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Abstract. In 1990, the ninth Fermat number was factored into primes by means of a new algorithm, the "number
field sieve", which was invented by John Pollard. The present paper is devoted to the description and analysis of
a more general version of the number field sieve. It should be possible to use this algorithm to factor arbitrary
integers into prime factors, not just integers of a special form like the ninth Fermat number. Under reasonable
heuristic assumptions, the analysis predicts that the time needed by the general number field sieve to factor n is

exp((c+o(l))(logn)1/3(loglogn)2/3) (for n-*oo), where c=(64/9)l/3 = 1.9223. This is asymptotically faster than
all other known factoring algorithms, such äs the quadratic sieve and the elliptic curve method. There does not
yet exist an Implementation of the number field sieve for general integers, so that a practical comparison cannot
yet be made.
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1. Introduction

In 1988 John Pollard circulated a manuscript [30] that described a new method for factoring

integers. The procedure required the use of an algebraic number field tailored for the specific

number n to be factored. In [23] a practical version of this idea was presented, dubbed by

the authors "the number field sieve". This method has had several noteworthy successes in

factoring numbers of the form n = bc ± l, where b is small, from the Cunningham project

(see [5]) The most spectacular of these factorizations was that of the ninth Fermat number

Fg = 22" + l, which has 155 decimal digits (see [22]).

The number field sieve has, so far, only been applied to factor numbers where certain

desiderata were easily met. These include a monic irreducible polynomial / € Z[X] of

"small, but not too small" degree rf, with "small" coefHcients, and an integer m « nlld

such that f(m) = 0 mod n. Further, if α is a zero of /, it is convenient for the ring of

integers O of the number field A' = Q(or) to be not too much larger than Z [a], for O to

have class number one, and for the units of O to be easily computable.



For example, in the case n = Fg the polynomial / = X5 + 8 and the integer m = 2103

were used; note t hat f(m) = m5 + 8 = 2515 + 8 = 0 mod n. More generally, for several

numbers n — b° ± l, with b small and c large, it has been fairly easy to meet the list of

desiderata and to use the number field sieve to factor n. For numbers of this form it was

suggested in [23] that the number field sieve takes time at most Ln[^, (32/9)1/3 + o(l)] to

factor n äs n goes t o infinity, where

Ln[u,v] = exp(u(logn)u(loglogn)1-").

The exponent u = | in the number field sieve is the new and exciting aspect of this

complexity function since all other known algorithms, such äs the quadratic sieve or the

elliptic curve method, have complexity, heuristic or probabilistic, at least £η[·|,1 + o(l)]

for n tending to infinity through an infinite sequence of numbers.

Can the number field sieve be extended to general integers? It is to this question that

this paper is addressed. We show that the method can be modified so that an arbitrary

integer n can be factored with heuristic complexity Ln[\, (64/9)1/3 + o(l)] for n —»· oo. We

will call the new algorithm the number field sieve; if we need to specifically refer to the

earlier algorithm we will refer to it äs the special number field sieve.

The reason the constant (64/9)1//3 = 1.922999 for the general case is larger than the

constant (32/9)1/3 = 1.526285 for the special number field sieve is that the coeificients of

the polynomial / we construct below are about nl/d. This is in a rough sense asymptotically

best possible for general n, äs we shall see in 12.10. For special values of n it rnay be possible

to choose the coeificients of / much smaller, which makes the algorithm faster.

Is the number field sieve practical? Since it involves the same underlying sieving

operations äs, for instance, the quadratic sieve and the special number field sieve, it is

our guess that this algorithm will eventually be the method of choice for suificiently large

integers. At the moment, its crossover with the "state-of-the-art" algorithm for factoring,

namely the quadratic sieve, seems to be about 125 digits. This is so high that it is very

difficult to factor a general number of this size with either method. The current record

with the quadratic sieve is 116 decimal digits (see [24]). However, time is on the side of

the number field sieve. It is reasonable to expect that hardware will improve and that



the number field sieve will be refined and polished äs it becomes better understood. Of

course it is impossible to predict the future; some other faster factoring algorithm may be

discovered that will supplant the quadratic sieve before theoretical and practical advances

give the number field sieve its day in the sun.

If we compare the relative predicted performance of the number field sieve and the

quadratic sieve on the basis of the somewhat questionable assumption that the "o(l)"

terms in the heuristic complexity estimates can be ignored, then we find that the predicted

number of operations for both are within a factor of about 3 for numbers between 100 and

150 decimal digits. This suggests that a small change in the implementation of either

algorithm may have a large effect on the location of the crossover point.

Our description of the number field sieve incorporates the idea of Adleman [1] of using

'character columns', described in Section 8. In our original formulation of the number

field sieve we had used a rnore awkward technique instead of character columns, which

initially achieved only Z,n[|,91/3 + o(l)] äs n -+ oo for the heuristic complexity of the

number field sieve, where 91/3 = 2.080084; and it was only at the expense of considerable

additional complications that we could obtain the bound Z/n[f , (64/9)1/3 + o(l)] with this

technique. Adleman's idea achieves the latter bound with much less effort, and it simplifies

the description of the algorithm in several ways. In addition it likely moves the number

field sieve closer to being a practical factoring algorithm for arbitrary integers.

Another improvement to be mentioned is that of Coppersmith [10]. His idea reduces

the complexity estimate even further, namely to Ln[\,c + °(1)] f°r n ~* cc-> where

However, it is unlikely that this method will be practical for numbers of reasonable size

(of fewer than 1000 digits, say).

The idea underlying the number field sieve has also been applied to the discrete

logarithm problem. For this, we refer to [14] and [34].

The structure of this paper is äs follows. Section 2 contains an outline of the num-

ber field sieve. In Section 3 we describe an algorithm for selecting the number field to

be used by the algorithm. Section 4 is devoted to a description of a well-known sieving
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technique for constructing squares in the field of rational nurnbers. In Section 5 we carry

this technique over to the algebraic number field. It turns out that we have to deal with

certain obstructions, which are described and analyzed in Section 6. Two algebraic facts

that are used in Sections 5 and 6 are proved in Section 7. We overcome the obstructions in

Section 8, by using the character colurnns that were suggested by Adlernan. In Section 9

we discuss a problem that has not appeared in earlier factoring algorithms, namely that of

taking square roots in algebraic number fields. In Section 10 we state a heuristic principle

that can be used to obtain running time estimates for a surprisingly wide class of factoring

algorithms. Section 11 summarizes the entire algorithm and gives a heuristic running time

analysis. Finally, in Section 12 we describe a modification of the number field sieve that

should improve its practical performance.

2. The idea of the number field sieve

A very old factoring strategy going back to Fermat and Legendre is to write n äs a difference

of two squares. More generally, it suffices to find a solution to x2 = y2 mod n. One might

then obtain a factorization of n by finding the greatest common divisor of χ — y and n.

In fact, it is easy to prove that if n is divisible by at least two distinct odd primes then

for at least half of the pairs χ mod n, y mod n with x2 = y2 mod n and gcd(zy,n) = l,

we have l < gcd(x — y, n) < n. There are many factoring algorithms that exploit this

idea by trying to construct such pairs x, y in a random or pseudo-random manner. These

algorithms include the continued fraction method [29]. the random squares method [11],

the quadratic sieve [32], and, of course, the special number field sieve.

Before we see how the number field sieve attempts to find a solution to x2 = y2 mod n

we say a few words about the ring in which the number field sieve operates. Suppose

/ E Z[X] is monic and irreducible of degree d > 1. We shall work with the ring Z[a] that is

generated by a zero α of /. It makes no difference whether one thinks of Z[a] äs a subring

of the field of complex numbers or äs the ring Z[X]/fZ[X], with a = (X mod /); all that

matters is that each element of Z [a] can in a unique way be written in the form Χ̂ ,.Γ0 α,α',

with ao, aj, . .., dd-i € Z. Thus, each element of Z[a] can be represented äs a vector with

d integral coordinates a,. The addition in the ring is then just vector addition. To multiply



two polynomial expressions in a, one first multiplies them äs polynomials, and next uses

the relation /(a) = 0 to reduce the result to a polynomial expression of degree less than

d in a. If we let, in a completely analogous way, the a, ränge over the field Q of rational

numbers rather than over Z, then we obtain the field of fractions Q(a) of Z [a].

Corning back to the number field sieve, let us now assume that m G Z satisfies f(m) =

0 mod n. Then there is a natural ring homomorphism φ: Z [a] —»· Z/nZ induced by φ(α) =

(m mod n); so <̂ (Σ, ata!) = (̂: α,m' mod n). Suppose we can find a non-empty set S of

pairs (a, 6) of relatively prime integers with the following two properties:

(2.1) l l (a + bm) is a square in Z,

(o,b)€S

(2.2) TT (a + δα) is a square in Z [a].

(a,6)€S

Let x € Z be a square root of the square in (2.1) and let β G Z [a] be a square root of the

element of Z(a] in (2.2). Since φ(α + 6α) = (α + bm mod n), we have φ(β2} = (z2 mod n).

Let y € Z be such that </?(/?) = (y mod n). Then y2 Ξ ι2 mod n, and we have constructed

our congruent squares and so may attempt to factor n by Computing gcd(y — z, n).

There are several questions that are raised by the above outline:

(i) How are the polynomial / and the integer m to be constructed?

(ii) How is the set 5 of coprime integer pairs that satisfies (2.1) and (2.2) to be found?

(iii) How is an element β € Ζ[α] to be found such that ß2 is the square in (2.2)?

(iv) How much time do these steps take?

The overall plan of this paper is to gradually answer these questions until we can finally

state a precise version of the algorithm and attempt to analyze its complexity.

Remark. The basic goal of most "combination of congruence" factoring algorithms,

including the number field sieve, can be encapsulated algebraically by saying that we have a

ring R and a ring homomorphism ψ: R —> Z/nZxZ/nZ together with ameans of generating

many element s of R whose image under ψ lies in the diagonal {(x,x] : x 6 (Z/nZ)*}.

We than hope to combine these elements multiplicatively to obtain squares in R whose

square roots have an image under ψ not lying in {(x,±z) : χ 6 (Z/nZ)*}. In the case

of the quadratic sieve we have R = Z χ Z. In the case of the number field sieve we



have R = Z χ Ζ [α] and ̂ >(r, /?) = (r mod n, φ(β}}, and we consider elements of the form

(a + 6m, a + ba}. It is tempting to consider more general rings, e.g., R = Z[a] χ Ζ[α'], or

R = Z[a] where / has two zeroes modulo n, but so fax we have not found a way to exploit

this.

3. Finding a polynomial

Given a positive integer n that is not a prime power, the first step of the number field sieve

algorithm is to find a polynomial / with integer coefficients and an integer m such that

/(m) is a multiple of n. In the basic version of the number field sieve that we will present,

the following particularly simple method is used to find a polynomial; this algorithm will

be referred to äs the "base m" method.

Suppose that we are given positive integers n and d with d > l and n > 2 . Set

m = [n1id], and write n to the base m:

(3.1) n = cdmd + cd-1md~1 + ... + c0

where the "digits" c, satisfy, äs usual, the inequality 0 < c, < m. The Output of the base m

algorithm consists of the integer m and the polynomial / = Xd + Cd--iXd~l + · · . + c\X + CQ.

Note that we have /(m) = n.

Proposition 3.2. The leading coefRcient c& of f is equal to l, and c^-i < d.

Proof. From our assumption n > 1̂  we have (f) < 2d - 2 < nl/d - 2 < m - 1. Therefore

the digits of (m + l)d in the base m are the binomial coefficients ( ), and the proposition

follows from the inequalities md· < n < (m + l)d.

For the d that we will recommend later, n will be much larger than 2d .

The polynomial / produced by the base m algorithm may be reducible. However,

since our interest lies in factoring n, this event would be fortunate. Indeed, if / = gh is a

non-trivial factorization of / in Z[X] then g(rn)h(rri) = f(m) = n is a non-trivial Splitting

of n in Z. This result follows from the proofs in [4], where we need only the easier case

m > 3. We note that / can be factored in time (logn)O(1\ by means of the algorithm

of [21].
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In a weak asymptotic sense, the base τη algorithm, simple äs it may be, cannot be

improved for use in the number field sieve, although for practical purposes there is still

room for improvement. This is further discussed in 12.10 and 12.15.

The following estimate will be needed later in this paper. We let / be äs produced by

the base m algorithm, with d > l, n > 2d .

Lemma 3.3. The discriminant Δ of / satisfies |Δ| < <Ράη2~*Ιά.

Proof. The discriminant of the monic polynomial / is, up to sign, equal to the resultant

of / and its derivative, which in turn is equal to the determinant of the corresponding

Sylvester matrix (see [36, Sections 34 and 35]). The non-zero entries of each of the first

d — l rows of that matrix are the coefficients of /, and the non-zero entries of each of the

remaining d rows are the coefficients of /'. To estimate the determinant, we divide each of

the last d rows, corresponding to /', by d, and we divide each of the last 2d — 3 columns

by m; those are the columns involving a c, with i < d—l. Finally, we subtract Q-I times

the first column from the second column. This results in a matrix of which all entries are

at most l in absolute value. Each of the first d—l row vectors of that matrix has Euclidean

length at most \/d + l , and each of the last d row vectors has Euclidean length at most yd.

Thus from Hadamard's determinant bound we obtain

< ddm2d~3(d + i)(*

using md < n and d > l for the last inequality. This proves 3.3.



