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The chaotic mixmg by 1andom two body interactions of many-electron Fock states mn a confined
geometiy is investigated Two 1egimes are distinguished 1n the dependence of the typical number of
Fock states that are muxed nto an eigenstate on the itetaction stiength V, the excitation energy e,
and the level spacing A In both regimes the number 1s laige (indicating delocalization 1n Fock space)
Howevel, only the laige-V 1egime 1s desciibed by the golden rule (indicating chaotic mixing) The
ciossovel region 15 characterized by a maximum i a scaling function that becomes mote pronounced
with increasing excitation energy The scaling patameter that governs the transition 1s (sV /A?) In(A/V)

PACS numbers 7323 -b 0545 -a 7110 —-w

The highly excited atomic nucleus was the first example
of a quantum chaotic system, although the interpietation of
Wigner’s distribution of level spacings [1] as a signatuie
of quantum chaos came many yeais later, fiom the study
of election billiards [2] While the spectial statistics of the
nucleus and the billiaid are basically the same, the origin of
the chaotic behavior 1s entirely diffeient {3] In the billiard
chaos appears 1n the single patticle spectium as a 1esult of
boundary scatteting, while in the nucleus chaos appeats 1n
the many-particle specttum as a result of interactions

The study of the interaction-induced tiansition to chaos
entered condensed matter physics with the realization that
a semiconductor quantum dot could be seen as an aitificial
atom o1 compound nucleus [4] A particulaily influential
paper by Altshuler, Gefen, Kamenev, and Levitov [5]
studied the mteraction-induced decay of a quasiparticle in
a quantum dot and interpreted the broadening of the peaks
i the single-particle density of states as a delocalization
transition 1n Fock space Different scenatios leading to a
smooth rathet than an abrupt transition fiom localized to
extended states weie considered later [6—-8] Recent com-
puter simulations [9,10] also confiim the smooth ciossover
fiom localized to delocalized regime for quasipaiticle
decay

As emphasized by Altshuler et al [5], the delocalized
1egime 1n the quastparticle decay problem 1s not yet chaotic
because the states do not extend uniformly over the Fock
space One may study the transition to chaos n the single-
particle density of states, but theoietically 1t 1s easier to
consider instead the mixing by interactions of arburary
many-particle states This was the appioach taken in Refs
[6,8,11~14], focusing on two quantities The distribution
of the energy level spacings and the mverse paiticipation
1atio (IPR) of the wave functions 1n Fock space Both
quantities can serve as a signature for chaotic behavior,
the spacing distribution by comparing with Wignet’s dis-
tribution [1] and the IPR by compating with the golden
1ule (according to which the IPR 1s the mean spacing &
of the many-particle states divided by the mean decay rate
I" of a noninteracting many-patticle state [12]) Two fun-
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damental questions 1n these investigations aie as follows
(1) What 1s the scaling parameter that goveins the tiransi
tion to chaos? (2) How shaip 1s the tiansition?

In a 1ecent paper [14] one of us presented analytical ai
guments for a singular thieshold goveined by the scaling
parameter x = (g/gA)Ing, where A 1s the single paiticle
level spacing, ¢ 1s the excitation energy, and g 1s the con
ductance 1n units of e?/h (Both &/A and g are assumed
to be >1) In contiast, Geoigeot and Shepelyansky [12]
argued for a smooth crossover goveined by the parame
tet y = (e/gA)Je/A (The same scaling parameter was
used 1in Refs [6,13]) The parameter y 1s the 1atio of the
stiength V ~ A/g of the scieened Coulomb interaction
[5,15] and the eneigy spacing A, ~ (g/A)73/2A of states
that are directly coupled by the two-body nteraction [6]
The parameter x follows if one considers contributions to
the IPR that involve the effective interaction of 2,3,4,
particles Subsequent terms 1n this series are smaller by
a factor (Ing/g)An/An+1, where A, ~ (g/A) 7" 12A 18
the spacing of states that are coupled by an effective inter-
action of »n particles [14] (The large logarithm Ing appears
in the expansion parameter because of the large contribu
tion fiom mteimediate states whose eneigies are close to
the states to be mixed )

