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Scaling at the Chaos Threshold for Interacting Electrons in a Quantum Dot

X Leyionas,1 ' P G Silvestrov,1 2 and C W J Beenakkei1
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2Budkei Institute of Nucleai P/nsics 630090 Novostbirsk Russia

(Received 29 Novembei 1999)

The chaotic mixing by landom two body interactions of many-electron Fock states in a confmed
geometiy is mvesügated Two legimes aie distinguished in the dependence of the typical numbei of
Fock states that are mixed into an eigenstate on the inteiaction sliength V, the excitation energy ε,
and the level spacing Δ In both regimes the number is laige (indicating delocahzation in Fock space)
Howevei, only the laige-V legime is descnbed by the golden mle (indicating chaotic mixing) The
ciossovei region is charactenzed by a maximum in a scalmg function that becomes moie pronounced
with mcreasmg excitation energy The scalmg paiametei that goveins the transition is (εΚ/Δ 2) 1η(Δ/ν)

PACS numbers 7323 -b 0545 -a 71 10 -w

The highly excited atomic nucleus was the first example
of a quantum chaotic System, although the interpietation of
Wignei's distnbution of level spacings [1] äs a signatuie
of quantum chaos came many yeais latei, fiom the study
of election bilhards [2] While the specüal statistics of the
nucleus and the bilhaid are basically the same, the ongm of
the chaotic behavior is entirely diffeient [3] In the bilhard
chaos appeais m the single patticle spectium äs a lesult of
boundaiy scatteimg, while m the nucleus chaos appeais m
the many-particle spectium äs a result of inteiactions

The study of the interaction-mduced tiansition to chaos
entered Condensed mattei physics with the reahzation that
a semiconductoi quantum dot could be seen äs an aitificial
atom 01 compound nucleus [4] A patticulaily influential
papei by Altshuler, Gefen, Kamenev, and Levitov [5]
studied the mteraction-mduced decay of a quasiparticle m
a quantum dot and mterpreted the broadening of the peaks
m the single-particle density of states äs a delocahzation
transition m Fock space Different scenaiios leadmg to a
smooth rathei than an abrupt transition fiom locahzed to
extended states weie considered latei [6-8] Recent com-
putei simuladons [9,10] also confnm the smooth ciossovei
fiom locahzed to delocahzed regime for quasipaiticle
decay

As emphasized by Altshulei et al [5], the delocahzed
legime in the quasiparticle decay problem is not yet chaotic
because the states do not extend umfoimly ovei the Fock
space One may study the transition to chaos in the single-
particle density of states, but theoietically it is easier to
considei mstead the mixing by inteiactions of arbttrary
many-particle states This was the appioach taken in Refs
[6,8,11-14], focusmg on two quantities The distnbution
of the energy level spacings and the inverse paiticipation
latio (IPR) of the wave functions in Fock space Both
quantities can serve äs a signature for chaotic behavior,
the spacmg distnbution by companng with Wignei's dis-
tnbution [1] and the IPR by companng with the golden
mle (according to which the IPR is the mean spacing δ
of the many-particle states divided by the mean decay rate
Γ of a nonmteractmg many-paiticle state [12]) Two fun-

damental questions in these investigations aie äs follows
(1) What is the scalmg parametei that goveins the tiansi
tion to chaos7 (2) How shaip is the tiansition7

In a iccent paper [14] one of us presented analytical ai
guments foi a Singular trueshold govemed by the scalmg
parametei χ = (s/g&.)\ng, where Δ is the single paiticle
level spacing, ε is the excitation energy, and g is the con
ductance in units of e /h (Both ε/Δ and g are assumed
to be »l ) In contiast, Geoigeot and Shepelyansky [12]
aigued foi a smooth crossover govemed by the parame
tei y = (ε/^Δ^ε/Δ (The same scalmg parameter was
used in Refs [6,13]) The parametei y is the latio of the
stiength V ~ Δ/g of the scieened Coulomb interaction
[5,15] and the eneigy spacing Δ2 ~ (ε/Δ)"3/2 Δ of states
that are directly coupled by the two-body interaction [6]
The parameter χ follows if one considers contributions to
the IPR that mvolve the effective interaction of 2,3,4, ,
particles Subsequent teims m this series are smallei by
a factor (lng/g)A„/A„+i, where Δη ~ (ε/Δ)~"+1/2Δ is
the spacing of states that are coupled by an effective inter-
action of n particles [14] (The large loganthm Ing appears
in the expansion parameter because of the large contribu
tion fiom inteimediate states whose eneigies are close to
the states to be mixed )