4. The rational sieve

We let n and d be integers with n, d > l, and we let / € Ζ[Χ] a monic irreducible

polynomial of degree d. We let m be an integer with the property f(m) = 0 mod n. By

α we denote a zero of /, äs explained in Section 2. We write Z [a] for the ring generated

by a.

As suggested above, the heart of the number field sieve lies in constructing a non-

empty set 5 of coprime integer pairs for which we have

(4.1) TT (a + brn) is a square in Z,

(a,b)es

(4.2) TT (a + ba) is a square in Z [a].

(a,b)€S

Basically, the construction of S proceeds in two steps. First, one uses a sieve to find a set T

of pairs (a, b) such that both α + 6m is smooth (i. e., factors into small primes), and α + ba

is smooth (in a similar sense, to be defined later) in Z [a]. Next, one uses linear algebra

over the field with two elements to locate S C T.

Let u be a large positive number to be chosen later, depending on n. Our overall

universe of possible pairs, from which the sets T and 5 will be chosen, is

(4.3) U = {(a, b) : a, b € Z, gcd(a, 6) = l, |a < u, 0 < b < u}.

We will need to choose the parameter u sufficiently large so that U contains a non-empty

set 5 satisfying (4.1) and (4.2).

Initially, we will discuss conditions (4.1) and (4.2) separately. That is, in the present

section we focus on the "rational" side of the number field sieve, i.e., finding a set S

satisfying (4.1). Next we shall concentrate on the "algebraic" side (4.2). Finally, we shall

see how to achieve (4.1) and (4.2) simultaneously.

The procedure for finding a square in Z by sieving is Standard; we recall the idea.

First a parameter y = y(n) is chosen, and by sieving one finds a subset

TI = {(a, b) G U : a + bm is y-smooth},

where we say that an integer is y-smooth if all of its prime divisors are less than or equal

to y. The sieving procedure works äs follows. For each fixed integer b with 0 < b < u an
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array is initialized with the integers α + bm for —u < a < u. For each prime number p < y

the numbers in the array corresponding to values of α with a = —bm mod p are retrieved

one at a time, divided by the highest power of p that divides them, and the quotient is

replaced in the same array at the same location from which the number was retrieved. At

the end of this procedure the number in the ath location is, up to sign, the largest divisor

of a + bm that is coprime to the primes up to y. Any location that contains the number

l or — l at the end of the procedure corresponds to a number α + bm that is y-smooth. If

gcd(a, δ) = l, we have thus detected a member of T\.

In practice various devices can be used to speed up the sieving. For instance, it is

more efficient to replace the numbers in the array by their approximate logarithms (say to

base 2), to initialize the array with 0 instead of the logarithms of the numbers \a + öm|,

to add the logarithm of p instead of dividing by p, to ignore small primes, to ignore higher

powers of p, and to inspect, at the end of the procedure, all values of α for which the ath

location contains a number exceeding a certain bound independent of a.

Remark. The primes less than or equal to y are said to be in the "factor base" of

the sieve. The precise choice of the parameters y and u will be given later äs part of the

complexity analysis of the final algorithm, see Section 11.

Suppose the parameters u and y are chosen so that #Ti > 7r(y) + l, where #Ti

denotes the cardinality of the set TI and ?r(y) denotes the number of primes up to y. It is

well-known that by using linear algebra over the field F2 with two elements one can find

a non-empty subset 5 of TI for which (4.1) holds; again we recall the idea.

Let B = 7r(y), let p} denote the j'th prime, for l < j < B, and let p0 = —l. For a

y-smooth integer

„ . Π ρ','
j=0

we define the exponent vector &(w] 6 F^+1 by

e(w) = (e0 mod 2, ei mod 2, ..., e# mod 2).

We may form such a vector e(a + bm) for each (a, 6) G TI. Since the number of such

vectors exceeds the dimension of the F2-vector space F^+1, there is a non-trivial linear



dependence relation with coefficients 0 and l, and hence a non-empty subset S C TI such

that

(a,6)€S

Therefore

TT (a + bm] is a square in Z.

(a,6)€S

Thus we have "solved" (4.1) by combining smooth elements.

5. The algebraic sieve

The notation and hypotheses in this section are äs in Section 4. In addition, we write K for

the field of fractions Q(a) of Z[a] (see Section 2) and O for the ring of algebraic integers

in K. The multiplicative group of K is indicated by A'*, and N:K—*Q is the norm map

of the extension Q C K. For background on algebraic number theory we refer to [18; 39] .

In order to find a square in Z [a], i.e., find a set satisfying (4.2), we attempt to

mimic the well-worn strategy described in the previous section. If the ring Z [a] is a unique

factorization domain this would be fairly easy, though problems with units would still

remain. We note that in only a few of the applications so far of the special number field

sieve, Z [a] has been a unique factorization domain, but in the remaining cases where it

has not, the füll ring of integers O in K has been. Since we certainly cannot count on this

being true for arbitrary numbers, we will describe a strategy for solving (4.2) that does

not depend on special properties of Z [a].

Define an element β (Ξ Z [α] to be y-smooth if its norm N(ß) G Z is y-smooth. We can

calculate the norm of an element of the form a + ba by substituting a, b in the homogeneous

polynomial (-Y)df(-X/Y)\ that is, if a. b G Z then

(5.1) N (a + ba) = ad - cd^ad~lb + ... + (~l}dcübd

where / = Xd + οά-ιΧά~ι + . . . + c0.

A modification of the earlier sieving idea can be used to find the set

TI — {(a, 6) <E U : a + ba is y-smooth},
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where U is äs in (4.3). Namely, for each prime p let the sei of zeroes of / mod p be denoted

by Ä(p), i. e., R(p) = {r e {0, l,... ,p - 1} : /(r) = 0 mod p}. Then for any fixed integer b

with 0 < 6 < u and 6^0 mod p, the integers α with N(a + 6α) Ξ 0 mod p are those with

a = —br mod p for some r € -R(p). Note that if b = 0 mod p, then there are no integers α

with (a, b) eU and 7V(a + δα) = 0 mod p.

For each fixed b initialize an array with the numbers N(a + 6α) for -u < a < u.

For each prime p < y that does not divide b and each choice of r e R(p) the positions

corresponding to α that are congruent to — br mod p are identified, the numbers in these

positions are retrieved and divided by the highest power of p that divides them and then

the quotient is replaced in the array äs before. At the end of this process the locations

containing ±1 correspond to y-smooth values of α + ba with gcd(a,6) = l, and hence

to elements of T2. We can make this procedure more efficient by using the techniques

mentioned in the previous section, including the use of approximate logarithms.

Remark 5.2. Note that for each prime p we might sieve äs many äs d residue classes

modulo p; however, heuristically the average size of R(p) is about l (see [18, Chapter VIII,

Section 4]). (This would even be provable if we were to choose y large enough.)

The next step is to apply linear algebra over the field with two elements, but here

some complications arise. In the previous section we combined the numbers α + 6m, for

(a, 6) € TI, into a square by using their exponent vectors. Similarly, we can now use the

exponent vectors of the numbers N (a + 6α) for (a, 6) € TI and proceed with them in the

same way. However, this leads only to a subset S C T-2 for which the norm of the product

Π(α b)£S (a + k°0 is a square (in Z). This is a necessary condition for the product itself to

be a square in Z [a] (or even just in A'), but it is very fax from being sufficient. It turns

out that we can overcome this problem almost completely by keeping track, for each prime

number p dividing N (a + 6α), of the value r 6 R(p} that is "responsible"' for the fact that

p divides N(a + 6α).

More explicitly, let a, 6 e Z satisfy gcd(a, 6) = 1. Further let p be a prime number

and r an element of the set R(p) defined above. Then we define ep,r(a + 6α) by

/ , , s f ordp(7V(a + 6a)) if a + br = 0 mod p
epr(a + ba) = 4 y^ ^ ,,

[0 otherwise,
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where ordp(fc) is the number of factors p m k. Clearly we have

p,r

the product ranging over all pairs p, r with p prime and r (E -R(p). The following result

justifies the introduction of the numbers εΡ;Γ(α + ba).

Proposition 5.3. Lei S be a ßnite sei of coprime integer pairs (a, b) with the property

that J|/ 6s£5 (a + fea) is the square of an element of K. Then for each prime number p

and each r £ R(p) we have

βρ:Γ(α + δα) ΞΞ 0 mod 2.

This proposition is proved below.

For the number field sieve we are really interested in the converse of the proposition:

if the congruence in 5.3 holds for all pairs p, r, does it follow that Π(α,&)€.?(α + ̂°0 'IS

a square? The answer is "no", äs is shown by the example S = {( — 1,0)}, if K does not

contain a square root of —1. However, we shall see, using the results in Section 7, that the

extent to which the converse fails can be measured, that it is quite small (see Theorem 6.7),

and that the failure of the converse can be overcome by the use of quadratic characters

(see Section 8).

In order to prove 5.3 it is convenient to recall some basic facts about the non-zero

prime ideals, or "primes" äs we shall call them, of the ring Z [a]. If P C Z [a] is a prime,

then Z[oc]/P is a finite field, and P contains a unique prime number p (see Section 7).

The norm NP of a prime P is the number of elements NP = #Z[a]/P of its residue

class field, and the degree of P is the degree of Z [a] /P äs a field extension of its prime

field Fp. If P is a first degree prime, then Z [a] /P is isomorphic to Fp, we have NP = p,

and the map Z [a] — »· Fp with kernel P sends a to a zero r mod p of / mod p. Hence, a first

degree prime P gives rise to a pair p, r äs considered above. Conversely, if p is a prime

number and r G R(p)·, then there is a unique ring homomorphism Z [a] — > Fp that maps

α to r mod p, and its kernel is a first degree prime P of Z [a]. Thus there is a one-to-one
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correspondence between pairs p, r with r G R(p) and first degree primes P C Z [a]; the

ideal P corresponding to p, r is generated by p and α — r.

We shall Interpret the number epjr(a + δα) defined above äs the "number of factors P

in α + δα", where P corresponds to p, r. If Z [a] is equal to the füll ring of integers O of K

then it is clear what we mean by this: it is a Standard fact from algebraic number theory

that non-zero Ideals of O factor uniquely into primes, and εΡ)Γ(α + δα) is the exponent of P

in the factorization of the ideal (a + ba)O. In order to generalize this to the case in which

Z [a] ̂  O we need the following result.

Proposition 5.4. Tiere is, for each prime P of Z [a], a group homomorphism lp: K* -» Z,

such that the following hold:

(a) lP(ß}>Oforallß£Z[a},ß^Q;

(b) ifß£Z[a],ß^ 0, then lP(ß) > 0 if and only if β € P;

(c) for each β e A'* one has lP(ß) = 0 for all but finitely many P, and

p

where P ranges over the sei of all primes of Z [a].

If Z [a] = O, it suffices to take lp(x] equal to the exponent to which P appears in the

prime ideal factorization of the ideal xO. The proof of 5.4 for the general case is given

in Section 7. It does not use algebraic number theory, but depends on the Jordan-Holder

theorem.

Corollary 5.5. Let α and b be coprirne iniegers and let P be a prime of Z [a]. If P is not

a first degree prime, then Ιρ(α + δα) = 0. If P is a first degree prime, corresponding to a

pair p, r, then Ιρ(α + δα) = εΡ)Γ(α + δα).

Proof. Let P be a prime of Z[a] with /ρ(α + δα) > 0, and let p be the prime number

contained in P. By 5.4(b), the element α + δα maps to 0 under the map Z [a] — *· Z[a]/P.

If p divides δ, then δα also maps to 0, so the same is true for a, and therefore p divides a;

this contradicts that gcd(a, δ) = 1. It follows that δ maps to a non-zero element of Z[a]/P.

Denote by δ' the inverse of the image of δ; it belongs to the prime field Fp of Z [a]. Since
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α + ba maps to 0, the element a maps to — ab', which belongs to Fp. Therefore all of Z [a]

maps to Fp, which proves that P is a first degree prime. This implies the first assertion

of 5.5. If P corresponds to p, r, then r is deterrnined by α + br = 0 mod p. This shows

that P is the unique prime of Z [a] containing p and α + δα. Now the last statement of 5.5

follows if one compares the power of p on both sides of 5.4(c). This proves 5.5.

We can now prove Proposition 5.3. Let Π(α b)&s (a + ̂°0 ~ Ύ2·> an<^ *et ? ̂

degree prime corresponding to p, r. Since l p is a homomorphism, we have

(α, 6)65

This proves 5.3.

6. Four obstructions

We retain the previous notation and remind the reader that we are trying to find a square

in Z [a] by finding a non-empty subset S of

T2 = {(a, b) G U : a + ba is y-smooth}

such that the product, over all (a, 6) € 5, of a + 6a is a perfect square in Z [a].

Suppose there are exactly B' first degree primes P of Z[or] of norm at most y. (We

expect B' to be close to ?r(y) — see Remark 5.2.) If #T2 > B' the linear algebra described

in Section 4 can be modified to give us a non-empty set S C T2 such that

(6.1) Ĵ  lP(a + ba) = 0 mod 2 for all P.

(a,6)6S

This is weaker than we want. In fact there are four obstructions that may prevent a set 5

that satisfies (6.1) from satisfying (4.2):

(6.2) The ideal J"J/a Mes(a + ba)O of O may not be the square of an ideal, since we

work with primes of Z [a] rather than with primes of O.

(6.3) Even if fj/a 6)̂ 5(0 + δα)Ο = I2 for some ideal / of O, the ideal J need not be

principal.
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(6.4) Even if Π(α 6)€S (α "̂  bo>)O = 72̂  for some 7 G 0, it is not necessary that

(6.5) Even if Π(α,&)€5 (α + &α) = 72 f°r some 7 € O, we need not have 7 € Z [a].

