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ABSTRACT

We present three different methods for calculating approximate third integrals of the motion for orbits
in axisymmetric potentials. All three methods are based on approximating the orbits by motion in a
separable potential. The results are applied to the Carlberg-Innanen potential for the Galaxy and allow
a determination of the tilt of the velocity ellipsoid in the solar neighborhood.

1. INTRODUCTION

The motion of a particle in an arbitrary potential P is
constrained in six-dimensional phase space by the isolating
integrals of the motion, which are constant along an orbit
(Jeans 1915). If the potential is axisymmetric, two integrals
are the total energy E and the angular momentum about the
symmetry axis 4. The existence of such a third, nonclassical
isolating integral depends on the form of the potential. Axi-
symmetric Stidckel potentials (Stackel 1890; Eddington
1915; Lynden-Bell 1962; de Zeeuw 1985) lead to a separa-
tion of the Hamilton—Jacobi equation in spheroidal coordi-
nates and are the most general class of axisymmetric galaxy
potentials known with exact isolating third integrals. Many
other special two-dimensional potentials also have exact
nonclassical isolating integrals (Hietarinta 1987). However,
most galaxy potentials do not fall into these categories, and
one must normally resort to numerical orbit integrations to
find out whether a third integral exists. Typically one finds
that galactic potentials give rise to both regular orbits that
possess isolating third integrals, and stochastic orbits that do
not (Ollongren 1962; Martinet 1974).

A distribution of stars in a potential with three isolating
integrals can have a velocity ellipsoid with three unequal
principal axes. It is well known that this is indeed the case for
virtually all types of stars in the solar neighborhood (e.g.,
Oort 1928; Freeman 1987), strongly suggesting that the stel-
lar orbits in the Galaxy possess a third isolating integral. In
general, the shape and orientation of the velocity ellipsoid
for an ensemble of stars depends on the details of both the
potential and the distribution function of stars. A classic
problem in Galactic dynamics is calculating the tilt of the
velocity ellipsoid for stars above the Galactic plane. This
quantity enters into the equations of hydrostatic equilibrium
and is needed to calculate the asymmetric drift of stars (Bin-
ney & Tremaine 1987) and the surface mass density (Kuij-
ken & Gilmore 1989a,b; Statler 1989) in the solar neighbor-
hood. In the latter case, the uncertainty in the tilt term leads
to a 20% variation in the inferred mass density and formally
is the largest single source of error. Although the tilt term is
often regarded as being unknown, we show that it can be
estimated to good accuracy even without perfect knowledge
of the Galactic potential or the distribution function of stars.

To calculate the orientation and shape of the velocity el-
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lipsoid in the solar neighborhood, it is important to have
analytic or numerical approximations to the third integral.
Following the pioneering work of Contopoulos (1960),
many perturbation expansions have been constructed for a
third integral in potentials that deviate only slightly from
cases with exact third integrals (e.g., van de Hulst 1962; Saaf
1968; Manabe 1979; Verhulst 1979). Manabe (1979) has
compared the accuracy of several of these approximations
for stars orbiting in the solar neighborhood. He finds that
even the best approximations predict orbit shapes that de-
viate noticeably from the true shape for orbits that have an
extent of only 2-3 kpc. These approximations are not ade-
quate for calculating the tilt term because typical disk stars
in the solar neighborhood do reach to this height above the
Galactic plane.

This paper presents three methods (two of which are
new) for finding approximate third integrals in axisymmet-
ric potentials applicable to the major family of short-axis
tube orbits. All methods approximate an orbit by motionina
separable potential. Each method has its own advantages for
different types of orbits. We find that we can often approxi-
mate orbits to much higher accuracy than is possible with
previous perturbation-type methods. In particular, our
methods allow an accurate calculation of the velocity ellip-
soid in the solar neighborhood.