The purpose of this paper is to mvestigate the
interaction-mduced tiansition to chaos by exact diago-
nahzation of a model Hamiltoman We concentrate on
the IPR because for that quantity an analytical piediction
exists [14] foi the ε and g dependence (Theie is no such
piediction tor the spacing distnbution) The numerical
data are consistent with a chaos threshold at a value of
χ of oider umty Our model is the same äs that used
by Georgeot and Shepelyansky [12] The difference in
scalmg parametei with Ref [12] may be due m part to
the fact that no analytical theoiy to compare with was
available at that time, and in part to the fact that most of
the numencs in that paper was done foi nondegenerate
Systems (number of accessible single-particle states much
gieater than the numbei of particles)—mstead of the
highly degeneiate System considered here
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The model for inteiacting spmless fermions that we
study is the layer model intioduced m Ref [12] and used
tot the quasiparticle decay p:obleminRef [10] TheHam-
iltoman is H = H0 + H\, with

Σ
·|·

CkCtCj

(D

The single-paiticle levels Sj aie unifoimly distubuted in

themteival [(j — ̂ ^O + 2)^] The mteraction matnx
elements V ( / /./ are zero unless f , j, k, l aie four distinct m-
dices with ι + j = fc + / The (real) nonzero matnx ele-
ments have a Gaussian distnbution with zero mean and
vaiiance V2 = (A/g)2 (This relationship between mtei-
action süength and dimensionless conductance for a dif
fusive quantum dot has been denved in Refs [5,15]) The
Fock states aie eigenstates of //o, given by Slater detei-
minants of the occupied levels ki,k2,kj, The intei-
action mixes Fock states foi which ΣΡ kp equals a given
integei (Without this restnction the model is the same
äs the two-body landom-mteiaction model intioduced in
nucleai physics [16,17]) The excitation energies of the
states with given k\,k2,k^, , he m a lelatively narrow
layei (width of oidei 71 / / 4Δ) around the mean excitation
energy 7 Δ The numbei of states in the yth layei is the
numbei of partitions P ( j ) of j Foi our largest j = 26
this number is P(26) = 2436, which is still tractable for
an exact diagonahzation Without the decoupling of the
entne Fock space mto distinct layers, such large excitation
energies would not be accessible numencally The layei
approximation becomes more reasonable for larger g, be-
cause then V <K Δ so that states fiom different layers may
be regarded äs uncoupled

The inveise participation ratio

= ̂  \(a\m)\4 (2)

of the eigenstate \a) of H is the inverse of the numbei
of eigenstates \m) of HO that have sigmficant overlap with
| a) We calculate / äs a function of g for diffeient layei s j,
corresponding to a mean excitation energy ε = JA The
IPR fluctuates stiongly fiom state to state and for diffeient
realizations of the random matnx H We calculate the
averages /, l/l, and In/ where the overhne " " mdicates
an average both ovei the f ( j ) states \a) m the jth layer
and ovei some l O3 lealizations of H We first consider
the loganthmic average In/, for which the fluctuations are
smallest

In Fig l we have plotted the numencal data for
the g dependence of In/, for different values of ε/Δ
In oider to compaie with the analytical prediction of
Ref [14], we have rescaled the variables such that
Fig l becomes a plot of —y~llnl versus χ The pre-
diction
scahns

is that, m the thermodynamic hmit [18], the
function F(x) = —y~llnl depends only on χ

