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Summary. A study is made of general conditions for the 16
elements of the scattering matrix that transforms the Stokes
parameters of the incident wave into those of the scattered wave.
A number of relations is derived for scattering by one particle
of arbitrary size, shape and composition. In this case a complete
set of nine independent equations is found.

Several methods are described to obtain inequalities for the
elements of the scattering matrix for an assembly of particles. A
selection of these inequalities is explicitly derived and discussed.

Key words: radiative transfer — light scattering — planetary atmo-
spheres — polarization

1. Introduction

Studying the scattering of electromagnetic radiation by particles
is important in many parts of science, especially in astrophysics.
A great deal of knowledge may be obtained by analyzing the
radiation scattered by particles in the atmospheres of planets
and satellites, planetary ring systems, the interplanetary dust
cloud, circumstellar matter and the interstellar medium. Taking
polarization into account is important but difficult, because
even the description of a single scattering event requires a 4 x
4 matrix, the so-called scattering matrix. Generally, we have to
deal with 16 different elements, which are functions of wave-
length and the directions of incidence and scattering. As pointed
out by Van de Hulst (1957), there must be nine relations between
the 16 elements for scattering by one particle.

The number of independent elements of the scattering ma-
trix can sometimes be reduced by using symmetry relations.
The main purpose of this paper is to seek further simplifications
by deriving equalities and inequalities for the elements of the
scattering matrix, both for one arbitrary type of particle and
for an assembly of particles. The equalities and inequalities con-
sidered hold for arbitrary directions of incidence and scattering.
Some relations for a single particle (or a collection of identical
particles) have been presented earlier by Perrin (1942), Perrin
and Abragam (1951), Abhyankar and Fymat (1969) and Fry
and Kattawar (1981). For an assembly of non-identical particles
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some inequalities have been reported by Kusfer and Ribari¢
(1959), Fry and Kattawar (1981) and Hovenier and Van der
Mee (1983). In this paper, however, a comprehensive treatment
is given, based on first principles. Several methods are used which
are quite general and at the same time elementary. The results
may be employed to reduce the amount of computational or
experimental labour, and for checking purposes.

2. Properties of the elements of the scattering matrix of one
particle

In this section we will derive relations for quantities that are
usually employed in the description of light scattered by a single
particle at arbitrary wavelength. In the next section we will con-
sider the implications for scattering of radiation by an assembly
of particles.

2.1. The existence of interrelations

The scattering of a simple wave by an arbitrary particle may be
described by means of a 2 x 2 amplitude matrix satisfying

<Ez _ (A2 A3\(Ep 1)
E) \ds A;)\Eo)

Here E, and E, represent the electric field components of the
scattered wave parallel and perpendicular to the scattering plane,
respectively; in a similar way E,, and E,, relate to the ingoing
wave [see e.g. Van de Hulst, 1957]. The elements of the ampli-

tude matrix are, in general, complex functions of the directions
of incidence and scattering. They may be written as

A0, ¥) = reexp (ipy) @

where k = 1,2,3,4, 0 is the scattering angle (i.e. the angle between
the incident and scattered beam), ¥ is an azimuthal angle and
i is the imaginary unit. In Eq. (2) r, is nonnegative and p, is real.
The dependence on 6 and y of these quantities and other quanti-
ties used later on in this paper has not been written explicitly.
For experimental and observational purposes the matrix of
interest is the 4 x 4 scattering matrix containing real elements.
This matrix transforms the Stokes parameters of the incident
wave {Iy, 00, U, V,} into the Stokes parameters of the scattered
wave {I,Q, U, V}. Mathematically this may be expressed by the
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matrix equation
1 a;, by by bs\ (I,
Q I R by be|[Qo 3)
U C3 C4 Qg3 b2 UO '
|4 s C¢ €y ail \W

We use Stokes parameters as defined by Chandrasekhar (1950)
and Van de Hulst (1957).

As shown by Van de Hulst (1957) the elements of the scat-
tering matrix can be expressed in the elements of the amplitude

matrix as follows. We define the auxiliary quantities

M, = A, 4% =1} @
Sis = HAAY + A;4%) = rr;c0s (p, — p) )
Dy; = 3 A AT — 4;AF) = —ryrsin(p, — pj) ©

where an asterisk denotes complex conjugation and k,j = 1,2,3,4.
For later use we note that

S = Su U]
and

ij= _Djk- (8)
From the definition of the Stokes parameters we then find

a; =3(M; + M, + M3 + M) )
b1=%(_M1+Mz_M3+M4) (10)
by = S35 + S41 (11)
bs = D3, — Dy, (12)
¢ =35(~M+ M, + M;—M,) (13)
a; =3M; + M, — M3 — M,) (14)
b4 = S32 - S41 (15)
be = D3, + Dyy (16)
€3 ="S84+ S3; (17)
Co=S4—S3; (18)
a3 =821 + Su3 (19)
by = —Dy; — Dyj (20)
¢s=—Dyy + Dy (1)
€6 = —Dyy — D3y (22
¢ =Dy — Dy (23)
ay =S, —S43. (29)

Thus, the 16 elements of the scattering matrix have been expressed
in 16 auxiliary quantities which are functions of elements of the
amplitude matrix. The latter contains essentially only 7 indepen-
dent real variables, since Eqgs. (4)—(6) show that one phase is
irrelevant. Therefore, Van de Hulst (1957) has concluded that
there must be 9 relations between the 16 elements of the scatter-
ing matrix, but he did not derive these relations. We wish to
study this problem here in a systematic way.