2. FITTING ORBITS

The three-dimensional motion in the gravitational poten-
tial @ of an axisymmetric galaxy is conveniently described as
two-dimensional motion in a meridional plane, with Hamil-
tonian

H=1(pk +p)) +V(R2), (1

where R is the radial coordinate, z is the vertical coordinate,
pr and p, are the linear momenta, and V(R,z) is the re-
duced, or effective, potential, defined as

V(R,z) = ®(Rz) + (h*/2R?) . (2)

Here 4 is the angular momentum component about the sym-
metry axis. We assume that V is symmetric in z.

The most general axisymmetric potential that gives rise to
threeisolating integrals is a Stickel potential (Kuzmin 1956;
Hori 1962). Orbits in these potentials generally fill donut-
shaped three-dimensional volumes which are bounded by
coordinate surfaces, and hence the orbits are nowadays re-
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ferred to as short-axis tubes. When the potential is not of
Stiickel form, we cannot write down exact analytic third in-
tegrals. However, several schemes for computing numerical
approximations exist. Here we examine three methods for
computing approximate third integrals which are of use for
describing orbits of stars in the solar neighborhood. Each
method has its own domain of applicability.

2.1 Local Fitting

In a scheme developed originally by van de Hulst (1962),
itis possible to fit potentials to fourth order in both the R and
z directions simultaneously by using Stédckel potentials.

The Hamiltonian for the special oblate potentials V(R,z)
that are of Stickel form separates in prolate spheroidal co-
ordinates (u,4,0), where u and v are two-dimensional elliptic
coordinates in a meridional plane of constant ¢, defined by
the conformal transformation R + iz = A sinh(u + iv), so
that

R=Asinhucosv; z=Acoshusiny, (3)
where 0<u < w0, — 7/2<v<7/2. The foci lie along the z

axis, at z= + A. The momenta p, and p, are related to py
and p, by
P. = A(pg cosh u cos v + p, sinh u sin v), @

P, = A(p, cosh u cos v — py, sinh u sin v).

The gravitational potential ® is of Stéickel form if it can be
written as

F*(u) + G*(v)

D(up) = . (5)
A?*(cosh? u — sin® v)
The effective potential is
2 2 2
V=®(uy) + .h (sec’ v 4+ csch® u) 6)

2A%(cosh? u — sin®v)
so that Vis of Stickel form if ® is.

In a potential of this kind, all orbits are short axis tubes
and have an exact third integral I; given by

1 h?
I, = A’Ecosh® u — —p? — F*(u) — ——
: 2p © 2sinh?u
2 oin2 1, * h?
= A’Esin* v+ —p2 4+ G*(v) + . N
' 2 2 cos’v

Near a circular orbit at R = R, in the equatorial plane, the
effective potential can be expanded in powersof x = R — R,
and z as follows:

V=3 3 V,xz, (8)
k=01=0

where V,, = 0, and only even values of / occur, by symme-
try. The question arises how well this expansion can be
matched by a similar one for a separable potential. This
problem was solved by van de Hulst (1962), in his investiga-
tion of epicyclic motion in the meridional plane of an axi-
symmetric potential. He showed that, by expanding a sep-
arable ¥ around a point on the x axis that does not coincide
with the origin, one can always fit the expansion (8) up to
and including quartic terms. At quintic order one can fit the
coefficients Vs, but the values of ¥, and ¥V, are then fixed.
Similar constraints occur at all higher orders.

In this local fitting, the (u,v)-coordinate system has to be
chosen such that its origin lies at ( — x,,0), with

— 4Vu(p30—'nn)
W (Voo — V) — 3V, (Vio —2V3y)
and the semi-focal distance A must be taken as
A= —x3 +x5[(Vao —4V)/ V2] - (10)

As a result, the boundaries of the area in the meridional
plane filled by the orbit are elliptic coordinate lines, i.e.,
pieces of confocal ellipses and hyperbolae.

