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Summary. Orbit calculations have been carried out in a rotating
triaxial system having a density distribution in accordance with
recent observations of spiral galaxies. A search was made for
simple closed orbits that are tilted with respect to the equatorial
plane of the galaxy. A new family of stable prograde tilted orbits
was found which can explain warps as almost stationary
phenomena.

The results give strong support to Binney’s proposal that
warps can be excited by orbital instability. A scenario is described
in which gas in the equatorial plane slowly spirals inward, is fed
onto the prograde tilted orbits by orbital instability and even-
tually ends up as high-velocity clouds due to the intersection of
the more inclined orbits.

No contradictions were found when the characteristic proper-
ties of the orbits were compared with the warps of our Galaxy and
NGC2903.
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1. Introduction

Tilted disks are a common phenomenon observed in many early
type and elliptical galaxies (Bertola et al., 1978 ; Hawarden et al.,
1981). A tilted distribution of gas is also seen near the galactic
centre (Liszt and Burton, 1980). Spiral galaxies often show
gaseous warps (e.g. Bosma, 1978). Attempts have been made to
explain these configurations in terms of stable closed orbits in
rotating triaxial systems. Merritt (Heisler et al., 1982) found a
family of retrograde tilted orbits in a slowly rotating system. A
model for the dust lanes in Centaurus A, based on these orbits,
was proposed by Van Albada et al. (1982). Binney (1978, 1981)
used Mathieu’s equation to show that orbits in the plane of a
rotating triaxial potential can be unstable for perturbations
perpendicular to that plane.

In this paper, the most important results of a search for simple
stable tilted orbits in a rotating triaxial system are reported. The
density distribution was chosen in accordance with recent obser-
vations of spiral galaxies and of the bulge of our Galaxy.
Emphasis was placed on simple orbits because those are most
likely to be populated by gas. This excludes orbits that are self-
intersecting, have sharp turnings or a complex shape, or are
asymmetric with respect to the origin. A new important family of
prograde tilted orbits was found, which can be used to explain
warps as almost stationary phenomena.

The potential that was used is given in Sect. 2. Orbits in this
potential were calculated with the method given by Magnenat
(1982b).

The resulting orbits are given in Sect. 3. The importance of the
family of orbits found is investigated by applying results to the
warps of our Galaxy and NGC 2903 in Sect. 4. Section 5 contains
the main conclusions.

2. Method

The triaxial density distribution is chosen to be:

o=0,m?, with m?=x%/a®+y?*/b*+7*/c* and a>b>c. (1)

Near-infrared observations of the galactic bulge by Becklin and
Neugebauer (1968) were used by Sanders and Lowinger (1972) to
derive values of p=—18, g,=7.610°Mpc™* at 1pc and an
axial ratio ¢/a=0.4 within 800pc. Using the distribution of
planetary nebulae near the galactic centre, Isaacman (1981)
found: p=—1.8403, ¢/a=04, and M=(9+2)10° M, within
1 kpc. Finally, Burstein et al. (1982) found p=—1.7+0.1 from the
rotation curves of a sample of 21 Sc galaxies. The density distri-
bution appears to keep this value even at large radii. Therefore,
bulge and halo are modelled here with a single density distri-
bution. The disk mass is neglected since this seems justified by the
analysis of neutral hydrogen in the outer Milky Way by Kulkarni
et al. (1982). They find a large increase in scale height with radius,
suggesting that the large mass of non luminous matter implied by
their rotation curve must reside outside the disk. A similar
conclusion with different arguments is reached by Van der Kruit
and Searle (1982) on the basis of photometry of edge on spirals.

The following parameters are chosen: p= — 1.8, an axial ratio
¢/a=0.5 for the minor axis and b/a=0.8 for the intermediate. The
triaxial figure is oblate with a moderate oval distortion. It rotates
around the z-axis (the minor axis) with a rotation frequency
®=0.1, implying co-rotation (CR) to be at a radius r, =8.37.

