’ V)

op(log Myr/Ly) = {4[o,(log V)]* + [o,(log R)I?}*2, 3)

o,(log R)) = 1/[2C(5N)*?], @

where C = 2.303, the natural logarithm of 10, and N is the number of galaxies sampled in the group. N entered
the equations through the application of the central limit theorem (see, e.g., Brunk 1960, p. 156). Although the
central limit theorem applies rigorously only when N is large, we have followed Limber (1961) in assuming that it
applies, on the average, to a large ensemble of groups, each with small N, when a characteristic or effective value
of N is adopted.

In the derivation of equation (2), we have used the definition (applicable when galactic mass weighting can
be neglected)

R=w(Z ) - ot nes - w—hes ©)

where r is the distance separating two galaxies in a group. The quantity <{1/r>~* is the mean harmonic radius
of the group. Note that as N — oo, R — 2{1/r>~. We emphasize this definition because the literature contains
nuc{perous erroneous statements to the effect that the virial radius is numerically equivalent to the mean harmonic
radius.

The number 0.816 in equation (2) applies rigorously only when the ratio of the mean separation of the galaxies
in a group to the mean galactic diameter is y,, = 25. However, the medium y,, for the STV and TG groups is
~25 and the range about this value is small enough so that 0.816 is a good approximation for these samples.
Compact groups, on the other hand, have such small values of y,, that 0.816 in equation (2) should be replaced
by a much smaller value, and average projection factors differ significantly from the Limber and Mathews (1960)
values. Formulae applicable to groups with any y,, are presented in Appendix I.

The quantity under the square-root in equation (2) is the number of galactic separations sampled. It has been
assumed that these galactic separations are uncorrelated with one another whereas actually they are correlated.
The Value(o)f o,(log R) obtained after allowance for correlated separations would be smaller than that derived from
equation (2).

ITI. QUASI-EQUILIBRIUM EFFECTS

The first treatment of quasi-equilibrium effects was by Limber (1961), who considered the idealized model in
which each group member in turn moves under the attraction of the other galaxies in the group approximated
by a single point mass. Application of the two-body equations of motion then provided an estimate of the maximum
range in estimated virial mass due to the motion of galaxies in orbits of characteristic eccentricity e. In Appendix II,
we extend the work begun by Limber in two basic ways: (1) We derive the time-average mean error (instead of
the maximum range) of virial parameters due to quasi-equilibrium effects, o.(x). We let x = log R, log Ry, log V,
and log My¢/Ly in turn. (2) We derive o,(x) for galaxies moving in a group approximated by (i) a point mass and
(ii) a homogeneous spherical mass distribution. Results for model groups with N = 3 effective members and several
values of e are tabulated in Table 1.
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TABLE 1

THEORETICAL STANDARD DEVIATIONS OF VIRIAL PARAMETERS CAUSED BY
Quasi-EqQuiLiBRIUM EFrFeCTS (N = 3)

sin~* e (degrees) e a(log R) olog V)  o.llog (Myr/Lr)]

Two-Body Model

[0 N 0.00 0.000 0.000 0.000
18. ...t 0.31 0.053 0.069 0.059
37 0.60 0.097 0.253 0.145
53 0.80 0.117 0.744 0.271
64.............. 0.90 0.123 1.738 0.438
76...cccivie... 0.97 0.125 5.87 0.897

Homogeneous Model

[ P 0.00 0.000 0.000 0.000
18.. ...l 0.31 0.004 0.004 0.004
37 0.60 0.020 0.019 0.020
53 i 0.80 0.044 0.039 0.041
64.............. 0.90 0.071 0.056 0.054
76..cccvvvinnn.. 0.97 0.117 0.081 0.052

IV. OBSERVATIONAL VERSUS THEORETICAL VIRIAL PROPERTIES
a) Standard Deviations

The observed standard deviations of the virial parameters, o(x), for the samples of groups from Paper I are
presented in Table 2 along with correlation coefficients to be discussed in § IVh. The data comprise the 42 STV
groups [deV 8 and 45 (designations from de Vaucouleurs 1975) are omitted because they may be spurious] and
19 TG groups with a fractional mean error in 72 caused by radial velocity uncertainties, o,(V%)/V2, less than 0.5.
We want to compare these observational results with the total contribution to the standard deviations expected
from theoretical estimates of the p, e, v, m, Ly, and d effects.

TABLE 2

OBSERVED VERSUS THEORETICAL STANDARD DEVIATIONS, CORRELATION COEFFICIENTS, AND
REGRESSION-LINE SLOPES

Sample or Effect a(log R) a(log V) o(log Myr/Lr) a(log R))
STV (n = 42, observed).............. 0.41 0.34 0.72 0.44
TG (n = 19, observed)............... 0.42 0.31 0.69 0.56
peomLyd................. ... .. 0.26 0.15 0.36 0.11
72 0.20 0.11 0.30 0.06
er ettt et 0.07 0.06 0.05 0.07
72U 0.00 0.05 0.10 0.00
PP 0.14 0.06 0.16 0.15
2 0.00 0.00 0.04 0.00
................................ 0.05 0.00 0.05 0.05
STV (COSMIC) .+ v vvveveeenneennnnnnns 0.32 0.31 0.62 0.43
TG (COSMIC) . . v vveeiiieeeennnnnns 0.33 0.27 0.59 0.55
Sample or Effect pve® pmr*® pmv® Svz® Smr® Suv®
STV (n = 42, observed).............. 0.15 0.65 0.71 0.13 1.15 1.52
TG (n = 19, observed)............... 0.14 0.46 0.74 0.11 0.76 1.61
peomLyd.......... ... ... -0.03 0.18 0.17 —-0.02 0.25 0.41
Deeeiee et e e 0 1 1 - e e
AP -1 -1 1
ittt iinetennroeeasonensnsennnns 0 0 1
£ 0 1 1
Ly.. 0 0 0 ... -
.......... 0 -1 0 . v c..
STV (cosmic). . ............... . 0.18 0.47 0.54 0.17 0.91 1.08
TG (cosmic).........covvvivennnnn. 0.17 0.28 0.57 0.14 0.50 1.25

