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The question is addressed äs to the dependence of Sedimentation of a homogeneous Suspension on
the shape of the Container. It is demonstrated, by comparing calculations for spherical and plane
geometries, that shape-dependent contributions to the Sedimentation velocity remain in the limit
of infinitely distant Container walls. Upon transformation from the laboratory reference frame to
a local frame of reference that moves with the average volume velocity, this shape dependence is
found to disappear.

l. INTRODUCTION

The question of a possible dependence of the Sedimenta-
tion velocity of suspended particles on the shape of the vessel
containing the Suspension is of considerable importance, giv-
en the wide-spread use of Sedimentation measurements for
the characterization of suspensions. It is surprising, there-
fore, that this question has not received much attention in
the literature. An important exception is formed by Burgers,
who in an extensive study1 noted the possibility of the Sedi-
mentation velocity being dependent on the shape of the ves-
sel. No definite answer, however, could be obtained.

It should be emphasized that Burgers was speaking of
suspensions that are homogeneous within the Container, in
order to avoid the occurrence of convective flows caused by
(horizontal) density gradients. From a macroscopic point of
view, these latter flows can simply be understood äs being
caused by buoyancy2: volume elements of the Suspension
with the lowest density rise relative to volume elements with
the highest density. Obviously, buoyancy-driven convection
is absent if the Suspension is homogeneous.

How can one understand that the average velocity with
which particles in the bulk of the Suspension sediment might
depend on the shape of the Container, no matter how large
the Container? The possibility of such an effect arises from
the long ränge of so-called hydrodynamic interactions. That
is to say, a perturbation of the fluid flow caused by the mo-
tion of a particle decays very slowly, in fact only with the
inverse first power of the Separation to the particle. For this
reason, Container walls have an essential influence on Sedi-
mentation—even if the Container is very large. A dramatic
Illustration of this fact is formed by the divergency of the
Sedimentation velocity encountered in an unbounded Sus-
pension—a paradoxical Situation first noticed by Smolu-
chowski.3

In a previous publication4 (hereafter referred to äs I) the
influence of a plane wall supporting the Suspension was in-
vestigated. Using recently derived formulas5 for the mobility
tensors of spherical particles in a fluid bounded in one direc-
tion by a plane, it was shown that a finite answer for the
Sedimentation velocity results (in contrast to what is found in
an unbounded System), even in the limit of an infinitely dis-
tant wall.

In the present paper a similar calculation is performed

for a Suspension bounded in all directions by a spherical wall,
exploiting the circumstance that formulas for the mobilities
in such a System are now available.6 The results are then
compared with those for the plane geometry of Paper I, in
order to investigate the issue of the shape dependence of the
Sedimentation velocity. Finally, the relationship with the
work of Batchelor7 on Sedimentation is discussed.

II. SEDIMENTATION INSIDE A SPHERICAL CONTAINER
A. Results from the hydrodynamic analysis

We consider the motion of 7V spherical particles with
radii a,(i — \,2,...,N) in an incompressible fluid with viscos-
ity 77, which is bounded by a (motionless) spherical Container
wall with radius b. The centers of the particles have positions
R,(/= \,2,...,N] and lie inside the Container. We take the
center of the Container äs the origin of our coordinate sys-
tem. The motion of the fluid is described by the linear quasi-
static Stokes equation, supplemented by stick boundary con-
ditions on the surfaces of the particles and on the Container
wall.

The velocity U, of particle / can then be expressed äs a
linear combination of the forces K, exerted by the fluid on
each particle j,

U, = - i =1,2 ..... N. (1)

(We consider the case of free rotation, i.e., the fluid exerts no
torque on each of the particles.) General expressions for the
mobility tensors μν for this System have been obtained in
Ref. 6 äs an expansion in the three parameters a/b, a/Rpp, ,
and Rp/b, where a is the typical radius of a particle, and Rpp.
and Rp denote, respectively, the typical distances between
two particles and between a particle and the center of the
Container. For the special case of particle / concentric with
the Container (which is the case we shall consider in the fol-
lowing) one finds

677-170, μ,, Rj = 0 = \δν + [|α, R' '(l + rj fj]

- \a, (a2, + aj}R ~ 3(r, f; - j l) ] ( l - δν

+ h.o.t. (2)
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Here "h.o.t." Stands for "higher-order terros," defined äs
terms of order (a/b )"(a/Rpp. )m(Rp/b )' in the expansion pa-
rameters, with n + m>4 and / arbitrary.8 We have used the
notations-R, = |S, , ?, = R/Ä,; <5,y is the Kronecker delta
and l denotes the second rank unit tensor.

