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ABSTRACT

The existence of turbulence throughout the interstellar medium suggests that an appropriate value for the
average pressure may be P/k = 10*. Negative-index polytropic models of interstellar clouds in equilibrium
with an external medium at these pressures are predicted to have sizes, line widths, masses, and size-line width
and size-density relations in good agreement with those observed and inferred for dark clouds. Thus these
observed features of interstellar clouds do not require that they be completely self-gravitating or “virialized ”

in the commonly used sense.

Subject headings: interstellar: matter — interstellar: molecules — turbulence

I. INTRODUCTION

One of the major goals of molecular astronomy has been to
understand the physics and dynamics of molecular clouds. It
has generally been assumed, and occasionally claimed to have
been conclusively demonstrated, that molecular clouds (with
the exception of the diffuse clouds) are gravitationally bound
and in virial equilibrium. (The term “virial equilibrium” in
reference to molecular clouds is commonly used to mean that
the line width is directly related to the cloud mass and radius
as given by the virial theorem in the absence of any surface
pressure or magnetic field terms.) However, the realization that
the average pressure in the ISM is probably dominated by the
contribution of turbulence suggests that another scenario
is possible, wherein a significant fraction of molecular clouds
are in pressure equilibrium with an intercloud medium with
P/k ~2 x 10* and are not dominated by self-gravity. In
§ II I discuss the evidence for high pressures in the ISM,
in § III I derive the properties of pressure-bounded clouds,
and in § IV I compare the model cloud properties with
observations. Finally, in § V I discuss some of the implications
of the existence of such clouds in the ISM.

II. TURBULENT PRESSURE IN THE ISM

Determinations of pressure in the ISM have relied on esti-
mates of particle densities and temperatures in diffuse inter-
stellar clouds. The most direct measurements have used
observations of molecular hydrogen (Jura 1975) and the C 1
fine-structure lines (Jenkins and Shaya 1979; Jenkins, Jura, and
Loewenstein 1983) in cold clouds (T, < 100 K). Both data sets
indicate the presence of a wide range of pressures in the ISM;
Jenkins et al. find P/k ranges from less than 10° to more than
105 cm 3 K for different lines of sight. However, these values
refer solely to the microscopic, thermal component of the pres-
sure. The line widths measured in these studies are far larger
than thermal Doppler widths, even when saturation is taken
into account, and demonstrate that turbulence is the dominant
line-broadening mechanism. The Doppler b-values inferred
from the line widths are typically 1-2 km s 1.

These results, namely, that turbulence is widespread and
typical values of b,,,,, are 1 km s~ ! or more, are supported by a
large body of data on the ISM. Hobbs’s (1974) high-resolution

interferometric study of optical absorption lines of K 1, Na 1,
and Ca 1 produced an average value of b = 1.49 km s~ ! for a
sample of 30 clouds. A much more estensive study of K1
absorption lines by Chaffee and White (1982) yielded b values
of 1-2 km s~ ! for single clouds. Since the abundance of neutral
species such as K 1 depends so strongly on density, these
studies must sample the densest, most localized clouds in the
diffuse ISM. Well-determined b values for optical absorption
lines of CN, CH, and CH* (Crutcher 1985; van Dishoeck and
Black 1987; Hawkins, Jura, and Meyer 1986; Meyer and Jura
1985) for various diffuse clouds and one dark cloud range from
1-2 km s~ L,

In a medium where both turbulence and thermal gas
motions contribute to the pressure, it is given by

P/k = Z m T + (6v)?p/2k cm 3 K )

(van Dishoeck and Black 1986), where v = 10°b is the Gaus-
sian velocity dispersion in cm s~ ! which characterizes the turb-
ulence, and the summation is over the constituents of the gas
with densities n; in cm ™ 3; these are mainly H, H,, and He.
Including a turbulent contribution to the pressure with
b=15kms™! would raise the median value for P/k of
Jenkins, Jura, and Loewenstein (1983) from 4.0 x 10° to
1.3 x 10*, assuming T = 80 K. Some lines of sight have P/k
considerably in excess of 10° when this turbulent contribution
is included.