* pyr = p(log V,log R), pur = pllog (Myz/Lz), log R], puv = pllog (Myz/Lz), log V].
® Syz = S(log V,1og R), Syr = S[log (Myr/Lyz), log R], Suv = S[log (Myr/Lz), log V].
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The individual contributions o,(x), .(x), 0,(x), o,(X), 0,,,(x), 04(x), and the combined contribution, OpeomrralX),
are evaluated in Appendix III from the formulae presented in §§ IT and I1I and application of detailed observational
data and its estimated uncertainties. Results are presented in Table 2.

From Table 2, we see that opeymr a(log Myq/Ly) = 0.36, whereas the observed o(log Myy/Ly) = 0.70. A standard
f-test (see, e.g., Brunk 1960, p. 247) shows that these standard deviations differ significantly. Hence, we are forced
to conclude that a source of dispersion in My/L, exists in addition to that produced by pevmL.d effects. If this
source is a cosmic dispersion in Myr/Ly, then the +2 o range in the values of the cosmic Myy/L; of groups is a
factor of 30! This result agrees both qualitatively and quantitatively with that obtained in Paper I.

b) Correlations

The definition of the correlation coefficient of the virial parameters y and x of a sample of n groups is (see, e.g.,
Trumpler and Weaver 1953, p. 49)

.0 = (3 axn) [nosa,, ©

i=1

where o, and o, are the standard deviations of x; and y;, Ax; is the observed displacement of x;, and Ay, is the
corresponding displacement of y; from the respective averages for the n groups.

The corresponding regression-line slope, which represents the form of the dependence, is (Trumpler and Weaver
1953, p. 39)

S(», %) = p(y, x)(0y/0,) . )

The observed correlation coefficients of the virial parameters, p(y, x), evaluated for the STV and TG samples,
are presented in Table 2. We want to compare these observed results with the total contribution to the correlation
coefficients expected from theoretical estimates of the pemvL.d effects. To estimate this contribution, we first need
to know the correlation coefficients which would be induced by each effect acting alone, p/(y, x), where j = p, e, m,
v, Ly, and d in turn. The values of p,(y, x) are estimated in Appendix IV from basic properties of the various
effects, and tabulated in Table 2. Then, in Appendix V, they are combined with equation (6) to derive the following
useful relations for the theoretical correlation coefficients induced by pemwL,d effects and all additional effects
with combined correlation coefficients p,(y, x) and standard deviations ¢,(x) and o ,(y):

p(log V,log R) = = 0(X)0e(y) + pa(Y, Y)o4X)o4(y) | ®

0,0,

where y = log V, x = log R; and

p(1o8 4% 08 R) = [0,%0) = 0.(3eu(y) + o0) = 020) + pu Do) E, O

where now y = log My¢/L; and x = log R; and
P (103

where now y = log My,/L; and x = log V.

If we adopt p4(y, x) = 0, i.e., if we assume that there are no correlation effects in addition to pevmL,d effects,
then equatio)ns (8)—(10) reduce to the contribution to the observed correlation coefficients by pevmL.d effects,
Ppevmrra( Y, X). )

From Table 2, we see that the observed correlation coefficient p(log My/Ly, log V) = 0.72, whereas the con-
tribution by p, e, v, m, Ly, d effects is ppeymrra(l0g Myr/Lr,log V) = 0.13. A test with the z-statistic (Hewlett-
Packard 1974) shows that these correlation coefficients differ significantly. Hence, our assumption that p,(x, y) = 0
cannot be correct. We are forced to conclude that a source of correlation relating log My-/Ly to log V exists in
addition to that produced by pevmL.d effects. If this source is a dependence of cosmic Myq/Ly on cosmic V, then
the cosmic correlation coefficient is p4(log My/Ly, log V) = 0.60. These results agree both qualitatively and
quantitatively with those obtained in Paper I, where p,.(y, x) were estimated from results of Turner’s N-body
experiments and correlation coefficients were evaluated directly from equations (6), (A30), and (A31) of this paper.

A{"T’ log V) = [20,%(x) + 0e(x)oe(y) + 20,%(x) + 20,%(x) + pa(y; X)04(X)04(M)(ox0,) ™",  (10)

T

V. THE COSMOLOGICAL FORCE

The virial properties of groups derived in Paper I and the present work can also be used to test the hypothesis
of Jackson (1970) and Forman (1970) that the large Mvy/L, values of groups are caused by the existence of a
dominant cosmological force with negative cosmological constant (A) and origin at the group barycenter. The
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equation of motion of a galaxy in a group moving in a cosmological force field is 7 = 3Aril, and the orbit is an
ellipse with center at the group barycenter. Hartwick (1978) finds that there is a statistically significant correlation
between log ¥ and log R, for low-density groups, and points out that this is consistent with the cosmological force
hypothesis.