We start by observing that the linear relations (9)—(24) can
be inverted. The result is
M, =%(a; +a,—by—cy) (25)
M,=%@a, +a,+b;+cy) (26)
M, =%(al —a;—by +¢y) 27

M, =3(a, —a, +b; —¢y) (28)
Sy = 3(as + ay) (29)
S31 =3(c5 — ¢4 (30)
S41 = %(bs —by) (31)
S35 =3(bs + by) (32
Saz =3(cs + ca) (33
Sa3 = 3(a; — ay) (34
D,y = —3(by — ¢3) (3%)
D3y = 3(cs — ¢co) (36)
D4y = —3(bs — be) (37
D3, = 3(bs + be) (38)
D4y = —3(cs + ¢o) (39)
Dy3 = —3(by + ¢y). (40)

Consequently, we can first seek relations for the auxiliary quan-
tities and then transform these relations into equations for the
elements of the scattering matrix.

2.2. Equations involving the auxiliary quantities

It is immediately clear from the form of Egs. (4)—(6) that a number
of interrelations can be derived for the auxiliary quantities by
using properties of sines and cosines.

First we find by squaring both sides of Egs. (5) and (6)

831+ D31 = MM, 41)
831 + D3y = MM, 42
831+ D3y = MM, 43)
83, + D3, = MM, (44)
Si + D3, = MM, (45)
833+ Diz = M M;. (46)

An additional set of 12 equations is obtained by using identities
of the type
cos (py — p;) = cos(p, — p)cos(p; — py) + sin(p, — p))

x sin(p; — p)) @47

where j, k and | are different numbers 1, 2, 3, 4 and k > j. Substi-
tuting this identity in Eq. (5) yields

S3,My = 83,82, + D31 Dy, (48)
SazMy = 841851 + D4y Dy 49)
SasMy = 841831 + D4y D3y (50)
S31M; = §3,5,1 — D3yDy,y (51
Sa1My = 842551 — DaaDyy (52)
SasMy = 845835 + D4sD3, (53)
S31M3 = 835831 + D32D3 (54
S4 My = 8,383, — DysDs, (55)
S42M3 = S43532 - D43D32 (56)
S,1My = 845841 + D4yDay (57)
S31M, = 543841 + DazDay (58)
S32M4 = 843842 + DasDays. (59)
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A third set is obtained by substituting

—sin(p, — p;) = —sin(p, — p)cos(p; — py) + cos(p, — py)

x sin(p; — py) (60)
in Eq. (6). We then find the 12 equations
D;3,My = D34851 — 831D, (61)
DyaMy = D41S31 — S41D21 (62)
Dy3M;y = Dy1S31 — S41D34 (63)
D3 M, = D35851 + S350 (64)
DysMy = D438y + S4aDay (65)
DysMy = Dy383; — S42D32 (66)
DyyM3 = —D3;,831 + S32D34 (67)
DyyM3 = Dy3S31 + S43D3y (68)
DyaM3 = Dy383; + S43D3s (69)
DyiMy= —Dy3841 + Sa2Day (70)
D3yMy = —Dy3S41 + S43Dyy 71
D3;M, = —Dy3S,, + Sa3Dys .- (72)

Using well-known formulae for the products of sines and cosines
the following three sets of equations without any M, may be
derived, containing 3,1 and 4 new and non-trivial relations,
respectively.

821843 = 831542 + D4y D35 (73)
S31842 = 841832 + D31 Dus (74)
S41832 = 821843 — D31 D42 (75)
DyyD3; = D33Dysy — Dy Dy (76)
821D43 = S31Daz — S41D32 (77)
821Da3 = S32D41 — S42D3y (78)
S31D4y = S32D41 — 84300y (79)
S41D32 = S42D3y — S43Ds; . (80)

In total we have thus found 38 quadratic three-term relations
for the 16 auxiliary quantities, M,, S;; and D,; with k > j.

Apart from the 38 equations considered above others may
be found by taking linear combinations. For instance, by
combining pairs of Egs. (73)—(75) we obtain

§21843 + D31D43 = 831845 + D31 Dy (81)
831842 — D31Day = 835541 — D33Dyy (82)
832841 + D3yDay = 821843 — D2y Dy (83)
and similarly from Egs. (77)-(80)

D31843 — S21D43 = D3184; — 831Dy, (84)
D31842 + S31D4 = D35841 + S32D4y (85)
D41S33 — Sa1D3z = D43Sz1 + Sa3Dyy. (86)

These equations may also be proven directly by observing that

(Pk_Pj)_(Pl_Pi)=(Pk_Pz)_(Pj_Pi) (87)
and taking cosines and sines, respectively, on both sides
[cf. Egs. (4)—(6)].

We have used distinct indices k and j for S;; and D,; in all
equations. They keep their validity, however, if we allow indices

to be the same and use
Su = Ml (88)
Dy=0. (89)

2.3 Choice of a complete set

In view of the evident redundancy of the above equations we
now seek a minimal number of equations for the auxiliary
quantities from which all other relations that are based on Egs.
(4)—(6) can be derived. Suppose M, # 0. We choose 7 quantities
as being of primary interest, namely M, S,1, Sa1, S41, D21, D3
and D,,. The others, i.e. M,, M3, My, S35, S4z, Ss3, D32, Das,
and D, 5, may be uniquely expressed in these by a simple division
by M, in each of Egs. (41)—(43), (48)-(50) and (61)—(63), res-
pectively. Since in each equation a quantity appears which is not
present in the preceding equations, we may conclude that Egs.
(41)—(43), (48)—(50) and (61)—(63) are independent. Because in a
scattering problem not all M, vanish, we have at least one
non-zero M,. Consequently, if M; = 0, another set of 9 indepen-
dent equations can be chosen carrying this non-zero M,.