We remark that if Z [a] = 0 then the obstructions (6.2) and (6.5) cannot occur. Further,

if O has class number one, and is hence a principal ideal domain, then obstruction (6.3)

cannot occur. Finally, if O is a principal ideal domain and we have an explicit basis for the

unit group of O then we can handle the obstruction (6.4) by linear algebra by including a

System of generating units in our factor base. However, in general we cannot make any of

these assumptions.

First we note that the fourth obstruction can be dealt with very easily. Namely, if

(a,6)GS

with 7 <E K, then 7 e O and 7/'(α) € Ζ[α] (see [39, Proposition 3-7-14]), so

(6.6) /'(a)2 ' TJ (a + ba) is the square of an element of Z[aj.

(a,6)€S

Thus we may replace (4.2) with (6.6) in our factoring algorithm if we also multiply (4.1)

by /'(m)2. Indeed, if / and m are chosen by the base m algorithm then l < /'(m) < n

so that we can assume that gcd(/'(m),n) = l (since otherwise n would be factored); thus

multiplying (4.1) by /'(m)2 will not affect our chance of factoring n.

We could have dealt with the first obstruction by working with the primes P of O

rather than those of Z [a]. There is an efficient algorithm for constructing the functions

IP for those primes, given in [6] (cf. [26, Theorem 4.9]). In practice — or perhaps in the

application of the number field sieve to the discrete logarithm problem in a finite field äs

in [14; 34]— i t may be better to use the algorithm from [6]. However, it turns out that the

techniques we have to use anyway, in order to cope with obstructions (6.3) and (6.4), also

can be used to get around the difference between Z [a] and O. Thus for simplicity we do

not use the algorithm of [6] in what follows.

In Section 8 we describe how to deal with (6.2), (6.3) and (6.4); in the remainder of

this section we show that these obstructions are, in a suitable sense, "small" obstructions.
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Benote by V the multiplicative group of those β € K* with the property t hat lp(ß) =

0 mod 2 for all primes P of Z [a]. Since each l p is a group homomorphism, we have K *2 C V.

The quotient V/K*2 is a vector space over F2 in a natural way. We can readily produce

elements of V but would like elements of K*2; we can measure our obstructions precisely

by bounding the dimension of the quotient.

Theorem 6.7. Lei n, d be integers with d>2 and n > d2d , and let m, f be äs produced

by the base m algonthm in Section 3. Let K = Q(a) be äs in Section 5, and V äs defined

above. Then we have dimF2 V/K*2 < (log n)/log 2.

Note that this is equivalent to [V : K*2} < n. Note also that the bound n > d2d supersedes

the bound n > 2d required in Section 3.

We prove 6.7. Define

W = {7 € K* : jö = I2 for some fractional 0-ideal /}.

In Section 7 we shall prove that

(6.8) V D W, [V:W]<[O : Z[a}}.

Let Υ = O*K*2, where O* denotes the group of units of O. Note that the chain of

subgroups

V D W D Υ D K*2

corresponds exactly to the first three obstructions.

The index of W in V is bounded by (6.8). Next we consider W/Y. If 7 € W, then

7(9 = I2 for some fractional (9-ideal /, and the map that sends 7 to the ideal class of / in

the ideal class group of O clearly has Υ äs its kernel. We conclude that if h is the order of

the class group of A', then

[W : Y] < h.

Finally, Y/K*2 is isomorphic to O*/O*2, of which the F2-dimension is equal to the rank

of the unit group O* plus one (accounting for the roots of unity). Thus from Dirichlet's

unit theorem we have

[Y : K*2} = 2ά~3,
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where 5 is one-half the number of non-real embeddings of K in the field of complex numbers.

Combining the estimates, we find that

[V : K*2} < [O : Z[a]] · h · 2d~3.

Lei AK denote the discriminant of K. From [26, Theorem 6.5, Remark] we have that

(d — l + logM)̂ "1

h-M (d—Tji '

where M = (d\/dd)(4/πŶ /\Â \ is the Minkowski constant of K. Lei A denote, äs in 3.3,

the discriminant of /. Then we have

M < V < v · [O : Z[a]} =

The equality follows from [8, Chapter I, Section 3, Proposition 4(i) and Section 4, Propo-

sition 6(ii)], and the last inequality is Lemma 3.3. From d > 2 and n > d2d one deduces

that

d-l + dlogd< ̂
2(2

Combining all this, we obtain

d+ (Ί - —~) logn)
V 2α/ /

<n1-3/(2d).2d.(21ogn)d-1 < n,

d-l

as required. This proves Theorem 6.7.
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7. Algebraic interlude

This section is devoted to the proof of 5.4 and (6.8); it can be skipped by the reader who

is willing to take those assertions for granted. Our fundamental tool is the Jordan-Holder

theorem. One can also prove these results using some of the machinery of commutative

algebra; for instance, some of the facts proved here can be extracted, with some work, from

Appendices Al-3 in [12].

We denote by K an algebraic number field, i.e., a finite field extension of the field Q

of rational numbers, and by K* its multiplicative group. We let A be an order in K, i.e.,

a subring (with 1) of the ring of integers O of K with the property that the index of the

additive group of A in that of O is finite. The case of interest in 5.4 is A = Z [a]. In O

one has unique factorization of ideals into prime ideals; in the present section we develop

a substitute for A that meets the needs of the number field sieve.

Let N: K —> Q be the norm map. For each χ € K, the norm N(x) of χ equals the

determinant of the Q-linear map K -+ K that sends each y € Ä" to xy. It follows that for

each non-zero element χ G A we have #A/xA — \N(x)\. This implies that A/I is finite for

each non-zero ideal I of A. The cardinality of A/I is called the norm of /, denoted NI. In

particular, if P is a non-zero prime ideal of A, then A/P is a finite integral domain, and

therefore a field. Hence every such P is a maximal ideal of A and contains a unique prime

number p; the degree of P is the degree of A/P äs a field extension of its prime field Fp.

In the sequel, by a "prime of A'' we will mean a non-zero prime ideal of A.

The following result clearly contains 5.4 äs the special case A = Z [a].

Proposition 7.1. There is, for each prime P of A, a group homomorphism lp\ K* —» Z,

such that the following hold:

(a) lp(x] > 0 for all χ <Ξ Α, χ φ 0;

(b) if χ is a non-zero element of A, then lp(x) > 0 if and only if χ 6 P;

(c) for each χ €. K* one has lp(x) = 0 for all but ßnitely many P, and

<"> = \N(x)\,

where P ranges over the set of all primes of A.
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Proof. First we construct the functions l p. Let P be a prime of A and let χ 6 A, χ φ 0.

Since xA is of finite index in A, there is a finite chain

A = I„ D Ii D J2 D . . . D 7t_i D 7< = xA

of distinct ideals of A that cannot be refined, in the sense that there is no ideal properly

between I,_i and 7,, for l < i < t. We now define lp(x) to be the number of i € {1,2,..., i}

for which /,_i/7, = A/P äs A-modules. It follows from the Jordan-Holder theorem (see

[36, Section 51]) that lp(x) is well-defined in the sense that it does not depend on the

choice of the chain of ideals 7,. (In terms of commutative algebra, lp(x) can be defined äs

the length of the module Ap/xAp over the local ring Ap.)

If x, y are non-zero elements of A, then a chain 70, 7i, . . . , 7t äs above can be combined

with a similar chain JQ, Ji, . . . , Ju for y into a chain 7o, 7j, . . . , 7< = xJo, ̂ Ji, · · · , zJu

for xy. This proves that we have lp(xy) = lp(x] + lp(y)· Therefore we can extend the

map lp to a well-defined group homomorphism K * — >· Z by putting lP(xjz] = lp(x) -

lp(z] for any two non-zero elements x, z € A. This completes the construction of the

homomorphisms lp. It is clear that (a) holds.

To prove the "if" part of (b), it sufEces to observe that one can take 1̂  = P if χ 6 P.

For the "only if" part, suppose that χ £ P. Since P is maximal, the ideal χ A + P equals

A, so xy + z = l for certain y E A, z G P. Then z = l mod xA, so multiplication by z

induces the identity map A/xA -» A/xA. Hence 2 · (7,_i/7.) = 7,_i/7I, which by z € P

implies that 7,_i/7, cannot be isomorphic to A/P.

It suffices to prove (c) in the case that χ € A. Let the 7, be äs above, so that

1 = 1

Thus to prove (c) it suffices to show that for each ι there is a unique prime P of A with

7,_!/7t = A/P. Let y 6 7,_i, y £ 7,. Since there is no ideal properly in between 7, and

7,_i, we have yA + 7, = 7,_i, so multiplication by y induces a surjective map A — * 7,_i/7,.

Therefore A/P = 7,_i/7, for some ideal P, and since this module has no non-trivial

submodules the ideal P must be maximal. Also, P is the annihilator of the A-module

7,_i/7,, so it is uniquely determined. This proves 7.1.
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Remaric. We remark t hat the functions lp are uniquely determined by the properties

listed in 7.1. To prove this, let l'p, for each prime P of A, be a homomorphism K* —» Z,

such t hat (a), (b), (c) hold with l'p instead of lp. Let P be a prime of A, and p the prime

number with p G P. Let χ G A, χ ·£· 0. Το prove that /p(z) is uniquely determined we

proceed äs follows. From the definition of l p we see that PmJc pxA, where

J=

From Pm + J = A and the Chinese remainder theorem it follows that there exist y, z £ A

with y = χ mod Pm, y = l mod J, 2 = l mod Pm, 2 Ξ χ mod J. Then yz = χ mod pxA,

so yz = wx with u> = l mod pA. From z, w £ P one obtains /p(z) = /p(y). We have

y $· P' for any P' φ P that is of p-power norm, since each such P' divides J. Hence /p(y)

can be read off from (c). This proves the uniqueness.

From the uniqueness it follows that in the case A = O the functions lp coincide with

the normalized exponential valuations corresponding to the primes of O; in other words,

lp(x) is the exponent of the exact power of P dividing the ideal xO. One can also see

this by writing the ideal xö äs a product of prime ideals, xO = P\Pi · · · P<, and choosing

/, = P1P2...P,.

We now turn to the proof of (6.8). In the rest of this section A and B denote Orders

in K with A C B; for (6.8), we shall take A = Z [a], B = O. If Q is a prime of B, then

P = Q Π A is a prime of A. In this case we say that Q lies over P, notation: Q\P. If Q lies

over P, then the finite field B/Q is a field extension of A/P, and we denote the degree of

this field extension by /(Q/P). In order to avoid confusion we shall write lp A f°r what we

denoted by lp above.

Proposition 7.2. Let P be a prime of A. Then we have

Q\P

for each χ G K*, the sum ranging over the primes Q of B that lie over P.

Proof. It is convenient, in this proof, to introduce the following notation. If M is a finite A-

module, then we let lpt̂ (M) be the number of composition factors of M that are isomorphic
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to A/ P. With this notation, we have lp>A(x) = lpiA(A/xA) for every non-zero element

χ € A. Note that lp>A(M) = lp,A(L) + lp>A(M/L) whenever L is a submodule of M.

It clearly suffices to prove the formula in 7.2 for χ € A. Multiplication by χ shows that

the A-modules B JA and xB/xA are isomorphic, so lp<A(B/A) = ΙριΑ(χΒ/χΑ}. Therefore

we have

IP,A(̂  = lp,A(A/xA) = lP>A(B/xA) - 1P,A(B/A}

= lP,A(B/xA] - lPtA(xB/xA) = lPtA(B/xB).

Hence the formula in 7.2 is äquivalent to the statement that for M = B/xB we have

Q\P

We prove this formula for any finite B-module M. Choosing a composition series for M

we immediately reduce to the case that M is a simple B-module, which means that M

has exactly two B-submodules ({0} and itself). In that case M = B/Q' for some prime

Q' of B, and /Q,B(M) equals l or 0 according äs Q = Q' or Q ̂  Q'. Let P' = Q' Π Λ.

As an A-module, M = B/Q' is a direct sum of f(Q'/P') copies of A/P', so that lPjA(M)

equals f(Q'/P'} or 0 according äs P = P' or P ̂  P'. Thus the above formula follows by

inspection. This proves 7.2.

Note that it follows from 7.2 that for each P the set of primes Q of B lying over P is

finite and non-empty. We now prove that for all but finitely many P it is true that there

is exactly one Q lying over P, and that it satisfies /(Q/P) = 1.

Proposition 7.3. For all but finitely many primes P of A we have Σ<9|Ρ f(Q/̂ } = 1. In

addition, the integer

P

with P ranging over all primes of A, divides the Index [B : A] of A in B.

Proof. Let T be any finite set of primes of A, and let U be the set of primes of B lying

over the primes in T. Let the A-ideal 7 be the intersection of the primes P € T, and let the

B-ideal J be the intersection of the primes Q € U. Then 7 = J ΓΊ A, so A/I is a subring

of Bf J, and the index of A in B is divisible by the index of A/I in B/ J. By the Chinese
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remainder theorem, we have A/I = ilper ̂/̂ > an<^ therefore

ΝΡ.

P€T

Likewise we have

#B/J=

P€T

It follows that [B : A] is divisible by

= Π

Therefore t he number of P € T for which Y^Q\P f(Q/P) ί l is bounded independently of

T, which implies the first assertion of 7.3. Taking for T the set of all P with £Q|p /(Q/P) ̂

l we obtain the second. This proves 7.3.