There are at least three observational results in conflict with the universal (applicable to all groups) validity
of the cosmological force hypothesis.

1. Zwicky (1957, pp. 28, 136, and references therein) first recognized and Ostriker (1977) recently emphasized
that Newtonian theory predicts an Emden isothermal density distribution in a rich regular cluster having an
approximately radially independent velocity dispersion, and this density distribution is actually observed (see
Bahcall 1977a, and references therein). Following Zwicky (1957, p. 136), we find from the equation of dynamical
hydrostatic equilibrium that if the cluster is bound by a negative A cosmological force instead of a Newtonian
gravitational force, then the radial density distribution, p(r), is given by

(r) _ Am o 2
PPT = exp [_W(r —r, )] > aan

where p, is the density at a lower cutoff (or core) radius r,, m is a characteristic value of galactic mass, k is Boltz-
mann’s constant, and T is the “temperature” corresponding to the galactic velocity dispersion of the cluster.
Equation (11) is a much more centrally concentrated density distribution than the density distributions observed
in rich clusters (Bahcall 1977a).

The space density distribution for an ideal cluster in a steady state set up by the combined gravitational force
and cosmological force with various negative cosmological constants has been solved numerically by Chen and
Sachdev (1975).

2. A group of galaxies moving under the combined action of a Newtonian gravitational force and a cosmological
force satisfies the relation (Rood 1974b)

log ¥ = log ( )le 4 log(=4) _log3,

g 2 2 (12)

where V and R, were defined earlier, and p is the ratio of the virial mass My derived with A = 0 to the true
mass, M = L. f, where fis the actual mass-to-light ratio of a group. (In the calculations, we adopt ' = 10.2 solar
units, the average mass-to-light ratio of individual galaxies derived by Dickel and Rood 1978.) The ratio u for
individual groups can be derived empirically from their observed My/L; and f = 10.2. If the Newtonian force
were entirely absent, then u = co.

Equation (12) says that the slope of the log ¥ on the log [p/(x — 1)]*/2R, regression line should be

Sv, [I"/(F' - 1)]1/2R1 =1.

The predicted slope is reduced to 0.91 when pevmL,d effects are taken into account (u = co was assumed to
evaluate the pevmL.d contribution). The observed slopes calculated for STV, TG, and de Vaucouleurs groups with
w > 1.25and ¢ > 5, and all groups in the STV, TG, and deV samples when u = co is adopted, are contained in
Table 3. The observed slopes are significantly smaller than the predicted slope. Although V and R, for the TG
and deV samples are correlated, the observed slopes of the regression lines are in conflict with the theoretical
prediction. We emphasize that this result applies to groups in general, and not necessarily to the low-density
subset examined by Hartwick (1978).

TABLE 3

SLOPES OF OBSERVED AND THEORETICAL REGRESSION LINES OF LOG ¥ ON LOG [u/(1 — 1)]*2R;, AND STANDARD DEVIATIONS OF LOG A

Sample or Effect Sv,rr Mean Error Sv.tuiw- 11" 2r; Mean Error log (—A)® OG0z A)
deVm=4D............... 0.60 0.17 ...
STV(n=53)............... 0.13 0.12 -
TGm=28)................ 0.43 0.15
deV(@m=23p=5......... 0.19 0.23 0.16 0.24 5.10 0.65
STV =3, p=95)......... -0.08 0.14 —0.09 0.15 5.42 0.94
TGm=1,p=5).......... 0.21 0.10 0.21 0.10 6.02 0.97
deV(@m=37p=125)...... .. 0.44 0.20 4.90 0.65
STV (n =48, p = 1.25)...... - e 0.03 0.12 5.24 1.00
TG (n=20,p = 1.25)....... ... 0.27 0.17 5.67 1.02
peomLyd.............o...... —0.09 e (—0.09) el . 0.30

2 A in units of km2 s~2 Mpc~2.
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3. The average value of log (—A) and the observed standard deviation about the average, o(log A), derived
from the STV, TG, and deV samples, are also contained in Table 3. Because A is a constant, o(log A) must be
produced entirely by pvmL.d effects and possibly other uncertainties if the cosmological force hypothesis is valid.
Quasi-equilibrium effects do not contribute to o(log A) because A is a constant during the orbital motion of a
galaxy. ¥ and R are uncorrelated when the p, v, m, Ly, d effects act alone. If we adopt the approximation

R _ (2N \rp~t 2N _
R \N=1) &> “N-1"

then by differentiating equation (12) and taking logarithms, we obtain

. 2 — 3\2
oroiad108 1) % [ (G205 Sepmton 1)+  (B22) Nopmatton R)

+ (G o] (14)

From Table 3, we see that the observed o(log A) = 0.65-0.97 whereas o,,,,.,4(log A) = 0.30. Hence, if the con-
tribution to o(log A) by effects other than pvmL,d effects are small, then the values of A as determined by data

for different groups cover a larger range than that produced if A is a constant, again in conflict with the cosmo-
logical force hypothesis.

3, (13)

VI. DISCUSSION

The major conclusion of our analysis of groups is that the observed range in My/Ly and correlation between
My/Lr and V are larger than the combined contributions of projection and quasi-equilibrium effects, uncertainties
in galactic radial velocities, galactic masses, group luminosities, and distances. Several possible explanations of
this result are discussed below.