We will now show that Eqs. (41)—(43), (48)—(50) and (61)—(63)
are also complete, i.. all other equations for the same quantities
which follow from Egs. (4)—(6) can be derived from them. Again
we shall assume M, # 0. However, the considerations below can
easily be modified for some other M, # 0. Suppose we have 16
quantities satisfying Eqs. (41)—(43), (48)—(50) and (61)—(63). We
may find, for non-zero M,, unique r, > 0 such that

o=, 0

In view of Egs. (41)—(43) we can find unique J,, in the range
[0, 27) satisfying
Sy =rr1€o8d,y, Dy = —rrysindy, 1)

where k = 2, 3, 4. Substituting Eq. (91) in Egs. (48)—(50) we obtain

S35 =13, 08(83; — 657) 92)
S42 =7475008(041 — G51) 93)
S43 = F4F3 COS (541 - 531)' (94)

Similarly, we find from Egs. (61)—(63)

Dy, = —r3r,s8in(d3; — d54) %%)
Dyy = —r4ry8in (8,1 — 059) (96)
D43 = —rurysin(8s; — 034)- o7

We have thus expressed the 16 quantities in 7 others, namely r,,
Fas T3, T4y 021, 031, and 04q. If we now choose an arbitrary
0 < p; < 2n and define

Pr= Ox, + Py 98)

for k = 2,3,4 we find from Egs. (90)-(98) that Egs. (4)—(6) hold.
Defining A4, by Eq. (2) we can even completely reconstruct the
amplitude matrix. We conclude that all equations stemming from
Eqgs. (4)-(6) follow from the nine independent Egs. (41)—(43),
(48)—(50) and (61)—(63), or in other words that these latter equa-
tions are complete. In the special case that M, vanishes, we take
r, = 0 and arbitrary values for ,; and p,, in analogy with the
indeterminacy in the angular polar coordinate of the origin. This
does not change the conclusion reached above.
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When we have any particular relation for the auxiliary quan-
tities that can be derived from Egs. (4)—(6) we know that it must
be possible to derive it directly from any set of 9 independent
and complete equations. To clarify this point we consider by way
of example Egs. (44)—(46), assuming M, # 0. For distinct
k,j =2,3,4 we find using Egs. (41)—(43), (48)—(50) and (61)—(63)

(8% + DM = (Si;M1)* + (DyM,)?

= (818, + Dlejl)Z + (Dy1Sj1 — Sij1)2

= (St + D%1)(S;g1 + D}) = (Mij)M% 99)
which implies Eqs. (44)—(46).

2.4. Equations involving the elements of the scattering matrix

In practice we use the elements of the scattering matrix and not
the auxiliary quantities. Therefore, in this subsection we shall (i)
translate the relations expressed in terms of the auxiliary quan-
tities into relations expressed in terms of the elements of the
scattering matrix, by means of the inverse relations (25)—(40), (i)
seek a complete set having a minimal number of equations, (iii)
simplify the equations, (iv) consider alternative proofs, and (v)
discuss related work of other authors.

Substituting Egs. (25)—(40) into Egs. (41)-(46) we find

(@3 + ag)? + (by — ¢2)* = (a; + a))* — (by + ¢1)? (100)
(3 —ca)® +(cs — co)® = (ay — by)* — (a, — ¢y)? (101)
(b3 — by)> + (bs — b)* = (a; — ¢1)* — (az — by)® (102)
(b3 + by)* + (bs + be)* = (a; + ¢1)* — (a, + by)* (103)
(c3 + ca)? + (¢s + cg)® = (ay + by)* — (ay + ¢)? (104)
(a3 — a,)* + (b, + ¢5)* = (a; — a)* — (by — ¢;)*. (105)

Transforming the 12 Egs. (48)—(59) one obtains

(bs £ by)(a; +ax F by F ¢y) = (a5 + ag)(cs F cq)

= (by — ¢;)(cs F ce) (106)
(bs £ ba)ay —ay + by F ¢y) = (a3 — ay)lcs £ c4)

+ (by + ¢2)(cs £ ce) (107)
(as + as)(a; F a, — by £ ¢y) = (b3 £ by)(cs — ca)

T (bs & be)lcs — co) (108)
(a3 t as)(a; F a; + by Fe) = (bs F ba)les + cy)

T (bs F be)lcs + ce) (109)
(c3 T ealay £ a; F by —cy) =(as + ay)(bs — by)

+ (by F ¢;)(bs — be) (110)
(c3 T callay F ay F by + ¢y = (a3 F ag)(bs + bs)

+ (by £ ¢))(bs + be) (111)

where each + pair represents two equations. Similarly, the 12
Eqgs. (61)—(72) yield

(by £ co)(ay £ a; — by Fcy) =(bs F be)lcs — ca)

£ (b3 F ba)(cs — ce) (112)
(b2 £ co)(ay T ay + by £ ¢y) = (b3 + bu)cs + ce)

+(c3 + ca)(bs + bg) (113)
(bs + be)ay + a; F by F ¢1) = (a3 + a4)(cs F ¢o)