The flow of fluid caused by the motion of the particles is
described by the velocity field v(r), given by

v(r) = - £ S,(r) K . (3)

The tensor fleld S, (r) is closely related to the mobilities of the
particles, and may in fact be derived from these by consider-
ing a "test particle" at point r of 'nfinitesimal radius [cf. Ref.
6, Eq. (4.9)]. To the same order äs the result (2), one thus finds
for the value of the field S at the center of the Container

j (r = 0) = |o, R

+ h.o.t.

\ + r, r, )

(4)

B. Calculation of the Sedimentation velocity

We assume inside the Container a homogeneous distri-
bution of identical sedimenting particles (a = radius,
n — number density of the particles), and ask for (i) the aver-
age velocity \p of particles, and (ii) the average velocity vf of
fluid, both evaluated at the center of the Container in the
limit that its radius goes to infinity. In view of Eqs. ( l ) and (3)
we can write these two quantities äs conditional averages of
μ and S, respectively,9

im /Υ μ,. R, = 0\ · F,
-» \j l

vr = lim (\ S, (r = 0) Rj>a for all;) -F.

(5)

(6)

Here {··· R, = 0} denotes an average over those configura-
tions of the particles inside the container for which R, = 0.
Similarly, (—\Rj> a for ally) denotes an average over those
configurations for which no particle overlaps the origin (in
other words, there is fluid at r = 0). The gravitational force
(corrected for buoyancy) on each of the particles is denoted
by F = ^7τ·α3( pp —pf)g(pp = mass density of a particle, pf

— mass density of the fluid, and g = gravitational accelera-
tion).

Using the results for μ and S given in Eqs. (2) and (4) we
will calculate the average particle and fluid velocities v^ and
vf to linear order in the volume fraction φ = \πα3η of the
suspended particles.

Substituting Eq. (2) into Eq. (5), one finds for the average
particle velocity

v, = lim 1 1 +

i!

2
-3

+ R4

7727
ab

\a~3R2dR (7)

where an angular Integration has already been carried out.
The function Ä(R,b ) appearing in the integrand consists of
terms denoted by h.o.t. in Eq. (2). These terms are of order
b '"R ~m(R/b)! with n + m>4 (/ arbitrary). Performing
the radial Integration in Eq. (7) and subsequently taking the
limit b^· oo of the result, one finds

V^ = [l + ( — 2 + Δ^)^ + ^(φ^β-π-ηα)'^, (8)

with the definition

Δ^ ΕΞ lim
ί̂ ,οο

τJ2a
= \ lim &(R,b)a~3R2dR.

ha < °̂°
(9)

= lim
b—»o

The exchange of limit and Integration performed here is jus-
tified by the fact that &(R,b ) decreases suificiently fast with
increasingT? and b for the first integral in Eq. (9) to converge
uniformly in b. [As an aside, we note that the füll integral in
Eq. (7) does not converge uniformly in b. In fact, if one would
perform a similar exchange of limit and Integration there,
one would find a divergent result. This is essentially the Smo-
luchowski paradox mentioned in the Introduction.] One sees
from Eq. (9) that Δ^ φ is the contribution of order φ to the
average particle velocity resulting from short-ranged (i.e., of
order R ~" with n>4) hydrodynamic interactions of two
particles in an unbounded fluid. From the calculations of
Batchelor,7 we take the result

Δ^~-1.55, (10)

giving the final answer

The calculation of the average fluid velocity at the cen-
ter of the container proceeds along the same lines. Substitu-
tion of Eq. (4) into Eq. (6) gives

Γ~" -s 2 / -i 27 _ ,
^ L ü dR(2aR --^ab

+ — a +~^~a + ( ' );( ^"i
(12)

The function &.'(R,b) used here plays the same role äs &(R,b)
in Eq. (7), that is to say, k'(R,b) consists of terms of order
b ~"R -m(R/b}' with « + m>4. As in Eq. (9), we may
therefore exchange the limit b—>· oo with the Integration over
R to determine the contribution from Δ' to the average fluid
velocity. This contribution is then found to vanish in view of
the fact that10 Δ'(Α,ά)—»0 äs b—>oo. A straightforward Inte-
gration of the remaining terms in Eq. (12) gives, in the limit
b—>oo,

vf = [2φ + έ?(φ2)](6πηα)~ι¥. (13)

Having calculated both the average particle and fluid
velocities at the center of the container, we can now deter-
mine the average volume velocity v„, which is given by

The results (l 1) and (13) give with Eq. (14)

Contrary to what one might expect, we thus find that there
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exists a nonvanishing convective flow, although the Suspen-
sion is homogeneous, so that no buoyancy-driven convection
can occur. We note that, because of incompressibility of the
Suspension, the volume flux through any closed surface must
vanish. Our result (15), that there is a nonzero volume veloc-
ity at the center of the Container, therefore implies the exis-
tence of a vortex of convective flow inside the spherical con-
tainer.