The detailed cloud models of van Dishoeck and Black (1986)
also suggest that the pressure in the intercloud medium must
be substantially larger than inferred from temperatures and
densities. Their models, which successfully reproduce a large
amount of molecular line data for the clouds in front of { Per, {
Oph, x Oph, and o Per, have surface pressures ranging from
P/k =~ 10* to 4 x 10°. Although they assumed a polytropic
equation of state, rather than calculating thermal balance
explicitly, it is unlikely that the surface pressures are greatly in
error. If one is to avoid the conclusion that diffuse clouds are
expanding rapidly, then the intercloud pressure must be of the
order of 10* cm ™3 K, on average. Since turbulence is so wide-
spread in the ISM on a variety of scales, it is reasonable to
expect that pressure in the intercloud medium also has a large
contribution from turbulent motion.
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III. PROPERTIES OF PRESSURE-BOUNDED CLOUDS

Calculations of the equations of state for interstellar cloud
models assuming local thermal balance (Viala 1972; Shu et al.
1972; de Jong, Dalgarno, and Boland 1980) indicate that
negative-index polytropes with P = Kp!*'/~ provide reason-
able approximations for a range of values of the polytropic
index, N. For a full discussion of the properties and stability of
negative-index polytropes, see Viala and Horedt (1974b). Here
I derive the properties of spherical polytropic cloud models
that are bounded by an external medium with pressure P,. 1
will use the usual polytropic variables 6 and &. The values of &
and 0 at the polytrope boundary will be denoted by &, and ,.

For a polytrope in equilibrium with an external pressure P,,
the polytropic constant can be determined from

P
K=—1° )
P57,
where p, is the central density. The physical radius of the

polytrope is related to the dimensionless length variable &, by

re [-(N+DK . T
é—e—[——% oA ] : )

Viala and Horedt (1974b) showed that pressure-bounded poly-
tropes with n < —1 are unstable if ¢ is larger then a critical
value, £ (N): an increase in the bounding pressure P, will cause
the polytrope to collapse. However, as was first pointed out by
Dickman and Clemens (1983), this instability depends on the
assumption that the polytropic constant K is constant for the
sequence of polytropes produced by varying the external pres-
sure. The general uniformity of gas temperatures observed in
molecular clouds over a large range of spatial and density
scales (e.g, Leung 1985) suggests that a more appropriate
boundary condition for models of interstellar clouds is prob-
ably one where the central temperature T, of the polytrope
remains constant when the boundary pressure is varied. It is
straightforward to demonstrate that polytropes with N < —1
are stable for all values of £ when the central temperature is
kept fixed (see Appendix). The boundary value of ¢ can thus be
chosen arbitrarily; the resulting polytropes have nearly
uniform densities for small &(<1) and are strongly centrally
condensed for large & (2 10).

Equations (2) and (3) and the expression for the mean
density of a polytrope, p = 3p, 8./¢,, yield a relation between
mean density and cloud radius:

_ P 1/2
p =125 x 10—23[% <?>] O,r;'gem 3, (4)

where r, is in parsecs. It is easy to show that the mean density is
not very sensitive to the boundary value of &, provided that
¢, 2 1. Thus the mean cloud density varies inversely with
radius.

The polytropic temperature here represents the contribu-
tions of both thermal and turbulent motions to the support of
the cloud. Therefore the scaling of line width with radius is
determined by the scaling of polytropic temperature with size.
Using equations (2) and (4) to express the central density in
terms of P, and r,, we can write the temperature at the center

of the polytrope as
ur, 4nG P, 12
= —_— K, 5

° R@[—(Nﬂ) 05“] ®

Vol. 334

where R is the gas constant and p is the molecular weight of the
gas (g mol™'), equal to 2.25 for standard abundances. The
turbulent contribution to the line width is independent of
mass; we will calculate the one-dimensional velocity disper-
sion, 6, = (kT/m)'/ for the mean particle mass, 7 = 8/7my,.
The velocity dispersion is then

_ fukor, 4G P, V212 -
a"°—{Rﬁ!€e[—(N+l)9’!”] ms=, 6

where the subscript 0 denotes the cloud center value of T. For
a Gaussian line, the FWHM AV = (8 In 2)"/%¢,. Since T =
T, 0, the calculated line width increases with increasing radius,
scaling as 6'/2. The cloud edge line width AV, may be 2 or 3
times larger than AV, for large &, (~20) (see discussion in § V).

At low polytropic temperatures, where the thermal com-
ponent of motion begins to dominate, equation (6) will over-
estimate the observable line widths for molecules such as CO
and NHj. This also assumes the line is optically thin; for opti-
cally thick lines the observable line width will be larger by
some factor a; which depends on the degree of saturation.
Inserting numerical values into equation (6) yields a line
FWHM

AV, =135 x 10~ ¢

ri? [ P/

e A

The value of AV, is rather insensitive to the value of the exter-
nal pressure, and to the actual value of ¢, for £, 2 1. For
example, for an N = —3 polytrope and P,/k = 10%, AV, =
0.78x,r;> km s™' for &, =5, while for & =20, AV, =
0.56a,r;’> km s~ . The spread in AV produced by varying N
between —1.2 and —10 is smaller than the range in observed
AV at a given radius. Thus an ensemble of clouds with £, 2 1
will show size-line width scaling that is indistinguishable
within the observational scatter from a simple AV oc r/? rela-
tion.