\\
ε/Δ = 26 ·

240
22·
20 π
15 Α

05 1 15 2

χ = (ε/gA) Ing
25

FIG l Average loganthm of the inveise paiticipaüon ratio /
äs a function of the dimensionless conductance g, in lescaled
variables The diffeient sets of data points follow fiom ihe layei
model foi different excitation energies j = ε/Δ Statistical ei
lois are smallei than the size of the maikeis The stiaight solid
hnes are the analytical prediction (6) of the scaling theoiy, with-
out any adjustable paiameters (Only the hnes foi ε/Δ = 15,
20, and 26 aie shown foi clanty) The dashed curves aie the
golden rule piediction (7), with a single adjustable paiametei
(the same foi all cuives, but the data foi ε/Δ = 15 weie left
out of the fit)

foi χ :£ l This scaling behavioi cannot be checked
directly because fimte-size effects introduce an additional
ε dependence mto the function F(x) This is why we
cannot dnectly lest whether χ οι y is the correct scaling
parametei Fortunately, it is possible to mclude fimte-
size effects m the scaling function and lest the theoiy in
this way

Applymg the method of Ref [14] foi the calculation of
In/ one fmds that the function F(x) in the thermodynamic
hmit has the Taylor senes

F(x) = - C„X" (3)

with corrections of order l /Ing All coefficients c„ are
positive The scaling behavior (3) is expected to be uni-
versal (vahd for any model with random two-body inteiac-
tions), but the coefficients c„ are model specific The first
two coefficients for the layer model aie

8(2 - V2)

Λ/3τΓ
= 153,

Cl = ^5 (4)

In the thermodynamic hmit the «-particle level spacmg
Δη equals (ε/Δ)""+1^2Δ times a numencal coefficient of
order unity Fmite-size effects introduce an ε dependence
mto this coefficient To quantify the fimte-size effects, it
is convement to define the ratio
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a

The senes expansion of F(x) m terms of the Kn's is

(5)

F(x) = 4(V2 - 36(2 - Θ (λ2)

(6)

Foi ε/Δ -> oo we have K2 -+ (2/ττ)72/3 = 0 5198,
£3 — * 676/25 π = 0 1871, and we recovei the theimo-
dynamic hmit (3) For the excitation eneigies ε/Δ = 15,
20, 22, 24, and 26 of the Simulation, after explicit calcu-
lation of Δ2 and Δ3, one fmds K2 = 0 419, 0 436, 0 439,
0 444, and 0 447 and K3 = 0 0414, 0 0536, 0 0577,
00615, and 00648 The lesultmg small-jc behavioi of
the scaling function is plotted m Fig l (solid lines) and
agiees quite well with the numencal data

Analytically, the scaling function F(x) is known only
for λ <K l In the Simulation, we obseive a maximum of
— y~l In/ at χ — l The maximum becomes moie pro-
nounced with mcreasmg excitation energy We aigue that
it is a signature ot the tiansition to chaos, because beyond
the maximum, foi χ S l, the IPR is observed to follow
the golden-iule piediction (see discussion below)

/golden-rule = C[j5'*P(j)Tl g* (7)

This golden-rule piediction is shown dashed m Fig l, with
the coefficient C ~ 0 51 äs the single fit parameter (The
smallest ε/Δ = 15 was left out of the fit) Note that
— y ~ l ln/golden-rL,ie has a maximum for an IPR of oider
umty, hence m the legime of localized states In contiast,
the maximum m -y~l In/ occurs when the IPR is <SCl,
hence in the regime of extended states We now discuss
the small and large-jc regimes in some more detail

The laige-jc legime is descnbed by the golden rule
Jgoiden-mie = S/T, accoidmg to which all basis states
withm the decay width T of a noninteracting state are
equally mixed mto the exact eigenstate This complete
mixing amounts to fully developed chaos Foi om model
the level spacmg of the many-particle states m the jth
layei is δ ~ jl/4kfP(j) and the Bieit-Wigner width
is T ~ Υ2/Δ2 ~ j3/2g~2A, which leads to Eq (7)
One notices m Fig l that foi the laigest χ the data
points fall somewhat below the golden-rule prediction
This is due to the fmite bandwidm of the layer model
The IPR saturates at 3 / P ( j ) [9] when the decay width
T becomes compaiable to the bandwidth y 1 / / 4A The
corresponding upper bound on χ foi the validity of the
golden rule is χ Ä y3/8 Ing The fimte bandwidth of
the layer model becomes less sigmficant foi large j, which
is why the agreement with the golden mle improves with
mcreasmg j