The purpose of this paper 1s to investigate the
mnteraction-induced tiansition to chaos by exact diago-
nalization of a model Hamiltoman We concentrate on
the IPR because for that quantity an analytical prediction
exists [14] for the £ and g dependence (There 1s no such
prediction for the spacing distribution ) The numerical
data are consistent with a chaos threshold at a value of
x of oirder unity Our model 1s the same as that used
by Georgeot and Shepelyansky [12] The difference 1n
scaling parameter with Ref [12] may be due i part to
the fact that no analytical theoty to compare with was
available at that time, and 1n part to the fact that most of
the numerics in that paper was done for nondegenerate
systems (number of accessible single-particle states much
gieater than the number of particles)—instead of the
highly degeneiate system considered here
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The model for interacting spinless fermrions that we
study 1s the layer model mtioduced in Ref [12] and used
tor the quasiparticle decay problem in Ref [10] The Ham-
iltoman 1s H = Hy + Hy, with

..I.
Hy = Z thlel CIICJC]

1<y k<l

Hy = Z s,c;rc,,
]
Y]

The single-patticle levels ¢, aie untformly distubuted in

the interval [(; —~ %)A,(/ + %)A] The interaction matiix
elements V,, y are zero unless ¢, 7, k, [ are four distinct in-
dices with 1 + j = k + | The (real) nonzero matux ele-
ments have a Gaussian distribution with zero mean and
variance V2 = (A/g)? (This relationship between mtei-
action strength and dimenstonless conductance for a dif
fusive quantum dot has been de1tved 1n Refs [5,15]) The
Fock states aie eigenstates of Hy, given by Slater detet-
munants of the occupied levels &y, kg, k3, The 1ntei-
action muxes Fock states foir which Zp k, equals a given
integer  (Without this restriction the model 1s the same
as the two-body 1andom-interaction model mtioduced m
nuclear physics [16,17] ) The excitation energies of the
states with given ki, ky, k3, , lie in a ielatively narrow
Jayer (width ot order ;'/#A) around the mean excttation
energy JA The number of states in the jth layer 1s the
number of partittons P(j) of j For our largest j = 26
this number 1s P(26) = 2436, which 1s still tractable for
an exact diagonalization Without the decoupling of the
entue Fock space into distinct layers, such large excitation
energies would not be accessible numerically The layer
approximation becomes more reasonable for larger g, be-
cause then V << A so that states fiom different layers may
be regarded as uncoupled
The 1nverse participation ratio

1= Kalmy?* )

of the eigenstate |a) of H 1s the mverse of the number
of eigenstates |m) of Hy that have significant overlap with
la) We calculate / as a function of g for different layeis j,
corresponding to a mean excitation energy € = jA The
IPR fluctuates stiongly fiom state to state and for different
realizations_of the random matrix &/ We calculate the
averages 1,1 /1, and In/ where the overline “—" indicates
an average both over the () states |a) n the sth layer
and over some 10° 1ealizations of H We first consider
the logarithmic average InZ, for which the fluctuations are
smallest

In Fig 1 we have plotted the numerical data for
the g dependence of Inl, for different values of &/A
In oider to compaie with the analytical prediction of
Ref [14], we have rescaled the variables such that
Fig 1 becomes a plot of —y~'In/ versus x The pre-
diction 1s that, in the thermodynamuc limut [18], the
scaling function F(x) = —y~!In/ depends only on x
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FIG 1 Average logarthm of the mveise paiticipation ratio /
as a function of the dimensionless conductance g, i 1escaled
variables The diffeient sets of data points follow fiom the layel
model for different excitation energies j = g/A Statistical et
1o1s are smaller than the size of the matkers The stiaight solid
lines are the analytical prediction (6) of the scaling theory, with-
out any adjustable paiameters (Only the lines for /A = 15,
20, and 26 ate shown for clanty) The dashed curves ate the
golden rule piediction (7), with a single adjustable paiameter
(the same for all cuives, but the data for e/A = 15 weie left
out of the fit)

foo x =1 This scaling behavior cannot be checked
directly because finite-size eftects introduce an additional
e dependence mto the function F(x) This 1s why we
cannot duectly test whether x ot y 1s the correct scaling
parameter  Fortunately, 1t 1s possible to include finite-
size effects in the scaling function and test the theoty in
this way