1/4
] kms™!. (7)

IV. COMPARISON WITH OBSERVATIONS

Studies of dark clouds and dark cloud cores (Leung, Kutner,
and Mead 1982; Myers 1983) have suggested that there is a
correlation of line width with cloud size of the form AV oc r!/2
and between mean number density (as inferred either from
detailed excitation calculations or LTE analysis) and cloud size
of the form 7 = r~!. As has been shown above, these relations
are predicted from models of pressure-bounded clouds. Before
comparing the model results to the data, however, it is neces-
sary to reexamine some of the observations of dark clouds,
since a number of complicating factors render the earlier
analyses suspect.

Myers (1983) used ammonia data from Myers and Benson
(1982) and CO data from Leung, Kutner, and Mead (1982;
hereafter LKM) to derive the relations discussed above for
cloud size, mean density, and line width, and found a contin-
uity between the dense, dark cloud cores studied in ammonia
and the larger, isolated dark globules observed by LKM. Rea-
nalysis of the LKM data, however, suggests that the dense
cloud cores are quite distinct objects in terms of their dominant
physics. LKM derived cloud masses from an expression that
depends on the maximum column density through the cloud.
They used LTE analysis of '2CO and !3CO observations to
estimate '*CO column densities; the H, column density was
then obtained by multiplying by the value of [H,]/[!*CO].
However, they used a value for this quantity of 107, which is a
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factor of 20 larger than the widely used value derived by
Dickman (1978). More to the point, current estimates of
['2CO]/[H,] in fully molecular clouds (28 x 10~ %; Black
and Willner 1984) and of [*2CO]/[!3CO] (~45; Jura 1987)
make the adoption of such a large value of [H,]/[**CO]
unjustifiable. Thus the cloud masses (and the mean densities)
obtained by LKM are probably too high by a factor of ~20.

There are also serious disagreements between the data of
LKM and those of Martin and Barrett (1978), who observed a
number of the same clouds using the same telescope (the
NRAO 11 m). Martin and Barrett typically obtain values of
peak '3CO column densities ~2 times larger than LKM.
Several of these clouds were also observed by Arquilla and
Goldsmith (1985). The agreement between Arquilla and Gold-
smith and Martin and Barrett (1978) is excellent for the two
clouds they have in common, including B227, for which the
discrepancy between Martin and Barrett and LKM is most
severe. There are also two clouds in common between LKM
and Arquilla and Goldsmith (1985): the latter derive *3CO
column densities ~ 3 times larger than LKM. Although both
Martin and Barrett (1978) and Arquilla and Goldsmith (1985)
corrected their antenna temperatures for coupling of the beam
to the source, whereas LKM did not, these clouds have such
large angular sizes that this makes a difference in antenna
temperatures of only ~20% in the worst case. The main cause
of the discrepancy is the fact that LKM derived their column
densities using the maximum values found in the cloud of T}
for both transitions. Since the largest values of T%(*3*CO) are
often found off of the peak in 2CO (see, e.g., the maps in
Martin and Barrett 1978), this procedure tends to systemati-
cally understimate the column densities of **CO.

I have therefore revised the mass and density estimates for
the clouds in the sample of LK M ; the adopted values are given
in Table 1. Where observations from Martin and Barrett (1978)
or Arquilla and Goldsmith (1985) are available, these have
been used to derive cloud properties. Since the cloud masses
have been lowered by about an order of magnitude compared
to the values given by LKM, it is evident that the behavior of
mean density with radius in these dark clouds cannot represent
a continuation of the trend in dense cloud cores; indeed, since

TABLE 1
REVISED PARAMETERS FOR LKM DARK CLOUDS
R M2 (aH) D
Object (po) (Mg) (cm™3) (po) Source
IC 1848-1. 12. 9100. 20. 1700 MB
BS ........ 1.4 87. 120. 160 LKM
ORI-I-2 .. 0.35 4.0 350. 400 MB
B34 ....... 1.3 8.6 15. 200 LKM
L1672..... 12 59. 130. 200 LKM
B227 ...... 09 28. 145. 400 AG
B255 ...... 0.52 0.33 9. 200 LKM
B68 ....... 0.19 0.58 320. 200 MB
B118 ...... 0.38 0.73 50. 400 MB
B133 ...... 1.8 18. 12 400 LKM
B134 ...... 093 13. 61. 400 LKM
B335...... 073 16.8 160. 250 MB
B361 ...... 1.62 98. 90. 350 AG
B362 ...... 39 120. 8. 200 LKM
B157 ...... 2.7 74. 14. 400 LKM
Bi161 ...... 1.6 23. 21. 150 LKM

