Universiteit

4 Leiden
The Netherlands

The third integral of motion for low-velocity stars
Hulst, H.C. van de

Citation

Hulst, H. C. van de. (1962). The third integral of motion for low-velocity stars. Bulletin Of The
Astronomical Institutes Of The Netherlands, 16, 235. Retrieved from
https://hdl.handle.net/1887/5889

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license

Downloaded from: https://hdl.handle.net/1887/5889

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/5889

2BAN. - T.C16. 235V

rt

BULLETIN OF THE ASTRONOMICAL INSTITUTES
OF THE NETHERLANDS

1962 SEPTEMBER 14

VOLUME XVI

NUMBER 520

COMMUNICATION FROM THE OBSERVATORY AT LEIDEN

THE THIRD INTEGRAL OF MOTION FOR LOW-VELOCITY STARS

BYy H. C. vAN DE HuLST

The motion of a star with moderate deviation from a circular orbit can be computed by the method of separation of variables.
The suitable co-ordinate system in the meridional plane is uniquely defined by the coefficients of expansion of the gravitation
potential around the equilibrium point. It is an elliptic co-ordinate system, the axis of which does not coincide with the axis
of rotation. The third integral is quadratic in the velocity components. Application of this method to two sets of initial conditions,
for which ConTtorPouLos has computed numerical orbits, shows that the form and size of the envelopes, and the mean periods in
both directions all emerge with an accuracy better than one per cent.

1. Introduction

The motion of a star in the gravitational field of
a galaxy with rotational symmetry has two known
integrals, corresponding to the total energy and the
component of angular momentum about the axis.
Thereis evidence but no general proof for the existence
of a third integral. Small oscillations about the equi-
librium orbit occur independently in the vertical and
radial directions so that the “vertical energy” (i.e.
the sum of the kinetic energy perpendicular to the
plane and the potential energy corresponding to the
distance from the plane) is a further integral. For oscil-
lations of moderate amplitude CoNTOPOULOS (1958,
1960) has shown, first by two numerical orbits, then
by series expansion, that such an integral exists. His
analytical derivation is complete except for a proof of
the convergence. Finally, for large oscillations, which
correspond to high-velocity stars, the numerical work
of OLLONGREN (1962) and TORGARD contains empiri-
cal evidence for the existence of a third integral.

The object of this paper is to show that the results of
ContoprouLos for moderately small amplitudes can
be obtained in a simple manner and with ample nu-
merical accuracy by choosing appropriate elliptical
co-ordinates and a special form for the potential for
which the third integral is known because the
Hamilton-Jacobi equation is separable.

The usual reduction to a problem in two dimensions
by means of the angular momentum integral is applied.
Wethus consider only the orbitin the meridional plane,
which looks like a distorted Lissajous figure. General
theorems about the motions in such orbits, including
non-orthogonal distortions, have recently been derived
by vax pE Hurst (1962). However, in the present

context we consider only a distortion into elliptical
co-ordinates, which defines a conformal represen-
tation. This is classical theory since EULER solved the
“problem of the two fixed centres” about 200 years
ago. Possible forms of a galactic potential leading to
orbits of this type have been discussed by vaN ALBADA
(1952) and by Kuzmin (1953, 1956 a, b). However,
their assumption that the foci of the co-ordinate system
lie on the rotation axis of the galactic system imposes
an unnecessary restriction. This restriction is not
introduced in the present paper, so that the co-ordinate
surfaces in three dimensions are not ellipsoids and
hyperboloids of rotation, but elliptical toroids. The
discontinuities at the axis are of no consequence be-
cause the orbit does not come there. There are two
free parameters, which will be shown to have a precise
relation to the coefficients in the series expansion of
the potential near the equilibrium point.