+(by — ca)les F c4) (114)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

(bs £ be)as —a, by F ¢y) = (by + c)lcs £ ca)
— (a3 — ay)(cs * co)
(cs T ce)ay + ay F by F ¢) = (az + as)(bs F be)
—(by — ¢c3)(bs F by)
(cs £ ce)ay — ay F by £ ¢1) = (by + ¢,)(b5 £ by)
— (a3 — ag)(bs £ b).
Finally, we derive from Egs. (73)—(80)
a2 —al=c2—c2—b:+ b2
3 —c2=0b%—b2+b%—c2
b3 —b2=a%—a2+c2—c2
b2 —bZ=b3—ci+ct—ck
(a3 + as)(bs + ¢3) = (c3 — ca)lcs + ce)
+ (b3 — ba)(bs + b)
(a3 + as)(by + c3) = (by + bs)(bs — bg)
+ (c3 + ca)(cs — co)
(c3 — ca)(cs + c) = (b3 + by)(bs — be)
— (a3 — ag)(b, — ¢)
(b3 — ba)(bs + be) = (c3 + ca)lcs — c6)

+ (a3 — ay)(b, — ¢).

(115)

(116)

(117)

(118)
(119)
(120)
(121)
(122)
(123)

(124)

(125)

Consequently, we have found 38 quadratic relations for the 16

elements of the scattering matrix.

In discussing completeness we first make the assumption
M, # 0, which is now translated by Eq. (25) into b; + ¢, # a; +
a,. It then follows from the independence and completeness of
Egs. (41)—(43), (48)—(50) and (61)—(63) and from the existence of
Eqgs. (25)—(40) that the 9 Eqgs. (100)—(102), (106™), (1087), (1107),
(112%), (114%), and (116*), where + and — refer to upper and
lower signs, respectively, are independent and complete, i.e. that
all other relations for the same quantities based on Eqgs. (4)—(6)
can be derived from them. If b, + ¢; = a, + a,, we can obtain
an alternative set of 9 independent and complete equations for
the scattering matrix, by selecting another set of 9 independent

and complete equations for the auxiliary quantities.

We shall now show that the 38 relations (100)—(125) between
products and squares of the elements of the scattering matrix
can be reduced to simpler equations by linear combination. First
we consider relations involving squares. By adding Egs. (100)
and (105), (101) and (104), and (102) and (103), respectively, we

obtain
ad+ai+bi+ci=ai+a3—-bl-c?
E+ci+ci+ci=ai+bi—ai-c?

b2+ b2+ b2 +bi=a?+c?—aZ—b?.

(126)
127
(128)

It may be observed that Eq. (127) involves the squares of all
elements in the first two columns of the scattering matrix and
likewise Eq. (128) for the first two rows. It proved useful to define
sums of squares on each row and each column with the particular

sign convention shown below.
2 2 2 2
A=a7—ci—c5—C5

B= —b?+a%+c2+ 2

(129)
(130)
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C=—b3+bl+ai+c3 (131 © ¢ © o c e e
D= —b2+b%+ b2+ a2 (132) ®° * ® *® (2628
- 5 6 2 4 . LI ) e o .
P =a}— b — b} - b3 (133) . o
Q= —c?+ a3+ b2+ b? (134 . . .
R = —Cg + C‘Z; + ag + b% (135) o . ° o - (118)4120)
S=—ct+c2+ck+al. (136) © o o eo0 -0 -+ o0 -
o . [ ] o e [ ]
We may now rewrite Egs. (126)—(128) as
—P—-Q+C+D=—-A—-B+R+5=0 137)
D)
—A+B=0 (138) Lo
—P+0=0. (139) o e o -
L. . Fig. 1. Graphic code representing seven separate equations involving
Similarly we obtain from Egs. (118)-(121) squares of the elemente of the scattering matrix
R—-D=0 (140)
—R+C=0 (141)
S—C=0 (142) solid connecting line and a negative product by a dashed con-
nection while all + products indicated have to be added to get
§—-D=0. (143)  gzero, the preceding equations read as the top set of Fig. 2.
Collecting all these results we find from (137)—(139) that The next 24 equations of this type follow from Eqs. (106)—(117)
with + or — signs by repeated addition or subtraction. They
A=B=}i(R+YS) (144)  are shown in graphic code in the next eight sets of Fig. 2 and
P=0=1(C+D)), (145) read as follows:
and from Egs. (140)—(143) that aiby — bycy — azcz — 5 =0 (152)
C=D=R=S5S. (146) azbs — byby — ase; + byes =0 (153)
These together give 7 equations that can be written in the atby — bycy — bace + asc4 =0 (154)
surprisingly simple form biby —ayb, — azey — cyc6 =0 (155)
A=B=C=D=P=Q=R=S. (147) 9193 = 8285 = b3cs + bece =0 (156)
asb, —ascy — bscy + bees =0 157
The value of the constant also equals d2, where d is the absolute a1 “ e s (157)
value of the determinant of the amplitude matrix. This may be 9194 — 3283 + bacs — bscs =0 (158)
checked by simple algebra. An immediate corollary is asby —ascy + bycy — bscg =0 (159)
~A+B+C+D—2P=0 (148) @163 — bica —azb; — bybs =0 (160)
. €1€3 — Ay¢q — azby, — bybg =0 (161)
which proves that the sum of the squares of all 16 elements is
442, a result earlier expounded by Fry and Kattawar (1981). 164 = bics + asbs — becy = 0 (162)
We found that a graphical code may be helpful in visualizing c¢jcy — ay¢3 + agbs — bsc, =0 (163)
the r§lations. Lt?t a 4 x 4 array of dpts represent the scattering ayby — bscs + aye, — bace =0 (164)
matrix, a full circle at the appropriate place the square of an
element and an open circle the negative square of the element biby = bscs + €16, — bacs =0 (165)
and adopt the convention that the sum of these (positive and  a;c, — byes + ab, — bgc, =0 (166)
pegative) squares ip a pictogram is zero. Thfsn Fig. 1 presents bycy — bsce + byc, — becs = 0 (167)
in seven separate pictograms the seven equations shown. Many
more can easily be drawn by combining 2 or 4 rows and/or 1bs = beC1 — @4cs —byc3 =0 (168)
columns. asbs —bybg —aszcs +cc3 =0 (169)
We shall now turn our attention to relations involving pro- @b — bece + @uce — Cocs =0 (170)
ducts. By subtracting Egs. (100) and (105), (101) and (104), and “17¢  “5°t T T3 Fane ™
(102) and (103), respectively, we find bybs — asbs — by — ayce =0 (171)
a,a; — bicy —asay + bye, =0 (149) s ™ bch h b3Cz B a4b5 =0 (172)
aby — aycq — ¢3¢ — c5c6 =0 (150) @265 = €16 + babs — ashs =0 (173)
a,¢, — s, — babs — bshg = 0. (151) 9166 bics + asbe —byba =0 (174)
C1C5 — AyCe — Coby — azbe = 0. (175)

