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*» COULOMB BLOCKADE OF THE AHARONOV-BOHM EFFECT

C. W. J. Beenakker, H. van Houten, and A. A. M. Staring1

Philips Research Laboratories
5600 JA Eindhoven, The Netherlands

INTRODUCTION

Granulär electronics, the theme of this Conference, refers to conduction phenomena
governed by the transport of a single quantum of Charge e. The Aharonov-Bohm effect refers
to oscillations in the conductance governed by the addition to the System of a single quantum of
magnetic flux hie. The present article addresses the interplay of these two quanta of nature.

The granularity of the transported Charge manifests itself in the conductance äs a result
of the Coulomb repulsion of individual electrons. The transfer by tunneling of one electron
between two initially neutral regions, of mutual capacitance C, increases the electrostatic energy
of the System by an amount of e2/2C. At low temperatures and small applied voltages,
conduction is suppressed because of the charging energy (Gorter, 1951). This phenomenon is
now known äs the Coulomb blockade of single-electron tunneling (Likharev, 1988; and in this
volume).

The Aharonov-Bohm effect is a quantum interference effect which results from the
influence of the vector potential on the phase of the electron wavefunction. Aharonov and
Bohm (1959, 1961) originally considered the influence of the vector potential on electrons
confmed to a multiply-connected region, within which the magnetic field is zero. The ground
state energy of the System is periodic in the enclosed flux with period hie, äs a consequence of
gauge invariance (cf. the article by Leggett in this volume). Coulomb repulsion does not affect
this periodicity.

In the solid state, the Aharonov-Bohm effect manifests itself äs a periodic oscillation in
the conductance of a sample äs a function of an applied magnetic field B. A well-defined
periodicity requires that the conducting paths through the sample enclose a constant area A,
perpendicular to B. The periodicity of the oscillations is then Δ5 = Ιι/eA, plus possibly
harmonics (e.g. at h/2eA). The constant area may be imposed by confining the electrons
electrostatically to a ring or to a cylindrical film (Washburn and Webb, 1986; Aronov and
Sharvin, 1987). Alternatively, one can use the magnetic field itself to confine the Fermi-level
electrons to the edge of a singly-connected region, thereby creating effectively a ring topology.
The Aharonov-Bohm effect due to such circulating edge states was studied in metals in weak
magnetic fields (Bogachek and Gogadze, 1973; Brandt et al., 1977), and more recently in
semiconductors in strong magnetic fields in the quantum Hall effect regime (Van Loosdrecht et
al., 1988; Van Wees et al., 1989; Sivan et al, 1989).
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An essential difference with the original Aharonov-Bohm effect is that in these
expenments the magnetic field extends into the conducting region of the sample Since the
penodicity is now no longer constramed by gauge mvanance, this opens up the possibihty, in
pnnciple, of an influence of Coulomb repulsion In the present article we discuss our
theoretical work on the suppression of the Aharonov-Bohm effect by the Coulomb blockdde of
tunnehng, in more detail than m the original pubhcation (Beenakker, Van Honten, and Staring,
1990) The suppression is predicted to occur in a "quantum dot", i e a disc shaped region in a
two dimensional electron gas, for a capacitance which is sufficiently small that the thaiging
energy e2/C becomes comparable to the Separation of Landau levels ~h(üc (with o>c Ξ eB/m the
cyclotron frequency) A precursor at larger capacitances is a reduction of the frequency of the
magnetoconductance oscillations, by a factor of l + e2/CAE (with Δ£ the energy Separation of
the edge states) The influence of the Coulomb repulsion disappears, in accord with the
original Aharonov Bohm effect, if a large hole is made in the quantum dot, such that the area of
the conducting region S of the resulting ring is much smaller than the enclosed area A

In the next section, we analyze in general terms the influence of Coulomb repulsion on
resonant tunnehng Some well known properties of circulating edge states in a quantum dot
are reviewed in the subsequent section In the fourth section we then combine the results of the
two preceding sections to obtam the suppression of the Aharonov-Bohm effect in a disc, and
its recovery in a nng An expenmental test of the theory is then suggested

