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A general theory 1s presented for the photodetection statistics of coherent radiation that has been amplified
by a disordered medium The beating of the coherent radiation with the spontaneous emission ncreases the
noise above the shot-noise level The excess noise 1s expressed i terms of the transmission and reflection
matrices of the medium, and evaluated using the methods of random-matrix theory Intermode scattering
between N propagating modes increases the noise figure by up to a factor of N, as one approaches the laser
threshold Results are contrasted with those for an absorbing medium [S1050-2947(99)02411-7]

PACS number(s) 42 50 Ar, 42 25 Bs, 42 25 Kb, 42 50 Lc

L INTRODUCTION

The coherent radiation emitted by a laser has a noise spec-

tial density P equal to the time-averaged photocurrent I This
noise 1s called photon shot noise, by analogy with electronic
shot noise 1in vacuum tubes If the radiation 1s passed through

an amplifying medium, P increases more than I because of
the excess noise due to spontaneous emussion [1] For an

1deal linear amplifier, the (squared) signal-to-noise ratio 12/ P
diops by a factor of 2 as one increases the gain One says that
the amplifier has a noise figure of 2 This 15 a lower bound
on the excess notse for a linear amplifier [2]

Most calculations of the excess noise assume that the am-
plification occurs n a single propagating mode (Recent ex-
amples mclude work by Loudon and his gioup [3,4]) The
minimal nose figuie of 2 1efers to this case Generalization
to amplification mn a multimode waveguide 1s straightforward
if there 1s no scattering between the modes The recent inter-
est in amplifying 1andom media [5] calls for an extension of
the theory of excess noise to include intermode scattering
Here we present such an extension

Our central result is an expression for the probability dis-
tribution of the photocount in terms of the transmission and
reflection matrices ¢ and r of the multimode waveguide (The
noise power P 1s determined by the vanance of this distribu-
tion ) Single-mode results 1n the literature are recovered for
scalar ¢ and r In the absence of any incident radiation, our
expiession reduces to the known photocount distribution for
amplified spontaneous emission [6] We find that intermode
scattering stiongly increases the excess noise, resulting mn a
noise figure that 1s much larger than 2

We present explicit calculations for two types of geom-
etues, waveguide and cavity, distinguishing between photo-
detection 1n transmission and in reflection We also discuss
the parallel with absorbing media We use the method of
1andom-matrix theory [7] to obtain the required information
on the statistical properties of the transmission and reflection
matiices of an ensemble of random media Sumple analytical
results follow 1f the numbei of modes N 1s laige (1e, for
high-dimensional matrices) Close to the laser threshold, the
noise figure F exhibits laige sample-to-sample fluctuations,
such that the ensemble average diverges We compute for
arbitrary N=2 the distuibution p(F) of F 1n the ensemble of
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disordered cavities, and show that 7= N is the most probable
value This 1s the generalization to multimode random media
of the single-mode result =2 1 the literature

II. FORMULATION OF THE PROBLEM

We consider an amplifying disordeied medium embedded
m a waveguide that supports N(w) propagating modes at
fiequency o (see Fig 1) The amplification could be due to
stimulated emission by an nverted atomic population or to
stimulated Raman scattenng [1] A negative temperature T
<0 describes the degree of population mverston m the first
case ot the density of the material excitation i the second
case [3] A complete population nveision or vamshing den-
sity corresponds to the limit 7—0 fiom below The minimal
noise figure mentioned 1 the Introduction is reached 1n this
limit The amplification rate 1/7, 1s obtained fiom the (nega-
tive) imagmnary part €” of the (relative) dielectric constant,
l/7,= w|€"| Disoider causes multiple scattering with rate
1/7, and (t1ansport) mean free path [ =c 7, (with ¢ the veloc-
ity of hight in the medium) We assume that 7, and 7, are
both > l/w, so that scatteting as well as amplification occur
on length scales large compared to the wavelength The
waveguide 1s 1lluminated from one end by monochromatic
1adhation (frequency wg, mean photocurrent /) 1n a coherent
state Foi simplicity, we assume that the illumination 1s 1m a
single propagating mode (labeled my) At the other end of
the waveguide, a photodetector detects the outcoming radia-
tion We assume, agamn for simplicity, that all N outgoing
modes aie detected with equal efficiency a The case of
single-mode detection 1s considered 1n Appendix A