In our final result in this section, we write

VA = {x e K* : /Ρ,Λ(Χ) = 0 mod 2 for all primes P of A}.

In the notation of (6.8) we clearly have VZ\Q} = V and VQ = W. Hence (6.8) is an immediate

consequence of the following proposition.

Proposition 7.4. H A C B are orders of K, then VB C VA, and [VA : VB] < [B : A}.

Proof. The inclusion VB C VA is clear from 7.2. To bound [VA · VB], we choose for each

prime P of Λ a set S p of primes Q of B lying over P, äs follows. If /(Q/P) is even for

each prime Q of B lying over P, then we let 5p be the set of all Q lying over P. If there

is at least one Q lying over P for which /(Q/P) is odd, then we choose one such prime,

Qo (say), and we let S p consist of all primes Q φ QQ that lie over P. Since /(Q/P) > 2 if

/(Q/P) is even, we have

Q|P

for all P. In particular, 5p is empty for almost all P. Let 5 be the union of the sets 5p,

with P ranging over the primes of A. We have

p
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by 7.3. Thus to prove 7.4, it suffices to show t hat the group VA/VB embeds in the group

(Z/2Z)5. To do this, map χ <Ξ VA to the element (/Q,S(X) mod 2)Q€5 of (Z/2Z)5. If χ is

in the kernel of this map, then /Q)B(X) is even for all Q £ S. Since also all /Ρ,Λ(Ζ) are even,

it follows from 7.2 and the choice of 5p that /Q,S(X) is even for all Q, so that χ € VE·

This proves 7.4.

8. Quadratic characters

In this section the notation and hypotheses are äs in Sections 4 and 5. We assume in

addition that n > d2^ , and that m, / have been produced by the base m method of

Section 3.

In our original Version of the number field sieve we handled the three obstmctions (6.2),

(6.3), (6.4) äs follows. We dealt with the first obstruction, which is due to the difference

between the rings Z [a] and O, by using the algorithm of [6], äs mentioned in Section 6. To

overcome the second obstruction, we proposed that the linear algebra on the algebraic side

be done over Z rather than over F2 (cf. [23, Extended abstract, Section 7]). This allowed

the construction of integers s(a, b) for pairs (a, b) (Ξ TI such that

(8.1) fj (α

Thus Y[(a + ba)s(a'b^ is a unit. The third obstruction was overcome by means of lattice basis

reduction methods on the logarithmic embedding in Euclidean space of the units arising

(see [14]). Thus several equations of the form (8.1) could be combined to find integers

s' (a, b) such that

H (a + ba)s'(a>V = 1.

(α,6)€Τ2

By then combining these ideas with the sieve on the rational side äs discussed in Section

4, we could find integers s" (a, b) for each pair (a, b) € TI Π T2 such that we have

JJ (a + &m)*"(a'6) is a square in Z,
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These equations could then be used in place of (2.1) and (2.2) to attempt to factor n.

In addition to being inelegant and complicated, t he linear algebra step over Z in the

above scenario became a bottleneck in the complexity argument. In fact the heuristic run

time of the above version of the number field sieve is Ln[̂ , 91/3 + o(l)] for n — » oo rather

than the bound we advertised above; the latter could be achieved only at the expense of

considerable additional complications.

It was at this point that Adleman [1] suggested using quadratic characters to overcome

the second and third obstructions. As we shall see this allows the linear algebra on the

algebraic side to be done over F2, greatly simplifying the algorithm. In fact we use this

same idea to also overcome the first obstruction.

In order to explain the idea behind "character columns", we start by considering a

simpler Situation. Suppose that X is a finite set of primes and that / € Z, / ̂  0, has the

property that in the factorization of / into primes, the exponent of each prime not in X

is even. Is / a square? The answer of course depends on the sign of / and the exponent

of each prime p € X in the factorization of /. If these quantities are inaccessible for some

reason then we can still test / for squareness by the following probabilistic device: if p is

a prime number that is not in X and p does not divide 2/, then test the Legendre symbol

(-) to see if it is equal to 1. If the symbol is ever equal to — l then / is not a square; if the

symbol is always equal to l for a number of primes p significantly exceeding $X then we

become convinced that / is a square. Specifically, if Υχ denotes the multiplicative group

of non-zero rational numbers that are squares outside X äs above, then Vx/Q*2 is an

F2-vector space of dimension #X + 1. The Legendre symbol corresponding to each "test"

prime p is a presumably random linear function on this vector space. Our test for / being

a square is ironclad if the characters corresponding to the primes p that we choose span

the dual space of Vx

Lemma 8.2. Lei k, r be non-negative integers, and let E be a k-dimensional F^-vector

space. Then the probability that k + r elements that are independently drawn from E,

with the uniform distribution, form a spanning set for E is at least l — 2~r.

Proof. For any hyperplane H of E, the probability that each of the k + r vectors lies in
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H is 2 k r. Since each hyperplane is the kernel of a uniquely determined non-zero linear

function E —> F2, the number of hyperplanes of E is 2fc — 1. Thus the probability that the

k + r vectors all He in some hyperplane is at most

However, the k + r vectors do not span E if and only if they lie in some hyperplane. Thus

the lemma follows.

Remark. If one picks random elements of JE?, independently, and from a uniform dis-

tribution, until one has a set of generators, then the expectation of the number of elements

drawn is equal to k + f̂_1(2! — l)"1. For k —*· oo, the sum tends to a limit c where

c = 1.606695. Thus for any k, the expectation is less than k + 2.

If we had some method of choosing Legendre characters that in the above scenario

corresponds to choosing elements of the dual space of Vx/Q*2 independently and from

a uniform distribution, then we could develop a virtually certain test for squareness for

the integer /. In what follows, we replace Z with Z [a] and make the heuristic assumption

that choosing Legendre characters corresponding to small primes outside the factor base

suffices for a squareness test.

The following result shows how Legendre symbols provide us with a necessary con-

dition for a product of elements α + δα to be a square. The set R(q) is äs defined after

(5.1).

Proposition 8.3. Lei S be a ßnite set of coprime integer pairs (α, δ) with the property

that Y[̂ a 5\es(a + ba] is the square of an element of K. Further let q be an odd prhne

number and s <E R(q], such that

α + bs φ 0 mod q for each (a. b) 6 S1,

f'(s) φ 0 mod q.

Then we have

π ία + ι
H l n
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Proof. Let Z [α] — *· Fg be the ring homomorphism mapping a to s mod 5, and let Q be

its kernel; this is the first degree prime corresponding to g, s. Define the map XQ: Z[a] —

Q — > {±1} to be the composition of Z [a] — Q — > F? — {0} with the Legendre symbol

F? ~ {°} -" {±1}· Clearly, we have XQ(a + ba) = (£a~s).

As we saw in (6.6), we have

(a,fr)€S

for some 5 € Z [a]. By hypothesis, the factors on the left are not in Q, so we have δ (£ Q.

The proposition follows if we apply XQ to the equation.

As with 5.3, it is really the converse to 8.3 that we are interested in, and in this case

it does hold: if an element β € Z [α] - {0} satisfies xq(ß) = l for all first degree primes Q

with Iß £ ζ), or even for all such Q with finitely many exceptions, then β is a square in K.

In the actual algorithm, we use both the functions ep>T and the Legendre Symbols to

produce the square that we need, äs follows. Let T = TI [Ί T2, so that

T = {(a, b) : gcd(a, b) = l, a| < u, 0 < b < u, (a + bm)N(a + ba) is y-smooth}.

Define

B =

B1 = #{(;>, r) : p is a prime number, p < y, r G

B" = [3(logn)/log2].

We define the factor base on the rational side to be the set of all prime numbers up to

y, call them pi, p-i, . . . , PB· Define the factor base on the algebraic side to be the set of

pairs (ΡΙ,ΓΙ), (P2,r2), - ··, (pB',rB>) äs in the definition of B1. Let (?i,si), (92, -s2). ···,

(?S" 7 5S" ) be the first B" pairs consisting of a prime number q > y and an integer 5 6 R(q)

with /'(s) ̂ 0 mod 9, ordered by increasing q.

We now define a map e. from T to ̂2+B+B'+B" . Say (a, 6) G T. The first coordinate

of e(a, 6) is determined by the sign of α + 6m; it is 0 if a + bm > 0 and l if α + bm < 0 (we

cannot have α + bm — 0 if m > u, which will be the case with our choice of parameters;

see Section 11). The next B coordinates are given by ordp(a + bm) mod 2 äs p runs over
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ί>ι, Ρ2, · · ·, PS- The next B' coordinates are given by eptr(a + ba) mod 2 äs (p, r) rtms

over (PJ, ΓΙ), (pj, Γ2)> · · · > OPB'> rB'}· The last S" coordinates of e(a, 5) are determined by

(•äî2) äs (g, s) runs over (91,51), (92,-32), ··., (?B",.SB'')· For a particular (g, s) it is 0 if

(«±»*) = l and l if (2â £) = -1. Note that the reason for the special treatment of the

first coordinate and the last B" coordinates is to turn a multiplicative structure into an

additive structure.

If #T > l + B + B1 + B" then the vectors e(a, b) for (a, b) <Ξ Τ are linearly dependent.

Thus there is a non-empty subset S of T such that ]£(a 6)€S e(a, b) is the zero vector

in F̂ +ß+ß'+B". It is clear that such a set satisfies (4.1), and we conjecture that it satisfies

(6.6) äs well.

To support this conjecture, we make the following remarks. Let V be the subgroup of

K* defined before Theorem 6.7. If Q is any first degree prime of Z [a] with f'(a] <£ Q, then

the function XQ defined in the proof of 8.3 induces a group homomorphism V/K* —> {±1},

again to be denoted by XQ; namely, one can show that any β G V can be written äs

β = ß̂ ßZ, with ßi € Z[or] - Q and ß2 € A'*, and that xq(ßi) is independent of this

representation, so that we can put Xq(ß) = Xq(ßi)· The Cebotarev density theorem (see

[18, Chapter VIII, Section 4]) implies that if Q ranges over all first degree primes of Z [a]

with /'(a) £ Q·, ordered by increasing norm, then the elernents XQ are asymptotically

equally distributed over Hom(V/Ji*2, {±1}). This suggests that the B" functions XQ that

the algorithm employs may be viewed äs random homomorphisms V/K*2 —> {±1}, so that

Theorem 6.7 and Lemma 8.2 make it overwhelmingly likely that these functions XQ span

Hom(V/K*2,{±l}). If they do, then for an element β 6 V to be a square it would be

necessary and sufficient that Xq(ß] — l for each of the B" primes Q, which would imply

the conjecture. A rigorous proof of the conjecture along these lines would require a very

strong effective Version of the Cebotarev density theorem, which presently appears to be

completely out of reach. It may be possible to deduce a weak form of the conjecture—

with B" replaced by a larger value—from the generalized Riemann hypothesis (cf. [2]). In

addition, it may be possible to rigorously prove a random version of the above, where the

B" primes Q are independently and uniformly chosen from all the first degree primes of

Z [a] in some reasonable ränge.
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Remark. One can also make use of Legendre Symbols that are defined for primes Q

of odd norm that have degree greater than 1. However, there is a certain danger involved

in using these primes. For example, if d = 2, then the base m method of Section 3 leads

to an imaginary quadratic field, and one can show that in that case XQ(U) — l for every

unit u of O and every prime Q of odd norm of degree greater than 1; this means that the

quadratic characters associated to such primes are not sufficient to deal with obstruction

(6.4). First degree primes do not suffer from this shortcoming.

9. Finding square roots

We retain the notation and hypotheses from the last section.

Now that we have produced presumed squares in Z and Z [a] we need to find their

square roots. In Z this is easy. If /'(m)2 Ι3(α ̂ £3 (α, + bm) is a square, then since the prime

factorization of each α + bm is known it is an easy matter to compute the square root.

We are ultimately only interested in the result mod n, so all of the arithmetic can be done

with integer s of the size of n.

Next we address the problem of finding the square root in the number field. This is a

component of the number field sieve that has no analogue in earlier factoring algorithms,

including the special number field sieve. In the known Solutions to this problem one cannot

work "mod n", äs we did in Z, which means that one has to deal with numbers of a truly

gigantic size. More precisely, the number of digits of the numbers that we work with are

about vC, where C is the running time of the entire number field sieve (see 9.3 and

Section 11). (In all other components of the number field sieve we work only with numbers

of C°(̂  digits, for n —> oo.) Thus we have to be very careful when performing arithmetic

operations on these numbers, and methods depending on the fast Fourier transform become

important. In this section we discuss the problem from a theoretical point of view. Practical

experiments that are being conducted by D. J. Bernstein indicate that the method that we

shall suggest actually works in practice.

Let 7 = /'(ο)2 Π(ο b)es(a Ί" ̂°0 bg the presumed square in Z [a]. To find its square

root, we can first multiply out the product and represent 7 äs a polynomial in a of degree

less than c?, and next apply one of the algorithms that have been proposed for factoring
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polynomials over algebraic number fields (see [37; 38; 17; 20]) to t he polynomial X2 - 7 G

jftTt-X"]. It is important to bear in mind that, when all parameters of t he nurnber field sieve

are chosen optimally, the cardinality of the set 5 and the coefficients of 7 äs a polynomial

in a are very large (see 9.3 and Section 11). This implies that just Computing 7 is already

very time consuming, and factoring X2 — 7 even more so. In order to be able to analyze

the complexity of this step we consider what the algorithms of [37; 38; 17; 20] come down

to in our case.