COULOMB OSCILLATIONS AND RESONANT TUNNELING

To analyze the influence of Coulomb repulsion on resonant tunnehng we consider a
quantum dot which is weakly coupled by tunnel bamers to two electron reservoirs The
electiostatic potential profile along a hne through the quantum dot is shown schematically in
Fig l (discussed below) A current / can be passed through the dot by applymg a voltage
difference V between the two reservoirs The conductance G of the quantum dot is defmed äs
G = I/V, in the limit V —> 0 In the absence of Coulomb repulsion, the condition for a
conductance peak due to resonant tunnehng through the quantum dot is simply that the Fermi
energy Er in the reservoirs hnes up with an energy level m the dot We wish to know how that
condition is modified by the chargmg energy
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Fig l Single electron tunnehng through a quantum dot, under the conditions
of (6), for the case that the chargmg energy is comparable to the level
spacing An infinitesimally small voltage difference is assumed between
the left and nght reservoirs

The linear response conductance G can be analyzed with the equihbnum properties of
the System Let us consider these The probabihty P(N) to find N electrons in the quantum dot
in equihbnum with the reservoirs is given by the grand canomcal distnbution function

P(N) = constant χ exp l - -L [F(N) - N £J l , (1)
l kT )

where F(N) is the free energy of the dot and T the temperature The reservoir Fermi energy Ef
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is measured relative to the conduction band bottom in the reservoirs. In general, P (N) at T = 0
is non-zero for a single value of N only (namely the integer which minimizes the
thermodynamic potential Ω(Ν) = F(N)-NEf). In that case, G -> 0 in the limit T -^ 0. As
discussed by Glazman and Shekhter (1989), a non-zero G is possible only if P(N) and.P(7V+l)
are both non-zero for some N. Then a small applied voltage is sufficient to induce a current
through the dot, via intermediate states N - > 7 V + 1 - > 7 V — > / V + l - > . . . . To have .PC/V) and
P(N+l) both non-zero at T = 0 requires that both N and N+l minimize Ω. Α necessary
condition is Ω(Ν+\) = Ω(Λ'), or

F(N+l)-(N + 1)£F = F(N) - N Ef . (2)

This condition is also sufficient, unless Q has more than one minimum (which is usually not
the case). At T = 0 the free energy F(N) equals the ground state energy U(N) of the dot. We
conclude that a peak in the low-temperature conductance occurs whenever

l) - U(N) = £F, (3)

for some inleger N.

The usefulness of (3) is that it maps the problem of determining the location of the
conductance peaks onto the more familiär problem of calculating the electrochemical potential
U(N + 1) - U(N) of the quantum dot, i.e. the binding energy of one electron to the dot. This
opens the way, in principle, to a study of exchange and correlation effects on conductance
oscillations in a quantum dot [e.g. along the lines of work by Bryant (1987), and by Maksym
and Chakraborty (1990)].

In the present investigation we adopt the simple approximation usually made in studies
of the Coulomb blockade (Likharev, 1988; Glazman and Shekhter, 1989; Korotkov et al,
1990, Averin and Korotkov) of .taking the Coulomb interaction into account only via the
macroscopic electrostatic energy J(f>(<2) dQ. Here Q - -Ne is the Charge on the dot, and

φ(β) = -^f + Φοχι (4)

is the potential difference between dot and reservoir, including a contribution 0cxt from external
charges.2 We thus write for the ground state energy:3

(5)

where Ep (p = l, 2, ...) are the single-electron energy levels in ascending order, measured
relative to the bottom of the potential well in the quantum dot. Each level contains either one or

2 In a two-dimcnsional clectron gas, the external charges are supplied by ionizcd donors and by a gale elcctrodc
(wilh an elecirostaüc voltage Vgate bctwccn gate and reservoir). One has 0ext = ^donors+c^gate. where α (äs
well äs C) is a rational funclion of the capacitancc malrix clemcnts of the System.