We denote by p(n) the probability to count n photons
within a ttme 7 Its first two moments determine the mean

photocurrent 7 and the noise power P, according to

21)

T=—n, P=lm —(n’—n?)
T T

T %

— [
———
—

FIG 1 Coherent light (thick arrow) 1s mcident on an amplifying
medium (shaded), embedded 1n a waveguwide The transmitted radia-
tion 1s measured by a photodetector

I
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[The defimtion of P 1s equivalent to P=[%_dtS51(0)SI(t),

with 8I=1—1 the fluctuating part of the photocurrent ] It 1s
convenient to compute the generating function F(&) for the
factorial cumulants K, defined by

%

F(§)= 2}—§= (2<1+§>'1p<n)) 22)

J=1 n=0

One has n=ky, n*=ry+i;(1+xy)

The outgoing radiation in mode n 1s described by an an-
nthilation operator a2™(w), using the convention that modes
1,2, ,N are on the left-hand side of the medium and
modes N+ 1, 2N are on the right-hand side The vector
a®™ consists of the operators a™,a™, a5y Similarly,
we define a vector a'™ for incoming radiation These two sets
of operators each satisfy the bosonic commutation relations

[a,(0).al(@)]=8,,8w—w"), (2 3a)
[a,(@).an(w’)]=0, (23b)

and are related by the input-output relations [3,8,9]
a®(w)=5(w)a™(0)+V(w)ci(w) 24

We have introduced the 2N X 2N scattering matrix S, the
2NX2N matrix V, and the vector ¢ of 2N bosonic operators
The scattering matrix S can be decomposed mnto four NXN
reflection and transmission matrices,

25)

Reciprocity mmposes the conditions ¢'=¢7, r=rT, and r’
= r’

The operators ¢ account for spontaneous emission in the
amplifying medium They satisfy the bosonic commutations
relation (2 3), which implies that

VVi=55T-1 (26)
Their expectation values are
{ea(@ef (@)= =8, 8(w—w)f(w.T), (27
with the Bose-Emstein function
flw,T)=[exp(ha/kT)—1]"1 (2 8)

evaluated at negative temperature T (<0)

III. CALCULATION OF THE GENERATING FUNCTION

The probability p(») that n photons are counted 1n a time
7 1s given by [10,11]

1
pln)= ’T'( Wre W), €RY

where the colons denote normal ordering with respect to a®*
and
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2N
W=a f dt > a®()a®(r), (32)
0 n=N+1
at(t)y=(2m)"~ “2f dwe™"*'a)(w) (33)
0
The generating function (2 2) becomes
F(&)=In{ ") (34)

Expectation values of a normally ordered expression are
readily computed using the optical equivalence theorem [12]
Application of this theorem to our problem consists 1n dis-
cretizing the frequency n infinitesimally small steps of A (so
that w,=pA) and then replacing the annihilation operators

ay(w p) cn(wy) by complex numbers a,;, , c,, (or theur com-
plex conjugates for the corresponding creation operators)
The coherent state of the incident radiation corresponds to a

nonfluctuating value of a,, with [a,, |2 SumyOpp 2 o/ A

(with wy=pyA) The thermal state of the spontaneous emis-
sion corresponds to uncorrelated Gaussian distributions of
the real and imagmary parts of the numbers ¢, b, with zero
mean and variance {(Re C”P)2> ((Im C”p)2> —3f(w,,T)
(Note that f<<0 for T<0) To evaluate the charactenistic
function (3 4) we need to perform Gaussian averages The
calculation 1s described 1n Appendix B

The result takes a simple form 1n the long time regime
w, 7> 1, where w,. 15 the frequency within which S(w) does
not vary appreciably We find

T o
F(f)zFexc(g)—~ ﬁfo ln”l_a‘ff(l——rr'r_tﬁ)“dﬁ%

(35)