2. Solution in terms of elliptical co-ordinates

The orthogonal co-ordinates, measured from the
equilibrium position (which corresponds to a circular
orbit in the complete motion) are !)

in the galactic plane, outwards: x (usually o —w,)
vertical to the galactic plane : y (usually z)

Elliptical co-ordinates £ and » are defined by
x=csh&cosy —k,

y=cch&sin . (1)

) At this point the assumption is introduced that there is not
only an axis of symmetry, but also a plane of symmetry. This
new assumption is obvious in view of the intended application.
However, the theory may equally well be developed without it.
Instead of two free parameters (c, k) then four parameters, giving
the co-ordinates of the two foci in the meridional plane, appear.
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Envelopes of box orbits shown within the boundary curve. The elliptical co-ordinate

system is superposed.

The constants ¢ and & define the position of the two
foci: x = — k, y = + ¢. The local scale along either of
the co-ordinate curves is given by

(j%)zz (%)2 — R—(ch% —sin’) (2

and the angle ¢ by which the & and % curves are
turned with respect to the x and y directions, respec-
tively, follows from

tan € = th € tan 7. (3)

In the numerical example (Figure 1) ¢ is smaller
than 2 degrees at any point reached by the orbits.
Introducing the quantities

x, =c¢sh& —k, )
R, = c*ch?t = > + 2kx, + 2, (4)
lZ ___62+k2, 5 '

and expanding into powers of n up to %> we may
write equations (1), (2), (3) in the form:

xzxo_-;(k+xo)n23 )

y=Rim, :
RZRO_CZVIZ) s
tane = (k+ x,)n R.*.

(5)

Let « be the total energy, @ (x,y) the potential
energy, and K = a — @ the kinetic energy. Itis known
(STAckEL 1890) that separation of variables is possible
if R and R® are sums of functions of £ and functions
of . We write

2R=x%(&) +2r(n), (6)
—2RO=p(E) +v(n).

With ConToPOULOS we assume a potential, symmetric
to the plane, of the form

2@ (x,y) = Px*+ 2—2—ax3—2bxy2—dx2y2—|—...,
y 3 7

where the dots stand for terms of higher order in x
and/or y*. We first propose to choose ¢ and £ so that
(6) is satisfied as closely as possible. This will give an
approximation which is very accurate for moderately
small amplitudes. We then shall show that the dots
in (7) may be completed in such a manner that the
solution thus found is an exact solution.

From (5) and (77) we obtain

2R® = hy (x,) + 0}, (%) (8)

—{Pxo(k—l—xo) —axf)(k+xo);Ro+...

In order that v(v) be a function of v alone, £,(x,)
should be a constant. This requires at least that the
coefficients of x, and x? in an expansion of £, (x,) into
powers of x, be o. After a simple reduction two equa-
tions are found:

§ (10)

(4Q— P)k —2bl*=o0,
(4Q— Pk + (20— 2P) I —
— (8b—a)kl*—dl*=o0,
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which can be solved immediately, giving

. 2(Q— P)
66 —a+ (dJ26) (40— P)’
i 4Q—P) (Q—P)
5(6b—a) +1d(4Q—P)’

whereas ¢ = ({* — £?)?%.

(11)
S

Referring to equation (6) we may now state that
the general form of ® which satisfies the condition for
separability exactly and which has the expansion (7) is

R,.20,+ Ql'¢(n)
20 = R, — ¢*sin?y)

; (12)
where R, = the function of x, specified by (4),
20, = Pxi‘ — ? x} + any higher-order terms in x, ,

@ () =7* + any higher-order terms in 7%

It may be verified by a direct expansion that (12) has
the form (7). This check may be considered as an
alternative way of deriving the relations (10). The
coefficients of the higher terms in this expansion are
fixed, once the higher terms in ®_ and ¢(v) have been
chosen. The coefficients of the terms with xy* and x%?
in (7) are the first ones which cannot be chosen at will
if the system is to be separable.