1. Observational and theoretical uncertainties.—Despite our efforts to procure and use high-quality data, and to
evaluate uncertainties realistically, a possibility still exists that our conclusion will be found to be spurious in the
future. However, we are confident of the basic validity of our estimates of projection and quasi-equilibrium effects
(analytical formulae and Turner’s N-body experiments produce concordant results), and of uncertainties caused
by errors in galactic radial velocities, group luminosities, and distances. Our estimates of uncertainties due to
errors in galactic masses are reliable if the mass derived from the internal dynamical structure or Holmberg
luminosity of a galaxy is approximately proportional to its total mass (whether most of this mass is in the disk
or an extended halo).

For our analysis, we implicitly assumed that the STV and TG groups are real and uncontaminated groups. The
mean mass-to-light ratio and crossing time of these groups are consistent with the values derived from the statistical
virial theorem of Geller and Peebles (1973). The STV groups represent an improvement over the original
de Vaucouleurs groups in that group members are selected from a more accurate and complete radial velocity
sample, and the group identification expertise of Sandage and Tammann was taken into account. It could therefore
be significant that the virial effects observed for the STV groups are at least as pronounced as those observed
originally for the original de Vaucouleurs groups (Rood, Rothman, and Turnrose 1970). The STV groups are
found primarily, but not exclusively, in the Local Supercluster where problems with isolating groups exist. It is
therefore encouraging that well isolated groups in the foreground of the Coma cluster have values of Myr/Ly
similar to those derived for the STV groups (Gregory and Thompson 1978).

The STV groups were identified by the rough application of a “surface density contrast” criterion and a loose
“radial velocity contrast” criterion. The TG groups represent a refinement because they were identified by the
quantitative application of a strict density contrast criterion, but they too rely on a loose criterion of radial-velocity
contrast. The further refinement—to quantitatively apply a strict criterion of radial-velocity contrast—will be
incorporated in the several important projects to identify groups which are currently in progress. It should, however,
be emphasized that many researchers believe that the problem of accurate and unbiased membership assignment is
Ehe cent)ral difficulty in understanding groups of galaxies. We hope to allow for this problem in a future analysis

see §1).

2. Intrinsic redshifts—Radial velocities of galaxies are derived on the assumption that the displacements of the
spectral lines of known elements from their rest wavelengths are determined by the Doppler effect. If a non-Doppler
(intrinsic, origin unknown) effect primarily determined the line displacement, then the derived values of V" and
Myr/Ly would be wrong and correlated. Evidence for and against the possibility of intrinsic redshifts in some
peculiar objects is discussed by Field, Arp, and Bahcall (1973).

Tifft has found bands in the (galactic redshift, nuclear magnitude)-diagram for the core of the Coma cluster and
possibly other clusters (Tifft 1974 and references therein), and he suggests an intrinsic redshift origin. The present
authors do not know the cause(s) of the bands observed by Tifft, but we find it difficult to accept an intrinsic
redshift origin for the following reasons: (a) The optical redshift of the stellar and ionized gaseous components of
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the nuclear region of a galaxy agrees with the redshift obtained from the 21 cm line of neutral hydrogen in the
galactic disk (Rood 1974a; Dickel and Rood 1975, 1978). (b) If Doppler redshifts in the Coma cluster were in fact
small, then two-body relaxation would produce much larger radial mass segregation in the age of the Coma cluster
(assumed to be at least the age of the Earth or our Galaxy) than is observed (Rood 1974a). (c) The temperature of
the ionized intergalactic gas in the Coma, Perseus, and Virgo clusters, derived from the shape of the X-ray spectrum,
corresponds to the observed velocity dispersion of the cluster galaxies (Kellogg, Baldwin, and Koch 1975; Bahcall
and Sarazin 1977). (d) The virial mass of groups and other systems of galaxies is correlated with other mass
indicators (e.g., total luminosity and possibly the mass of ionized intergalactic gas). (¢) The presence of radio
trial galaxies in clusters (Miley et al. 1972) and the correlations of the spiral/SO ratio with radial distance from the
cluster center (Gregory 1975; Melnick and Sargent 1977) and decreasing cluster X-ray luminosity (Bahcall 1977b)
are also consistent with the Doppler interpretation of redshift.

3. Unbound groups.—The groups are bound because their crossing times are smaller than the Hubble time and
the composite probability function of their velocities (relative to the group barycenter) is well approximated by a
Gaussian function.

The actual mass of a bound group could differ significantly from the virial mass if the group is not virialized.
Recent N-body experiments by Ross and analytical considerations by King (private communication) indicate that
it takes not ~ 2 but several crossing times for a group to become virialized, which leads King to ask if this might
be the cause of the observed virial properties. In partial answer to this question we note that (@) the values of
M/L; for the STV and TG groups are uncorrelated with crossing time (Table 4 of Paper I), and (b) the distribution
in a plot of log Mvy+/Ly versus log V (Fig. 5 of Paper I) of the points for the 14 STV groups and seven TG groups
with the largest crossing times suggests that these groups may actually have a smaller range in log My¢/L; and a
weaker correlation between My./L; and ¥ than the groups with smaller crossing times.