The third integral of the best fitting Stackel potential may
be written explicitly in terms of the original expansion coeffi-
cients ¥, themselves. The general result (de Zeeuw 1984) is

(€))

Xo

I, = 1(xp, — zpr)* + IA*[p} + W(x,2) ], (11)
where
2 2
Wxz) = ("<>_+2A_) [Vozf _ ol
A (Vh~_4V&)
+(iV22 T Vi 2V, — 3V30))xzzz
2 4(P20—-4P%2)
V2
+(V ————”—)z“+~--]. (12)
* AV — 4Vp)

Two cases deserve special attention. If ¥V, = ¥V, then we
find from Eq. (9) that x, =0 and A = 0, so that the poten-
tial is fitted with a function of x> + z*. For V,, = 4V, the
point (x,,0) coincides with a focus of the elliptic coordinates
(u,v), in the neighborhood of which the coordinates are ap-
proximately parabolic. This case is not relevant to the mo-
tion in the solar neighborhood, where Vy, > V.

2.2 Least-Squares Fitting

The local fitting procedure predicts that all orbits of a
given 4 are bounded by the same spheroidal coordinate sys-
tem. For orbits of sufficiently high energy, the local fitting
approximation of Sec. 2.1 no longer works well. However,
we find that in many cases orbits can still be approximated
by motion in a Stickel potential provided that the potential is
chosen to be a good “average” approximation to the true
potential in the region covered by a particular orbit. We now
develop a practical method to find the appropriate spheroi-
dal coordinate system and the resulting third integral ap-
proximation tailored for individual orbits.

By Eq. (7), the following function should vanish along a
given orbit:

1, h?

=1, + —p? + F*(u) + ——— — A’E cosh? u.
Q=1 27 2 sinh® u

(13)

For a given choice of coordinates, the function F * (#) is most
easily found by evaluating Eq. (5) along the R axis,

F*(u) = A*®(u,0)cosh? u. (14)

If the potential is not separable, then the function given by
Eq. (13) will not be constant along an orbit. However, hav-
ing integrated a particular orbit numerically, we can adjust
the parameters A and x, of the coordinate system so as to
make that function as nearly constant as possible. This is the
basis of our fitting scheme. Given a numerically integrated
orbit, we adjust A, x,, and the as-yet unknown I; so as to
minimize the rms variations in Eq. (13). Specifically, we
minimize the quantity fQ?d¢ along an orbit. The orbit is
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integrated for a time long enough to define its boundaries. By
fitting the coordinate system to a specific orbit rather than,
say, fitting a Stickel approximation to the true potential over
some region (as was done by de Zeeuw & Lynden-Bell
1985), we are able to tailor the third integral as closely as
possible to that orbit, and we also allow for the fact that in
general, different orbits are best fit by different approxima-
tions.

2.3 Conformal Fitting

Finally, we look at orbits that have an arbitrarily large
extentinthe R direction but that deviate only slightly in the z
direction. These orbits are typical of Galactic disk stars
where the R dispersion is much larger than the z dispersion.
We can think of these orbits as oscillating slightly about the
periodic orbit that lies in the R axis.’

We introduce a new coordinate system (u,v) by a confor-
mal transformation:

R + iz =f(u + iv). (15)

Let the R axis coincide with the u axis for z = v = 0. Because
the transformation is conformal, one has dR /du = Jz/dv

and JR /dv = — 3z/3u. In terms of the new momenta, the
kinetic energy is 1(p% + p2) = 1J(p + p2), where J is the
Jacobian of the transformation:

J= [ (IR /3u)* + (Jz/3u)*] . The equation H = E can
then be written in the form

U(u,w) —0, (16)

1. +p2) +—2=
where U=V — E.