This exhausts the equations in which products occur that have
both factors in the upper left 2 x 2 square (ay,a,,b;,¢c;). If we
extend the graphic code by indicating a positive product by a

The final 12 products of the possible 120 ones between pairs
of distinct elements of the scattering matrix occur in 3 more
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Fig. 2. Graphic code representing Eqgs. (149)-(178). Each pictogram
represents one equation, as numbered consecutively in the margin

(176)-(178)

relations, shown in code by the bottom set of Fig. 2. In full
notation they read

a3Cy + azb, — c3cs + cuc6 =0 (176)
€3C6 — C4Cs + babg —bybs =0 (177)
_b3b5 + b4b6 + a3b2 + Crdy = 0. (178)

They follow from Eqgs. (122)—(125) by linear combination of pairs
of elements of the scattering matrix or from Eqgs. (84)—(86).

In summary of Fig. 2 we may state that there are 30 equa-
tions, each containing four terms, which are products of two
elements, and no product occurring twice. Jointly they exhaust
all 120 possible products between distinct elements of the scatter-
ing matrix. The 30 equations subdivide into two types. The 12
equations of type 1 carry corresponding products of any two
chosen rows or columns; they follow a simple sign rule. The
equations of type 2 express that the sum or difference of any

chosen pair of complementary subdeterminants vanishes; the
sign rule here is not obvious.

The graphic code provides a nice survey of equations and
facilitates the derivation of corollaries by addition and subtrac-
tion. It is immediately clear now that sums and differences of the
elements in the first and second column obey the two equations

—(a; £ b))+ (1T a)’ + (st e +(cstce)’ =0, (179)

and similarly for all 6 combinations involving the first row or the
first column. However, the sums and differences of the elements
in the third and fourth column obey

—(bs £ bs)* + (by + be)* + (a3 + by)* + (¢, + a,)* = 24> (180)

and similarly for all 6 combinations of rows or columns not in-
volving the first row or column.

Hitherto we have derived a plethora of equations for the ele-
ments of the scattering matrix by using equations for the auxiliary
quantities. There is, however, a different way. It is physically
clear (cf. Van de Hulst, 1957) that scattering of a fully polarized
wave by a single particle results in a completely polarized beam.
If we denote by {Io,Q0, U, ¥5} and {I,Q, U, V'} the Stokes par-
ameters of the incident and scattered waves, respectively, this

physical property means that we must have
P—-Q*-U?>-V*=0 (181)

for any incident fully polarized wave. On employing Eq. (3) we
obtain

PP —Q*—U?—V?=(ajls + b;Qo + b3U, + bsVp)?
— (el + a,Q0 + byUq + beVp)?
— (el + c4Qo + a3Uo + by Vo)
—(cslo + c6Qo + c2Uq + agVo)*. (182)

By taking incident beams with Stokes parameters {1, +1,0,0},
{1,0, + 1,0} and {1,0,0, +1}, respectively, and requiring Eq.
(181) to hold we first derive the 6 equations

ad—ci—cE—ci=—-bt+ai+ci+ct (183)
aby, = cia, + ¢3¢, + CsCq (184)
G—ci-d—cd=-b+bi+a+c (185)
aby =cby + c3a; + csc,y (186)
a? —c2—ct—ct=—bZ+b:+bi+al (187)
aibs = c1bg + ¢3by + csa,. (188)

If we now use Egs. (183)—(188) to simplify Eq. (182) and take inci-
dent beams with Stokes parameters {1, 14/2,1 /\/_2_, 0},

{1, 1/4/2,0, 1/\/5} and {1,0, 142, 1/\/5}, respectively, we obtain
the 3 additional equations

bibsy = ayb, + cia; + coCy (189)
bibs = aybg + ¢ by + coay (190)
bsbs = bybg + azb, + c,a,. (191)

Equations (183)—(191) imply that Eq. (182) can be rewritten as
I?—Q?—-U?-V?=d%I% - Q3 — U3 — V3. (192)

Consequently, if the incident light is fully polarized, so is the
scattered light, and if the incident light is not fully polarized, the
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scattered light is only fully polarized if d* vanishes, i.e. if the
amplitude matrix has zero determinant.