The triaxial density distribution results in a potential (using
theorem 12 from Chandrasekhar, 1969):

V(r,0,0)=Cr""21(0, 9), 2

with
be
C= 47‘CGQO W

and

x xp+2[1+vx2+ux4](p+2)/2
I = >
(9’ 90) gdx [(1 _xz)(l _AXZ)](p+ 3)/2
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Table 1. Approximate locations and energies of the main resonances

[ l/k Tror:x Ek:l:w m/k Tkiem Ek:t:m
—0.1 (retro) 12 17.7 6.08 12 12.1 5.19
1 373 356 1 135 277
0.1 (progr) 2(ILR) 186 272 2 305 292
3 392 3.00 3 476 3.06
4 500 3.08 4 565 3.10
o (CR) 837 3.5
-4 11.9 310 —4 11.2 3.12
-3 131 307 -3 12.1 3.09
—2(OLR) 155 298 -2 14.1 3.03
-1 230 258 —1 20.0 2.75
—-1/2 38.7 145 —1/2 325 1.94
where

k=[1—(c/a)’]"'?,

u=2Aisin?fcos?¢p and

A=[1~(b/a)*]/[1~(c/a)*],
v=—[u+sin26+ Acos?6].

Similar expressions are found for the forces. The function I(8, ¢)
and the corresponding functions for the forces were calculated
numerically at intervals of 2° in 8 and ¢, respectively, and the
results were stored in tables. In the orbit calculations the angular
dependence of the potential and force was evaluated by linear
interpolation from these tables.

A system of units is defined by a unit of length r,=a=1 and
a unit of velocity v,=r,(4nGg,)"/*=1. The mass contained
within a spheroid characterized by m is:

M=Mym/ro)’*3 with M,=4nabcgo/(p+3). (3)

Periodic orbits were calculated numerically with the method
described by Magnenat (1982b). In a hamiltonian system an orbit
is completely defined by its initial conditions x,, Yo, Zo, Xos Vo Zo-
By fixing the energy and choosing a starting plane (e.g. y,=0)
four parameters (x,, zo, X, Z,) are left, which are mapped on the
same plane after a specific number of rotations. The 4 parame-
ters are adjusted by a linear differential correction method until
a periodic orbit is found. Linear stability is analysed using the
linearized mapping from the point in the starting plane on itself.

With this method orbits in the plane perpendicular to the
rotation-axis (the z-axis) were calculated at various energies. If
an orbit became unstable to perturbations in the z-direction, an
attempt was made to find a tilted orbit at the same energy.

The location of the resonances can be estimated by appro-
ximating the potential with spherical harmonics (derivations are
omitted):

V(r, 6, p) =P+ 2[coo+ CyoPcosO) + ¢, , P2(cosB) cos(2p)],  (4)
with the Associated Legendre Functions:

PY(x)=2%(3x*—1) and P3(x)=3(1-x?).

For p=—1.8, ¢/a=0.5 and b/a=0.8:

Coo=2.32094,
€50 =0.06486,
and

¢y, = —0.00653.

Neglecting the term with cos(2¢) — thus retaining only the
oblate part of the potential — and expanding around a fixed
radius r in the plane z=0 we obtain the frequencies:

wo=fyr?? with fu=[(p+2)(coo—1cs0)]1"?, (5a)

w,=fiw, Wwith fi=(p+4)"2, (5b)
) 3,0 1/2

w,=f,w, with f,= 1+ (5¢)

(Co0—3¢20) (P+2)

Here w is the rotation frequency of the triaxial system, w, the
circular frequency in the plane z=0, w, the epicycle frequency in
the same plane and w, the frequency in the z-direction. There is a
horizontal resonance (in the plane z=0) when the ratio
(w,—w):w, can be represented by (small) integers. Vertical
resonances occur when this is the case for the ratio (v, — ) : w,.
For brevity a notation k: I :m is introduced to indicate the ratios
(wy—w) :w, :w,. An asterisk is substituted if the frequency is
not involved in the resonance. The locations of resonances are
given by:

) 2/p
= |77 for a horizontal resonance (6a
o= =T :
and

) 2/p
Tewm™= |7 for a vertical resonance. (6b)
o [/0[1 _fz(k/m)]]

With p=—1.8, ¢/a=0.5, and b/a=0.8 we have f,=0.677,
f1=1.483, and f,=1.194. Co-rotation (CR) is represented by
0 : % : %, the Inner Lindblad Resonance (ILR) by 1:2:* and the
Outer Lindblad Resonance (OLR) by —1:2: % Prograde orbits
have I//k>0 within CR and I/k<0 outside CR. Equations (6)
hold for retrograde orbits if —w is substituted for w. The
corresponding value of the energy E=3(x*+j?+2%)—3iw?
(x4 y¥)+ V(x,y, z) is approximately:

E=3r*(w§—2w,0) +(coo—3c20)7" 2. Y

Table 1 gives the approximate locations of the main resonances
and the corresponding energies.