3 To makc connection with some of the litcraturc (Büttiker, 1987; Amman et al., 1989), wc mcntion that ßext
= C0fcxl plays the role of an "externally induccd Charge" on the dot, which can bc varicd continuously by mcans
of Kgatc (in contrast to Q which is rcstricted to integer multiples of e). In tcrms of ßcxtonc can wrilc

^ (Ne-Q )2

U(N) = > E
P + ~ ^- + constant,

•̂ ™™* 2s\^t

which is cquivalcnt to (5). We emphaslzc that öext 's an externally controllcd variable, via Vga[C, rcgardless of
the relative magnitudc of die various capacilanccs in Üie System.
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zero electrons. Spin degeneracy can be included by counting each level twice, and other
degeneracies can be included similarly. The energy levels E„ depend on gate voltage and
magnetic field, but are assumed to be independent of N. This assumption is supported by
recent self-consistent Solutions of the Schrödinger and Poisson equations in a quantum dot
(Kumareiö/., 1990).

Substitution of (5) into (3) gives (after relabeling N + l —> ΛΟ

(2N — l )e^
4 Ξ EN + 2C = EF + ^ext (6)

as the condition for a conductance peak. The left-hand-side of (6) defines a renormalized
energy level EN. The renormalized level spacing &E* = ΔΕ +e2/C is enhanced above the bare
level spacing by the charging energy. In the limit e^/CAE -> 0, (6) is the usual condition for
resonant tunneling. In the limit e2/CAE -> °°, and for B = 0, (6) describes the periodicity of
the Coulomb oscillations in the conductance versus electron density (see below), studied
theoretically in several papers (Amman et ai, 1989; Glazman and Shekhter, 1989; Van Honten
and Beenakker, 1989). The interplay of resonant tunneling and Coulomb oscillations at B = 0
has been studied recently by Wingreen and Lee (1990), by means of a self-consistent solution
of the Schrödinger and Poisson equations. Note that (6) is sufficient to determine the
periodicity of the conductance oscillations, but gives no information on their amplitude and
width. That requires the solution of a kinetic equation, with input of the tunneling rates. Such
a calculation has been performed by Korotkov et al. (1990) for the non-linear I-V characteristic
of a quantum dot at B = 0.

In Fig. l we have illustrated the tunneling of an electron through the dot under the
conditions of (6). In panel (a) one has EN + e2/2C = Ep + εφ(Ν — 1), with N referring to the
lowest unoccupied level in the dot. In panel (b) an electron has tunneled into the dot. One now
has EN — e2/2C = EF + βφ(Ν), with N referring to the highest occupied level. The potential
difference φ between dot and reservoir has decreased by e/C (becoming negative), because of
the added electron. Finally, in panel (c) the added electron tunnels out of the dot, resetting the
Potentials to the initial state of panel (a).

The conductance of the quantum dot oscillates as a function of the Fermi energy (or
electron density) of the reservoirs. The periodicity AEp follows from (6). If EF is increased at
constant 0cxt, one has simply

Δ£ρ = ΔΕ* = ΔΕ + ̂  , (7)

In the absence of charging effects, AEp is determined by the irregulär spacing ΔΕ of the single-
electron levels in the quantum dot. The charging energy e2/C regulates the spacing, once e2/C
> ΔΕ. The spin degeneracy of the levels is lifted by the charging energy. In a plot of G versus

Ep this leads to a doublet structure of the oscillations, with a spacing alternating between e^/C
and ΔΕ + c2/C .

Experiments on conductance oscillations as a function of gate voltage have been
analyzed in terms of (6) by Staring et al. (1990). In these, and related experiments (Scott-
Thomas etal, 1989; Meirav et al., 1989; 1990; Kouwenhoven et al., 1990), both £F and 0cxl

are varied by changing the voltage on a gate electrode which defines a confmed region in a two-
dimensional electron gas. In addition, a change in gate voltage affects the shape of the
confining potential, and hence the single-electron levels Ep. The confined region in these
experiments consists of a segment of a narrow channel, dehmited by tunnel barriers. Under
the realistic assumption of a linear dependence on the gate voltage of the number of electrons
per unit channel length (Laux et al., 1988), it follows from (6) that the conductance oscillations
remain approximately periodic in the gate voltage for such a geometry, thus explaining the most
remarkable feature of the experiments.
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CIRCULATING EDGE STATES

Entirely new mechanisms for the Aharonov-Bohm effect become operative in strong
magnetic fields in the quantum Hall effect regime. These mechanisms do not require a ring
geometry, but apply to singly-connected geometries such äs a point contact (Van Loosdrecht et
al., 1988), or a quantum dot (Van Wees et al, 1989; Sivan et αι., 1989). These geometries
behave äs if they were multiply connected, because of circulating edge states. In this section
we review some well-known properties of edge states in a noninteracting electron gas, which
we will need below. A comprehensive treatment of edge state transport can be found in a
recent review (Beenakker and Van Houten, 1991).