Fexc(g) = agTIO{tT[l_ agf(]-_ rrf— t”)]_ 1l‘}mom(),
(36)
where || | denotes the determmnant and { =}, the

mg,mg element of a matrix In Eq (3 6) the functions f, ¢,
and /7 are to be evaluated at w=wy The ntegral in Eq (3 5)
1s the generating function for the photocount due to amplified
spontaneous emission obtained in Ref [6] It 1s independent
of the mncident radiation and can be eliminated 1n a measure-
ment by filtering the output through a narrow frequency win-
dow around w, The function F (&) describes the excess
notse due to the beating of the coherent radiation with the
spontaneous emussion [1] The expression (3 6) 1s the central
1esult of this paper

By expanding F(&) m powers of £ we obtain the factorial
cumulants, m view of Eq (22) In what follows we will
consider only the contribution fiom F, (&), assuming that
the contribution from the integral over @ has been filtered
out as mentioned above We find

Kk=k'akak_IIO[tT(J-—rrT_ttT)kﬂlt]mOmO’ (3 7)
where again w=w, 1s 1mplied The mean photocurrent 7
= /7 and the noise power P=(k,+ )/ T become

T=aly(t't) P=1+P,,

moing?

(38)
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PCXC: 2a2f10[t‘r(]|‘— rrT-—- ttT)t]H‘lonlo

The noise power P exceeds the shot noise I by the amount

PCXC
The formulas above are easily adapted to a measurement

m reflection by making the exchange r—1¢', t—r’ For ex-

ample, the mean reflected photocurrent 15 7
=aly(r' 'r’)momo, while the excess noise 1s

Pexe=202fIo[r' (1=r'r' T=t't' ) r' Yy s (39)

IV. NOISE FIGURE

The nose figwe F 1s defined as the (squared) signal-to-
noise 1atio at the 1nput 1(2)/ Py, divided by the signal-to-noise

ratio at the output, 72/P Simnce Py=1, fo1 coherent radiation
at the mput, one has F=(P.+1)1,/T*, hence

(tTr’ TZ+tTttTt)momo 1+2C¥f

@1

F==2f

(t t)momo a(tTt)InOlno

The notse figure 1s independent of I, For large amplification
the second teim on the right-hand side can be neglected 1ela-
tive to the fitst, and the noise figuie becomes also indepen-
dent of the detection efficiency @ The minimal noise figure
for given r and ¢ 1s reached for an 1deal detector (= 1) and
at complete population 1nversion (f=—1)

Since (et 17 878) = 2Rl (11 7) il
+Zk|(ﬂz‘)m k|“>(tTt)m my> ONE has Fz=—2f for large am-
plification [when the second tem on the right-hand side of
Eq (4 1) can be neglected] The minimal noise figure F=2
at complete population inversion 1s reached 1n the absence of
1eflection [(t*r)mo,\=0] and 1 the absence of itermode
scattering [(tTt)mOk=O if k#mgy] This 1s realized n the
single-mode theories of Refs [3,4] Our tesult (4 1) general-
1zes these theories to include scattering between the modes,
as 1s relevant for a random medium

These formulas apply to detection mn tiansmission For
detection 1n reflection one has instead

(’ITtlt,Tr,+r,T ' IT ,)'”O’"O

( ,T I)momo

1+2af

F=-2f
a(r’Trl)ﬂloan

(42)

Again, for laige amplification the second term on the right-
hand side may be neglected 1elative to the first The notse
figure then becomes smallest 1n the absence of transmuission,
when  F==2f0 "' r ) 011 02, = —2f  The
mimmal noise figuie of 2 at complete population inversion
requites (1711 Tr " mgmg = ('’ ,7,,0,,10, which 1s possible

only n the absence of intermode scattering

To make analytical progiess in the evaluation of F, we
will consider an ensemble of random media, with different
realizations of the disoider For laige N and away from the
laser threshold, the sample-to-sample fluctuations 1n numera-
tors and denominatots of Eqs (4 1) and (4 2) are small, so
we may average them sepaiately Fuithermore, the ‘‘equiva-
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FIG 2 Nose figure of an amplifying disordered waveguide
(length L, amphfication length £,) measured in transmission (sohid
line) and n reflection (dashed hne) The curves are computed from
Egs (5 1)-(54) for a=1, f=—1, and L/{=10 The laser thresh-
oldis at L/, =ar

lent channel approximation’” 1s accurate for random media
[13], which says that the ensemble averages are independent
of the mode ndex m, Summing over my, we may theiefore
wiite F as the ratio of traces, so the noise figure for a mea-
surement 1n transmission becomes