It should be noted that the term “energy” used here actually
represents the Jacobi-integral in the co-rotating frame. For
almost circular orbits, it increases with radius up to CR where it
has its maximum, and then decreases as r increases outside CR.
Energy in its strict sense, as defined in the non-rotating frame
with a time-dependent potential, is not a conserved quantity.
However, far outside CR, the potential rotates relatively quickly
with respect to an orbital period and can be looked upon as an
effectively axisymmetric potential. The corresponding effective
energy increases monotonically with radius.

3. Resulting orbits

There are 5 families of simple closed orbits in the plane
perpendicular to the rotation axis: (1) the retrograde orbits, (2)
the prograde orbits outside the OLR, (3) the prograde orbits
inside the ILR, (4) the x-axial orbits, which are nearly linear at
small radii, become more circular near the ILR and have
complex shapes when passing through the higher order re-
sonances up to CR, and (5) the y-axial orbits, which exist only
inside the ILR (see e.g. Contopoulos, 1980, 1981). At each
vertical resonance there is a strip in the plane z=0 where the
orbits are unstable to pertubations in the z-direction. At the edge
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Fig. 1a. Bifurcation diagram of the 1:*:1 resonance, showing
the retrograde tilted orbits branching off from the retrograde
orbits in the plane z=0. Unstable orbits are indicated by dashes.

In the shaded region no orbits can occur
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Fig. 2a. Stable retrograde orbits at the 1:%:1 resonance in
various projections. The co-ordinate R =(x2 + y2)!/2. The plotted
orbits have energies E of 3.10, 3.00, 2.80, 2.50, and 2.00. The tilt
with respect to the plane z=0 increases as E decreases

of an instability strip a family of tilted orbits branches off from
the orbits in the plane z=0.

Gas is likely to accumulate in simple stable periodic orbits.
These were found at the +1:x:1 resonances, occurring within
CR for the retrograde, and outside the OLR for the prograde
orbits. The first type of orbits at the 1:%:1 resonance cor-
respond to those described by Heisler et al. (1982). A more
general analysis of this family was given by Magnenat (1982a).
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Fig. 1b. Bifurcation diagram of the — 1 : * : 1 resonance, showing
the prograde tilted orbits. The —1:1:* resonance in the plane
z=0 is shown as well
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Fig. 2b. Stable prograde orbits at the —1:#:1 resonance. The
plotted orbits have energies E of 2.75, 3.00, 3.25, and 3.50. The
orbits with the loops is at E=4.40. The tilt increases as E
increases

Figure 1a shows a bifurcation diagram of these orbits. One can
make such a diagram by plotting two orbital parameters of
orbits from several families. In this case the maximum x-value is
plotted against the energy. In the shaded region, bounded by the
zero velocity curve, no orbits can occur. Unstable orbits are
indicated by dashed lines. The curve with the instability strip
represents the orbits in the plane z=0. At the higher edge of the
instability strip the stable tilted orbits branch off [at an energy
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somewhat larger than the approximate value predicted by Eq. (7)
and given in Table 1]. The orbits are shown in Fig. 2a. Their
distance with respect to the plane z=0 has a maximum in the
direction of the major axis of the triaxial system (the x-axis). The
tilt with respect to the plane z=0 increases as E decreases. They
become perpendicular to the x-axis at the origin, contrary to the
work of Heisler et al. (1982) and Magnenat (1982a) where this
occurs at a finite radius. This is due to the fact that the potentials
used in those cases have cores.

At the lower edge of the instability strip at the 1:x:1
resonance in Fig. 1a an unstable family of tilted orbits branches
off. The behaviour of these orbits is similar to that of the stable
ones, but their maximum distance to the plane z=0 occurs in the
direction of the y-axis.

A bifurcation diagram for the —1:%:1 resonant orbits is
given in Fig. 1b. The maximum y-value of an orbit is plotted as a
function of energy. Again there is an instability strip with both a
stable and unstable branch of tilted orbits. The stable ones are
shown in Fig. 2b. They are tilted in the direction of the major
axis of the triaxial system. The tilt increases as the Jacobi-
integral E increases. However, at higher values of E they start to
develop loops. The orbits with loops are still stable but gas
cannot reside in them. This implies that gas in this type of orbit
will have a maximum tilt.