We conclude this section by briefly considering the case
of a vertically inhomogeneous Suspension: we assume that the
number density of the particles inside the Container is con-
stant (equal to n) for z < fb, and equal to zero for z > fb —
where we have introduced the filling parameter
/(O < / < 1)· (The coordinate System is such that the center
of the Container is in the plane z = 0 and the gravitational
acceleration is in the minus-z direction.) Since the calcula-
tions are very similar to those described above for the case of
a completely homogeneous Suspension, we only give the re-
sults

- - 1.55 \f-

(16)
ιΐ, (17)

'F. (18)

In the limit /—»-l, the previous Eqs. (11), (13), and, (15) are
recovered. It is noteworthy that, although the average parti-
cle velocity v^ at the center of the Container depends on the
filling parameter /, the quantity vp — v„ is independent of /

III. CONCLUSIONS AND DISCUSSION

The main results from the calculations of See. II are
collected in Table I, together with the results from Paper I.
By comparing the values of vp in the two Container geome-
tries, we can conclude that the average velocity of a sedi-
menting particle in a homogeneous Suspension depends on
the shape of the Container, even in the limit of infinitely dis-
tant Container walls. However, if one transforms from the
laboratory reference frame (this is the reference frame in
which the Container is at rest) to a local frame of reference
that moves with the average volume velocity v„ , this shape
dependence disappears. That is to say, the quantity vp — v„
is the same for the two Container geometries studied, al-
though vp is not.

Batchelor7 argued that the velocity of Sedimentation rel-
ative to the average volume velocity shouid be independent

TABLE I. Average particle velocities vp, fluid velocities v^ , and volume
velocities v„ for (i) a homogeneous sedimenting Suspension bounded in the
direction of gravity by a plane wall,4 and (ü) a homogeneous Suspension
enclosed by a spherical wall (with velocities evaluated at the center of the
Container). In both cases the limit is taken of infinitely distant container
walls. [We have defined v0 = [6πηα)~'ΐ.]

Container
geometry

(i) Plane
(ii) Sphere

VP V

(l-6.55,4)Vo -<K,
(l-3.55,4)v0 2<4v„

v„

0
3<4v„

(1
(1

v„-v„

- 6.55,i)v0

- 6.55,i)v0

of ihe shape of the Container, on the basis of general consid-
erations of a physical nature, which are valid for ihe un-
bounded System. Ultimately, these considerations shouid
follow from an evaluation of the influence of Container walls
on the mobilities of the sedimenting particles. Such an ex-
plicit calculation, confirming Batchelor's result, was per-
formed in this paper for a spherical Container geometry.

That the Sedimentation velocity in the laboratory refer-
ence frame is not container-shape independent is a new re-
sult, which goes beyond Batchelor's theory.7

The occurrence of convective flows in homogeneous sus-
pensions, demonstrated in this paper for the case of a spheri-
cal Container, is a surprising phenomenon, of a different na-
ture than the well-known buoyancy-driven convection that
occurs in inhomogeneous suspensions.2 We will refer to the
former convective flow äs essential convection. We empha-
size here the different Order of magnitude of the two convec-
tive phenomena: at very small volume fractions, say
<^~10~4, essential convection is negligibly small
(v„ ~ 10~4v0), whereas buoyancy-driven convective flows of
order 10v0 have been observed2 at these volume fractions.

For this reason the spherical Container geometry, con-
sidered in this paper because of its theoretical simplicity, is
not well suited for the experimental observation of essential
convection. Its occurrence would be masked completely by
buoyancy-driven convective flows that would arise when,
after a short time, the inclined boundary walls have induced
horizontal density gradients.2 However, we surmise that es-
sential convection is not limited to Containers with inclined
walls (such äs the spherical Container studied in this paper),
but is rather a general phenomenon in Systems without
translational invariance in a horizontal plane.

Consider what would happen if such a convective flow
arises in a homogeneous Suspension sedimenting in a vertical
cylinder; the flow itself then causes horizontal density gradi-
ents to develop äs particles sediment faster near the center-
line of the cylinder rather than further outward. (In particu-
lar, an initially flat horizontal interface separating clear fluid
from the Suspension will with time become indented at its
center.) Since we expect the inhomogeneities to be localized
near the top and bottom of the Suspension, it seems rather
unlikely that the flow in the middle pari of a long cylinder
would be very much affected by the resulting buoyancy-driv-
en convection (which, at the top of the Suspension, tends to
flatten the interface). In fact, a weak convective vortex in a
vertical cylinder (with a downward velocity on the center-
line) has been reported by Kinosita,'' and cannot be account-
ed for by buoyancy-driven convection alone. Essential con-
vection of the type calculated in this paper could well be the
explanation of that observation.
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