1+2af

a<trete>"
43)

<tr (tTrrfe+1Teer)>
+N

F=—2fN -
<trefe>?

and similaily for a measurement in reflection The brackets
< > denote the ensemble average

V. APPLICATIONS
A. Amplifying disordered waveguide

As a fitst example, we consider a weakly amplifying,
strongly disoidered wavegwide of length L (see the inset of
Fig 2) Averages of the moments of rr' and zz7 for this
system have been computed by Brouwer [14] as a function
of the number of propagating modes N, the mean fiee path /,
and the amplification length §a=\/ﬁ':, wheie 1/7, 1s the
amplification rate and D =c!/3 1s the diffusion constant It 1s
assumed that I/N<€l/£,<€1 but the ratio L/ £,=s 1s arbitrary
In this regime, sample-to-sample fluctuations are small, so
the ensemble average is representative of a single system

The results for a measurement 1n transmission are

7— 4all ) s 1
3L Psins’ 1
P 2a°1 ; 3 2s—cots scots—1 K
o 3L Slos s s sin’ s sin’ s sm® s
(52)
For a measuiement 1n 1eflection, one finds
- 4]
[=aly l—g—iscots, (53)
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FIG 3 Noise figure of an amplifying disordered cavity, con-
nected to a photodetector via an N-mode waveguide The curve 1s
the result (5 9), as a function of the dimensionless amplification rate
v (Ideal detection efficiency, a=1, and full population inversion,
f=—1, are assumed 1n this plot ) The laser threshold occurs at y
=1

2a?l

cots
Pex&::?L_fIOS 2cot s —

sin s s]nz Ky

3 sin’ s

scots—1 s
+ (54)

sin” s

The noise figure F follows from F=(P+1)Io/T* It 1s
plotted 1n Fig 2 One notices a strong increase m J on ap-
proaching the laser threshold at s= 7

B. Amplifying disordered cavity

Our second example 15 an optical cavity filled with an
amplifying random medium (see the mset of Fig 3) The
radiation leaves the cavity through a waveguide supporting N
modes The formulas for a measwement in reflection apply
with =0 because there 1s no transmission The distribution
of the eigenvalues of 7 Tr 1s known 1n the large-N Iimit [15]
as a function of the dimensionless amplification rate 7y
=2m/N7,Aw (with Aw the spacing of the cavity modes
near frequency wy) The first two moments of this distribu-
tion are

1
N"1<trr7r>=-—, (55)
-y
) 292 —2y+1
N_I<trrfrr'1>=————y—4— (56)
(1~7)
The resulting photocurrent has mean and variance
- 1
2
—y*—1
Poe=20 flyy (58)

(1=p)*

The resulting noise figure for =1 and f=—1,
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L= y+y2+4?
A s
(I=v)

15 plotted in Fig 3 Again, we see a strong inciease of F on
approaching the laser threshold at y=1

, (59

VI. NEAR THE LASER THRESHOLD

In the preceding section we have taken the large-N limut
In that limit the noise figure diveiges on approaching the
laser threshold In this section we consider the vicmity of the
laser threshold for arbitrary N

The scattering matrix S(w) has poles in the lower half of
the complex plane With increasing amplification, the poles
shift upwards The laser threshold 1s reached when a pole
reaches the real axis, say at resonance frequency wy, For o
near wy, the scattering matrix has the generic form

_ 0,0y
) nm— s

I 61)
o= wy+ EzF—z/ZT,,

where o, 1s the complex coupling constant of the resonance
to the nth mode 1n the wavegwde, I 1s the decay rate, and
1/7, the amplfication rate The laser threshold 1s at I'7,
=1

We assume that the 1ncident radiation has frequency wq
=wyq, Substtution of Eq (6 1) into Eq (4 1) o1 (4 2) gives
the simple result

~2f3 X

F=—— 3=2 o/’ 62)
|0 =1

for the hmiting value of the noise figure on approaching the

laser threshold The limit 1s the same for detection in trans-

nussion and 1n reflection Since the coupling contant ICTmOIZ

to the mode m of the incident radiation can be much smaller
than the total coupling constant 2, the noise figure (6 2) has
large fluctuations We need to consider the statistical distri-
bution p(F) 1n the ensemble of random media The typical
(or modal) value of F 1s the value Fiyp at which p(F) 1s
maximmal We will see that this remains finite although the
ensemble average <JF> of F diverges