The unstable branch of tilted orbits has the same behaviour
as the stable one, but the maximum tilt is in the y-direction, just
as is the case for the retrograde orbits.

The other instability strip shown in Fig. 1b corresponds to
the —1:1:* resonance in the plane z=0. There is a stable
branch of orbits in the equatorial plane z=0 that look rather
circular but have their centre shifted in the y-direction with
respect to the origin. As these orbits intersect each other at
varying energies they are not useful for explaining large scale
asymmetries in the outer parts of galaxies (see e.g. Baldwin et al,,
1980). The unstable branch consists of similar orbits shifted in
the x-direction.

4. Warps
4.1. General

Gas of sufficiently low temperature is likely to settle down
around the simple stable periodic orbits. If we assume this to be
the case in the outer parts of a spiral galaxy, a connection can be
made between the stable prograde tilted orbits at the —1:%:1
resonance and a warp. In this way a warp can be explained as an
almost stationary phenomenon.

There are two obvious characteristic properties of the de-
scribed orbits that can serve as observational tests to check the
correspondence between the orbits and warps. (1) The direction
of the oval distortion or bar should coincide with the maximum
tilt of the warp. (2) The location of the warp provides a length
scale for the galaxy, predicting the location of the other re-
sonances if the assumed density distribution is correct.

The location of the warp is mainly defined by the oblateness
of the galaxy. From Eq. (6b) it follows that:

Twarp/Tcr =(1+/3) 7%, where  f,=(1+3c,,/f)">. (8)

Increasing the oblateness (by a more oblate halo or disk)
enlarges c,, and causes the location of the warp r,,, to move

farther outward with respect to CR. According to Binney (1981)
the width of the instability strip increases as the strength of the

oval distortion or bar increases. (Cutting of the bar at co-
rotation would make the instability strip in Fig. 1b smaller.)

The question remains why the gas has settled in the tilted
orbits and not in the plane of the galaxy. Binney (1978, 1981)
proposed that the instability of orbits in the plane z=0 to
perturbations perpendicular to that plane causes material to
move out of the plane. The present results give strong support to
this explanation and allow the development of a more complete
scenario based on the assumption that gas remains close to the
stable periodic orbits — thinking now in terms of clouds rather
than a smooth distribution. Gas that is slowly spiraling inward
around the stable prograde equatorial orbits will be forced to
follow the stable tilted orbits when it reaches the instability strip,
since these families are interconnected on the outside of the
instability strip. The same dissipative process that makes the gas
spiral inward — one may think of cloud-cloud collisions — causes
it to move up to increasingly tilted orbits, until the point is
reached where these orbits become self-intersecting. There, vio-
lent collisions will occur and the debris is likely to fall back to the
equatorial plane. Such fragments may be observable as high-
velocity clouds.

In the following sections, the results of Sect. 3 will be scaled
to our Galaxy and used to make a rough model for NGC 2903.

4.2. The warp of the Milky Way

The assumed density distribution can be scaled to our Galaxy
using the observed location of the warp and the velocity of the
sun. In this way an estimate of the mass of the bulge can be
obtained which should agree with the observational result if the
prograde tilted orbits at the — 1 : % : 1 resonance correctly model
a warp.

According to Kulkarni et al. (1982) the warp sets in at 18 kpc.
In the model this occurs at a radius r,,,,=20.9 (this value is
derived from the orbit calculations and is slightly larger than the
value in Table 1) implying a unit of length r,=0.861kpc.
Assuming the velocity of the sun to be 250 km s~ !, as compared
to a rotational velocity v=c,r=f,r' *#2=0.865 at 10 kpc, yields
the unit of velocity v,=289kms™'. From these units it follows

1
that g, = e (vo/ro)*=1.4210" 1 kgm ™3 within m=r,, result-

ing in a unit of mass M,=5.510°M. Thus, Eq. (3) can be
written as: M=6.610° [m(kpc)]*>M . This mass within a
spheroidal volume characterized by m is in reasonable agreement
with Isaacman’s (1981) result of M=(9+2)10°M, at 1kpc,
derived from the distribution of planetary nebulae near the
galactic centre and consistent with the result of Sanders and
Lowinger (1972) for the bulge of our galaxy.