4. Missing mass.—(a) It may be in the most massive groups with high velocity dispersions that increased inter-
actions cause more stripping of stars or other material from the outer parts of galaxies or the formation of more
faint stars in their outer reaches so that more nonluminous mass is present. (b) If the difference between the average
mass-to-light ratio of groups and individual galaxies is caused by the presence of the missing mass, and our estimates
of uncertainties are valid, then the observed range in My/L; implies a +2 o range of a factor of 30 in cosmic
Myq/Ly. This means that some groups could have no missing mass but others could have up to 30 times more
missing mass than visible mass. Mass-to-light ratios of rich clusters, which tend to be more accurate than Mv/L,
values for individual groups, range from about Mvy/L, & 30 to My/L, ~ 400 solar units (data from Oemler 1974;
Dressler 1978; van den Bergh 1978). If the fraction of missing mass in a group or cluster ranges from 0.0 to more
than 0.9, then intuitively we might expect other observable group or cluster properties to vary systematically with
mass-to-light ratio, but such variations appear to be small or nonexistent.

5. Missing dynamical physics.—Groups and clusters of galaxies are about 10!° times larger than the solar
system, so a considerable extrapolation is involved in the application of Newtonian theory to such systems.
Nevertheless, Newtonian theory predicts the observed isothermal density distribution of a rich cluster (Zwicky
1957; Ostriker 1977). If a different theory were in fact valid, then it must also predict an isothermal density distribu-
tion, and the identical Newtonian prediction would then be a remarkable coincidence!

So we see that all of the above hypotheses encounter difficulties, but one of these effects or some other effect
must be present. New insights are clearly needed. The history of other dynamical problems, illustrated by some
in the solar system, might provide some perspective : There are many examples of observed discrepancies and effects
which later turned out to be caused by underestimates of errors or even blunders, but there are also notable
exceptions which required new ideas. Kepler, by a careful analysis of relatively uncertain data, was able to extract
the three laws which played a central role in the formulation of Newtonian dynamical theory (see, e.g., Pannekoek
1961). Newtonian theory triumphed with the observational detection of the missing mass (Neptune) resolving
problems with the orbit of Uranus (see, e.g., Smart 1953). Later, and in contrast, the excess precession of the
perihelion of Mercury was resolved with the discovery of missing dynamical theory (general relativity), which then
predicted the existence of intrinsic redshifts in gravitational fields (see, e.g., Weinberg 1972).

We are grateful to Drs. David Hartwick, Ivan King, Jim Peebles, Nico Roos, Raymond Soneira, and Ellen
Zweibel for helpful discussions. This research was supported in part by the National Science Foundation Research
grant GP-36167A to Michigan State University. J. R. D. acknowledges a travel grant by the Netherlands-American
Commission for Educational Exchange through the Fulbright-Hays program.

APPENDIX I
PROJECTION EFFECTS
By definition, the standard deviation of log,, ¥ (about the average) caused by projection effects alone is

o {v'2
o llog ¥) = 5 %g , (A)
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where Cis 2.303 (the natural logarithm of 10) and o' is the ratio of the line-of-sight velocity (relative to the group
barycenter) to the space velocity.
For randomly oriented velocity vectors, the probability function of v'2 is

f0'?) = 1 0<v?<l. (A2)

The variance of v'2 about its average value (4 derived by Limber and Mathews 1960) is
1
0,°(v'?) = f @ = DY WHAW'?) = 4/45. (A3)

If N galaxies are randomly sampled from a group, then, according to the central limit theorem (see, e.g., Brunk
1960, p. 156), the sample <{v'%) has an approximately normal distribution with mean 4 and standard dev1atlon

op((v'®)) = N~126(v'%) = 3(SN)~12. (A4)

Substituting into equation (A1), we obtain the relation for o,(log V), equation (1).
Similarly, o,(log R;), equation (4), follows from the frequency distribution of r’2 (the ratio of the projected
separation to the true separation),

1

() YL S
f(r ) - 2(1 _ rlg)llz (AS)
and the variance of r'2 about its average value (%),
12 2 __ 2 2 2
o) = [0 = 90 = 32 46)

And finally, o,(log R), equation (2), follows from the relations involving y = '~

1
)1/2 (% — 1)1/2

fO) = O 1<y <yu, (A7)

3

y>= wTy_M'l)—uz sec™lyy = @5 (A8)

and

1 m\2 (yu? — 112
o2 ______ — 12 — N Ty WM —
) = Gy { Clow b + O = 1] — amoos™ () + (o3)" 2= (49)
where y,, is the maximum value of y set by the criterion that two galaxies separated on the celestial sphere by a
distance smaller than some chosen value (r;), typically their average diameter, are treated as a single galaxy in
virial calculations; for the 42 STV groups (deV 8 and deV 45 omitted because they may be spurious) and 19 TG
groups of Paper I, we find 1 < y < 100 with a median value y,, ~ 25, so that

«=0975 and o(y) =12. (A10)

Table 4 lists « and ¢(y) as a function of y,,. Note that as y,, approaches infinity, (a) « approaches unity so that
{y> reduces to the result obtained by Limber and Mathews (1960), and (b) o(y) diverges logarithmically. For
compact groups, as y, approaches unity, y,, approaches 0.6 and o(y) approaches zero.

, TABLE 4
@ AND o(y) AS A FUNCTION OF yy
Ym -4 o(y)
) 0.6366 0.00
2 i 0.7698 0.24
S 0.8898 0.62
10.......... 0.9409 0.91
25, ..., 0.9753 1.25
50.......... 0.9875 1.48
100.......... 0.9937 1.69
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Because v and r are assumed to be uncorrelated with each other, o,(log V) and o,(log R) are independent
parameters, so that o,(log Myr/Ly) is given by equation (3).