In a strong perpendicular magnetic field B and a smooth confming potential V (r), the
single-electron states of a two-dimensional electron gas are extended along equipotentials of V
at the guiding center energy EQ, defined by

EQ = E-(n-l)faoc> (8)

for an eleclron with energy E in the «th Landau level (n = l, 2, . . . ). The confming potential
should be sufficiently smooth that it does not induce transitions between different values of n.

This rcquires that lmV < toc, with lm = (ft/eBf the magnetic length (which plays the role of
the wave length in the quantum Hall effect regime). The energy levels Enp for a given n are
such that the (closed) equipotentials for subsequentp enclose one additional quantum of flux
hie.

A canonical example is the harmonic oscillator potential V(r) = mffl§r2/2, for which the
single-electron Schrödinger equation can be solved exactly. The exact energy levels (for a
single spin direction) are (Fock, 1928; Darwin, 1930)

ml

m = l, 2, .... / = 0, ±1, ±2, .... (9)

In the limit (ü(/(üc -> 0 of a smooth potential, (9) reduces to

, η = 1, 2, ..., s = η, η+1, η+2,..., (10)

with the identifications n = (l + l/l)/2 + m, s = 2m + l/l - 1. Equation (10) may also be written äs

E„„ = (n-)1iuc + V(Rnp) , Βπ/ = (p + y „ ) - ,

n = l, 2, ..., p = 1,2, ..., (11)

which is equivalent to the requirement that the equipotential of the edge state, of radius Rnp,

encloses p+jn flux quanta. Cornparison with (10) shows that, for the harmonic oscillator

potential, jn = n - 1. For other smooth confining potentials V (r), (11) still holds, but y„ may
be different. We will make use of (l 1) in the last section to obtain the approximate energy

levels for a ring-shaped confining potential. (Knowledge of y„ is not important if one only
considers states within a single Landau level.)
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Equation (11) does not hold for a hard-wall confining potential. An exact solution
exists in this case for a circular disc of radius R, defined by V (r) = 0 for r < R, and V (r) = <=°
for r > R (Geerinckx et al., 1990). The case of a square-shaped disc was studied numerically
by Sivan et al. (1988; 1989). In Fig. 2 we show the energy spectrum äs a function of B for the
latter case. The asymptotes correspond to the bulk Landau levels E = (n - l/2)tac . The first
two Landau levels (n = 1,2) are visible in Fig. 2. The states between the Landau levels are
edge states, which extend along the perimeter of the disc. These circulating edge states make
the geometry effectively doubly connected — in the sense that they enclose a well-defined
amount of flux. This is at the origin of the Aharonov-Bohm effect in a quantum dot.

B >- (eA/h)

Fig. 2 Energy levels äs a function of magnetic field for a square-shaped disc
(of area A) defined by a hard-wall confining potential, äs calculated by
Sivan et al. (1989). The level crossings are removed by a small amount
of disorder.

INFLUENCE OF COULOMB REPULSION ON THE AHARONOV-BOHM
EFFECT

As discussed for a non-interacting electron gas by Van Wees et al. (1989) and by Sivan
et al. (1989), Aharonov-Bohm oscillations result from resonant tunneling through the quantum
dot via edge states circulating along the dot perimeter [see Fig. 3(a)]. The presence of
circulating edge states makes it possible to have conductance oscillations with a well-defined
periodicity Aß in a dot, just äs the usual Aharonov-Bohm effect in a ring. There is, however,
a difference — which went unnoticed in these papers. In each period Aß the number of states
below a given energy increases by one in a quantum dot — but stays constant in a ring. As a
result, the Aharonov-Bohm magnetoconductance oscillations of a quantum dot are
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accompanied by an increase ofthe charge ofthe dot by one elementary charge perperiod. That
is of no consequence if the Coulomb repulsion of the electrons can be neglected, but becomes
important if the dot has a small capacitance C to the reservoirs, since then the electrostatic
energy e2/C associated with the incremental charging by single electrons has to be taken into
account.