The 9 Egs. (183)—(191) can also be verified by transforming
them into relations for the auxiliary quantities and they can thus
be based on Egs. (4)—(6). Consequently, they follow from the 9
independent and complete equations (100)—(102), (106*), (108 ),
(110%), (112%), (114%) and (116*). However, it can be shown that
Eqgs. (183)—(191) are not complete. For example, the elements of
the matrix

1 —qg 0 O

-1 g 0 0
0 00 0 (193)
0 00 0

with —1 < g < 1satisfy Eqs. (183)—(191), but although b, + ¢, #
a, + a, the elements do not satisfy Egs. (102) and (147). This
shows that the matrix (193) cannot be a proper scattering matrix,
even though Eqgs. (183)-(191) are true. In fact, for this simple
case it is easily verified that there is no corresponding amplitude
matrix, since M; # 0, M, # 0, S,; = D,; = 0 and therefore Eq.
(43) does not hold [cf. Egs. (25), (28), (31) and (37)].

On comparing our results for interrelations between the
elements of the scattering matrix with related work of other
authors we wish to make the following comments.

Perrin (1942) and Perrin and Abragam (1951) have reported
a few relations for the special cases of scattering by spherical
particles and Rayleigh scattering.

Abhyankar and Fymat (1969) have found 9 equations for the
elements of the scattering matrix (their Egs. (10c)-(15c) and
(19¢)—(21c¢)). It is readily verified that these equations remain
unaltered if the sign convention for the Stokes parameter V is
chosen to be the same as in this paper. Six of the equations are
identical to our Egs. (100)—(105) and the other three can be
derived from our Egs. (118)—(120) and (176)—(178). However, the
authors did not make clear whether their equations are complete.
Fry and Kattawar (1981) presented two sets of 9 equations for the
elements of the scattering matrix [cf. their Eqgs. (4a)—(4i) or their
Eqs. (4a)—(4f) and (5a)—(5¢) . Their first set of equations consists
of our Egs. (100)—(105) and (176)—(178); their second set contains
our Egs. (100)—(105) and combinations of our Egs. (118)—-(120).
However, a thorough analysis of the three sets of 9 equations
published by Abhyankar and Fymat (1969) and by Fry and
Kattawar (1981) shows that none of these sets is complete. This
may be verified, for example, by observing that the elements of
the matrix

0 NI
0 3o=3
0 —23 -2

0 243 0 0

N O

obey each one of their three sets of equations but do not satisfy
our Egs. (106%), (1087), (110%), (112*), (114*) and (116™), nor
e.g. Eq. (152).

2.5. Inequalities

In preparation of the discussion on an assembly of particles [cf.
Sect. 3] we shall now show how it is possible to derive inequalities

for the elements of the scattering matrix of a single particle. We
mention the following sources for obtaining inequalities.
Equations (4)—(6) provide

M, >0 (194)
ISi] < (M M) (195)
Dy < (MM )12 (196)
[Si;Di < SMiM; (197)
|Sij + Dyj| < @M M )12 (198)

where some well-known properties of sines and cosines have
been used. We may further write

,Skl T Sjml < |Skl| + |Sjm| < (MM)'* + (Mij)l/Z

<3My+ M, +M;+M,) (199)

where we have used the triangle inequality and the fact that the
geometric mean of two positive numbers does not exceed their
arithmetic mean. Similarly, we find

|Diy £ Dy < 3(M, + M, + M; + M,). (200)

On using Egs. (9)-(24) or (25)-(40) these inequalities yield in-
equalities for the elements of the scattering matrix.

An important source of inequalities is provided by equations
(100)—(125) and similar equalities. They may be transformed
into inequalities e.g. by omitting terms which are always positive
or by using the inequality a® + b? > 2ab to replace the sum of
two squares. We can further employ the well-known inequality

Gy + X2y A X)) S GE A+ x0T+ v
(201)

for real numbers x,,y,, k = 1,2,..., n, where the equality sign
holds if and only if x,/y, is constant. This inequality is called
Schwarz’s or Cauchy’s inequality (Arfken, 1970; Hardy et al,,

1934). Taking |y;| = |y,| = =|y.| = 1 we find that

kil R<r (202)
implies

kil ] < (rm)t2 (203)

where the equality sign holds if and only if it holds in Eq. (202)
and all |x,| are the same.

It can be shown (see e.g. Chandrasekhar, 1950) that Stokes
parameters always admit the inequality

I1>(Q*+ U? + V32, (204)

where the equality sign holds if and only if the beam is fully
polarized. Applying this rule to the scattered beams for different
incident beams, satisfying inequality (204), yields inequalities for
the elements of the scattering matrix [cf. Eq. (3)].

Evidently, a certain inequality may sometimes be obtained
from more than one source, but the amount of algebra may be
much less using one source than another.

We do not aim here at a comprehensive list of inequalities.
Instead, we will give some examples to indicate the possibilities
in this field.

(i) Equations (9), (10), (13), (14) and (194) show that

a;>0 (205)
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and that |b,|, |c,| and |a,| do not exceed a,. If we further use
Egs. (11), (12), (15)—(24), (199) and (200) we can infer that no
element of the scattering matrix has an absolute value larger than
al.

(i) It follows directly from Eqgs. (25), (26) and (194) that

by +ci < a; +a,. (206)
Similarly we have

by —cy|<ay—a, (207
la, £ ¢yl <a; £ b, (208)
laz £ by <ay ey (209)

where Eqgs. (208) and (209) represent two inequalities each.
(iii) Equations (100)—(125) form a particularly rich source of
inequalities. From these we may derive that

by + ¢yl < ay +a, (210)
(211)
las + ag| < a, +a, (212
(@3 + a,)” + (b, — ¢y)* < (a; + ay)”. (213)
Thus, Eq. (206) is also implied by Eq. (100). Using Eqgs. (100)
and (203) we find

by —ca| <ay +a,

las + aa| + [by — eo| < 2%{(a; + a;)* — (by + 1)}

<2Y%(a, + ay) (214)
las + aq| + |bs — caf + by + ¢4] < 3"(ay + ay). (215
By summing Egs. (100)-(105) we find that

15
Y |l < a /45 216)
k=1

where x, # a; denotes one of the elements of the scattering
matrix.