In the application we shall adopt ¢ () =sin?» and
assume that 2®_ has no terms beyond the third order.
Then

(&) = 2R,
An) = — 2¢* sin’y

“‘(E) = 2Ro cI)o
o) = — Qsinty (3

3. The “third” integral and the envelope

One integral of our problem is the total energy

H#2 4§ + 0 =a. (14)

The left-hand member, an invariant expression in
x,y,%,9,1s the integral and the right-hand member
is the first integration constant.

Similarly, by classical theory for a potential and
co-ordinate system which satisfy (6), we have the fur-
ther integrals

RZéZ —p—ax=—0,

R*%2— v —ah = +B. (15)
Either one of the left-hand members may be chosen
as the independent second integral, which corresponds
to the third integral in the 3-dimensional motion.
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The velocity components along the positive £ and 7
directions are
9= #cose+ jsine = RIE,

v, = —#xsine 4 j cose = R¥y.

(16)

Hence the first terms of (15) are Ro,” and Ry,”, respec-
tively, and the sum of both equations (15) is satisfied
by (14).

The choice of « defines by (14) a boundary curve
(ConToPOULOS: torus section) inside which the entire
orbit must lie and which can be reached only with
velocity o. All orbits with a given « are called a family
(OLLONGREN).

The choice of B defines by (15) an envelope in the
form of a box, the corners of which are on the bound-
ary curve. The equations for the sides of the box are

left and right sides: £ =o
£E=E£,,and £ =&, are roots of p.(£) +ax(£) —B=o0;
upper and lower sides: 7 = o

7 = 4, are roots of v(n) + ar(n) +L =o. (17)

With the specification (13) we have

£, and &, are roots of 2R, (« — @) =B, (x8)
I

7, is root of

(QI* + 2c%x) sin®>n = .
The range of possible values of 8 within a family is
osggﬂmax' (19)

The choice = o defines the plane orbit ““P”’ in which
v, and y remain o; £, and &, then correspond to the
points where the boundary cuts the x-axis. The value

Bmax 18 the maximum of the function 2 R, (« — ®,) . It
is reached for a value of x, given approximately by
20k

0 CT PP (20)

The corresponding orbit “C°’ (called the central orbit)
is a periodic orbit in which the point moves back and
forth along the section of an ellipse £ = constant cut-
ting the axis perpendicularly at x = x_, . and reaching
the boundary perpendicularly. Orbit “C” does not
pass through the equilibrium point.

X

4. The oscillation periods

The mean periods P, and P, are defined as the limits
to which the ratios

total travel time

number of trips back and forth

converge for ¢ — oo . By classical theory they may be
computed as follows; for a rigorous proof, see VINTI
(1961). The generalized momenta belonging to the
system are by (15)

pe={u(E) +ax(E)—pi?,

py=1{v(n) +an(n) +B8{*, (1)
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and the corresponding action variables are

Ja,B)—ZfﬁsdE, J,,(a,m—zfpndn (22)

-Mm
Itis p0551ble, by eliminating $ from (22), to express a
as a function H(J;, /,). The mean periods then follow
from the equations

)

It is not necessary to perform each step of this
computation. For we may write

(23)

2H _2HJ,  0H 2,
20 ) da aj,] da
2H _3H .  dH 2], (24)
F ARV ARY aJn 2

By (23) the first factors may be replaced by inverse
periods. We may then solve for these periods from (24)
thus expressing them in terms of the derivatives of
(22), which may be obtained by differentiating under

the integral. We state at once the result
P§=(N5Mn+NnM§)Mn-l’ (25)
P,= (N, M, + N, M) M, >

where
E2 n
M§= pr-l dg, Mr;: fﬁn'ld”’l:
(26)

=f2x(g)p§1da, N,= f by,
&1

All integrands become o at the 1ntcgrat10n limits;
this reflects the fact that the body in orbit spends a
relatively long time close to the sides of the box.