Applying the method of Ref [14] fo1 the calculation of
InJ one finds that the function F(x)  the thermodynamic
limit has the Taylor series

F(x) =~y "Il = ) e, 3)
n=0

with corrections of order 1/Ing All coefficients ¢, are
posttive The scaling behavior (3) 1s expected to be uni-
versal (valid for any model with random two-body 1nterac-
tions), but the coeffictents ¢, are model specific The first
two coefficients for the layer model aie

8(2 — V/2) 81 |2
0 \/3_77'_ ’ €l 25\ co 395
)

In the thermodynamic limit the n-particle level spacing
A, equals (£/A)™"*1/2A times a numerical coefficient of
order unity Finite-size effects introduce an & dependence
nto this coefficient To quantify the finite-size effects, it
18 conventent to define the ratio
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A n~l/2A
=(2 = 5
K, (8) A, &)

The series expansion of F(x) mn terms of the K,,’s 1s

F(x) = 42 — DJy7m Ky + 3602 — V2)K3x + O
(6)

For /A — o we have K, — (2/7)2/3 = 05198,
K3 — 6/6/257 = 01871, and we recovel the theimo-
dynamic limt (3) For the excitation eneigles £/A = 15,
20, 22, 24, and 26 of the simulation, after explicit calcu-
lation of A, and As, one finds K, = 0419, 0436, 0 439,
0444, and 0447 and K3 = 00414, 00536, 00577,
00615, and 00648 The tesulting small-x behavior of
the scaling function 1s plotted in Fig 1 (solid lines) and
agiees quite well with the numeiical data

Analytically, the scaling function F(x) 1s known only
for x << 1 In the simulation, we obseive a maximum of
—y~!'Inl at x =1 The maximum becomes moie pro-
nounced with increasing excitation energy We aigue that
1t 18 a signature of the transition to chaos, because beyond
the maximum, for x = 1, the IPR 1s observed to follow
the golden-1ule prediction (see discussion below)

[golden—rulc = C[]5/4:P(J)]—1g2 (7

This golden-rule prediction 1s shown dashed in Fig 1, with
the coefficient C = 0 51 as the single fit parameter (The
smallest £/A = 15 was left out of the fit) Note that
—y " 'Inlyo1den-rule has a maximum for an IPR of otder
unity, hence in the tegime of localized states In contrast,
the maximum 1n —y_1 In occurs when the IPR 1s <1,
hence 1n the regime of extended states We now discuss
the small and large-x regimes 1n some more detail

The laige-x 1egime is descubed by the golden rule
Iyotden-uie = 6/1', accordmg to which all basis states
within the decay width I' of a noninteracting state are
equally mixed mto the exact eigenstate This complete
mixing amounts to fully developed chaos For owr model
the level spacing of the many-particle states m the jth
layer 1s 6 ~ j/*A/P(;) and the Bieit-Wigner width
s T ~ VYA, ~ j32g72A, which leads to Eq (7)
One notices 1in Fig 1 that for the laigest x the data
pomnts fall somewhat below the golden-rule prediction
This 18 due to the finite bandwidth of the layer model
The IPR saturates at 3/ () [9] when the decay width
I'" becomes compaiable to the bandwidth ;'/*A  The
corresponding upper bound on x for the validity of the
golden rule 15 x < ;>%Ing  The finite bandwidth of
the layer model becomes less significant for large j, which
1s why the agreement with the golden rule mmproves with
increasing J
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The small-a 1egime 1s described by the scaling func-
tion F(x) The tetm of oider x" 1 the Taylot sertes (3)
contains the (n + 1)th oider effective mteraction V,‘fif | be-
tween n + 2 paiticles and holes A Fock state 1n the jth
layer contains about /7 excited paiticles and holes [19]
Because this 1s a laige numbe: for ;j > 1, the IPR fac-
totizes mto a product of independent contitbutions fiom
2,3,4, , ntelacting particles,