A. Waveguide geometry

We first consider the case of an amplifying disordered
waveguide The total coupling constant 3=3,+3, 1s the
sum of the coupling constant %, l=22’=llanl2 to the left end
of the waveguide and the coupling constant 2,
22,2111N+1|U”|2 to the right The assumption of equivalent

channels implies that

1
<YF>r=— e <3,/3> =~

27N (63)

4fN

Since the average of 1/F 1s finite, 1t 18 reasonable to as-
sume that Fy o~ <1/F>"'=—4fN, or F,,~4N for com-
plete population inversion The scaling with N explains why
the large-N theory of the preceding section found a divergent
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noise figure at the laser threshold We conclude that the di-
vergency of F at L/é,=m m Fig 2 1s cut off at a value of
order N, 1f F 1s 1dentified with the typical value Fy,

B. Cavity geometry

In the case of an amplifying disordered cavity, we can
make a more precise statement on p(F) Since there 1s only
reflection, there 1s only one 3=3"_ |0,|?> The assumption
of equivalent channels now gtves

1
< = — ———
I/ F> 37N

(64)
Following the same reasoning as in the case of the wave-
guide, we would conclude that F,~<1/F>"1=—2fN
We will see that this 1s correct within a factor of 2

To compute p(F) we need the distribution of the dimen-
sionless coupling constants u”:(f”/\/i_ The N complex
numbers u, form a vector u of length 1 According to
random-matrix theory [7], the distribution p(S) of the scat-
tering matrix 1s wmvariant under unitary transformations S
—USUT (with U an NXN untary matrix) It follows that
the distribution p(zZ) of the vector u 1s 1nvariant under rota-

tions u— Uu, hence

puy,uy, ,MN)‘X5(1‘E |“n|2) (65)

In other words, the vector u has the same distribution as a
column of a matrix that 1s uniformly distributed in the uni-
tary group [16] By mtegrating out N— 1 of the u,’s we find
the margmal distuibution of U

_._1 _
p(umo) = T( 1~ |umO]2)N 2» (6 6)
for N>2 and |u,, |[*<1
The distribution of F=—2 f|u,,,O]_2 becomes
2f N-2
P(f)=—2f(N~—1)(1+—3__— F2, 67)

for N=2 and F=—2f We have plotted p(F) i Fig 4 for
complete population mversion (f= —1) and several choices
of N It 1s a broad distribution, all 1ts moments are divergent
The typical value of the noise figure 1s the value at which
p(F) becomes maximal, hence

‘Ftyp:: —fN, N=2 (6 8)

In the single-mode case, in contrast, F=—2f for every
member of the ensemble [hence p(F) = §(F+2f)] We con-
clude that the typical value of the noise figure near the laser
threshold of a disordered cavity 1s larger than 1n the single-
mode case by a factor N/2

VII. ABSORBING MEDIA

The general theory of Sec II can also be applied to an
absorbing medium, m equlibrium at temperatwe 7>0
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FIG 4 Probabulity distribution of the noise figure near the laser
threshold for an amplifying disordered cavity, computed fiom Eq
(67) for f=—1 The most probable value 1s 7= N, while the av-
erage value diverges

Equation (2 4) then has to be replaced with
a®(w)=S(w)a™(w)+2(w)b(w), 7D

where the bosonic operator b has the expectation value

(b (@)bp(®'))= 80— ") f(w,T), (72)
and the matrix Q 1s related to § by
Q0" =1-5s7 (73)

The formulas for F(£&) of Sec III remain unchanged

Ensemble averages for absorbing systems follow from the
corresponding results for amplifying systems by substitution
T7,~— 17T, The results for an absorbing disordered wave-
guide with detection 1n transmission are

_ 4all s 74
I—i Oginh s5° (74)
P _20:21 ; 3 2s+coth s
e 3, flos sinh s sinhZs
s coth s—1 s (75)
sinh? s smhis |

where s=L/§&, with &, the absorption length Simuilarly, for
detection 1n reflection one has