APPENDIX II
QUASI-EQUILIBRIUM EFFECTS

a) Two-Body Mass Distribution

A first approximation to the evaluation of quasi-equilibrium effects for a group can be obtained by considering
the limiting case where a sample galaxy of mass m is assumed to move under the gravitational attraction of a
point mass, M — m, where M is the total mass of the group (i.e., the sum of the masses of its galaxies if inter-
galactic material can be neglected). We denote the separation between the two bodies by r and their velocity
difference by v. If we assume initially that all the sample galaxies have the same mass, then the standard deviations
of R, V, and My,/L; caused by quasi-equilibrium effects alone are the standard deviations of r, v, and v%r/G,
respectively. The effect of a mass spectrum of sample galaxies is discussed in Appendix III.

By applying the basic equations governing two-body motion (e.g., see McCuskey 1963), we can evaluate the
variance

P _ 2
0 (r) = f 0= <) a, (A11)
0 p
where p is an orbital period. For a sample of N galaxies in a group, it then follows that
e(l — ‘}‘82)112
o/log R) = o,(log R)) = —can (A12)

where e is a characteristic orbital eccentricity. Similarly,
e[U(e)]?[1 + 2e2U(e)]

alogV) = CRN)™ (A13)
where
3. 5 3.5.7
= 2 .« s 0
Ul) =1+ 3% + 76°¢ +468e+ (A14)
And finally,
Myy _ e(1 — 1e?)'2 2
oe(log L, ) = “CaNY® 1+ e%). (A15)

The two-body model of a group represents the limiting case of extreme central density. Differences between
results obtained with a two-body mass distribution and results obtained with a less approximate mass distribution
provide an indication of the sensitivity of results to mass distributions.

b) Homogeneous Mass Distribution

In Paper I, we found that the average surface number density of galaxies within the main body of a group is
approximately constant. Within the observational uncertainties, this result suggests that a sphere with a homo-
geneous mass distribution is a more realistic model of a typical group than is a two-body model. By applying the
easily derivable equations governing the motion of a galaxy in a homogeneous sphere, we find

[27-1E(e)]}*22m 1K (e)

o.(log R) = o,(log R) = L =3¢ =

VL (A16)
o (log V) = "’2[2";;’52(2);’2 /4l (A17)
and
Myr\ _ o(v®r/ka®) 1
o"(IOg L:) ~  C+/N <v2r/ka3> ’ (A13)

where k is the gravitational constant times 47/3 of the mass density of the sphere, e is the orbital eccentricity, a
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is the orbital semimajor axis (the orbit is an ellipse with center at the center of the sphere), E(e) is the complete
elliptic integral of the second kind, K(e) is the complete elliptic integral of the first kind, and

<W> =1+ 0.75¢% + 0.578125e* + 0.464844¢° + 0.380595¢® + 0.335861e° + - - - » (A19)

2
o(F) = (1 = <oPrka®> = 3¢ + et — ey, (a20)
2 -1 Cr (5 —€) S5e . 105 .,
{V?rlka®)y = 1 4(3 e?) —a 256(3 e?) ———49152(13 5e?)
14175¢°
~ taaseo (17— 70—+ (a21)
APPENDIX III

THEORETICAL CONTRIBUTIONS TO STANDARD DEVIATIONS

1. Contributions by projection effects, a,(x), can be evaluated from relations in § II if a value for N, the effective
number of galaxies sampled in a group, is selected. Because, in the evaluation of virial parameters, velocities are
galactic mass weighted and galactic separations are weighted by mass products, N is the actual number of galaxies
sampled (usually about 6) only when all galaxies have the same mass. At the other extreme, if all but a tiny frac-
tion of the mass of a group were in a single galaxy, then N = 1 regardless of the actual number of galaxies sampled.
In general, we adopt N = m; ~*(m, + m, + - - - + myy), where m; is the mass of the most massive group member,
m; is the mass of the second most massive member, ..., m,y is the mass of the least massive member sampled.
{N) = 3.25 and Npegian = 2.71 for the 42 STV group sample, and <N) = 3.61, Npeqian = 2.84 for the 19 TG
group sample. In our calculations, we adopt N = 3. The groups in Turner’s N-body simulations used in Paper I
have N = 2.67.

2. Contributions by quasi-equilibrium effects, o.(x), can be evaluated from relations in § ITI, if a model and a
characteristic orbital eccentricity, e, are selected. The homogeneous model is generally a better approximation
than the two-body model except possibly for galaxies with small orbital eccentricity in the extreme outer regions
of a group. Values of o.(x) as a function of orbital eccentricity of galaxies in the two-body and homogeneous
models are presented in Table 1. For a given eccentricity, the two-body model produces larger values of o.(x)
than does the homogeneous model. For e 2 0.6 in the two-body model, o, (log V) exceeds the total observed
standard deviation, o(log V), for the STV and TG samples. Hence, o.(log My1/Lr) < 0.15 for the minority of
galaxies in the extreme outskirts of a group. The velocity vectors are oriented isotropically—i.e., orthogonal
velocity dispersions are equal—if e = 0.9 for both the two-body and the homogeneous models. For our calcula-
tions, we adopt the values of ¢.(x) corresponding to e = 0.9 of the homogeneous model.

