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We study the effect of localization on the propagation of a pulse through a multimode disordered waveguide
The correlator (u(w;)u*(w,)) of the transmitted wave amplitude u at two frequencies differing by dw has for
large Sw the stretched exponential tatl o<exp(—7péw/2) The time constant 7,=L*D 1s given by the
diffusion coefficient D, even if the length L of the wavegmde 1s much greater than the localization length ¢
Localization has the effect of multiplying the correlator by a frequency-independent factor exp(—L/2£), which
disappears upon breaking time-reversal symmetry [S1063-651X(99)50412-1}

PACS number(s) 4225 Dd, 42 25Bs, 72 15Rn, 9130 —f

The frequency spectrum of waves propagating through a
random medium contams dynamical information of interest
m optics [1], acoustics [2], and seismology [3] A fundamen-
tal 1ssue 15 how the phenomenon of wave localization [4]
affects the dynamics The basic quantity 1s the correlation of
the wave amplitude at two frequencies differing by dw A
1ecent microwave experiment by Genack et al [5] measured
this correlation for a pulse transmitted through a waveguide
with randomly positioned scatterers The waves were not lo-
calized n that experiment, because the length L of the wave-
guide was less than the localization length &, so the cor-
relator could be computed from the perturbation theory for
diffusive dynamics [6] The charactenistic time scale n that
regime 1s the time 7,=L>/D 1t takes to diffuse (with diffu-
sion coefficient D) from one end of the waveguide to the
other According to diffusion theory, for large dw the cor-
1elator decays xexp(—v7pdw/2) with time constant 7,

What happens to the high-frequency decay of the cor-
relator 1f the waveguide becomes longer than the localization
length? That 1s the question addiessed 1n this Rapid Commu-
nicatton Our prediction 1s that, although the corielator 1s
suppressed by a factor exp(—L/2§), the time scale for the
decay 1emamns the diffusion time 7p, even 1if diffusion 1s
only possible on length scales <, The exponential suppies-
ston factor disappears if time-reversal symmetry 18 broken
(by some magneto-optical effect) Our analytical results are
based on the formal equivalence between a frequency shift
and an imaginary absorption rate, and are supported by a
numerical solution of the wave equation

We consider the propagation of a pulse through a disor-
dered waveguide of length L In the frequency domamn the
transmussion coefficient ¢,,,(w) gives the ratio of the trans-
mitted amplitude 11 mode n to the mcident amplitude n
mode m (The modes aie normalized to cany the same flux )
We seek the correlator C(Sw) ={¢,,(w+ Sw)t;, (w)) (The
brackets ( ) denote an average over the disoirder ) We as-
sume that the (positive) frequency mciement Sw 1s suffi-
ciently small compared to @ that the mean fiee path / and the
number of modes N 1n the waveguide do not vary appiecia-
bly, and may be evaluated at the mean fiequency w [7] We
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also assume that I[>c¢/w (with ¢ the wave velocity) The
localization length 1s then given by [8] é=(BN+2-B)I,
with S=1 (2) n the presence (absence) of time-reversal
symmetry For N> 1 the localization length 1s much greater
than the mean fiee path, so that the motion on length scales
below ¢ 1s diffusive (with diffusion coefficient D)

Our approach 1s to map the dynamic problem without
absorption onto a static problem with absorption [9] The
mapping 1s based on the analyticity of the transmussion am-
plitude ¢,,,(w~+1y), at complex frequency w+:ry with y
>0, and on the symmetry relation ¢,,(w+iy)=t} (— o
+:1y) The pioduct of tansmussion amplitudes f,,(w
+2)¢t,,.(—@+2) 1s therefore an analytic function of z 1n the
upper half of the complex plane If we take z 1eal, equal to
38w, we obtamn the product of transmussion amplitudes
tam(@+ 3 8w)th (w—%Sw) considered above [the differ-
ence with 1,,,(w+ dw)t’ (w) being statistically wrelevant
for Sw<w] If we take z imaginary, equal to ¢/27,, we ob-
tain the transmission probability T=|t,,,(w+1/27,)|* at fre-
quency w and absorption iate 1/7, We conclude that the
cortelator C can be obtamned from the ensemble average of T
by analytic continuation to mmaginary absorption rate,

C(Sw)=(T) for l/r,——16w (1)

Two 1ematks on this mappmg (1) The effect of absorp-
tion (with 1ate 1/7*) on C(Sw) can be included by the sub-
stitutton 1/7,— — 18w+ 1/7* This 15 of importance for com-
paiison with experiments, but here we will for simplicity
ignote this effect (u) Higher moments of the product C
=tpm(w+30w)tE (w—73Sw) are related to higher moments
of T by (C#y={TP) for 1/7,~— 15w This 1s not sufficient
to detetmine the entire probability distiibution P(C), because
moments of the form (C’C*9) cannot be obtamed by ana-
lytic continuation [10]

To check the validity of this approach and to demonstiate
how effective 1t 1S we consider briefly the case N=1 A
disordered single-mode waveguide 1s equivalent to a geom-
etry of parallel layets with random variations in composition
and thickness Such a 1andomly stratified medium 1s studied
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n seismology as a model for the subsurface of the Earth [3]
The correlator of the reflection amplitudes K(Sw)
=(r(w+ dw)r*(w)) has been computed 1 that context by
White et al [11] (in the Iimit L—o0) Their 1esult was

= x
K(Sw)=(2l/c) 5a)f dx exp[ —x(2l/c) 5w]x_z 2)
0 —
The distribution of the reflection probability R =|r|? through
an absorbing single-mode waveguide had been studied many
yeais earlier as a problem m radio-engineering [12], with the

result
” z—1
<R>=(1/cn,)f1 deexpl~(e=DWer)l 77 O)

