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High-order Scattering in Diffuse Reflection

from a Semi-infinite Atmosphere
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An agymptotic formula representing the terms with a relative error 0 (n*) is found for the radiation intensity
diffusely reflected from a semi-infinite atmosphere after » successive scatterings. The method, valid for an
arbitrary phase function, is to transform & power series in %, the diffusion exponent, into one in ¢ = (1 — a)/2
and then into one in g, the albedo for single scattering. Four examples, including isotropic and highly anisotropic
scattering, show the method to be accurate and convenient. If exact values for the orders n = 1 to 6 are known,
values for all higher orders can be estimated to within a percent by this method.
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1. The Problem

The most direct approach to multiple scattering
problems is first to compute the radiation field com-
prising the quanta which have not been scattered
at all (zero order), then the field of quanta which
have suffered one scattering (first order), etc. We
shall call this the “method of successive orders®.
The series summing all orders forms the total radia-
tion field.

Let a be the “albedo for single scattering’ (astro-
physics) or “number of secondaries” (neutron scat-
tering). Then the intensity of the radiation field of
the n-th order contains the factor a®. Hence the
intensity of the total field is a power series in a. It
is irrelevant for our purpose whether (as suggested
above) it has been derived from a probabilistic
reasoning, or (as often is done) from the Neuman
series for solving an integral equation, or from still
different means (as illustrated below).

The convergence of this power series is very fast
if the cloud, or layer, is optically rather thin, or if
the albedo a of the individual scatterers is low. The
convergence is slow for thick layers and for large
a. For this reason the method of successive orders
has never been advocated as a good general method
of computation, although its useful range has certain-
ly been extended by the fast computers.

Let the atmosphere, or plane parallel layer, be
homogeneous with optical thickness b, and be illu-
minated by internal or external sources. Then the

asymptotic behaviour of the series summing all
orders is as a geometric series with ratio

771(b) ra,

where 7, (b) is the largest eigenvalue of an integral
equation, the values of which have been solved for
several types of scattering (Mullikin, 1962; van de
Hulst, 1963; van de Hulst and Irvine, 1962; Leo-
nard and Mullikin, 1964); 7, =0 for b=0,7;, =1
for b = oo.

To any finite non-zero value of b, a value
a = {n,(b)}2 > 1 corresponds, for which the series
starts to diverge. This corresponds to the critical
condition of a nuclear reactor with slab geometry.

Limiting the discussion to the astrophysically
interesting range of values 0 <a < 1 we easily see
that the worst convergence is obtained in the limit
of a conservative semi-infinite atmosphere, a =1,
b = co. In this limit the series still converges, but
more slowly than a geometric series.

It has been pointed out repeatedly that it would
be useful to have an accurate theory of the asymp-
totic behaviour of the series in this unfavourable
case. For instance, in the theory of absorption lines
seen in the diffusely reflected light of a thick plane-
tary atmosphere, it is necessary to vary a continu-
ously, which can be done by means of this series
(Belton, 1968).

Uesugi and Irvine (1969, 1970) set themselves to
solve this problem and did so. However, it is possible
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by using more direct methods to arrive at more com-
plete asymptotic forms, as we shall show below. The
different aims of these papers may be expressed as
follows. Irvine and Uesugi state that they would be
happy to compute 50 orders numerically by succes-
sive scattering and to replace the rest by an asymp-
totic formula, reaching an accuracy of one percent.
Our aim rather was to limit the successive scattering
method to only 3 —10 terms and still to achieve
a safe transition to the asymptotic form and a
total accuracy of 0.19% or better.

2. Derivation of the Asymptotic Expansion

Our simple starting point is that, if we know the
sum of the series for all @, then we know all coeffi-
cients of its power expansion (by a Taylor series).
The high coefficients, i.e. the high orders of scat-
tering, come effectively into play only when a gets
close to 1. Conversely, the known behaviour of the
result near @ =1 should suffice to find the asym-
ptotic behaviour of the high orders. This idea is
developed into practical formulae below.