In Hamilton—Jacobi theory, the Hamiltonian is separable
if U /J can be written in the form U /J = F(u) + G(v). In
that case, Eq. (16) splits into two parts, each of which is
constant,

W+ Fu) = — I,

1+ G) =

Here the signs are chosen so that if G(0) =0, then I; > 0.
Global separation for axisymmetric models occurs only for
Stéckel potentials, as we have discussed already. However,
our aim here is to find a coordinate system such that Eq. (1)
is separable to just second order in v, and that can be done for
a much larger class of potentials. First, Eq. (15) can be ex-
panded for small v,

R=f—%v2f", (18)

z= Uf’ s %USf‘"’,
where fis now a real function of u, and the primes indicate
differentiation with respect to «. Then, to order v?, J is given
by

1 12 ”2

—_—— +

5= (f

Next, the function U must be expanded for small v,

(17)

—Ff (19)

U=U(u0) +— (32U) V2 (20)
n?

The second derivative can be written in a more useful form as
follows:

2Note that in three dimensions this “periodic” orbit fills an annulus in the
equatorial plane.

GU_QUOR U3 . dU, .00
a  oR 8v+c9z¢9v I w5 an
92U ,26U
P J— _|_ ..’
Y f f

where the dots mdlcate terms that vanish when evaluated at
v = 0. Combining Egs. (19), (20), and (21) yields

U _ .» [ 1 ,2( :14 ,232U)
—=f?Uw,0) + | — ANy,
J SEUw0) S dR 4 o2

+ (fnz —-f'f‘”’)U]lﬂ:O. (22)

Again, U and its derivatives are to be evaluated at v = 0.
Equation (16) is separable to second order in v only if the
quantity in brackets in Eq. (22) is a constant:

1 a°U
n2 __ prem U - 12( " 12 ) K.
" =rrMu+ 2f f +/ pY
(23)

Equation (23) is the desired result. It is a nonlinear third
order equation for R = f(u). The function U and its various
derivatives are known functions of R (and hence of /) and
are evaluated at z = 0. A solution to Eq. (23) requires that
we specify three integration constants plus the as-yet un-
known separation constant K. The integration constants
may be chosen to be the values of /' = a and f” = b at some
point and the value of u = u, at that point. Two of these
constants, @ and u, are arbitrary and simply correspond to a
linear rescaling and shift in origin of the (u,v) coordinate
system. The remaining two constants may be obtained by
recognizing that Eq. (23) has two singular points where
U = 0 (corresponding to the turning points of the periodic
orbit), and so " cannot be specified arbitrarily at these
points, but rather must satisfy

P (2K /f'?) + (32U /92%)
AU /3R '

Since there are two singular points where Eq. (23) must be
satisfied, both b and K are determined uniquely.

From a computational standpoint, Eq. (23) is most con-
veniently integrated using the shoot-to-midpoint method
(Press et al. 1986). At the lower singular point, one selects
u_ =0,f"_ =a=1,and makes a guess at K; at the upper
endpoint one makes a guess at f*, and u , . Equation (23) is
then integrated from each singular point to a midpoint
f=R,,. At the singular points, the starting value of /" i

given by

(24)

wz_i_(__l_ v 02U | e 97U

=36\ "2 et e
1,9 U) ’s
2f ORIZ -

The valuesof K, f*, ,and u | areadjusted iteratively so as to
make f', f”, and u continuous at R,,.
The third integral is given to second order by

I = — [ip2 +f?U,0)] = p? + Ko™ (26)
If K > 0, the periodic orbit about which we are expanding is
stable, else it is unstable. The boundaries of the stable orbits
aregivenby I, = — f?U(u,0) andv= +,/L,/K.

For potentials that are separable in Cartesian coordinates,

f=1 everywhere, and I, reduces to the energy E, in the z
direction. For spherically symmetric potentials, the solution
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to Eq. (23) is f=aexp(x —u,), and I; reduces to
1(L? — h?) where L is the total angular momentum of the
orbit. Note that the transformation function f depends on
the energy E and angular momentum # of an orbit (via their
appearance in the function U) but not on ;.

Although the above analysis is only valid to second order
in v, i.e., for small v, numerical integration of orbits in test
potentials shows that the coordinate system described by the
function f'sometimes provides a good description of the or-
bits with substantial v amplitudes. In such cases the third
integral in Eq. (26) can be written as

L =+ G, 27

where G(v) is the function U/J evaluated along any curve
u = constant. The upper and lower boundaries of an orbit
are then found by solving this equation when p, = 0.