(a) EF+eV Θ Β

(b)

Fig. 3 (a) Quantum dot geometry. A gate (shaded) isolates a disc-shaped
region in a two-dimensional electron gas from two reservoirs.
Conduction through the dot occurs by tunneling (dashed lines), in the
case of a small voltage difference V between the reservoirs at
equilibrium chemical potential £p- Edge states in the reservoirs and in
the quantum dot are indicated, with arrows pointing into the direction of
motion. (b) Geometry which can be transformed from a dot into a ring,
by depleting the electron gas below the disc-shaped gate. Two sets of
edge states, circulating in opposite directions, appear in a ring. [From
Beenakker et al. (1990).]

To analyze this problem, we combine the results of the previous two sections. We
apply (6) to the energy spectrum shown in Fig. 2. We consider here only the edge states from
the lowest (spin-split) Landau level, so that the Aharonov-Bohm oscillations have a single
periodicily. This corresponds to the strong-magnetic field limit. The magnetic field
dependence of the edge states can be described approximately by a sequence of equidistant
parallel lincs,

(12)

see Fig. 2. Sivan and Imry (1988) estimate, for a circular quantum dot of radius R, ΔΒ ~ h/eA

and ΔΕ ~ ίτω lm/2R. These are order of magnitude estimates for a hard-wall confining

potential.4 On Substitution of (12) into (6), one finds the condition

4 For a smoolh confining potential V (r) (with lmV < /rcoc) one has instcad the estimates Δβ = (h/e)[A(B) +

ßA'(ß)]-1 = (hleA)[\ --hu>cIRV'(R)Tl (Van Wccs et al, 1989), and Δ£ = Λ/τ = &V'(R)/R, whcrc A(B) is the

arca cncloscd by the cquipotcntial of radius R at the guiding ccnter energy V(R) =E-~h cüc/2 [cf. (8) for n = 11.
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Ν + Ε + constantr (13)

for the location of the conductance peaks. The ß-dependence of the reservoir Fermi energy can

be neglected in (13) in the case of a hard-wall confining potential (since dEf/dB ~ h(ä./B «

Δ£/Δβ). The periodicity Aß* of the Aharonov-Bohm oscillations is thus given by5

Aß = Aß l + }
CAE ' (14)

We conclude from (14) that the charging energy enhances the spacing of two subsequent peaks
in G versus ß by a factor l + e^/CkE. The effect of the charging energy on the amplitude of
the peaks is beyond the present analysis, but we surmise that the increase of the effective level
spacing by an amount e2/C will lead to a larger peak amplitude at a given temperature. The
periodicity of the magnetoconductance oscillations is lost if Δβ* becomes so large that the
linear approximation (12) for Ep(B) breaks down. Since (12) holds at most over an energy

ränge of the Landau level Separation Äcoc, this suppression of the Aharonov-Bohm effect

occurs when (&E/&B)&B* > to>c, i.e. when e2/C > ÄCUC.

16
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(a)
10 12 14 16 18

B/ (eA /h )

10 12 14 16 18

B x (eA /h ) (b)

Fig. 4 Comparison of the energy levels in a disc and a ring, (a) Circular hard-
wall disc (Geerinckx et al. 1990). (b) Circular channel or ring of width
W « lm (Büttiker et al., 1983). The levels in (b) are plotted relative to
the energy of the bottom of the one-dimensional subband in the channel.
The case W '> lm is qualitatively the same äs long äs S « A (see Fig 6)'
[From Beenakker et al. (1990).]

The csümalc for Δ£ rcsulls from the corrcspondcnce between the levcl spacing and the period τ of ihc classical
motion along ihc cquipolential, with guiding-center-drift velocily V'(R)/eB.