1—1'17 ~ z lV:ﬂ—fll/An-%-Z (8)
n=0

A calculation of |VE'T || leads to Eq (3) The appeaiance
of the modulus of the matrix element in Eq (8) 1s easily
understood for the case of only two unperturtbed many-
paiticle states interacting via the matiix element Veft

The IPR changes by ordet unity if two Fock states come
energetically withm a separation |Vef| of each other The
probability of such a neai degeneracy 1s small like
[Veff| /A (Theie 1s no level repulsion for the many-
particle solutions of the nominteiacting Hamiltonian )
Because to1 weak interaction the IPR can change signifi-
cantly but only with a small probability, the IPR fluctuates
sttongly Indeed, in ow sunulations much laiger statistics
was necessaty 1 order to reach good accuracy wn the
small-x regime (The remarmning statistical error m Fig 1
1s smaller than the size of the markers )

In Fig 2 we compare the logatithmic average In/ with
the two othe1 averages In/ and — In1// Within the small-
x 1egume of validity of Eq (3) the three averages aie 1e-
lated by

Il =202 — V2)Inl = —2(v2 — DInl/T  (9)

T T T T T T
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FIG 2 Aveiages —In7, —InJ, and Inl /I as a function of g,
rescaled 1n the same way as in Fig 1, for e/A = 20 For small
x, the thiee averages follow the scaling theory (9) (solid lines)
For lasge x the averages —In/ and In1/7 follow the golden rule
(dashed line)



VOLUME 84, NUMBER 15

PHYSICAL REVIEW LETTERS

10 AprIL 2000

These numerical coefficients do not depend on the num-
ber of particles mvolved in the interaction (cf the exphcit
calculation of 7 i Ref [14]) As one can see n Fig 2,
for /A = 20, the relation (9) agrees well with the simu-
lation In the chaotic iegime, for laige x, Eq (9) 1s no
longer valid The average — Inl/l, which 1s dominated
by the majority of states having a large number of compo-
nents, 1s close to In/ at large x The aveiage InZ 18 domi-
nated by raie states with an anomalously small numbe: of
components and falls below the two other averages This
indicates an asymmetiic distuibution of In/ in the chaotic
1egume for the layer model

So far we have addiessed only the question of the scal-
ing variable that goveins the transition to chaos What
remains 1s the question How shaip 1s the transition? The
singular threshold predicted mn Ref [14] develops only in
the thermodynamic limit and would be smoothed by finite-
size effects in any simulation The coriesponding nonan-
alyticity of In/ 1s related to the high-order behavior of the
sertes (3) Since our numerics allows us to distinguish
only the first two coefficients ¢y and cy, 1t leaves open the
question about the nonanalyticity Still, even 1f the series
(3) would be absolutely convergent, the resulting smooth
function of the single variable x could not desciibe the IPR
for large x because 1t 1s incompatible with the golden 1ule
—y ' Inlgotden-rue ~ x'Ing  This different scaling be-
havior for small and large values of x suggests that the peak
observed mn Fig 2 would evolve mto a singular threshold
in the thetmodynamic limit The only way to maintain a
smooth ciossover would be to introduce a paiametiically
large interpolating region between the two different scal-
g tegimes We cannot exclude this interpolating region
on the basts of the numerical data, however, theoretically
[14] there 1s no indication for such a region

In summary, by exact diagonalization of a model Hamil-
tontan we have presented evidence for an inteiaction-
induced transition to chaos in a quantum dot Upon
inclusion of finite-size effects, a good agreement is
obtamned with the scaling theoty of Ref [14], supporting
the assertion that x = (g/gA)Ing 1s the scaling parameter
for the transition The different behavior of the scaling
function for small and large x suggests that the transition
would become a singular threshold 1n the thermodynamic
limut
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