3. Contributions by uncertainties in galactic radial velocities, o,(x), can be evaluated from the mean errors
they produce in ¥ and V72, i.e., o,(¥) and ¢,(V2), which are evaluated for each STV and TG group in Paper I.
It follows that

a,log R) = o,(logR)) =0, (A22)
1 & o XV)
2 —_ v s
a(log V) = Czn,zﬂ 3 (A23)
and
M. 1 & o2V
2fjog v} _ L S % ,
% (1°g LT) C?n ¢Z=1 I (A24)

where the summation is over the n = 42 (STV) (or n = 19) TG groups.

4. Contributions by uncertainties in galactic masses, ¢,,(x), can be evaluated by comparing the observed virial
parameters, x, derived from galactic masses, m;, with the values x' calculated using galactic masses larger or
smaller (randomly chosen for each galaxy) than m; by the average absolute fractional mean errors estimated by
Dickel and Rood (1978). It follows that

2. (log x/x')?

> e (A25)

on’(x) =
i

where x can equal log R, log R;, log V, or log Myq/L;.
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5. Contributions by uncertainties in galactic luminosities, o.,(x), are zero when x = log R, log R;, and log V.
The quantity o, (log My/Lr) can be evaluated from

or2 (log MVT) = zn: (log Lr/L7)* | (A26)

LT i=1 n— l

where L, is the adopted total luminosity of a group. We set L, equal to the average of the values obtained by
extrapolating the sum of the luminosities of galaxies as bright or brighter than (i) the faintest and (ii) the second
faintest sampled group member with a Schechter luminosity function. L;’ is the luminosity estimated from case (i)
[or case (ii)] alone. The observational errors in the apparent luminosities of the brighter galaxies in groups are
usually a few hundredths of a magnitude—photoelectric accuracy, so the contribution to o, (x) by this source
can be neglected. The uncertainty in galactic extinction is typically ~0.15 mag, and the uncertainty in internal
extinction is typically ~0.2 mag, but these errors are primarily systematic, and we will neglect them. Errors in
luminosities due to errors in distances are incorporated in the discussion of distance uncertainties below.

6. Contributions by uncertainties in the distances to groups, o4(x), are evaluated from the mean errors in the
logarithm of the redshift distances, d, of individual groups caused by their velocity dispersions, V; i.e.,

M n 1 . 2
odlog R) = olog R) = oq(1og 24z) = 5 [X0oe L, a27)
i=1
ollog V) =0, (A28)
where
V
o(log d) = ey (A2)

7. Total deviations: The individual p, e, v, m, L;, and d contributions and the total cumulative pevmLd con-
tributions to o(x), calculated as explained above, are listed in Table 2. These values contain the following un-
certainties:

a) The quantity o,(log R) is overestimated because the galactic separation vectors are actually correlated with
one another. But because N = 3, there are only three separation vectors, and two can have any orientation. If
the contribution by the third separation vector were neglected entirely, then an extreme lower limit to the actual
value of o,(log R) would be /(%) = 0.82 of the adopted value.

b) We have adopted the homogeneous sphere e = 0.9 values of o.(x) in our calculations. Homogeneous sphere
e < 0.9 values are smaller (see Table 3). An overestimate to ¢.(x) is obtained by assuming that half the galaxies
in a group have the homogeneous sphere e = 0.9 values but the other half have the maximum permissible (set by
the observed value of log V) two-body values. Then o,(log Myg/Ly) = [(0.05)% + (0.15)2]2 = 0.11, so that
Opemvrra(108 Myr/Lr) would be increased by a factor of only 1.05.

The contributions o,.(x) = [0,%(x) + ¢.%(x)]*/? derived from our analytical relations agree well with the estimates
obtained in Paper I from Turner’s N-body simulations. This suggests that o,.(x) is insensitive to the simplifying
assumptions adopted in our derivations.

¢) To derive o,(x), we adopted the mean errors in radial velocity determinations derived by de Vaucouleurs,
de Vaucouleurs, and Corwin (1976) from a comprehensive comparison of the values obtained by different workers
for galaxies held in common. Dickel and Rood (1978) have some evidence that the de Vaucouleurs et al. estimates
may be too small by an average factor of 1.5; but even if this were the case, 0 pemyr,4(108 Myr/Lr) would be increased
by a factor of only 1.15.

If we increase our samples of groups by including those with o,(¥2)/¥2 > 0.5, then the 61 resulting STV groups
have o,(log V) = 0.10, which would increase the value of opemyra(10g Myr/Ly) by a factor of only 1.12. For the
TG groups, inclusion of the “high velocity uncertainty” groups gives a total sample of 29, but they are totally
dominated gy radial velocity uncertainties, so we can use this total sample only after more accurate radial velocities
are obtained.

d) In our analysis, the primary indicator of galactic mass is assumed to be the observed internal dynamical
structure of a galaxy. Masses determined by this means were estimated to have an average random error of a
factor of 1.4 (or 1.2 for a small number of especially well observed galaxies) (Dickel and Rood 1978). A secondary
galactic-mass indicator, calibrated against the primary indicator, is taken to be the Holmberg luminosity of a
galaxy. Masses determined from Holmberg luminosities were estimated to have an average random error of a
factor of 1.8. These estimated uncertainties are valid to the extent that the observed internal dynamical structure
and Holmberg luminosities are actual indicators of the total mass of a galaxy. If they are not, then the weighting
of velocities and separations needed to estimate virial parameters would be unknown, and estimates in the literature
would be correspondingly uncertain by an unknown amount.