For comparison with the local fitting of Sec. 2.1, we note
that the function fof the transformation to the specific (%,v)-
coordinate system used in the local fitting is given by

flu+iv)=R+iz=Asinh(u +iv) + R, —x, (28)
and the Jacobian is
%: A?%(cosh? u — sin® v). 29)
The function U becomes
_F*u) + G*(0) h? 1

U E+ +—
A% cosh? u 2A%sinh*>u A
* * *7 2
X(F () +G*(0)  _G*"(0) h )Uz
cosh* u 2cosh’u  2sinh’u

(30)
Equation (23) reduces to
AE+1G*"(0) + (hy/2) =K. 31)

We remark that a Stéckel potential has only one arbitrary func-
tion F*(u) plus two constants [A and G*”(0)] that can be
specified along z = v = 0. Equation (23) allows one to specify
two independent arbitrary functions (U and 3 U /32*). Hence
the conformal fitting method allows one to find approximate
third integrals for potentials that are more general than any
Stéckel potential. However, it is valid only to second order in v,
whereas the local fitting method works through fourth order.

2.4 Examples

Figure 1 shows an application of these fitting methods to
four orbits. The first three are orbits of stars in the Carlberg
& Innanen (1987) model for the gravitational field of the
Galaxy. The orbits were integrated numerically by launch-
ing a particle from R = 8.5 kpc, z =0 with the indicated
velocity. For each orbit we have computed an appropriate
prolate spheroidal coordinate system using both the local
fitting approximation and the more general least-squares fit-
ting method. Given a coordinate system, we then approxi-
mate the potential using Eq. (5) with F* and G * given by
F*(u) = A’(cosh® u)®(u,0) and G*(v) = A%(cosh? u,,

— sin® v)®(u, ,v), where u, is the value of u corresponding
to the launch radius of the stars (8.5 kpc). The boundaries of
the orbits are then found by solving Egs. (7) for the values of
u and v where p, = p, = 0. The boundaries are plotted in the
figure. For the first orbit, both methods appear to fit the orbit
boundary well. However, the least-squares fit actually does

0.1
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F1G. 1. Meridional plane diagrams for four orbits with boundaries
calculated by three different methods. Orbits in (a)—(c) were run in
the Carlberg-Innanen model for the Galaxy. All orbits were launched
from R =8.5 kpc with (vg, vs, v,) velocities of (50,0,30) and
(10,0,120), and (100, — 80,100) km s~ !, respectively. Orbit in (d)
was run in a potential described in the text. The orbit was launched
from R = 1, z = 0 with velocities (0.4,0,0.1). Note that the vertical
scale in (d) has been stretched. Boundaries were computed using the
conformal fitting method (long- and short-dashed lines), local fitting
method (short-dashed lines), and least-squares fitting method (heavy
solid lines).

significantly better. The rms error in the predicted velocity
along the u axis, for example, is about 14 km s~' for the
localfitting approximation but is essentially O for the least-
squares approximation. For the second and third orbits,
which travel to nearly 4 kpc above the galactic plane, the
local-fitting approximation now fails quite badly, whereas
the least-squares approximation still provides an excellent
fit: the rms error in the u velocity is still only 1-3 km s~ for
the latter.

Although lines for the conformal fitting method are not
plotted in Figs. 1(a)-1(c), it gives virtually identical results
with the local fitting method.

Figure 1(d) shows an orbit integrated in the potential
®= —1/JyR?>+ 22 — 0.1 cos(3z). This potential is not
chdsen to match any particular galaxy model, although the
cosine portion might be thought of as representing a pertur-
bation due to rings. Although the orbit oscillates only slight-
ly in the z direction, the top and bottom boundaries of this
orbit are too convoluted to be represented by spheroidal co-
ordinates. As shown in the figure, the coordinate system gen-
erated by the conformal fitting method works much better.