There is no essential difference between the algorithms proposed in [37; 38; 17; 20] if

an odd prime number q is available for which / mod q is irreducible in F?[X]; so let this

now first be assumed. Then Z[a]/qZ[a] is isomorphic to Fq[X]/(f mod g), which is a field

of cardinality qd. Hence the ideal Q = qZ[a], which consists of all elements Σι=0 α,α' for

which each of the integer coefHcients a, is divisible by g, is a prime of Z [a] of degree d.

From the irreducibility of / mod q it follows that /'(a) <£ Q, and for each (a, 6) <E S we

have α + ba £ Q since gcd(a, 6) = 1. Therefore the product 7 of all these elements does

not belong to Q either. Taking the coefficients of 7 modulo q, and applying an algorithm

for taking square roots in the finite field Z[ot]/Q (see [19; 16, Section 4.6.2, Exercise 15]),

we find an element 6Q (mod Q) such that ̂ 7 = l mod Q; this 80 mod Q is unique up to

sign. (If one finds, unexpectedly, that X"2 — 7 is actually irreducible modulo Q, so that 50

cannot be found, then 7 is not a square in Z [a], and we have hit upon a counterexample

to the conjecture stated in Section 8. In this case more character columns might be tried.)

Note that <5o is the inverse of a square root of 7 mod Q; this is in order to avoid divisions

in the iteration to follow. Starting from <!>o, we apply a Newton iteration

^-ι(3-^_ι7) . Π2,
ö = - - — - - mod

to find δι, 02, . . . , such that S2j Ξ l mod Q2' . Notice that working modulo Q2' means

that the coefficients a, in the expressions ]Γ̂  atal are taken modulo q2' , so that one rnay

take a, | < q2' /2. One continues the Newton iteration until q2' is at least twice äs large

äs an upper bound that one is able to prove for the absolute values of the coefficients of

a true square root β of 7 in Z [a]. Then β can be calculated from β = £,7 mod Q21 . If we

wish, we can now verify that ß2 = 7, and thus free ourselves from having to rely on the
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unproved conjecture of Section 8; but in t he context of the number field sieve it is more

efficient to just assume that ß2 = 7, and to proceed immediately to the calculation of φ(β)

(äs in Section 2) in an attempt to factor n.

There are several refinements and modifications that might affect the practical per-

formance of this scheme. For example, one can apply fast multiplication techniques in the

iteration; one can go up by powers Q3 instead of Q2 of Qi ̂d one can stop the iteration

äs soon äs the coefficients of ̂7 mod Q2' do not change for a few successive values of j.

One may also wonder whether there is a method that does not start by multiplying out

the product that defines 7.

In the above description we made the assumption that an odd prime number q is

available for which / mod q is irreducible. One can attempt to find such a prime number q

by trying q = 3, 5, 7, . .. in succession. (Of course, the prime numbers that are norms of first

degree primes of Z [a] can be left out.) For each q, one can test / mod q for irreducibility

by applying an irreducibility test in Fq[X] (see [19]). As we shall see below, one may for

most n expect to be successful fairly soon. However, there are cases in which not a single

prime number q exists for which / mod q is irreducible. This occurs, for example, when

d = 4 and n = m4 + 1. The question arises how to proceed when this happens.

One solution of this problem is based on the remark that, in a sense that can be made

precise, most monic polynomials / of degree d in Z [A"] have the property that the Galois

group of / is the füll Symmetrie group Sj. of order dl (see [13]). If / satisfies this condition,

then the Cebotarev density theorem implies that the density. inside the set of all prime

numbers, of the set of prime numbers q for which / mod q is irreducible is equal to the

probability that a random permutation of {l, 2, ..., d} is a single <i-cycle (cf. the proof

of 9.1 below), which is equal to l/d. Since d will be chosen quite small with respect to n

(see Section 11), this is fairly large, so that for most values of n we expect that there are

many suitable prime numbers q and that it will be easy to find one. It may be possible to

make this loose argument perfectly rigorous. If, for whatever reason, a good q is difficult

to find, then one has the Option of changing / (and hence the number field), for example

by adding a polynomial that is divisible by X — m to /, or by choosing a different value of

m in the base m algorithm. However, there are situations in which it is very undesirable
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to change /, for example when / has particularly small coefficients. In that case one may

not be able to work with primes q for which / mod q is irreducible.

We briefly discuss what one can do if no odd prime number q is available for which

/ mod q is irreducible. The approach of [38] is then to do a similar Newton iteration modulo

powers of an odd prime number q. At the start of the iteration, the ideal g Z [a] is not prime,

so that the inverse square root δο of 7 (mod q} is not unique up to sign. Instead, one must

take the inverse square root of 7 modulo each of the primes Q containing q, and combine

them into an inverse square root modulo 9 Z [a]; or if q is small, one can try all (q — l)/2

non-zero elements of Z[a]/qZ[a], up to sign. If there are t primes Q containing q, then

this gives rise to 2i~l different starting values <50 for the Newton iteration. If we choose

q äs indicated below, then we have t < d/2, and it turns out that, with our choice of

Parameters, a factor 2^/2l~1 does not greatly affect the running time; so the algorithm of

[38] may be feasible for our purposes.

The polynomial time algorithm of [17; 20] does a Newton iteration modulo the powers

of Ά single prime Q containing q. To recover the square root of 7 from ̂ 7, for large j,

one then needs to apply a basis reduction algorithm to the ideal Q2 . This is, with our

choice of parameters, not attractive (see 9.3). Another possibility is the algorithm of [37],

but we have not investigated its merits for use in the number field sieve. A final possibility

is to make use of the "infinite" prime, äs was pointed out to us by V. S. Miller and R. D.

Silverman. In this case, one chooses an element of K — Q(a) that under each embedding σ

of K in the field of complex numbers is close to a square root of σ(-ν). and one next applies

a Newton iteration in Q(a), where one works with the coefficients a, äs real numbers that

are rounded to rationals. For this algorithm, the number of different starting values to

be tried is 2d~·3""1, where s is one-half the number of non-real embeddings of K into the

field of complex numbers. For each of these methods, the applicability of the refinements

mentioned above is to be considered. Which method is the best one for practical purposes

rernains to be tested.

If one decides to use the algorithm of [38], then the choice of an appropriate prime

number q is still important, since the method requires that the algebraic integer 7 be

coprime to q. This is guaranteed if / mod q factors into distinct irreducible non-linear
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factors. Indeed, if / mod q is squarefree, theri q is relatively prime to /'(et), and if / mod q

has no linear factors then there is no first degree prime of norm g, so that by 5.5 each a + ba

is coprime to q. One may wonder whether primes q with the properties just mentioned

exist. The following result answers this question affirmatively, and in addition it asserts

that there are so many of them that in practice it should not be hard to find one.

Proposition 9.1. Lei f G Z[X] be an irreducible monic polynomial of degree d, with

d > 1. Then the density, inside the set of all prime numbers, of the set of prime numbers

q for which f mod q factors in Fq[X] into distinct irreducible non-linear factors exists and

is at least l/d.

Proof. Let G be the Galois group of / over Q, viewed äs a permutation group of the set Ω

of zeroes of /. For each prime number q that does not divide the discriminant of /, there is

a Frobenius element aq G G, which is well-defmed up to conjugacy in (7, and which has the

property that the degrees of the irreducible factors of / mod q are the same äs the lengths

of the cycles of the permutation aq. Hence, we are interested in those q for which σ? acts

without fixed points on Ω. The Cebotarev density theorem [18, Chapter VIII, Section 4]

implies that for every subset C C G that is a closed under conjugation by G, the set of

prime numbers q for which aq belongs to C has a density, and that this density equals

#C/#G. Hence, the proposition follows from the following fact in group theory, which was

kindly proved for us by A. M. Cohen (see [9; 3]).

Lemma 9.2. Let G be a nnite group that acts transitively on a finite set Ω, with #Ω =

d> 1. Then there are at least (#G}/d elements of G that act without fixed points on Ω.

Proof. We recall that if G acts on a nnite set X , then the number of orbits of X under G

is given by the formula

where Χσ = {χ G X : crx — x] (see [15, Kapitel V, Satz 13.4]). We first apply this formula

to X = Ω, which by hypothesis has one orbit under G. Writing /, for the number of σ ζ G

that have exactly i fixed points on Ω, we get

1=0
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Next we apply it to X = ü Χ Ω, with G acting componentwise. The diagonal is transformed

into itself by G, and there are also off-diagonal points, because d > 1. Hence X has at least

two orbits under G, so that we obtain

1=0

Finally, we have the trivial relation

1=0

Since the number i2 - (d + l)i + d = (i - l)(z - d} is non-positive for l < i < d, and equal

to d for i = 0, we now find that

d

dfo > ̂(i2 - (d+ l)z + d)ft > (2 - (d + l) + d)

as desired. This completes the proof of 9.2 and 9.1.

9.3. Complexity. The complexity analysis of the square root algorithm that we described

in this section is entirely straightforward. As we shall see in Section 11, the parameter y

will be chosen as a function of n and d to satisfy

logy = (| + o

for n —>· oo and the running time of other steps in the algorithm will (heuristically) be

bounded by y2+°(1). In addition, we shall have #T = y1+o(1), so the same expression is an

upper bound for #5 as well, and it is unlikely that #S is much smaller. Thus an upper

bound for the absolute value of the integers involved in the computation of a square root of

7 is exp(y1Jr0^1)). In these circumstances, the calculation of the square root of 7 as described

in this section takes time at most y1+°(1) if one employs fast multiplication techniques, and

y +°(i) jf one uses traditional algorithms for the arithmetic operations. Thus if one does

not use fast multiplication techniques then the running time of the square root algorithm

may dominate the running time of the entire number field sieve. If we replace [38] by [17;
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20] in the square root algorithm, then one has to perform a basis reduction algorithm, and

the running time bounds become y2+°(1) and y3+0^\ with fast and traditional arithmetic

respectively; the numbers one works with are bounded by exp(y1+0(̂ ), äs before. Thus it

is not attractive to use the methods of [17; 20].

Remark. To make the above algorithm more efficient, we can attempt to replace the

element 7 of which we take the square root by an element that has smaller coefficients

when expressed äs a polynomial in a. This can possibly be achieved by means of the

following idea, which bears some resemblance to the square root algorithm of [29]. Suppose

5 = {(aj,̂ ),... , (αθ,65)}, where #5 = s. We inductively define two sequences (μ,)?_0

and (Vj)?=0 °f elements of Z [a]. First let μ0 = VQ = l- Suppose l < ι < s and μ,_ι, f,_i

have been defined. If a, + b,a divides μ,-ι in Z[a], we let μτ = μ!_1/(α, + bta) and we

let vt ~ ι/,_!(α, + δ,α). Otherwise, we let μ, = μ,_ι(α, + δ,α) and i/, = i/,_i. We have the

identity

7 =
ι=1

so that if 7 is a square in Z [a], so is /'(α·)2μ3. Thus, instead of taking a square root of

7, it sufEces to take a square root of /'(α)2μ3 and to multiply this square root by i/a. In

addition, our factoring algorithm does not need vs itself, but only its Image φ(ν3} in Z/nZ,

which one can calculate by only doing arithmetic with integers the size of n.

To test if some non-zero a + ba divides some μ in Z [a] and compute the quotient if

it does, we divide α + bX into / to get / = (a + bX)g + /(-a/6), where g G Q[X}· Then

a + bot divides μ in Z [a] if and only if μ/(α + 6α) = —μg(a}/f(—a/b) belongs to Z [a].

By using exponent vectors, one can often see very cheaply that at -f- 6to; does not

divide μ,_ι in Z [a]. Let (pl5 rj). (p2,r2), . . . , (PB>, rB'} be the factor base on the algebraic

side, and for l < i < s let fj G Zß be the integer vector whose coordinates are the

numbers εΡ)Γ(αι + δ,α) äs (p, r) runs over (ΡΙ,ΤΊ), (p2,r2), . . . , (ps',̂ B')· Define the vectors

u;t G Zs inductively by WQ = 0, w, = w,-i — υ, if a, + 6, a divides μ,-ι, and iw, = tü,_i +u,

otherwise. From Proposition 7.1 we see that tu, is the exponent vector of μ, and that it

has non-negative coordinates. This gives an easily checked necessary condition for a, + b,a

to divide μι-ι, namely that u>,-i — u, has non-negative coordinates. If iü,_i — υ, has a
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negative coordinate, we do not have to compute μί̂ \/(αι + δ,α).

The condition that wt~\ — u, has non-negative coordinates is not a sufficient condi-

tion for a, + bta to divide μ,-ι, but it is nearly so. That is, if u;,_i — v, has non-negative

coordinates, then the only prime numbers that can divide the denominators of the co-

efficients of μ,_1/(α, + δ, α) are the prime numbers p < y that divide [Ό : Z[a]]. From

Lemma 3.3 it follows that there are only a few such prime numbers, namely not more

than o(logn) for n — > oo. We can modify the procedure described above by always putting

μ, = μ,_!/(α, + δ,α) when wt-i — vl has non-negative coordinates. Then we have to keep

track of the exponents to which those few prime numbers occur in the denominator of μ,.

The use of exponent vectors suggests that it may be advantageous to order the set 5

in such a way that the event that wt — υ,_α has non-negative coordinates is frequent. One

possible ordering is the one which puts the srnoother elements of S first. There may be

better orderings than this, but we are not sure what to suggest.

The practical value of these ideas is unclear; the final verdict must await an imple-

mentation.