Upon specification of x, A, u, v by (13) and omitting
terms ~ 73 we find

T
M,]= (Qj“—l—Zcxcz)’«"
N 267 (27)
T QP+ 2ad)T "

The integrals over £ cannot be obtained with equal
ease. Changing to x, as the integration variable we
find
X d
xO
M, = f {R: (20— Px’ +2ax))—

*1

R,B}*’
(28)

*2

N_f 2R dx,
7 ) R (20— Pxl +taxl)—

*1

RBI*"
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Since the form within brackets is a polynomial in x,
of degree 7, numerical or approximative methods are
necessary. For instance, either integral may be written
and transformed by partial integration as follows.

S d T
J ?m‘—“(&)‘xi %)} =;§ S0+ ) { =
(29)

e xl)xz d8(x,) .

Here Sisa functlon which varieslittle over the interval,
so that the remaining integral forms a small correction
term which is smaller than one per cent in the numer-
ical applications.

In the zero-th approximation, in which the term
with @ may be neglected and R, may be put constant
(=1{?), the result is

7T 2T
M,= =, N.=

2pr M,=

T
—IT*’ 7 le}_, N']:

from which we obtain the familiar periods for small
amplitudes

o, (30)

2T

[k (31)

It may, finally, be remarked that further distinction
between different orbits within a box makes sense
only if P,/P, happens to be a rational number. In that
case an appropriately defined phase difference may
be regarded as the third isolating integral (corre-
sponding to a fourthintegral in 3-dimensionalmotion).

2T
Pezﬁ, P’)=

5. Numerical application

The example worked out by ConToPouLos (1958,
1960) is based on the unit of length = 1 kpc, of time =
107 years, and of velocity = 98 km/sec. We adopt
his constants defining the potential field in the neigh-
bourhood of the Sun:

P=o0.076, Q=o0.550, a =0.052, b = 0.206, d = o.
By (11) we find
k =o0.8007, ¢=1.8673, [= 2.0317.

Full details are given by ConToPouLos for two sets
of initial conditions, orbit “4” and orbit “B”, for
which he has performed numerical integration over
500 and 100 time units, respectively. For some reason
ConTorouLos hesitated to derive from these data the
precise mean periods. Estimating the return times by
linear interpolation from his tables we find the follow-
ing results with estimated accuracies

orbit A: P, = 23.785 + .oo1,
orbit B, P, = 23.675 -+ .005,

P, =8.7294 & .0003,
P, =8.6345 4 .oo10.

Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1962BAN....16..235V&amp;db_key=AST

 T962BAN T I.16: 1235V

LEIDEN

239

B.A.N. 520

TABLE 1

Numerical data on four box orbits within one family

orbit P | orbit 4 | orbit B | orbit C
initial conditions, velocities at origin % N ©.1237 | —0.0983 | 0.0512 | nO pass
[} 0.0748 | o.1126 s
integration constants 3 20 0.01530| 0.01526] 0.01530| ©.01530
g o 0.02310| ©0.05234| ©.06366
) & 0.206 0.252 0.338 0.434
envelope, left side X —0.41I7 |—0.322I [—0.I529 | 0.04I2
(aty=o)  d’x/dy’ —o0.106 |—o0.127 |—0.164 |—o0.199
) ) S g, 0.652 0.609 0.528 0.434
right side X, 0.5126 | 0.4149 | 0.2380 | o0.0412
? (at y=o0) d’x|dy* —0.250 |—0.243 |—0.225 |—0.199
0, o 0.0495 | ©0.0746 | 0.0823
top side (at x=o) y o 0.1006 | ©0.1515 | no pass
5 dyldx o 0.0193 | 0.0201 .
2 d’y|dx* o 0.0204 | ©0.0308 -
1 \ upper left corner € o 0.012 0.024 0.034
slope ¢ :
| upper right corner € o 0.027 0.036 0.034
; Mg 27794 | 27933 | 2.8117 | 2.8104
auxiliary quantities for periods 3 Ne 23.855 | 23769 | 23.684 | 23.656
( M, 1.0233 | 1.0233 | 1.0233 | 1.0233
N, o |—0.0087 |—o0.0198 |—o0.0241
. \ Pe 23.855 23.665 | 23.628 | 23.590
periods | P, 8783 | 8609 | 8.600 | B8.362

We have added to these two orbits the ones with
minimum and maximum 8, the plane orbit “P>* and
the central orbit “C”’. Itfollowsfrom (15) and (13) that

lezj’za (32)

where y is the vertical velocity component at the point
of origin (¥ =o0, y =0).