(iv) According to Eq. (3) an incident wave with Stokes param-
eters {1,0,0,0} yields a scattered wave with Stokes parameters
{ay, ¢y, c3,¢5}. Hence, Eq. (204) gives
al>ct+ i+t (217).
If we apply Eq. (204) to other incident waves, alternative inequal-
ities may be found.

2.6. The simple case A3 = A, =0

Hitherto we have considered a particle with arbitrary size, shape
and composition. We will now consider the special case 4; =
A, = 0. This holds for all angles e.g. if the particle is small com-
pared to the wavelength and the polarizability is isotropic or
for a homogeneous sphere made of some optically inactive sub-
stance [see Van de Hulst, 1957]. From Egs. (9)—(24) we find that
the scattering matrix is of the type

a, by 0 0
b, a 0 0
0 0 o b (218)
0 0 —b, aj

There are three independent parameters now. The entire collec-
tion of relations expressed in terms of the elements of the scat-

tering matrix reduces to only one non-trivial equation, viz.

@24 b2=al— b (219)
Equation (192) now takes the simple form
P—Q*—U> -V =(a - b3 - 03— U3 - V3.  (220)

From the inequalities of the preceding subsection or directly
from Eq. (219) we may derive some useful inequalities, such as

by <ap, |bal<ay, Jasl<a (221)
las| + [ba] < 2%(a? — b)Y/
las| + |by] < 2"*(at — b3)"? (222)
[ba] + [ba] < 27%(a? — a3)''?
las| + |by| + |by] < 3'2ay. (223)

3. Scattering by an assembly of particles

In this section we consider an assembly of many independently
scattering particles, each of them characterized by an individual
amplitude matrix. Since the scattered waves are essentially in-
coherent, we should not add the individual amplitude matrices.
Instead, we have to add the Stokes parameters and therefore the
elements of the scattering matrices of the individual particles to
find the scattering matrix of the assembly. Hence, a formula of
the same type as Eq. (3) can be used for the assembly with

a; =)y a (229)
g

where the upper index g pertains to an individual particle. Similar
summations must be made for the other elements.

3.1. Relations involving the elements of the scattering matrix

It is clear that two particular elements of the scattering matrix
which are equal for each particle are also equal in the scattering
matrix of the assembly. Further, a matrix element vanishing for
each particle also vanishes for the assembly.

The quadratic equations between the elements of the scatter-
ing matrix of a single particle are, generally, lost in the summation
process. To study the implications of this fact in more detail we
first consider [cf. Eq. (41)]

gj M4 - g MY — {g 59,32 — {; Dy,)?

= S0 X 09 — (T rartcos(ef — p)}?
- {; rgr{ sin(p% —p9)}*

= 2040 + 3 (870D = X (it cos (o8 — p)’
~ X, Uriricos (8 — )} {rirf cos (o3 — p)}
— X {rrisin(pg — pD)}* — ¥ {r4r{sin(ps — p9)}
‘s gy

=Y (- Y

g#h

ririri cos {(p% — p%) — (P4 — p%)}

(225)
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where g,h = 1,2,3,. .. each label the constituent particles of the
assembly. The expression (225) reaches a minimum if

ps—pi=r5—rt (226)
for all g and h. This minimum may be written as

Y, (i —rir)?, (227
g<h

which is positive unless

rfry =r5/ri (228)

for all g and h. In this case, the minimum is zero. On using Eqgs.
(25), (26), (29) and (35) we can now conclude that for an assembly

of particles
(@3 + ag)* + (b, — ¢;)* < (a; + ay)* — (by + ¢y)? (229)

where the equality sign holds if and only if (p, — p,) and r,/r,
are the same for all particles. Similarly, we can prove that

(c3 — ca? + (c5 — ce)* <(ay — by)* — (@, — ¢1)* (230)
(bs — by)* + (bs — be)* < (a; — ¢1)* — (a, — by)? (231)
(b3 + ba)* + (bs + be)* < (a; + ¢1)* — (az + by)? (232)
(c3 4 ca)® + (cs + cg)* < (ay + by)* — (a2 + ¢)? (233)
(a3 — as)® + (b + ¢5)* < (a; — a))* — (by — ¢y). (234)

1t is clear from the above discussion that for an assembly of
particles with proportional amplitude matrices (with real or
complex constants of proportionality) the inequalities (229)—(234)
turn out to be equalities, as is the case for a single particle. This
occurs, in particular, for an assembly of identical particles with
the same orientation or for a cloud of identical spheres.

Using analogs of Eq. (225) one may show that the single par-
ticle equations (48)—(59), (61)—(72) and (73)—(80) generally turn
into inequalities if one considers an assembly of particles, and
that the same is true for Egs. (106)—(125). However, it is impos-
sible to state in a general rule whether the equality sign in a
particular equation should be replaced by > or by <, since this
depends on the amplitudes and phases involved. The equality
signs are preserved under the same general conditions as men-
tioned above, but also in some other accidental cases, when the
terms relating to the individual particles balance each other.