To summarize, many orbits in smooth potentials can be
well approximated by motion in a separable potential, but
the best spheroidal coordinate system and approximating
potential differ for different orbits. Consequently, the least-
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squares fitting method gives sufficiently better results than
the other methods that it is preferred in general. There are
two situations in which this is not the case. First, if the orbit
has low amplitude in both the R and z directions, then the
least-squares method becomes unstable. In this case the local
fitting method gives an adequate approximation. Second, if
the potential is sufficiently complicated, then the orbits can-
not be described by spheroidal coordinates. In this case the
conformal fitting method gives a superior approximation,
although it works well only for orbits of small amplitude in
the z direction.

3. THE TILT OF THE VELOCITY ELLIPSOID

In a separable potential, the axes of the velocity ellipsoid
for a distribution of stars are aligned with the coordinate
system in which the Hamilton-Jacobi equation separates
(Eddington 1915). Thus, for example, if the potential is
spherically symmetric, one axis of the ellipsoid will point
toward the galaxy center. In a nonseparable potential, how-
ever, each regular orbit has its own distinct principal axes,
and the orientation of the velocity ellipsoid for an ensemble
of stars depends on the detailed distribution function of the
stars.

The tilt of the velocity ellipsoid enters into the equations of
hydrostatic equilibrium in cylindrical coordinates (Binney
& Tremaine 1987); e.g., the z equation has the form

b _ 4 1 4

v =5 (vo2,) + % 3R (Rvog,), (32)
where v is the space density of stars and o, are the various
second moments of the velocity distribution function. The
second term on the right side of this equation involves the
tilting of the velocity ellipsoid. Kuijken & Gilmore
(1989a,b) have shown that this term contributes an uncer-
tainty of 20% in dynamical estimates of the surface mass
density of the galaxy in the solar neighborhood.

The magnitude of the tilting in the solar neighborhood can
be estimated as follows. If ¥, and ¥, are the R and z veloc-
ities of a star at some point, then the tilting term is defined to
be 0%, = (Vr V,), where () denotes the density-weighted
average over all orbits at a fixed point, and we have assumed
that there is no net streaming motion in either the R or z
directions. For a single orbit, a star can pass through a given
point in four possible directions. The contribution of this
orbit to %, can be found by transforming to the best-fitting
(u,v) coordinate system for that orbit as found by the meth-
ods of Sec. 2. Let Vy=V,cos0—V, sinf and
V, =V, sin 6 + V, cos 6, where 0 is the slope of a line of
constant ». Then since (¥, ¥,) =0 (a star can have veloc-
ities + ¥, and +V,), we have (FxV,) = (V2 —V?2)
X cos @ sin 6. In the solar neighborhood, where 8 is small for
all orbits, we have V2 ~¥% and V2=¥?2, and hence the
tilting term 0%, for a single orbit can be approximated as

Ore= (Ve — V2)0. (33)

6 is most easily calculated using the conformal function fof
Sec. 2.3: along a line of constant v,

dR = (JR /du)du, dz= (dz/du)du, (34)
SO

_dz_ o/ou [z

-9z _ =1z 35
dR~ OR/3u [~ (3

with fand its derivatives are evaluated at (R,0). Hence the
tilting term is

” z
ﬁ,z(Vﬁ—Vf)ff—lz. (36)
The magnitude of this term is often expressed in terms of the
corresponding value that it would have if the velocity ellip-
soid pointed towards the galactic center; in that case,
6~z/R = z/f. The correction factor is therefore

c=Z_. (37
frZ
For the specific case of a local Stickel fit in spheroidal co-
ordinates centered at R = R, — x,, z =0, as described in
Sec. 2.2, we have [from Eq. (28)]

_ R(R—R, +xp)
A4+ (R—R. +x)%

(38)