Using the preceding equations, in particular (18),
(20), (4) and (25) we have calculated the values
of £ and v defining the envelopes, the periods, and
a few further data relevant to a comparison with
Contorouros’ work. These data are given in Table 1
and the forms of the boxes and the boundary curve are
illustrated in Figure 1. The agreement is good or
excellent throughout, so that it had no interest to
quote in the table also the three-figure values given
by Contopouros. The worst difference was the value
of x, for orbit “4”, which we find o.4149 whereas
ConTorouLos gives 0.416. The periods found in Table
1 fall 0.2 to o.5 per cent below those derived from
Contopouros’ data. A difference of this order may
arise from the fact that, in deriving (27) we have

replaced sin % by % and that the potential (12) is
not identical to the potential used by ConToPOULOS.

We may conclude that the theory of motion separa-
ble in elliptical co-ordinates is not merely an elegant
mathematical possibility but can serve to investigate
the precise properties of the orbit of any low-velocity
star.

This study arose from many discussions with Dr
A. OLLONGREN, to whom I record my thanks.
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6. Notes added in proof

From a correspondence with Prof. ConToPOULOS
since this paper was written it appears desirable to
add the following notes.

1. ContorouLos has computed the magnitude of
the terms in 2® which follow from (12) but which
were o in his computation. The maximum values
reached are

240

orbit 4 orbit B
term in y* 0.00000 0.00002
term in x3y2 0.00013 0.00005
term in xy* —0.00001 —0.00002
total 0.00012 0.00005
percentage of 20 0.8 0.3

LEIDEN
tat number tat number
orbit pass which of which of
x=o0 x-trips y=o0 y-trips

A o o o o o

a 34.01 1.5 33.80 4.0

b 81.58 3.5 81.79 9.5

c 214.03 9.0 213.86 24.5

d 261.61 11.0 261.86 30.0

e 295.63 12.5 295.67 34.0

f 47570 20.0 | 47575 54.5
B o o o o o

a 47-34 2.0 4748 55

b 61.20 3.5 61.02 7.0

c 94.770 4.0 94.98 11.0

The acceptable combinations and periods derived
are:

These form a real difference in the comparison
presented in section 5. Moreover, CoNnTOPOULOS has
checked that the replacement of sin » by % in com-
puting M, and N, introduces changes up to 0.2 per
cent in the periods.

2. The empirical periods given in section 5 were
derived on the conjecture that a very good approx-
imation to P, may be obtained from the time spent
in covering an integer number of round trips in the
y-direction, provided the number of round trips in
the &-direction during the same time is very nearly an
integer, and conversely. For symmetry reasons also
half-periods in the w-direction may be admitted.
Points of approximate recurrence to the origin found
in CoNTOPOULOS’ table are:

intervals P: P,
4 E_z 214057 _ ¢ 213.867 g
_ —_— . 1 — = 0.72
a_t 9 3754 245 7297
o—d
261.633 8.8 261.873 8
i:? x| 234 j0.0 7291
475-700 475750
o—f ———— =123.4850 |————— = 8.72
I 37850 | Zo 7295
B o-—a 47-35  _ 4749 _
a—c 2 — 23675 s 8.6345

3. I gratefully acknowledge that Prof. Conto-
pouLos checked some of the numerical data and
pointed out an unfortunate computing error in the
first version of this paper.
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