In what follows, we assume that the observed internal dynamical structure and Holmberg luminosities are, in
fact, reliable indicators of total galactic mass, and their random uncertainties are approximately as given above.
Then the statistically estimated values of o,(x) are, in effect, the additional cumulative contribution to @,¢ys(x)
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caused by the uncertainties in the effective number of group members N. It is important to recognize that the
estimates of ¢,,(x) remain valid even if our adopted galactic masses are all systematically in error by the same factor.

e) About three-fourths (average and median value) of the total luminosity of each STV and TG group is con-
tained in the galaxies sampled. Consequently, (i) the derived value of L; is relatively insensitive to the particular
functional approximation of the luminosity function adopted to extrapolate from the observed to the total group
luminosity, and (ii) if we retain the assumption that luminosities are mass indicators, then, on the average, the
observed properties of three-fourths of the mass of a group are used in our virial calculations, making sampling
uncertainties small.

f) Our results are completely independent of the value of the Hubble constant; i.e., o(x) and o4(x) remain
unchanged when H is changed. Our distance estimates, however, rest on the assumption that the velocity of the
center of mass of a group is part of the Hubble flow. The parameter o,(x) is larger if that is not the case, but
Sandage and Tammann (1975) present evidence that it is the case.

We conclude that if present estimates of galactic masses are at least approximately correct or systematically in
error by a common factor, then uncertainties in o,¢ymz4(X) are so small that the standard deviations contained in
Table 3 are realistic and meaningful.

APPENDIX 1V
THEORETICAL CONTRIBUTIONS TO CORRELATION COEFFICIENTS

The correlation coefficients caused by each type of uncertainty acting alone are listed in Table 2. They have
been estimated from the following considerations.

1. Projection effects.—To study projection effects in § II, we assumed that velocity and separation vectors are
independent of one another. Accordingly, if log R changes due to projection effects by an amount A,(log R),
then log V is unaffected but A,(log My/Lr)y = A,(log R). (The subscript ¥ means that V' is held constant as R
changes.) Similarly, if log ¥ changes by A,(log V), then A,(log Myr/Ly)r = 2Ap(log V).

2. Quasi-equilibrium effects—We assume that the homogeneous sphere model of a group applies. Then changes
in R will be a weighted sum of changes in r, the orbital radius of a galaxy, changes in ¥ will similarly follow from
changes in the orbital velocity v, and changes in Myq/Ly will follow from changes in v?r. Consequently, the various
correlation coefficients can be estimated from derivatives of equations governing the orbital motion. Time average
values are listed in Table 2.

3. Radial velocity uncertainties.—A fractional change in log ¥ due to this effect does not change R but does
change log My/Ly by 2A,(log V).

4. Galactic mass uncertainty.—The correlation coefficients induced by this effect are estimated in strict analogy
with the case of projection effects.

5. Group luminosity uncertainties.—These affect neither ¥ nor R.

6. Distance errors.—A fractional change in distance produces a corresponding fractional change in R and
(My</Ly)~1, but does not affect V.

APPENDIX V
THEORETICAL NET CORRELATION COEFFICIENTS
The displacements Ax; and Ay, in the definition of the correlation coefficient, equation (6), are the sums
Ax; = (Ax, + Ax, + Ax, + Axy + Axp, + Dxg + Axy);, (A30)
Ay, = (Ay, + Aye + Apy + Ay + Ay, + Aya + Ayakis (A31)

where Ax;, Ay, (j = p, e, v, m, Ly, d) are the displacements induced by each effect acting alone, and Ax,, Ay,
represent the net displacements by all effects in addition to the pevmL,d effects. Inserting equations (A30) and (A31)
into equation (6), we find

LS (Ax,Ay, + AxAy, + AxAp, + Axphyy + Axy, Ay, + AxAy, + AxaAp), . (A32)

noxoy =1

p(y, x) =
Sums of mixed effects such as
n
z Ax,Ay,
i=1
are equal to zero because different effects are statistically independent, i.e., uncorrelated.

1 Recall that the contributions to standard deviations by errors in luminosities due to distance errors are incorporated entirely
in the contributions by distance errors.
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Consider the jth effect. The standard deviations in the sample of n groups produced if the jth effect acted alone
are o4(x) and o,(y). The corresponding correlation coefficient is

p0n3) = | 3 Wy [lmodroso.

(A33)

It follows from equation (A33) that if p,(y, x) = 0, then 3?7, (Ax,Ay,); = 0;if p/(y, x) = 1, then 3}, (Ax,Ap)); =
noy(x)o,(y); and if p,(y, x) = —1, then D7, (Ax,Ap;), = —no x)o(y). Applymg this result to each p, e, v, m, Ly,
and d effect by using the correlatlon coefficients for each effect derived in Appendix IV and tabulated in Table 2,
we obtain the relations for the net correlation coefficients, equations (8)—(10).

The results of the discussion on the uncertainties in the standard deviations of virial parameters due to the
ps e, v, m, Ly, d effects (Appendix III) apply as well to the correlation coefficients. If galactic mass estimates are at
least roughly correct or systematically in error by a common factor, then the derived net correlation coefficients

are realistic and meaningful.
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