- 41
I=al, 1—3—Zscoths, (76)
202 > coth 1 coth s
Pexc———BL flgs| 2 coth s Snh s  sionls
s coth s—1 K } 77

sinh? s sinh* s

These formulas follow from Eqs (5 1)-(5 4) upon substitu-
tion of s—1s

For an absorbing disordered cavity, we find {substituting
v——vm Eqs (57) and (5 8)]
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FIG 5 Excess noise power P, for an absorbing (solid lne, left
axis) and amplifying disordered waveguide (dashed hine, right axis),
respectively, 1n units of «2I|f]I,/L The top panel 1s for detection
n transmussion, the bottom panel for detection 1n reflection

2
yo+y+1
Pexczzazflo'yw’ (79

with -y the dimensionless absorption rate

Since typically f<<1 1n absorbing systems, the noise fig-
ure F 1s dominated by shot noise, F~1I,/T Instead of F we
therefore plot the excess noise power P, i Figs 5and 6 In
contrast to the monotonic increase of P, with 1/7, 1n am-
plifying systems, the absorbing systems show a maximum 1n
P for certamn geometries The maximum occurs near
L/¢,=2 for the disordered waveguide with detection in
transmission, and near y=1 for the disordered cavity For

0.4 T T T =T T 1 00
0.3 | 80
i 60
§ 02 i
~ | 40
0.1 20
0 v 1 L " L 0
0 1 2 3 4

FIG 6 Excess noise power P.,. for an absorbing (solid lne, left
axis) and amplifying disordered cavity (dashed line, right axis), in
units of a?|f|1,
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FIG 7 Schematic diagram of detection of radiation propagating
through a slab Single-mode detection occurs when the area of the
photodetector becomes less than R%/N

larger absorption rates the excess noise power decreases be-

cause I becomes too small for appieciable beating with the
spontaneous emission

VIII. CONCLUSION

In summary, we have studied the photodetection statistics
of coherent radiation that has been transmitted ot reflected by
an amphifying or absorbing random medium The cumulant
generating function F(£) 1s the sum of two terms The first
term 1s the contribution from spontaneous emission obtained
in Ref [6] The second term F,,. 1s the excess noise due to
beating of the coherent radiation with the spontaneous emis-
sion Equation (3 6) relates F.,. to the transmisston and re-
flection matrices of the medium

In the applications of our general result for the cumulant
generating function, we have concentrated on the second cu-
mulant, which gives the spectral density P.,. of the excess
noise We have found that P, increases monotonically with
mcreasing amplification rate, while it has a maximum as a
function of absorption rate 1n certain geometries

In amphfying systems we studied how the noise figute F
mcieases on approaching the laser threshold Near the laser
threshold the noise figure shows large sample-to-sample
fluctuations, such that 1ts statistical distribution in an en-
semble of random media has divergent first and higher mo-
ments The most probable value of F 1s of the order of the
number N of propagating modes in the medium, independent
of material parameters such as the mean fiee path It would
be of interest to observe this umversal limit in random lasers
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APPENDIX A: SINGLE-MODE DETECTION

We have assumed throughout this paper that all N modes
propagating through the waveguide are detected at either the
left or the right end At the opposite extreme one can con-
sider the case of single-mode detection This 1s particulaly
1elevant 1n a slab geometry, where the cioss sectional area of
the photodetector 1s much less than the aiea of the random
medium (see Fig 7) The number of detected modes 1s then
much smaller than the number of modes N propagating
through the medium The Iimit of single-mode detection 1s
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reached when the photodetector covers an area comparable
to the area of one speckle or smaller.

Single-mode detection of thermal radiation was consid-
ered in Ref. [6]. Denoting the detected mode by the index ng,
the mean photocurrent was found to be

- *dw
[thermal: 0 _Z.;Jthermal(w)’ (Al)
jthermal(w): af(]—l’l‘f_ttT)”Ono, (AZ)
and the noise power
“dw ,
Pthermdl: 0 E] mermal( w) . (A3>

In this case of single-mode detection the noise power con-
tains no information beyond what is contained in the photo-
current.