3.2. Inequalities: The general case

For an assembly of particles we have the following possibilities
of generating inequalities:

(i) Using inequalities for the individual particles and per-
forming summations such as in Eq. (224).

(i) Using Egs. (229)—(234) and their implications.

(iii) Using the inequality (204) for the scattered light with
several beams of incident light.

We refrain from giving a multitude of examples, but wish to
point out a few particularly useful inequalities. By summation
and using the triangle inequality we obtain Eq. (205) [cf. Eq.
(205) for a single particle and Eq. (224)], while

b, < a, (235)

and similarly for the other elements of the scattering matrix.
Hence, no element of the scattering matrix of an assembly of par-
ticles has an absolute value exceeding a,. Using Egs. (206)—(209)

and summing over constituent particles yield

by + ¢y < a, +a, (236)

and similar expressions. From Egs. (203) and (229) we obtain
directly Egs. (214) and (215) for the assembly. Applying the
inequality (204) gives Eq. (217) and related inequalities for the
assembly.

3.3. Inequalities: A special case

Usually the scattering matrix of an assembly of particles contains
less than 16 different elements, since symmetry properties often
reduce this number and cause various elements to vanish (see
Van de Hulst, 1957). A fairly general type of scattering matrix
which is often considered in radiative transfer studies has the
form

a, by 0 O
b, a, 0 0

. 237
0 O a; b, @37)
0 0 —b, a,

This is valid for an assembly consisting of:

(i) randomly oriented particles having a plane of symmetry,
like ellipsoids, or

(ii) particles and their mirror particles in equal numbers and
with random orientation.
Equations (229)—(234) now simplify to the four inequalities

(@5 + ag)? + 4b3 < (ay + a)? — 4b? (238)
lay — ag] < |a; — a, (239)
la, — by| < |ay — by (240)
la, + by| <|ay + byl (241)

From these or the more general relations of the preceding
subsection we obtain

las|<ay, |as|<ay, |a<ay, |by|<ay, |pbof<a, (242
|b1I <ia, +ay) (243)
|las + ag| + 2|b,y| < 2V*{(a; + a,)* — 4b3}V* < 2Y%(a; + a,)

(244)
las + ag] + 2|by| < 2"%{(a; + ay)* — 4b3}* < 2'%(ay + ay)

(245)
2(|bzl + |b1|) < 21/2{(“1 + 02)2 —(a; + 04)2}1/2 < 21/2(“1 + a,)

(246)
las + aq| + 2|by| + 2|by| < 3Y%(a; + ay). (247

Summing Eq. (238) and the squares of Egs. (239)—(241) we get

laz| + la| + laa| + 2'/2by| + 22|b,| < a,/15 (248)
|as] + |as| + |aa] + 2[by| + 2|b,| < a;\21. (249)

On exploiting the inequality (204) we see that incident light with
Stokes parameters {1, —1,0,0} and {1,1,0,0} yields Egs. (240)
and (241), respectively. Taking the incident beams {1,0,1,0} and
{1,0,0,1} we find

b2 + b2 +al<al (250)
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and
b? + b2+ a2<al. (251)

The last two equations may also be derived from Egs. (238)-
(241), since we have

b3 + b} + [max (|as|, |as|)]* = b3 + b}
+ [Has + aq| + 3las — ai1? < [3(a; + ay)]?

+ [3a; — @) + $lay + a,| - |a;, — ay

= [max(|a,,|a,])]* = a}. (252)
Equations (250) and (251) yield
[by| + |by] < 2%(a? — a3)'? < a,+/2 (253)
by + |a] < 2Y%(a? — bV < a2 (254)
|by| + |a] < 21%(a% — b2 < a2 (255)
|by] + [bs] + |a] < a1+/3 (256)

where k = 3,4.

The scattering matrix of a collection of optically inactive
homogeneous spheres may be considered as a special case of the
matrix (237). The same is true in the case of Rayleigh scattering
with or without depolarization effects for an ensemble of ran-
domly oriented particles.

The inequalities given by KusCer and Ribari¢ (1959), Fry
and Kattawar (1981) and Hovenier and Van der Mee (1983)
are contained in the inequalities given above. Kusfer and
Ribari¢ (1959) first exploited Eq. (204) to obtain inequalities for
the elements of the scattering matrix. Equation (204), which is
the requirement that the degree of polarization, p, of a beam
of light satisfies 0 < p < 1, leads to necessary conditions on the
scattering matrix. For scattering matrices of the type (237) this
simple criterion does not lead to sufficient conditions as exempli-
fied by the matrix (237) having a; =8, a, =6, a;=4, a, =0,
b, = 2\/8, b, = 0. It is readily verified that this matrix always
transforms Stokes vectors satisfying Eq. (204) into vectors of
the same type but does not obey Eq. (239).

When light scattered by a single particle is observed, an
integration over a (small) solid angle is performed. Since the
amplitude matrix will, in general, not be constant over this solid
angle, it is clear from Eq. (225) that strict equalities will not be

found. Instead one will find the same type of inequalities as for
an assembly of particles, as noted by Fry and Kattawar (1981).
We observe that the same remark applies to a spread in wave-
length.

In summary, we have given a fairly complete description of
equalities and inequalities valid for the scattering matrix for a
single particle as well as for an assembly of particles. In doing so
we have systematically developed a minimal but complete set of
equations for the elements of the scattering matrix of a single
particle or a collection of identical particles with the same
orientation. We have also presented and used a variety of sources
for obtaining inequalities for the elements of the scattering
matrix both of a single particle and of an assembly of particles.
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