One readily verifies that Eqs (2) and (3) are identical under
the substitution of 1/7, by —i1dw

In a similar way one can obtain the correlator of the trans-
mussion amplitudes by analytic continuation to 1maginary ab-
sorption rate of the mean transmission probability through an
absorbing waveguide The absorbing problem for N=1 was
solved by Fietlikher, Pustilnik, and Yurkevich [13] That so-
lution will not be considered further heie, since our interest
1s in the multi-mode regime, 1elevant for the microwave ex-
petiments [5] The transmission probability m an absorbing
waveguide with N> 1 1s given by [14]

l L
()= NE smh(L/&,) e"p( ~% @W) ’ “)
for absorption lengths &,= VD7, mn the 1ange [ <<€ §,<¢ The
length L of the waveguide should be >, but the relative
magnitude of L and £ 1s arbitrary Substitution of 1/7, by
—1dw gives the correlator

INV—11péw ( 5 L
exp| — 015
NL smmhy—17péw P P1aNI

where 7,=L%/D 1s the diffusion time The range of validity
of BEq (5) 1s L/é<\JrpSw<Lll, or equivalently D/&2< 8w
<c¢/l In the diffusive regime, for L<€¢, the correlator (5)
reduces to the known result [6] from pertutbation theory

For max (D/L* D/£*)<8w<<c/l the decay of the abso-
lute value of the correlator 1s a stretched exponential,

C(ow)= ) (5)

L

21
|C|=N—L\/TDé‘wexp(-—\/%TDc?w—ﬁ'B]z—Nl) ©)

In the localized regime, when £ becomes smaller than L, the
onset of this tail 1s pushed to higher frequencies, but 1t re-
tains 1ts functional form The weight of the tail 1s reduced by
a factor exp(—L/2N!) 1 the presence of time-reversal sym-
metry There 15 no reduction factor if ime-reversal symmetry
1s broken

To test our analytical findings we have carried out nu-
merical simulations The disordered medium 1s modeled by a
two-dimensional squaie lattice (lattice constant a, length L,
width W) The (relative) dielectric constant ¢ fluctuates from
site to site between 1 = e The multiple scattering of a sca-
lar wave ¥ (for the case B=1) 1s described by discretizing
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FIG 1 Frequency dependence of the logarithm of the absolute
value of the correlator C(dw) The data pomts follow from a nu-
merical stmulation for N=35, the solid curve 1s the analytical high-
frequency result (6) for N>1 (with 8=1) The decay of the cor-
relator 1s grven by the diffusive time constant 7= L%/ D even if the
length L of the waveguide 1s greater than the localization length &
=6/ The offset of about 0 6 between the numerical and analytical
results 1s probably a finite-N effect

the Helmholtz equation [ V2+ (w/c)*¢]¥ =0 and computing
the ttansmission matrix using the 1ecursive Gieen function
technique [15] The mean free path [ 1s determined fiom the
average transmission probability (Trzt?)=N(1+L/[)"! m
the diffustve regume [8] The comelator C 1s obtaned by
averaging f,,(w+ dw)t’, (w) over the mode mdices n,m
and over different realizations of the disorder We choose
w?=2(cla)?, 5e=04, leading to [=22 la The width W
=1la 1s kept fixed (corresponding to N=5), while the
length L 1s varted in the 1ange (400-1600)a These
waveguides ate well in the localized 1egime, L/& 1anging
from 3 to 12 A laige number (some 10*~10°) of realizations
were needed to average out the statistical fluctuations, and
this restricted ow simulations to a relatively small value of
N For the same reason we had to lunut the 1ange of dw 1n the
data set with the laigest L

Results for the absolute value of the correlator are plotted
m Fig 1 (data points) and are compated with the analytical
high-fiequency prediction for N1 (solid cuive) We see
from Fig 1 that the correlators for different values of L/¢
conveige for large dw to a curve that lies somewhat above
the theoretical prediction The offset 1s about 0 6, and could
be easily explamed as an O(1) uncertainty 1n the exponent in
Eq (1) due to the fact that N i1s not > 1 m the simulation
Regardless of this offset, the stmulation confiims both ana-
Iytical predictions The stretched exponential decay
xexp(—V7pdw/2) and the exponential suppression factor
exp(—L/2¢) We emphasize that the time constant 7,
=L?/D of the high-frequency decay 1s the diffusion time fot
the entire length L of the waveguide, even though the local-
1zation length £ 1s up to a factor of 12 smaller than L

We can summarize ow findings by the statement that the
correlator of the transmussion amplitudes factorizes m the
high-fiequency regime C— f(Sw)f>(§) The fiequency de-
pendence of f, depends on the diffusive time thiough the
waveguide, even 1If 1t 1s longer than the locahization length
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Localization has no effect on f;, but only on f, We can
contrast this factorization with the high-frequency asymptot-
1cs K— f3(6w) of the correlator of the reflection amplitudes
In the corresponding absorbing ptoblem the high-fiequency
regime cortesponds to an absorption length smaller than the
localization length, so 1t 1s obvious that K becomes indepen-
dent of £ 1n that regime The factorization of C 1s less obvi-
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ous Since the localized regime 1s accessible experimentally
[16], we believe that an expermmental test of our piediction
should be feasible

Discussions with M Buttiker, L I Glazman, K A
Matveev, M Pustilnik, and P G Silvestrov are gratefully
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ence Foundation NWO/FOM
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