The same holds for the excess noise considered in this
paper. The mean transmitted photocurrent in a narrow fre-
quency interval around wy is given by

I=aly|t, . |% (Ad)

llonlo

and the excess noise

P exc— 2 T.] thermal( Wy ) (AS)

is simply the product of the mean transmitted photocurrent
and thermal current density. Noise measurements in single-
mode detection are thus not nearly as interesting as in multi-
mode detection, since the latter give information on the scat-
tering properties that is not contained in the mean
photocurrent.

APPENDIX B: DERIVATION OF EQ. (3.6)

To evaluate the Gaussian averages that lead to Eq. (3.6), it
1s convenient to use a matrix notation. We replace the sum-
mation in Eq. (3.2) by a multiplication of the vector a®" with
the projection Pa®™, where the projection matrix P has zero
elements except P,,=1, N+1=n=<2N. We thus write

W=af dta®™" (1) Pa®\(¢). (B1)
0
Insertion of Egs. (2.4) and (3.3) gives
o T o0 o
W=— dtj dwf da)'[amT(a))ST(w)+c(w)VT(w)]
270 Jo 0

XP[S(w’)a”‘(a)’)-f-V(cu')cT(w')]e’(“’—"”)‘. (B2)

As explained in Sec. III, we discretise the frequency as w,
=pA, p=123,... . The integral over frequency is then
replaced with a summation,

[Cdog@) -8 g0, (83)
0 p=1

We write Bq. (B2) as a matrix multiplication,
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EW=a"TAa™+cBc +a™ C'c+cCa™, (B4)

with the definitions

alAE [T .,
Anp,n:pzzﬂ—fo dt[ST(wp)'PS(wp:)],m,elA(p P

B”p,nlpl

alAé [ s
= 277 JO dt[VT(wp)PV(wpl)]n”/e p=p )t,
(B5)
alAfé (~ .
Copnrpr= Sar fo dt[VT(w,,)PS(wp,)]n,l,em(p P

am =A1/2am(wp)’ c

— Al2
np n =A Cn(wp)'

np

We now apply the optical equivalence theorem [12], as
discussed in Sec. III. The operators a,, are replaced by con-
stant numbers &, 8,, (2o /A)!. The operators c,, are

replaced by independent Gaussian variables, such that the
expectation value (3.4) takes the form of a Gaussian integral,

<:e£W:>:J d{cnp}exp fW'f‘% ICanz/f(wp ’T)

= j d{c,pyexpla™Aa"—cMc*

+a"* Cle*+cCa™], (B6)
where we have defined

51111’51)1)’

M np’”:p/—m.

=—B (B7)

np.n'p'

We eliminate the cross terms of ¢™ and ¢ in Eq. (B6) by
the substitution

c'*=c*—M"1Ca", (Bg)
leading to

(et y=expla™(A+CTM™'C)a™
Xf d{c,’lp}exp(-—c’Mc'*). (B9)

The integral is proportional to the determinant of M ™!, giv-
ing the generating function

F(&)=const—In||M||+a™(A+C'M~'C)a™

2’71'10
A

= const— In||M|| + (A +C+M—1C)mop0,mopo'

(B10)

The additive constant follows from F(0)=0. The term
—In[|M| is the contribution from amplified spontaneous
emission calculated in Ref. [6]. The term proportional to [ is
the excess noise of the coherent radiation, termed .. 1n
Sec. Il

Equation {B10) can be simplified in the long-time regime,
w, 7> 1. We may then set A=27/7 and use
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f AP = 175, (BL1)

0

The matrices defined in Eq (BS5) thus become diagonal in the
frequency 1ndex,

alA ¢ s
Anp’n/p:=~—§?[5 (a)p)'PS(wp)],mf(Spp, ) (B12)
and similarly for B and C We then find
(A +CTM_1C)np n'p'
aéAT .
= (STPL+ atfVVIPIT18),00 8ppr . (BL3)

2
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where f, S, and V are evaluated at w=w, . Substitution nto
Eq (BIO) gives the result (3 6) for Fo..(&)

Simplification of BEq (B10) 1s also possible 1n the short-
time regime, when Q 7<1, with (), the frequency range
over which SST differs appreciably from the unit matrix The
generating function then 18

Fel )= atrly z‘f(wo)( -5 [Caortom

~1
X[l—r(w)rf(w)—f(w)r*(w)]> t(wo)}

1710”1 0

(B14)
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