10. Analytic interlu.de

In this section we prove a theorem in analytic number theory that is helpful in the com-

plexity analysis of many factoring algorithms, including the number field sieve.

For χ > l, y > l let ψ(χ,}}} denote the number of y-smooth positive integers up to x.

Suppose x, y are positive integers and consider a process where we choose ran dorn integers

with the uniform distribution from [l, z] and stop when we have chosen y not necessarily

distinct numbers that are y-smooth. The probability that we choose a y-smooth number

on one draw is τ/>(ζ, y)/x. Thus the expected number of draws to choose y numbers that

are y-smocth is xy/if>(x,y~). We now ask for the value of y that minimizes an expression

slightly more general than this expectation. Recall the definition of Lx[u, v] from Section 1.

Theorem 10.1. Suppose g is a function defined for all y > 2 that satisnes g(y) > l and

9(y} = y1+o(1) for y -* oo. Then äs χ -> oo,
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uniform/7 for all y > 2. in addition,

for χ —> oo u and only if y = Lx[\, \/2/2 + o(l)] for z —» oo.

Proof. We shall use the following result from [7]. For any e > 0 we have

(10.2) -φ(χ,χ1̂ υ") = x/w(̂ l+o('1̂ w for w —» oo,

uniformly in the region χ >

We first show that if y < Lx(\, \] or y > Lx[|,2], then

for z-, co.

Indeed, if y < Ζ̂ τ?, j], then (10.2) implies that

for χ — > oo. If y > Lz[|,2], then it is clear that (10.3) holds since x/^(x,y} > 1.

Note that (10.2) implies that if y = Ζ,ζ[|,ι9], then

(10-4) = £r[I,tf + l/(2u) + o(l)] for χ oo

uniformly for ·$ in any compact subset of the set of positive real numbers. Further iJ + 1 / (Zu)

has its minimum value for ΰ > 0 at ϋ = \/2/2 and nowhere eise. This minimum value is

\/2, which proves the theorem.

Theorem 10.1 is useful in the analysis of many factoring algorithms. For example,

suppose an algorithm factoring n produces auxiliary numbers up to χ = x(n) and hopes to

find y1"̂ 1) (for n —^ oo) auxiliary numbers that are y-smooth. If these auxiliary numbers

are just äs likely to be y-smooth äs random integers up to x, then we expect to exarnine

xy1+°(1)/7/)(x, y) of these to find the y-smooth integers that we need. If the time to test a

single auxiliary number for y-smoothness is y°^l\ the expected time for this stage of the
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factoring algorithm is xy1*0̂ /i/j(x,y). Theorem 10.1 teils us how to choose y so äs to

minimize this running time, namely y = Ζ-χ[|,\/2/2 + o(l)]. Further, this running time

would be y2+°W = Lx[j, \/2+o(l)]. Thus if other steps in the algorithm, such äs processing

a matrix, also take time at most y2+°(1)? then Lx[^, >/2 + 0(1)] is the running time of the

complete algorithm. This leads to the following heuristic principle: if χ is a bound on the

numbers that "would be smooth" in a factoring algorithm, then the running time of the

algonthm is Lx[\, V2 + o(l)].

For some factoring algorithms, this outline of a complexity analysis can be used äs

the backbone of a completely rigorous analysis, such äs with Examples 10.5, 10.6 and 10.7

below. For other factoring algorithms, the above argument is supplemented with various

heuristic assumptions, one of which is often that the auxiliary numbers that "would be

smooth" are just äs likely to be smooth äs random integers of the same approximate

magnitude.

Example 10.5. In the random squares algorithm of Dixon (see [11]) the bound for

the auxiliary numbers that would be smooth is χ = n. The running time of the algorithm

thus turns out to be Ln[|, ̂2 + o(l)] (see [33]). Here, and in the next two examples, we

use the elliptic curve smoothness test (see [27; 33]) so that most y-smooth numbers can

(rigorously) be recognized to be y-smooth in time y°^l>.

Example 10.6. In [35], Vallee modified the random squares method so that the bound

for the auxiliary numbers that would be smooth is χ = n2/3+o(1). Thus the running time

for her algorithm is Ln[^, \/4/3 + o(l)].

Example 10.7. In the class group relations method [27] the size of the numbers that

would be smooth is n1/2"4"0̂ ), and its running time is Ln[\, l + 0(1)]·

Example 10.8. In the quadratic sieve method [32] the size of the numbers that would

be smooth is n1/2"1"0*̂  and so its heuristic running time is Ln[-|,l + 0(1)]· Here sieving

replaces the elliptic curve method äs a smoothness test.

The heuristic even works for the elliptic curve factoring method [25]. Here the auxiliary

numbers that would be smooth are near the least prime factor p of n. We only need to find

one y-smooth auxiliary number, but the time to process one trial is not y°̂ ' but yi+0^\

Thus the heuristic expected time is still xyl+°(1'/i{>(x,y) where χ = p. Hence Theorem
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10.1 applies and we find that the heuristic running time of the elliptic curve method to

factor n is Lp[^, \/2 + o(l)j arithmetic operations with integers the size of n.

A sixth example is provided by the number field sieve. Its heuristic complexity analysis,

which is given in Section 11, depends on the two final results of this section.

Lemma 10.9. Defee, for real numbers k > e, l > l, the number v = v(k, l) by

v2
= kv + l, v > e.

log v

Then we have

2v = (l + o(l)) (k log k + γ (A; log fc)2 + 2/log /)

äs k 4- / —> oo.

Proof. From v((v/logv) — k) = l one sees that v is well-defined and that v —> oo äs

k + l —>· oo. To prove the lemma. we shall show that we can transform the defining equation

(10.10) v2 = kvlogv + llogv

into the quadratic equation

(10.11) v = (l + O(!))(Ä:U log k -\ ) äs k + /—> oo.

We distinguish two cases. First suppose that kv > l, say kv = cl with c > 1. Then from

fcu < v2/(logv) < 2kv it follows that k —>· oo and logt* = (l + o(l))logfc äs k + l —> oo.

Hence the first term on the right of (10.10) is (l + o(I))kvlogk. Using that / = kv/c and

that löge = O(c), we see that the second term is

/log υ = —S- + -̂ -(logv - log k + löge) = —^— + o(kv log fc).
2 2c 2

This gives (10.11). In the second case we have l > kv, say / = ckv with c > 1. Then from

/ < υ2/log u < 2l we obtain log v — (·| + o(l)) log L The second term on the right of (10.10)

is then (l + o(l))(/log/)/2, and the first is

kvlogv = kvlog k -\—(2 log υ — log/ + löge) = kvlog k + o(/log /).
c

This gives again (10.11). Solving the quadratic equation we obtain the lemma.
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Lemma 10.12. Lei, for each pair of positive integers n, d satisfying n > d2d > l, real

numbers u = u(n, d) > 2 and y = y(n, d] > 2 be given, with the property that the number

a: =

satisnes

(10.13) "2^y)>ff(y)

for some function g satisfying g(y] > l and g(y) = ŷ 0̂ 1) äs y —>· oo. Then we have

2 log u > (l +

for n —^ oo, uniformly in d.

Proof. In the proof, all o(l)'s are for n -»· ex?, uniformly in d. From z1 > n we see that

χ —> oo äs n —> oo. Hence Theorem 10.1 implies that

Taking the square of the logarithm on both sides we obtain

2(logu)2 > (l + o(l))loga:loglogx.

Dividing each side by its logarithm, and using that t/ log t is an increasing function of t

for t > e, we lind that

Applying 10.9, with k > (l + o(l))(u?+l) and / > (2 + o(l))log(n1/ii), we obtain the lemma.
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11. Summary of the number field sieve and a heuristic analysis

We are finally in a position to list the steps of the number field sieve with some precision

and to analyze its running time.

Algorithm 11.1. Given a positive integer n, together with parameters d, u, and y satis-

fying d > l and n > d2d , this algorithm attempts to find a non-trivial factor of n or to

prove that n is prime; it halts whether or not it is successful.

Step 1. Test whether n is a power of a prime (see [22, Section 2]) or is divisible by a

prime that is less than or equal to y. In either case, Output the prime and stop.

Step 2. Apply the base m algorithm (see Section 3) to find an integer m and a monic

polynomial / € Z[X] of degree d such that f(m) = 0 mod n. Factor / into irreducible

factors in Z[X] by the algorithm of [21]. If / is found to be reducible, with non-trivial factor

g, Output the non-trivial factor g (m) of n and stop. Assume now that / is irreducible, and

denote by α a zero of /. Compute gcd(/'(ro), n). If this is a non-trivial factor of n output

this factor and then stop.

Step 3. As described in Sections 4 and 5, use a sieve to find all members of the set

T = {(a, 6) <E Z2 : gcd(a, 6) = l, |a| < u, 0 < b < u, (a + bm)N(a + ba) is y-smooth}.

Step 4. Form the matrix whose rows are the F2-vectors e(a, 6), äs defined in Section 8,

for (a, 6) € T. Use the Wiedemann coordinate recurrence algorithm (see [40]) to find a non-

trivial linear dependence relation on the rows of the matrix. If this is unsuccessful, stop.

If it is successful, let S be the set of pairs (a, 6) for which e(a, b) occurs in the dependence

relation.

Step 5. Express the algebraic integer 7 = /'(a)2 l~I(a,&)es(a + ̂ a) äs a polynomial in

a of degree less than d. Attempt to find a square root β = Ŷ tl̂  bta' of 7 by the method

of [38] (see Section 9). If this is unsuccessful, stop.

Step 6. For c an integer with c2 = /'(m)2 Π(α,6)ς5 (α + &m)> ̂^ ̂e residue c mod n.

Step 7. Compute gcd(c — Σ,.Γ0 b,m\ n). If this is a non-trivial factor of n, Output the

result and stop. Otherwise, remove an element of S frorn T and start again at Step 4.

This completes the description of the algorithm.
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The following conjectural result describes the optimal choice of the parameters d, u, and

y, and the running time of the algorithm for this choice.

Conjecture 11.2. For each integer n with n > 256, one can choose d, u, and y, such that

d= (31/3 +o(l))(logn/loglogn)1/3, n > d2d* > l,

for n —y oo, and such that Algonthm 11.1, on input n, d, u, and y, succeeds either in

ßnding a non-tnvial factor of n or in proving that n is pnme, in time at most

(H-3) Ln[i,(64/9)1/3 + o(l)]

for n — )· oo. Moreover, this is optimal in the sense that for general n and for all choices

of d, u and y satisfying n > d2d > l for which the algorithm is successful, the expression

(11.3) is a lower bound for the time taken by the algorithm.

The adjective "general" in the last assertion of the conjecture is meant to express that we

allow for exceptional integers n, for which the algorithm takes less time. For example, if n

is a power of a prime number, then Algorithm 11.1 terminates in Step l in time much less

than (11.3), independently of the choice of d, u, and y. Likewise, if n has a relatively small

prime factor, then there may be a choice of y for which the algorithm terminates in Step

l in time less than (11.3). Next, there is a very small class of integers that for a suitable

choice of d are factored in Step 2 with very little effort. Finally, if the coefficients of the

polynomial / constructed in Step 2 are, for a suitable value of d. much smaller than their

upper bound n1|/d, then it is reasonable to suppose that one can factor n in time less than

(11.3), with values for u and y that may not be those in the conjecture. This occurs, for

example, if the special number field sieve [23] can be applied. We do not know whether

further categories of exceptional integers n exist, but we believe that most integers divisible

by at least two distinct primes and not divisible by any small primes are in the class of

"general" integers for which (11.3) is a lower bound for the time taken by Algorithm 11.1

to factor them.

The following more general conjecture describes the optimal choice of u and y for

given n and d.
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Conjecture 11.4. For any two positive integers n and d satisfying n > d2d > l, one can

choose u and y such that each of u and y is

/ / / \ \
(11.5) expf (i + o(l))( dlosd -f- \/(dlog <i)2 + 41og(n1/c')loglog(n1/̂ )) )

V v V / /

and such that Algorithm 11.1, on input n, d, u, and y, succeeds either in finding a non-

trivial factor of n or in proving that n is prime, in time at most

wiere ine o(l) 's are for n —> oo, uniform/7 in d Moreover, this is optimal in the sense that

for general n, for all d in the region n > d2d > l, and for all choices of u, y for which the

algorithm is successful, the time taken by the algorithm is at least (11.6).

To deduce 11.2 from 11.4 it suffices to choose d so äs to minimize (11.6). It is easy to see

that we have to make ((flog d}2 and \og(nl/d} \oglog(nl/d] of the same order of magnitude,

which occurs when d has the same order of magnitude äs (logn/loglogn)1/3. Putting

d = ^(logn/loglogn)1/3 and optimizing δ we find that the optimal choice of d satisfies

δ = 31/3 + o(l) for n -> oo. This immediately leads to 11.2.