Let f be the physical quantity we wish to discuss
as a function of a. It may, for instance be the in-
tensity of diffusely reflected light for given cosines
1o and p of the angles of incidence and emergence;
or it may be a moment or a bi-moment obtained
upon integrating the reflected intensity over one or
both of these arguments.

It is known (e.g. van de Hulst, 1968a) that such
a quantity has a ‘“‘near-conservative” expansion of
the form

f=F,+Fk+F k2 +... )

where k is the diffusion exponent or inverse diffusion
length, which occurs in the combination exp (4 k)
with the optical depth 7 in the asymptotic solution
of the radiation field in deep layers. It is also known
that g itself has a similar expansion

a=1—Ak+ Bk +.... 2
Defining
t=(l—ap? ©)
we find from (2) that
k= 1?}A 4 Bt4A3 + ... 4)

and, thereby, can convert (1) into a power series in ¢:
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where
Go = Fo» Gl = F1/A1/a, Gz = Fz/—‘l ’
Gy =F,;|A%2 + BF,[2 452, G, = F,|A®+ BF,|A5. (6)

The expansions (1) and (5) are about equally
useful. Expansions in the form (5) have also been
derived to the linear term by Kolesov and Sobolev
(1969) and to the quadratic term by Sobolev (1969).

The further task is twofold. 1. How to find the
coefficients F, to F,, A and B, and hence G, to G,;
this we shall postpone to the next Section. 2. How
to use this knowledge to find the asymptotic ex-
Ppression for f, in

f=fotha+fa®+ ... +fpa"+.... (7)

We perform the second task by using the binonium
expansion

—t=—(1— 2= 3 y,ar (8)

n=0
where for N = 2 exactly

1.35....@2n —3)
Ys=346....@n—2)2n ° ©)

By the Wallis formula (Abramowitz and Stegun,
1965, p. 258) y,, has the asymptotic form

Yn~ 4nn®)"12[ 1438014 ...]
and consequently

Yn— Yn—1~ (rn®) [ — 32 n1 4+ ...]. (11)

(10)

The even terms in (5) do not contribute to the asym-
ptotic forms?) of f, but the odd terms give

fn = Gl(yn) - Gs(yn_ yn—l)
—O5(Yn—2Yn-1Ft Yno)— --- .
Inserting (10) and (11) into (12) we find at once

(12)

for~ (dnnd) V2 [— Gy +3/2 (Gs— /4 G)n1+...].
(13)

For practical purposes we shall use the equivalent
form

fa=—G{dm(n + o} {1l + O(n~2)}
with

(14)

c=Gy/G, — 1/4. (15)

1) It is assumed that the terms of very high orders (even
and odd) in (5), which do contribute in principle to the
asymptotic form of f,, vanish sufficiently rapidly.
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3. Numerical Examples

The convenience of these formulae for numerical
work has been tested by four examples. One function
tested was the reflection function R(1,1) for per-
pendicular incidence and reflection. The other was
the bi-moment, in our notation called

11
URU =0f ({ R(u, po)2udp2pdpy,  (16)

which is identical with the “Bond Albedo” of a planet
covered with this atmosphere. Both functions were
taken for isotropic scattering (g = 0) and Henyey-
Greenstein scattering with anisotropy factor g = 0.75.

Table 1 shows the results of this test. Since the
numerical data were partially extracted from ma-
chine output made for different purposes, the origin
of the values is not uniform. First, we have simple,
exact expressions (van de Hulst, 1968a) for the
coefficients

4={81-g}*,
B=—{4— 99+ 5gh}/{45(1 — g)*(1 — R)}, (17)

where g = w,/3 and k = w,[5 are coefficients of the
expansion of the phase function as

@ (cosa) = 1 + 3g P, (cosax) + 5k Py(cosa) + ... .
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Further exact expressions are

quantity R(1, 1) quantity URU
Fy=Ry(L, 1) Fo=UR,U
— 4 —4
= ga—g KD} Fi=5a=p
4g
F=st-g @8

where the suffix 0 has been used for ‘“value valid
for k= 0,a =1". The reflection function R (u, y,),
its bi-moment U R U, the escape function K (u), and
the extrapolation length ¢ are all known with five-
figure accuracy. These numbers are based on classical
expressions in terms of the H-function and its
moments for isotropic scattering and have been
found by ‘“asymptotic fitting”” for the Henyey-
Greenstein phase function with g = 0.75 (van de
Hulst 1968b). Inserting (17) and (18) into (6) we
obtain the first few coefficients G, with high accuracy.