The above derivation of Cis valid for a single orbit, and in
general we expect each orbit to have a different value of C.
For an ensemble of orbits we define an average (C ) such that

vog, = {C)v(0kg — 0%)2/R. (39)

We have evaluated the factor C for a variety of orbits char-
acteristic of the kinematics of old disk stars in the solar
neighborhood using the Carlberg & Innanen (1987) model
for the gravitational field of the Galaxy but with scale pa-
rameters taken from Kuijken & Gilmore (1989a). We have
calculated the tilt term by numerically integrating the orbits
and approximating their motion where possible using the
least-squares method described in Sec. 2.2. For orbits with
very small excursions in both R and z, the least-squares
method is unstable, and for those orbits we used the local
fitting and conformal fitting methods to calculate the tilt.

We find that the tilt term depends primarily on the z veloc-
ity of a star and hence the height to which it reaches above
the galactic plane, and very weakly on either the R or ¢
velocities. The dependence on the latter two quantities is
further reduced when averaging over a distribution of veloc-
ities. Hence to calculate the tilt term, it is not necessary to
have an accurate distribution function for the stars. The en-
semble-averaged (C ) is a function principally of the vertical
velocity dispersion o,

For the old disk stars in the solar neighborhood, we have
approximated the distribution function of velocities by a
Gaussian in each direction with oz, =40kms™', 0,4 =25
kms~!,ando,, = 20km s ' (e.g., Freeman 1987). We find
that the correction factor varies from 0.49 for stars with very
low z velocities to about 0.66 for stars that pass through the
solar neighborhood with a z velocity of 100 km s ~ !, roughly

according to the law C = 0.49 + 0.017,/¥,. (Note that the
local fitting and conformal approximations both predict a
value of about 0.49 for all orbits.) The mean correction fac-
tor (C') for the entire ensemble of orbits is about 0.51.

Kuijken & Gilmore (1989a) point out that for stars with
low angular momentum, new families of orbits around high-
er-order resonances appear. Our third integral approxima-
tions cannot properly describe such orbits. However, in our
survey of orbits for stars in the solar neighborhood, we found
that only stars of extreme velocities follow those types of
orbits, and so we would expect that our computation of (C')
is still valid.

We have also evaluated the variation in {C) with both
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height above the plane and with radius. For this purpose, it is
necessary to know the variation in o,, with R and z. Follow-
ing Kuijken & Gilmore (1989a), we assume that
02, «<exp( — R /H), where H = 4.5 kpc is the disk exponen-
tial scale length. In the vertical direction we find that
d{C)/dz=0.15 kpc ~ ' up to a height of 600 pc, at which
point the small-angle approximation in Eq. (33) starts
breaking down. The reason that (C ) increases is that stars at
high z can reach still farther on average from the galactic
plane than stars in the solar neighborhood and hence their
orbits on average have larger values of C. In the radial direc-
tion, we find d (C)/dR = 0.05 kpc .

In their derivation of the Galactic disk surface mass den-
sity in the solar neighborhood, Kuijken & Gilmore (1989b)
found that their value of the mass density increases from 41
to50.# o pc~ 2as (C) increases from O to 1. Now the stars
used in their analysis have z heights that range from 300 to
over 2 kpc, so strictly speaking we cannot interpolate to a
single value of { C ); however, the median height of their stars
is about 600 pc, where we find (C) = 0.60 and hence we
would select a surface density of 46 .# ., pc 7.

Our calculation of the tilt term is subject to several “er-
rors” which are difficult to quantify. The biggest one is that
we have restricted ourselves to the Carlberg—-Innanen poten-
tial of the Galaxy, and it would be interesting (although we
have not yet done so) to see how it varies as one makes
plausible variations in the details of the Galactic mass mod-
el. We have used only a rough distribution function for the
stellar velocities, but we stress that complete knowledge of
the distribution function is not necessary and in practice
only the velocity dispersion in the Z direction is important.
The computation of (C') is also complicated in principle by
the presence of higher-order resonant orbits for which our
third integral approximations break down, but at least in the
Carlberg and Innanen potential, such orbits are unimpor-
tant for the old disk stars.