We now present a heuristic argument for the correctness of Conjecture 11.4. We begin

with the last assertion of the Conjecture, which states that (11.6) is, in general, a lower

bound for the running time. We deduce this from Lemma 10.12. If we assume that the

algorithm does not terminate in Step l or in Step 2, then the running time is at least the

total number of locations in the sieve from Section 4 that is used in Step 3, which is at

least u2. The lower bound for u2 that is given by Lemma 10.12 thus leads immediately to

the lower bound (11.6) for the running time, provided that we check that condition (10.13)

is satisfied. We shall deduce (10.13), heuristically, from a constraint that is implicit in Step

4 of the algorithm, namely, the condition that the number of rows of the matrix in this step

is at least of the same order of magnitude äs the number of columns; otherwise Step 4 is

unlikely to be successful in finding a set S. The number of columns is at least the number

of primes in the factor base on the rational side. This is 7r(y), which is y1+°(1) for y —*· oo,

äs required for the right side of (10.13). To estimate the number of rows, we first discuss
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a bound on the magnitude of t he auxiliary numbers generated in Step 3 t hat "would be

smooth". For a\ < u and 0 < b < u, the integer (a + bm)N(a + ba] has absolute value at

most

(u + um)(d + l}mud < 2dm V+1 < 2<fn2/V+1,

since the coefficients of / are bounded by m and m < nlld. Hence the number χ =

2dn2/dud+l defined in Lemma 10.12 is a bound on the auxiliary numbers that would be

smooth. A random positive integer up to χ is y-smooth with probability 0(x,y)/[x]. The

number of integers that we try is the number of pairs of integers a, b satisfying |a| < u,

0 < b < u, and gcd(a,6) = l, which is about cu2 for c — 12/π2. Thus we might naively

think that a good approximation to the cardinality of the set T in Step 3 is given by

ου,2ψ(χ, y}jx. This belief then leads to (10.13), the constant c being absorbed in the factor

y°̂  that we allow on the right hand side of (10.13).

We do not know to what extent the naive belief on which the above argument relies

is justified. However, we feel that it is reasonable to suppose that for "general" n, d our

approximation to the cardinality of T is correct within an exponent l + o(l) for y —·> oo (äs

allowed by (10.13)), at least for the values of u and y that are relevant for the algorithm.

Next we turn to the first assertion of 11.4. Our heuristic argument for this is based on

the same naive belief äs above. Inspecting the case in which equality is achieved in Lemma

10.12, we find in a straightforward way that the numbers

41og(n1/d)loglog(n:

satisfy

_ 1+0(1)_ yQ ?
XQ

the o( l)'s here and in the rest of the argument being for n -4 oo, uniformly in d. We shall

choose u and y a little larger. Specifically, let e be a positive real number, and put

u = y =
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Note that these numbers tend to infinity with n, and that we have log n = y°̂  and

(log y)/ log z = o(l). From y = y*+e, χ < xl0+f we see that (log z)/ log y < (Iogz0)/logy0,

so (10.2) gives

X

Combining this with (11.7) we obtain

XQ

which by u0 = y0 = y1/(1+€) implies that

2e χ 1+0(1)

•Z-

From this inequality we shall deduce, heuristically, that there is a constant n(e) such that

for n > n(e), with the above choices of u and y, the number of rows in the matrix in Step

4 is at least the number of columns in the matrix plus an upper bound for the number of

times that we cycle through Steps 4 to 7.

As above, we estimate the number of rows to be (u2T/>(x,y)/a;)1+0̂ . The number of

columns is, in the notation of Section 8, equal to l + B + B' + B". We have

£ = 7r(y)<y, B' < dy, 5"<51ogn, d < logn = yo(1),

and therefore

l + B + B' + B" = y1+°̂ .

Finally. the number of times that we cycle through Steps 4 to 7 is one more than the

number of times that we find a trivial factor of n in Step 7, which is heuristically bounded

by (logn)°̂  — y°̂ . Thus our assertion follows, heuristically, from (11.8).

We conclude that every time that Step 4 is performed, it finds a non-trivial linear

relation between the rows of the matrix. The linear relations found by the algorithm are

linearly independent, so it is reasonable to conjecture that ultimately one of these relations

will give rise to a non-trivial factor of n in Step 7. Letting e tend to 0 for n —> oo we find

that we can indeed choose u and y such that each of them is given by (11.5) and such
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that the algorithm is likely to be successful on input n, d, u, y. Then we have u = ul+o(1\

V = yo+° , so (11-7) is also true with u0, y0, z0 replaced by u, y, z.

It remains to estimate the running time of the algorithm with this choice of parameters.

It is easy to see that the time taken by Step 3 equals u2+o(1), which is the length of the

sieve multiplied by a lower order factor; this gives rise to the expression (11.6). It is clear

that Steps l, 2, 6 and 7 are negligible compared with Step 3. To estimate the running

time of the Wiedemann coordinate recurrence method in Step 4, we note that the matrix

formed in this step has yl+°W columns and about äs many rows. In addition, the number

of non-zero entries in each row is O(logn) = y0̂ . Thus the number of non-zero entries

in the matrix is y1+°(1) and the running time of Step 4 is y2+o(1). This is the same äs our

bound for the running time of Step 3. In Section 9 we saw that the running time for Step 5

is y2+°(1) if we use naive arithmetic and y1+0^ if we use fast arithmetic subroutines. Thus

either way this step too is dominated by Step 3. Finally, äs we saw above, the number of

times that we cycle through Step 4 to 7 is likely to be yo(1).

This concludes our heuristic argument supporting Conjectures 11.2 and 11.4.

We note that the bound for the numbers that "would be smooth" is

x = exp((f + o(l))(>logd + 41og(n1/li) +

for n —>· oo, uniformly in <i, when u is chosen äs in Conjecture 11.4, and

z = In[f,(64/3)1/3 + o(l)] for n -> oo

when d and u are chosen äs in Conjecture 11.2.

We make a final remark concerning the numbers (a + bm}N(a + ba] in Step 3 that are

examined for y-smoothness. We have assumed above that these integers are just äs likely

to be y-smooth äs ran dorn integers of the same magnitude. In fact, the alert reader may

have noticed that these numbers, since they already factor into the two smaller numbers

α + bm and N (a + 6α), perhaps have a greater chance of being y-smooth than a random

integer. For practical purposes this may be true. Asymptotically, however, an argument

similar to the one above, but taking this factorization into account, can be worked out, and

it gives exactly the same results. That is, any differences in the two analyses are absorbed
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in the expression "o(l)". It may be of interest to point out that when (a + bm)N(a + 6a)

is y-smooth and a, b are coprime, then the numbers α + 6m and N(a + 6α) are coprime

too. Indeed, if a prime p divides both, it divides /(m) = n. However, after Step l we are

assured that n has only prime factors greater than y.

12. Homogeneous polynomials

In this section we discuss a modification of the number field sieve, in which the one-

variable polynomial / is replaced by a homogeneous polynomial in two variables. This

has the advantage that its coefficients can be taken a bit smaller, which may improve the

practical performance of the algorithm. We first describe the algorithm, and then provide

additional explanations for some of the individual steps.

Algorithm 12.1. Given an integer n > l, which is not a power of a prime number

(see 11.1, Step 1), together with parameters <Z, u, and y, which are positive integers, this

algorithm attempts to find a non-trivial factor of n.

Step 1. Find integers mj, m2, and a dih degree homogeneous polynomial

ΐ V"d , -\ra — \\r , ι \r\ra-\ , „ \rd ,~ rf\~V Λ/Ί
/ = Q.A + Cd-iX Y ·+·.,.+ CiXY + c0Y ez/|A,Yj

such that m1? m2, and the coefficients c, are "small" and such that we have /(ml5m2) =

0 mod n, f(m1,m2} φ 0. See 12.2 for methods to select /, ml5 m2.

Step 2. Check that / is irreducible in Z[X, Y], so that in particular gcd(co, GI, Cd) =

l, and that / φ -Χ", / φ Υ. Further check that each of m2, c^, and

d df
/x(mi,m2) = ν'ζσ,ττιί"̂ "̂1, where fx =

,=i dX'

is coprime to n. See 12.5 for more Information on this step.

Step 3. For each prime number p < y, determine the set R'(p) of elements (ΓΙ : r2)

of the projective line P1(FP) over Fp for which /(rl5r2) = 0. Note that if we identify

P^Fp) with Fp U {00} by identifying (Γ! : r2) with rj/r2, then R1 (p) consists of those

r = τι/Γ·2 € Fp for which /(r, 1) =0, together with oo if Q Ξ 0 mod p.
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Step 4. Find all members of the sei

T = {(a, 6) € Z2 : gcd(a, &) = l, |a| < «, 0 < & < u, (am2 - bml}f(a, b) is y-smooth}.

This is done with a sieve, äs described in Sections 4 and 5. Note that, for coprime integers

a, 6, and a prime number p, the number /(a, 6) is divisible by p if and only if (a mod p :

δ mod p) € i?' (p).

Step 5. For each (α, δ) € T, form the F2-vector e(a, 6) that is defined äs follows. The

first coordinate of e(a, b) is determined by the sign of am2 — bm l5 äs in Section 8 (we cannot

have am i - 6m2 = 0 if max{|mi|, |m2|} > u, which will be the case with our choice of

Parameters). The next B = -n(y] coordinates are given by ordp(am2-6mi) mod 2, äs pruns

over the prime numbers < y. Next there are B1 coordinates, where B' = Σ)ρ<ν $&'(?)·>

the sum ranging over prime numbers p. For each prime number p < y and each r £

R' (p}, the (p, r)th coordinate of e(a, b) is equal to εΡ)Γ(α,δ) mod 2, where ep>r(a, &) equals

ordp(/(a, 6)) if (a mod p : 6 mod p) = r and βΡ)Γ(α, δ) = 0 otherwise. Each of the following

B" coordinates corresponds to a prime number q > y and a pair of numbers si, s2 with

(θ! mod g : s2 mod g) G -R'(g); see 12.7 for the choice of B" and the triples q, si, s2- The

(g, si, s2)th coordinate of e(a, 6) is 0 mod 2 if the Legendre symbol (a^~6ai) equals l, and

l mod 2 if it equals -1. Finally, e(a, 6) has a last coordinate that is equal to l mod 2. (Dan

Bernstein points out that this last coordinate can be omitted if m2 = l and πι ι > u,

since then it is equal to the first coordinate, which gives the sign of am2 — bm j.) Thus

Step 6. Use the Wiedemann coordinate recurrence algorithm (see [40]) to find a non-

trivial linear dependence relation between the vectors e(a, 6), (a, b) (Ξ T. If this is unsuc-

cessful, stop. If it is successful, let 5 be the set of pairs (a.b) for which e(a,6) occurs in

the dependence relation. Note that #£ is even, due to the presence of the last coordinate.

Step 7. Let the algebraic integer ω be a zero of the polynomial f(X, Q). Express the

algebraic integer

7 = (/χ(ω, cd)/cd)2 (cda -

(a,6)€S

(with fx äs in Step 2) äs a polynomial in ω of degree less than d. Attempt to find a square
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root β οί 7 by the method of [38] (see Section 9). If this is unsuccessful, stop. Otherwise, if

β = Σζ=ο ̂ ωι, w*th ^« € Z, calculate an integer v with v = ̂ t=o ̂ Cdmlm2~1~l m°d n·

Step 8. For w an integer with w2 = f|/a 6x€5 (am2 — δη̂ ι), find the residue u; mod n.

In addition, calculate integers /i, / with

h = cd 2+#5/2 . /x(mi,m2) mod n, l = mf ' mod n.

Step 9. Compute gcd(/iu> — Iv, n). If this is a non-trivial factor of n, Output the result

and stop. Otherwise, remove an element of S from T and start again at Step 6.

This completes the description of the algorithm. We now discuss some of the individual

steps.

12.2. Selecting f and m1; m2. If we insist on choices for which m2 = Cd = l, then Algorithm

12.1 reduces to 11.1, except for the last coordinate that was appended to the vectors e(a, 6).

We now discuss three methods for choosing /, mi, m2. In the first method we allow cj, φ l,

in the second method we allow m2 =£ l, and in the third method we allow both.

In the first method we take m2 = l, and we let m χ be the least integer exceeding

n1/(<*+!)_ We obtain / by expanding n in base m\, so that

n = Q/rij + Q-imj"1 + ... + c\m\ + CQ, 0 < ct <

With this method, we have |m,| < n1/̂ "1"1) + l, |c,| < n1/̂ "1"1̂ . Of course, we can modify

this method by changing m ι a little, by allowing some of the digits cl to be negative, or

by replacing n by a small multiple.

In the second method we take Q = 1. To find the other ct and mi, m2, we proceed

äs follows. For mi one tries several values with m^ κ, nl^d+l\ until one discovers a value

for which n — mf is found to have a divisor m^ with mi « n1/^"1"1^; for example, by trial

division or by the elliptic curve method one may discover so many small factors of n — m\

that it is easy to multiply some of them together in order to obtain a suitable m2. Note

that gcdfmi, m2) divides n and is generally much smaller than n; so we may assume that

gcd(mi,m2) = 1. Next one determines small coefficients c, such that

(12.3)
n — mj

m2
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One can do this either by going from the right, determining c0, ci, ... successively by

looking modulo m\ and requiring that |c,| < rai/2 (or 0 < c, < m\}\ or similarly from

the left and finding Cd-ι-, c-a-i-, · · · from congruences modulo m2; or by determining some

from the right and some from the left. In all cases, the final c} to be determined is forced

by equation (12.3). If d is small in comparison with nl^d+l\ äs it will be in practice, then

the order of magnitude of |c,| will not be much larger than n1/(d+1). Again, this method

allows several refinements. For example, one might choose mi, m2 to be ~ (n/d) i

a judicious choice of non-negative values for the c, may then result in a smaller value for

the final c·,.