A further set of G, values was found by perfor-
ming the expansion (5) numerically, starting from
the values of f for a = 0.99, 0.95, 0.9 and 0.8, known
by asymptotic fitting. Defining

zo(t) = f’ Zn+1 (t) = {zn (t) - Gn}/t

we simply plotted z, () against ¢ and found z,,(0) = G,,
as the intercept of the curve, smoothly extrapolated
to ¢ = 0. The maximum uncertainties introduced by

(19)

Table 1. Numerical test of asymptotic formula

Quantity f R(1,1) R(1,1) URU URU
anisotropy g=20 g = 0.75 g=0 g = 0.75
Coefficients of G, 1.057 1.119 1 1
expansions (5) G, — 3.661 — 7.329 —2.309 — 4.619
Gy 7.84 23.6 + 0.1 2.842 11.414
G, —14.8 1 0.2 —51+3 —3.233 —19.7 + 0.2
Derived constant (15) c 3.76 6.75 1.15 (exact!) 4.00
left: n=1 0.1250 1.298 0.0102 0.220 0.2046 0.645 0.0472 0.528
Values of low-order terms f, 2 0.0866 1.197 0.0129 0.334 0.1157 0.647 0.0445 0.655
right: 3 0.0653 1.147 0.0155 0.470 0.0767 0.648 0.0409 0.757
Products f,(n + ¢)3/2 4 0.0517 1.117 0.0176 0.620 0.0372 0.841
5 0.0423 1.098 0.0192 0.774 0.0338 0.911
6 0.0356 1.084 0.0203 0.925 0.0307 0.970
8 0.0265 1.068 0.0210 1.190 0.0255 1.060
12 0.0168 1.052 0.0190 1.543 0.0182 1.166
16 0.0119 1.045 0.0159 1.722 0.0136 1.219
20 0.0090 1.041 0.0131 1.816 0.0106 1.247
o) 0 1.033 0  2.068 0  0.651 0 1.303
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Fig. l.lApproach to asymptotic values in four examples

this process are indicated in Table 1. They do not
greatly affect the values of ¢, found by Eq. (15).
The example URU for isotropic scattering is
exceptional in having exact expressions for G,, through
G,. Expanding the n-th moment of the H-function

as
oy =izc',a,,,tf . (20)

And writing the Hopf function for 7 =00 as ¢,
= (.710446, we have the well known relations

Oy == /3 s, (21)
Ao =2, a1o= 2/V3 s Qoo = 2q'=o/‘/§: a1 =— 24¢c -
(22)

26 Astron. & Astrophys., Vol. 9

A well known relation between the moments -
1 1—1¢2

by =5 +—5— (08 — 2oy5) (23)
in the limit { = 0 now gives
1 1

tao= (5 +5¢%) V3, (24)

an expression also given by Sobolev (1967). The value

3
Gg1 = — (F + Q%o)
now follows by (21). Equating coefficients of % in
another well known relation

1 11—
ta2=§——4—-—a§,

(25)

(26)
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we can now step to

14—
o =15V3. @7)
Finally, the exact expression
URU =1-—2ta, (28)

gives in combination with (20), (22), (27) the exact
values of G, Gy, Gy, G5. By (15) this leads to the
unexpectedly simple result that for this example

¢ = 23/20, exactly . (29)

The lower part of Table 1 contains the normal
“orders” f, defined by Eq. (7) and computed by
successive scattering. These values were taken from
computer output kindly provided by Dr. K. Gross-
man of the NASA Institute for Space Studies, New
York. In order to check the asymptotic relation in
the form (14) we have also tabulated the products
fa(n + €)¥/2 and these are the ordinates of the points
plotted in Fig. 1. The last line in Table 1 shows the
values of — G, (4x)~%/?, which by Eq. (14) should
be the limiting value for » — oo, a result derived
along a quite different way by Uesugi and Irvine
(1970).