The small-A icgirne is descnbed by the scaling func-
tion F(x) The teim of oidei xn in the Tayloi seues (3)
contains the (n + l)th oider effective mteiaction V„f+i be-
tween n + 2 paiticles and holes A Fock state in the jth
layer contains about 77 excited paiticles and holes [19]
Because this is a laige numbei for j » l, the IPR fac-
tonzes mto a product of mdependent contnbutions fiom
2,3,4, , mteiactmg paiticles,

m7 ~ Σ l^fi (8)

n=0

,effA calculation of |V,f+il leads to Eq (3) The appeaiance
of the modulus of the matnx element in Eq (8) is easily
understood foi the case of only two unpeituibed many-
paiticle states mteracting via the matnx element V e f l

The IPR changes by oidei umty if two Fock states come
energetically withm a sepaiation | V e f f | of each other The
probability of such a neai degeneracy is small hke
|V e f f | /A (Theie is no level repulsion for the many-
particle solutions of the nomnteiacting Hamiltoman)
Because toi weak mteraction the IPR can change signifi-
cantly but only with a small probability, the IPR fluctuates
stiongly Indeed, in om simulations much laigei statistics
was necessaiy in oidei to reach good accuracy in the
small-.x regime (The remaming statistical error m Fig l
is smaller than the size of the markers )

In Fig 2 we compare the loganthmic aveiage In/ with
the two othei aveiages In/ and - In l/l Withm the small-
x legime of validity of Eq (3) the three averages aie le-
lated by

m7 = 2(2 - 72) In/ = -2(72 - l)lnT/7 (9)

23

l 3

0 8
05 15 25

FIG 2 Aveiages —In/, —In/, and Inl// äs a function of g,
rescaled in the same way äs in Fig l, for ε/Δ = 20 For small
x, the thiee averages follow the scaling theoiy (9) (solid lines)
For laige χ the averages —In/ and Inl// follow the golden rule
(dashed line)
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These numencal coefficients do not depend on the num-
bei of paiticlesjnvolved in the inteiaction (cf the exphcit
calculation of 7 m Ref [14]) As one can see in Fig 2,
for ε/Δ = 20, the relation (9) agrees well with the Simu-
lation In the chaotic legime, foi laige x, Eq (9) is no
longei valid The average — lnl/7, which is dommated
by the majonty of states havmg a large numbei of compo-
nents, is close to In/ at large χ The aveiage In/ is domi-
nated by raie states with an anomalously small numbei of
components and falls below the two othei aveiages This
indicates an asymmetnc distubution of In/ in the chaotic
legime for the layer model

So far we have addiessed only the question of the scal-
ing variable that goveins the transition to chaos What
iemams is the question How shaip is the transition9 The
smgulai thieshold predicted in Ref [14] develops only m
the thermodynamic hmit and would be smoothed by finite-
size effects _in_any Simulation The coriespondmg nonan-
alyticity of In/ is related to the high-order behavioi of the
senes (3) Since our numencs allows us to distmguish
only the first two coefficients CQ and c\, it leaves open the
question about the nonanalyticity Still, even if the senes
(3) would be absolutely convergent, the resulting smooth
function of the single variable χ could not descnbe the IPR
for laige χ because it is incompatible with the golden mle
—y~ l In/goiden-ruie ~ x~l Ing This diffeient scahng be-
havioi for small and large values οι χ suggests that the peak
observed m Fig 2 would evolve into a Singular threshold
in the theimodynamic hmit The only way to maintam a
smooth ciossover would be to introduce a paiametncally
large mterpolatmg region between the two different scal-
mg legimes We cannot exclude this interpolatmg region
on the basis of the numencal data, however, theoretically
[14] there is no mdication for such a region

In summary, by exact diagonahzation of a model Hamil-
tonian we have presented evidence for an inteiaction-
induced transition to chaos m a quantum dot Upon
inclusion of fimte-size effects, a good agreement is
obtamed with the scahng theoiy of Ref [14], supporting
the assertion that χ = (ε/gA) Ing is the scahng paiametei
for the transition The different behavior of the scahng
function foi small and large χ suggests that the transition
would become a Singular threshold m the thermodynamic
hmit
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