In the third method we allow both m2 φ l and cd φ 1. Although we do not know how

to exploit this freedom in order to obtain substantially better results, it is still of interest

to see how one can proceed. Namely, one can first choose arbitrary coprime integers mi,

m2 that are « n1/̂ 41). Next one needs to determine the c, such that

(12.4) kn =

for some small non-zero integer k. One can either do this by first choosing k (for example,

k = 1), and next determining the c, by one of the methods that we indicated for solving

(12.3). Alternatively, one can consider the subgroup

d

L = {(x,)f=o : Σ X'mlm2~' Ξ ° mod n)

i=0

of Zd+1. A basis of L is given by (0, 0, . . . , 0, n) together with the d vectors

where i € Z is such that im2 = m ι mod n (here we assume that gcd(m2,n) = 1; see

12.5). One can apply a lattice basis reduction algorithm (see [21]) to find a basis of L that

consists of relatively short vectors. At least one of the vectors (x,)f_0 in the reduced basis

satisfies X̂ ,_0 xtm\m2~l ̂  0, and a solution to (12.4) is then given by c, = xt. Also for

this algorithm one expects the c, to be of order of magnitude n1/̂ 1).

In the above we attempted to minimize the absolute values of m!, m2, and the coef-

ficients of /. It should be kept in mind, however, that other properties of / also influence
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the running time of the algorithm. For example, one may want to choose / in such a way

that / mod p has many linear factors in F?[.X] for several small prime numbers p. This

increases the smoothness probability of the numbers /(a, b).

12.5. Irreducibility testing. With any reasonable choices that are made in Step l, each of m2

and Cd will be much less than n in absolute value. Hence if any of gcd(m2, n), gcd(c<j, n) is

found to be different from l then it is a non-trivial divisor of n, and the algorithm can stop.

Assume now that gcd(m2, n) = gcd(c<j, n) = 1. The content cont / = gcd(co, GI, ..., c<f) of

the polynomial / divides the multiple /(mi,m2) of n, and it is coprime to n because it

divides Q. Therefore the polynomial /* = // cont / still has the property that /*(ml5 m2)

is divisible by n. Thus, replacing / by /* if necessary, we may assume that cont/ = 1.

We can now factor / into irreducible factors in Z[X, Y] with the algorithm of [21]; note

that the factorization of / can easily be obtained from the factorization of the one-variable

polynomial f(X, 1). Suppose first that / is found to be reducible, f — gh (say). Then we

have /(m1,m2) = #(mi,m2)/i(mi,m2), which leads to a Splitting of n. Formost reasonable

choices of the parameters it is very likely that g(mi, m2) and /i(mi, m2) are less than n in

absolute value, so that this is a non-trivial Splitting. If nevertheless the Splitting is trivial,

then one of ̂(mi,m2), /i(mi,m2) is divisible by n, say the first one. Then we can replace

/ and d by g and degg. It is easy to see that this replacement improves the algorithm. Let

it next be assumed that / is irreducible. Again, in most cases the number fx(jn\, m2) will

be less than n, so that gcd(/̂ (mj, m2), n) is a non-trivial divisor of n if it is not 1; and if

it ever happens that gcd(/x(mi,m2),n) = n then one has the Option of replacing / and

d by fx and d — 1. Finally, the conditions / φ X, f φ Υ are satisfied if |mi|, m2| < n,

which is very likely to be t nie.

12.6. First degree primes. In Section 5 we saw that the pairs consisting of a prime number

p and an element r G R(p] correspond to the first degree primes of the ring Z [a]. The pairs

consisting of a prime number p and an element r e R'(p] that occur in Algorithm 12.1 can

be interpreted in a similar manner. We introduce some notation.

Let a — ω l Cd, where ω is. äs in Step 7, a zero of /(X, cj); so α is a zero of f(X, 1).

Note that a is not an algebraic integer unless Q = ±1; but ω is an algebraic integer,
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since f(X, c<f)/c<f is a monic polynomial with integral coefficients. Let the elements /?o, . . . ,

ßd-! € Z[a] be defined by f(X, l)/(X-a) = £?-„* /?,*'; so A =

. . . + c,+j. Further let A = Z + ]Ci=o ̂ ß»· ̂  simple computation shows that A is closed

under multiplication, so that A is an order in the number field K = Q(a), in the sense

of Section 7 (cf. [26, 2.10]). We have Ζ[ω] C Ac Z[a], where Ζ[ω] is also an order in Ä",

but Z [a] is not (unless c<£ = ±1). The discriminant of A is equal to the discriminant Δ of

f(X, 1), and the discriminant of Z [ω] equals ĉ ~1)(d~2)A. It is of interest to observe that

the ring A does not change if f(X,Y) is replaced by f(Y,X) and a by a"1; so we also

have A C Z[a~l], and in fact one can show that A = Z[a] Π Zfo;"1].

With this notation, the pairs consisting of a prime number p and an element (r: :

r2) € R' (p) are in bijective correspondence with the first degree primes P of A. If r2 7̂  0,

then P is the intersection of A and the kernel of the ring homomorphism Z [a] -* Fp that

sends a to ri/r2. If r2 = 0, then P is the intersection of A and the kernel of the ring

homomorphism Z[a~l] -> Fp that sends a"1 to 0. Each prime P of A gives rise to a

function l p äs in 7.1.

Let a, b be a pair of coprime integers. Then the following analogue of 5.5 is valid.

First, if P is a prime of A of degree greater than l, then lP(a - ba) = 0. Next, let P be a

first degree prime of A, corresponding to a pair p, r € R' (p)· Then the number eptr(a,b)

that is defined äs in Step 5 is equal to the number of composition factors of the A-module

(A + Aa)/A(a — ba) that are isomorphic to A/P; explicitly speaking, one has

if r - οο,, -L\ _

βρ'τ(α' > ~ { lp(a - ba) + ordp cd if r = oo.

(Note that this is consistent with 7.1(c), since /(a, b) = c<iN(a — ba).) It follows that the

analogue of 5.3 holds, provided that we restrict attention to sets S for which #S is even.

12.7. Making squares. It is the purpose of Steps 5 and 6 to find a non-empty subset S C T

of even cardinality such that fj/ b-,£S (am2 — bm^ ) is a square in Z and J~J, b-,&s (a — ba) is

a square in K. Clearly, the condition that S be even is taken care of by the last coordinate

of the vectors e(a, 6), and the condition that the product of the elements am2 — bmi be

a square by the first l + B coordinates. The B' coordinates that correspond to the pairs

p, r guarantee, by 12.6, that the set S found in Step 6 is such that the product of the
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elements α — δα, for (α, 6) e 5, belongs to the subgroup VA of K* defined in Section 7.

One has VA D K*2, and depending on the algorithm used for Step l one can mimic the

proof of Theorem 6.7 and find a constant c for which the obstruction group VA/ K*2 has

F2-dimension at most clogn. To overcome this obstruction group, one can use quadratic

characters for, say, B" = [(c + 2/ log 2) log n] first degree primes Q of A. As in Section 8,

one can choose these primes to be the first B" primes of norm exceeding y that do not

contain fx(u>,Cd). Explicitly, one can take the first B" triples g, si, s^ = I for which q is a

prime number not dividing c^ with q > y, and si (mod g) is such that /(si, 1)^0 mod q,

fx(si, 1)^0 mod q, and use these in Step 5.

12.8. The final congruence. Suppose that J~La 6)̂ 5(0 — ba) is a square in K and that

is even. Multiplying by c* we see that the element J~La f,)£s(Cda ~ k*0 °̂  ̂ he order Z [ω]

is also a square in Ji. The square root is in the ring of integers of Ä", so fx(<jJ,Cd)/ct

times the square root belongs to Ζ[ω] (see [39, Proposition 3-7-14]). Hence the element β

calculated in Step 7 has coefficients 6, in Z.

Let now the ring homomorphism φ: Z[a] — > Z/nZ be such that φ (a) = (m1 mod

n)/(rn2 mod n). Then (̂ (m2ü;) = (c^mi mod n), so with υ äs in Step 7 we have

With /, w and /i äs in Step 8, this leads to

JJ m2(cda -

(a,6)€S

= (h2w2 mod n).

This explains the attempt in Step 9 to find a non-trivial factor of n.

12.9. Choice ofparameiers u, y, d. The heuristic analysis of Algorithm 11.1 given in Section

11 can be copied without essential changes for Algorithm 12.1. The main difference is that
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the factor n2/d in χ is to be replaced by n2/(d+1\ Since our analysis gave the optimal

value for d only up to a factor l + o(l) (for n —*· oo), the heuristic asymptotic results for

Algorithm 12.1 are the same äs for Algorithm 11.1. From a practical point of view, 12.1

may be better than 11.1; see the discussion in 12.15.

12.10. The optimal choice of the polynomial. In Section 3 and in 12.2 we described alto-

gether four methods for selecting /, mi, and m2. One may ask whether there is a better

method for doing this. We present an argument that leads to a limit on the performance of

any method for selecting /, mj, and m2. It shows that asymptotically one cannot expect

to do better than the methods that we described if one wishes the algorithm to apply to

all integers n. In addition, the argument suggests that for practical purposes there may

still be room for improvement (see 12.15).

For a given choice of n and d, what would be a good choice of /, mi, m2 in Step l of

Algorithm 12.1? Let M = max{|mi|, |m2|} and let C = max{|c0 , cj ,..., \cd\}. An upper

bound on the integers |(am2 - bml)f(a. b}\ that are examined for smoothness in Step 4 of

the algorithm is 2(d + l)ud+1CM. Thus for a given n and d, a choice of /, mi, m2 which

has the product CM small should be better for factoring n than another choice with CM

large.

For example, in the base m method used in Algorithm 11.1 we have M < nl/d and

C < n1/**, so that CM < n2/d. The methods of 12.2 achieve CM = 0(n2/(d+1)), so we

would expect these methods to give an improvement over the base m method. The following

result expresses that we cannot expect to get CM substantially smaller than n"2'^d+2' for

all n.

Given positive integers d, C, M, let S(d,C,M) denote the set of non-zero inte-

gers of the form /(m!,m2) where mj, m2 are integers with \m\ , m2| < M and / =

Σί=ο ctX*Yd~l € 1[X, Y\ satisfies |c,| < C for 0 < i < d.

Proposition 12.11. For each e > 0 there is a number N(e) with the following property.

Suppose d, C, M, 7V are positive integers with N > N(e). If each integer in the interval

[l, N] has a multiple in S(d, C, M), then

CM > l̂ (2
~ 8
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Proof. It suffices to prove the proposition in the case 0 < e < 1. Suppose d, C, M, N are

positive integers and S(d,C,M] contains a multiple of each of the integers in [l, .ZV]· We

may assume that CM < N2/d for otherwise there is nothing to prove. It is clear that each

member of S(d, (7, M) has absolute value at most (d + l)CMd. Thus

(12.12) N < (d + l)CMd <(d + l)(CM)d <(d + l)N2.

Lei D = max{r(j) : l < j < (d + I)N2}, where r(j) denotes the number of divisors of j.

Since r(j) = j°̂  for j — *· oo, there is some number N(e) such that if N > 7V(e) we have

(12.13) D<(d+lYNe.

By our assumption on N we have

(12.14) N < D · #S(d, C, M) < D(1C + l)d+\2M + l)2 < 3d+3DCd+1M2.

Multiplying this by the first inequality in (12.12) we get

7V2 <3d+3(d+I)DCd+2Md+2,

so that using (12.13) we obtain

CM > (3d+3(d+l}D)-1/(d+2)N2/(d+2)

8

This completes the proof of the proposition.

If we do not require that every integer up to N have a multiple in S(d, C, M), but only

that N does, we still have (12.12) holding, which gives CM > (d + l}-lldNl/d > \Nl/d.

This lower bound for CM is almost achieved in the special number field sieve, which

accounts for its lower complexity.

12.15. Practical considerations. In practical circumstances, when n is fixed rather than

tending to infinity, the above argument suggests that our methods for selecting /, ml5
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are not yet optimal. Namely, suppose that for a given N and d we ignore lower order

factors in (12.12) and (12.14) and solve the equations N = CMd = Cd+1M2 for C and

M. This suggests we may be able to choose M near N$ and C near Nt where

d d-2ς — — — _w /·»
2)' (d

In fact, suppose we choose M = [JVS], C = [N*], so that CM < N3+t = N2/(d+2). It is likely

that for most integers in [l, N] there is a choice of /, ml5 m2 satisfying cz < C and m,| <

M. Indeed the total number of such triples is (2C + l)d+1(2M + l)2, which by our choice

of C, M is somewhat larger than N. Also, the typical order of magnitude of |/(mi, 7712)! is

CMd, which is about ]V. But if we have a set of a little over N "pseudorandom" numbers of

order of magnitude JV, then it is quite likely that most integers in [l, N] have a multiple in

the set. Thus if we are interested in a particular number n < N, either this choice of values

for C, M or perhaps slightly larger ones should sufBce. Note that this imprecise argument

is purely existential, and that it does not suggest a way of constructing /, mi, m2.

Suppose that n lies in a realistic ränge, like n w 10130, and that we take d = 5. Then

Algorithm 11.1 uses θ = t = |, and therefore m and the coefficients of / each have about

26 digits. In Algorithm 12.2 we have s = t = |, so m1; m2 and the coefficients of / have

about 22 digits, which is a significant improvement. The above argument suggests that the

optimal values would be s = 5/28 and i = 3/28, in which case the m, would have about

23 digits and the coefficients of / about 14 digits. Thus for practical purposes there may

still be room for improvement.

12.16. Addltional improvements. We mention two variations of the number field sieve that

improve its practical performance, while not affecting the asymptotic analysis. The first is

the double large prime Variation, which was used in the factorization of the ninth Fermat

number [22]; see also [24]. The second is the lattice sieve idea of Pollard [3l].
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