4. CONCLUSIONS

We have developed three methods for approximating the
orbits of stars in axisymmetric potentials. All methods ap-
proximate the orbits by motion in a separable potential. The
least-squares method, which tailors a spheroidal coordinate
system and approximating potential to each orbit, gives the
most accurate results and is fairly straightforward to imple-
ment. The local-fitting method, which uses a single coordi-
nate system and approximating potential for all orbits of the
same / but different £ and I, is quite simple to implement
but is not as accurate as the least-squares method. The con-
formal fitting method is complicated to implement and is
probably of interest only for sufficiently complicated poten-
tials where the Stéckel approximations break down.

These methods have been used to compute the tilt of the
velocity ellipsoid for disk stars in the solar neighborhood
based on a specific model for the Galactic potential. For
small distances above the Galactic plane, we find that the tilt
term can be written in the form

ole = (C>(03{R - afz)z/Ry

where (C) is a correction factor to the value that this term
would have if the velocity ellipsoid pointed towards the Ga-
lactic center. For old disk stars, we find that

(C)=0.51 +0.15z,,, + 0.05R,
over the range 6.8 <R <8.8 kpc and 0<z< 600 pc. Al-

though the tilt term has often been treated as an unknown in
dynamical problems that use the equations of hydrostatic
equilibrium, we find that it can be calculated to good preci-
sion without the need to have a complete three-integral mod-
el for the stellar distribution function. Compared with other
terms in the equations of hydrostatic equilibrium, however,
the tilt term is special in that it is the only one that depends
on the global Galactic potential (or at least in a region of a
few kpc about the solar neighborhood). In Kuijken & Gil-
more’s (1989a,b) problem of estimating the disk mass den-
sity, the Galactic potential is modeled as part of the problem,
s0 in principle one could demand that the tilt term calcula-
tion be self-consistent with the model potential.

McGill & Binney (1990) developed a least-squares fitting
method for approximating orbits based on action integrals.
Their method is analogous in spirit to our least-squares fit-
ting method and is even more general. In local fitting, and
also in our version of least-squares fitting, the actions can be
found easily by evaluating the appropriate expressions in the
Stdckel potential that best fits the orbit. For the problem of
computing the tilt of the velocity ellipsoid in the solar neigh-
borhood, the orbits involved are sufficiently simple that the
added complication of working directly with the action inte-
grals is probably unnecessary.

This work was supported by NSF Grant No. AST
8451724 and the Digital Equipment Corporation. Discus-
sions with S. Tremaine in an earlier stage of this work are
gratefully acknowledged.

APPENDIX: SPHEROIDAL COORDINATES

There are a variety of different notations and conventions
for prolate spheroidal coordinates. The conformal definition
used in this paper is identical to the one employed by Binney
& Tremaine (1987). Here we compare it with two other
popular conventions.

Morse & Feshbach (1953) denote prolate spheroidal co-
ordinates by (&,4,m), where £ and 7 are related to u and v by

(A1)

These authors use D, rather than A, as semifocal distance.
In many recent papers on oblate Stickel models (e.g., de
Zeeuw & Hunter 1990, and references therein), prolate
spheroidal coordinates of a point (R,é,z) are defined, fol-
lowing Jacobi (1866), by replacing R and z by the two roots
for 7 of
2
R n z
T+a T4y
where a and y are constants. The roots are usually denoted A
and v, and they are chosen such that — y<v< —a<d < .
The foci lie on the z axis, at z = + 'y — a. It follows that

A +y=A%cosh® u,

£=coshu, n=sinv.

=1, (A2)

v+ y=A%sin? v, (A3)
where

A=y—a. (A4)
As a result

A 4+ a=A’sinh?u, (AS)

v+a= —A?cos?v,
and

A — v = A?(cosh? u — sin? v) = A?(sinh? u + cos? v).

(A6)
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