From Henderson et al. (1982) the angle between the position
of the sun and the major axis of the triaxial density distribution
can be estimated to be —80°. With Table 1 the locations of the
main resonances can be predicted using the unit of length
ro=0.861kpc. There does not seem to be any relation between
these locations and the observed structures in our Galaxy. Nor
would this be expected, for the simple assumption of accumulat-
ing gas near the stable periodic orbits is certainly not satisfied
within the solar radius.

4.3. The warp of NGC 2903

The orbits plotted in Fig. 2b can be projected on the sky to
model NGC2903. In this way the two main characteristic
properties mentioned in Sect. 4.1 can be tested.
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Fig. 3a. Projections on the sky of the prograde tilted orbits from
Fig. 2b, the one with the loops excepted. The dotted lines are
circles at consecutively the ILR, CR, OLR and the location of
the warp. The arrow indicates the direction of the major axis of
the bar or oval distortion

The relevant parameters for projection can be found from the
results of optical spectral measurements by Simkim (1975) and
neutral hydrogen measurements by Wevers (1983). Simkim
(1975) found a position angle of the line of nodes PA =28°+2°,
an inclination i=7223+2° and an angle between the major axis
of the bar and the line of nodes of 43° in the plane of the galaxy.
The neutral hydrogen measurements by Wevers (1983) clearly
show the warp of this galaxy. From the observed radial velocity
field a position angle for the line of nodes PA=22° can be
derived. The position angle of the bar can be calculated from
Simkim’s results to be 12°. With a position angle PA =22° for the
line of nodes and an inclination i =72?3, it follows that the angle
between the bar and the line of nodes is 30°. These parameters
were used to project the orbits of Fig. 2b on the sky. Choosing
the eastern side as the near side and letting the orbits come above
the plane of the galaxy at the south west side yields Fig. 3a. The
dotted lines indicate consecutively the ILR, CR, OLR and the
location of the warp at model radii 1.86, 8.37, 15.5, and 20.9,
respectively. The arrow indicates the direction of the oval
distortion or bar. The orbits are dashed at the far side of the
projection plane through the centre of the galaxy.

Figure 3b shows the distribution of neutral hydrogen as
observed by Wevers (1983). Comparing the model of Fig. 3a with
the observations shows the following correspondences:

1. The central bar or oval distortion falls exactly within the
co-rotation radius of the model when measured over its major
axis. In the north, one of the two spiral arms starts where the
major axis of the bar or oval distortion stops.

2. The hole in the neutral hydrogen distribution near the
centre falls within the ILR.

3. The spiral arms extend to a radius between the OLR and
the location of the warp. Observations of spiral galaxies general-

95

Fig. 3b. The neutral hydrogen distribution of NGC 2903 as
measured by Wevers (1983). North is on top and east on the left.
The horizontal length of the picture corresponds to 20

ly show that the spiral arms become invisible at a radius
somewhat beyond the OLR.

4. The point at which the orbits seem to intersect (they do
not!), corresponding with the y-axis in the model, coincides in
the south west with a bright spot. In the north east this is not
clear.

5. When observing a distribution of gas in the projected
orbits the turning points will show up most brightly. The turning
points coincide with a strip of gas in the south west and less
clearly on the opposite side.

These correspondences give good support to the model, at
least qualitatively. The model predicts that in the southern part
of the galaxy, anomalous velocities should be visible in high-
sensitivity neutral hydrogen measurements, and also in the north
at places where the warp is not obscured.

5. Conclusions

The results presented above yield the following conclusions:

1. Under the assumption that the motion of gas in the outer
part of a spiral galaxy can be described in terms of simple stable
periodic orbits, a warp can be explained as an almost stationary
phenomenon in a rotating triaxial system.

2. The interconnection between the stable prograde tilted
orbits and those in the equatorial plane occurs on the outside of
the instability strip. This gives strong support to the excitation of
warps by orbital instability as proposed by Binney (1978, 1981).
Gas spiraling slowly inward along the stable periodic orbits in
the plane will be forced to continue along the tilted orbits and
move progressively to the more inclined orbits of this family,
until these become self-intersecting. Then violent collisions will
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occur. The debris that falls back to the equatorial plane may be
observable as high-velocity clouds.

3. The location of the warp defines a length scale for the
galaxy, related to the assumed density distribution. The maxi-
mum tilt in the warp defines the major axis of the bar or oval
distortion. No severe contradictions are found when applying
these results to the warp of our Galaxy and of NGC 2903.
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