4. Discussion

In Fig. 1 all numbers have been plotted against
(n + 4)~2. Here 4 is an arbitrary choice to make the
picture look nice; if we would have taken a different
number, the curves would still approach the point
n = oo along the same tangent. The value of the slope
at this endpoint is not specified in (14), but it should
be possible by (9) and (12) to express it in a form,
which will involve G;. Conversely, the empirical slope
shown in the graph might be used to find the value
of Gs.

If we should have taken the wrong value of ¢,
or should have worked directly from Eq. (13), the
same endpoint would have been found, but it would
have been necessary to plot against (n + d)-2, d arbi-
trary, in order to approach this endpoint with a
finite slope, so that the approach would have been
much slower.

The differences among the curves in Fig. 1 are
entirely as expected. The case URU for isotropic
scattering should show a rapid approach to the asymp-
totic behaviour. The zero-order (incident) light already
has a wide distribution in directions and the iso-
tropic scattering cannot but help to spread the
radiation. However, it was a surprise that the

Astron. & Astrophys.

approach is so fast that the entire rise in Table 1
from 7 =1 to » = oo is less than one percent! The
absence of numbers for » =4 to 20 is due to an
accidental program failure; it seemed superfluous to
remedy this for the present example. In contrast,
the example R(1, 1) for g = 0.75 shows the slowest
approach. The incident radiation goes straight into
the atmosphere. The strongly forward directed phase
function (with 93.3 percent of the scattering in the
forward hemisphere and a ratio 343 of exact forward
to exact backward scatter) tends to keep it this way
for the low orders of scattering. Table 1 shows that
f, is very small indeed and that the coefficients f,
go on rising to » = 8 and that only for still higher
orders the tendency for convergence appears. The
value of ¢ is largest in this case, and the curve in
Fig. 1 shows a substantial rise. The two other exam-
ples duly are between the extreme examples just
mentioned.

Although the computations of f, presented here
were extended to n» = 20, Fig. 1 shows that fewer
terms would suffice for a smooth graphical inter-
polation between the highest » computed and the
known limit for n = co. Counting 1, 2, 3, ... co would
not leave more than 10 percent uncertainty (in the
range near 7 = 10) even in the least favourable case.
Known values for » = 1 through 6 would suffice for
a 1 percent accuracy in the interpolated values of
all higher terms.

5. Summation

Having thus found, in principle, a way to derive
accurate values for all high-order terms f,, the next
step, logically, should be to choose a method to
perform the summation of the series (7). Here a
variety of options exists, which we have not explored
in detail. The choice may depend on the quantity
and accuracy of results wanted, the range of a-values,
the type of computer available, ete. In the study of
absorption lines in diffusely reflecting atmospheres,
it may be useful to have approximation formulae in
which @ can be varied continuously. We mention
several possibilities:

(A) If direct values, say to » = 20, can be computed,
it should be simple to approximate the remainder
by an integral. It seems best to start from (13) instead
of (14). The separate terms yield incomplete I"-func-
tions of order — 1/2, — 3/2, — 5/2 etc., each of which
can be reduced by simple recurrence relations to the
incomplete I'-function of order + 1/2, i.e. to the error
function. This method (limited to the dominant term)
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was proposed by Uesugi and Irvine (1969, 1970).
(B) All worries about slowly converging series can
be avoided by simply subtracting from the series
sought the term G,t in (5), the separate orders of
which are known exactly by (8) and (9). Going one
or two steps further we can also subtract the exact
expansions of G4t and G;5. The remaining power
series in a converges rapidly and can be summed
numerically.
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