In ihe case of a smooth confining potcnüal, the tcrm Δβ in the cnhancemenl faclor of (14) should bc rcplaced
by the tcrm &B[l+(&B/&E)(dEF/dB)]~l = h/eA, undcr the assumption that the Perm i energy in the reservoir is

pinncd to the lowcst Landau levcl, i.e. £p = - toc
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The Aharonov-Bohm oscillations with bare periodicity Δδ = h/eA are recovered if one
makes a hole in the disc, which is sufficiently large that the area S of the conducting region is
much smaller than the enclosed area A. The inner perimeter of the resulting ring Supports a
second set of edge states, which travel around the ring in the opposite direction äs the first set
of edge states at the outer perimeter [Fig. 3(b)]. We compare in Fig. 4 the energy spectrum for
a disc and a ring. The two sets of clockwise and counter-clockwise propagating edge states in
a ring are distinguished by the opposite sign of dEp/dB, i.e. of the magnetic moment. Each set
of edge states leads to oscillations in the magnetoconductance of a ring with the same period
AB, but shifted in phase (and in general with different amplitude, because the edge states at the
inner perimeter have a smaller tunneling probability to the reservoir than those at the outer
perimeter). The charging energy does not modify Aß in a ring, because

Ep(B) = Ep(B + Aß) (ring).

In a disc, in contrast, one has according to (12),

EP(B) = Ep+1(B + Aß) (disc).

To illustrate the difference, we compare in Fig. 5 for disc and ring the renormalized energy
levels E*p [defmed in (6)]. The effect of the charging energy in a ring is to open an energy gap
of magnitude e2/C in Ep. This gap will affect the periodicity of the conductance oscillations äs
a function of Ep, but not äs a function of B.

disc ring

c
D

J3
l»

cd

e'/C

ΑΛΛΛΛ

WVW

ΛΛΛΛΛ

13 15 17 13 15

B > ( e A / h )

17

Fig. 5 Renormalized energy levels, defined by Eq. (6), corresponding to the
bare energy levels shown in Fig. 4. Left panel: Disc geometry; Right
panel: Ring geometry (the cusps will be rounded by a small amount of
disorder).

SUGGESTED EXPERIMENT

A conlrolled experimental demonstration of the influence of Coulomb repulsion on the
Aharonov-Bohm effect may be obtained in a System which can be transformed from a dot into
a ring. What we have in mind is a geometry such äs shown in Fig. 3(b), which has an
additional disc-shaped gate within the gate of Fig. 3(a). By applying a negative voltage
between this additional gate and the reservoir, one depletes the central region of the quantum
dot, thereby transforming it into a ring. The capacitance C between dot and reservoir is
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dominated by the capacitance between the dot and the disc-shaped gate, C - εΑ/d, with ε the
dielectric constant of the material and d the Separation of the two-dimensional electron gas and
the gate. Using the estimate AE = ~h(üclm/2R, and the parameters ε = 13εο, in = 0.07wc, d =
50nm appropriate for a GaAs-(Al,Ga)As heterostructure, one finds e2/CAE =10"^
(m//?)(T/ß)'/2. For a dot radius R of Ιμπι, and a magnetic field B of a few Tesla, the charging
energy is thus of the same magnitude äs the level spacing of the edge states, so that a frequency
doubling of the Aharonov-Bohm oscillations should be observable on depletion of the central
region of the dot.

The area of the depleted central region should be sufficiently large that S « A (where S
is the conducting area of the ring). This ensures that a field increment AB = h/eA does not
change the Landau level degeneracy BeS/h, since ABeS/h = S/A « 1. In that case one has
approximately EP(B) = EP(B + AB), so that the Aharonov-Bohm oscillations recover the bare
periodicity AB — even though the capacitance has become much smaller by depletion of the
central region of the dot.

The case S ~ A, intermediate between a dot and a ring, is also of interest. In Fig. 6(a)
we illustrate the single-electron energy levels Ep and in Fig. 6(b) the renormalized levels E*, =
Ep + (p - (l/2))e"/C, for such a case. The Aharonov-Bohm oscillations of the
magnetoconductance now have the bare periodicity AB, but over a limited magnetic field ränge
only.

LLJ

(a)
10 12 14 16 18

B (eA/h)
8 10 12 14 16 18

B (eA/h) (b)

Fig. 6 (a) Approximate energy levels [according to (11)] äs a function of
magnetic field in a relatively wide ring, defined by V (r) =mo$(r - ro)2/2
with (üQtnA/h = 10. The area A is defined by A = π/"§. The inset shows
the region (of area S) which is accessible classically by electrons in the
energy ränge shown in the figure. (b) Corresponding renormalized
energy levels.
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