® Mass including correction for He.
SOURCES—MB, Martin and Barrett 1978; AG, Arquilla and Gold-
smith 1985; LKM, Leung, Kutner, and Mead 1982.
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most of the range in cloud size in the data used by Myers (1983)
comes from the LKM sample, it is no longer clear that the
dense cloud cores show any evidence at all for nocr™! or
AV oc P2,

In Figure 1 I have plotted mean H, density versus radius for
30 dark clouds, with data from LKM, Arquilla and Goldsmith
(1985), Martin and Barrett (1978), and Snell (1981). Also
plotted are data for 18 high-latitude clouds observed by Keto
and Myers (1986). Superposed on the data are the predicted
n — r relations for pressure-bounded polytropes, for pressures
P/k = 10* and 103, for a polytropic index of N = —3 and two
values of £,: 0.5 (corresponding to a nearly uniform density
cloud) and 20 (a very centrally condensed cloud). Considering
the simplifying assumptions made in the models (spherical
clouds, the assumption that the polytropes are complete poly-
tropes, the uncertain nature of “turbulence ” in clouds, neglect
of magnetic fields and rotation) and the uncertainties in deriv-
ing sizes and mean densities from molecular observations, the
agreement with observations is quite good. It is also evident
that most of the objects from Keto and Myers are best rep-
resented by £, = 0.5 models; i.e., self-gravity is not very impor-
tant for these objects. This conclusion was reached by Keto
and Myers, who suggested that the high-latitude clouds which
they observed must be pressure-confined, with an intercloud
medium at P/k = 3 x 103-3 x 10% a result in good agreement
with the present work. (Keto and Myers obtained somewhat
larger values for the boundary pressure than inferred here
because they assumed uniform clouds.) The three clouds which
lie substantially above the ¢, = 20, P/k = 10* line are L134N
and L1551 (from Snell 1981) and CRL 437 (from Arquilla and
Goldsmith 1985) which are all exceptional dark globules in
that they are forming stars. However, B335, which also has an
embedded infrared source, does not stand out. Frerking,
Langer, and Wilson (1986) have observed B335 extensively
with the Bell Labs 7 m telescope and concluded that it is much
more complex than revealed by the data of Martin and Barrett
(1978), which are used here. It is quite likely that the masses of
many of these clouds have been underestimated, due to
destruction of CO in the high-latitude clouds and to sub-
thermal excitation of optically thick *3CO in the dark clouds.

Figure 2 shows the line width-radius data for the clouds
from LKM (*3CO line widths) and Keto and Myers (1986)
(*2CO line widths) (line widths were not available for the other
clouds in the sample), along with the corresponding predic-
tions for pressure-bounded polytropes, for the same param-
eters as in Figure 1. The predicted line widths have been scaled
by a factor « = 1.4 as an approximate saturation correction;
this should be a reasonable value for both the LKM data and
the Keto and Myers observations, since the *3CO lines prob-
ably have moderate optical depths and the column densities of
12CQ in the high-latitude clouds are considerably smaller than
those in typical dark clouds, and are of the same order as the
13CO column densities of the LKM clouds. The agreement is
again quite good, and many of the Keto and Myers clouds
appear to be quite uniform in structure as noted above. Includ-
ing the size-line width data of Myers and Benson (1982) shows
that the dense cores do appear to continue the trend of line
width with size shown by the dark clouds (see Fig. 1 of Myers
1983), but it is possible that comparing them is inherently
unfair, since the dense cores are probably dominated by self-
gravity. On the other hand, it is possible that the apparent
continuity seen here reflects the same physics, namely, the
influence of the boundary pressure on the cloud structure. In
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FIG. 1.—Mean number density vs. radius for dark clouds and high-latitude clouds. Triangles are from Leung, Kutner, and Mead (1982), revised as described in
the text; filled triangles are from Arquilla and Goldsmith (1985); squares are from Snell (1981); filled square is from Martin and Barrett (1978); circles are from Keto
and Myers. Dashed lines are the mean number density-size relations predicted for pressure-bounded clouds for P/k = 103, and are labeled with the value of ¢, ; solid
lines are for P/K = 10* and are ordered by £, in the same way.
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FiG. 2—Line width vs. radius for the dark globules of Leung, Kutner, and Mead (1982) and the high-latitude clouds of Keto and Myers (1986). Data symbols and
predicted values for polytrope models as in Fig. 1.
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the case of the dense cores, the boundary pressure presumably
represents that of the surrounding molecular gas, rather than
the intercloud medium.

Table 2 lists the properties of pressure-bounded polytropes
for a range of indices for a boundary pressure of P/k = 10* and
a central number density of H, of 3000 cm ~3. The models with
large negative indices are more centrally concentrated, with the
result that their total internal energies

M 1
U=| ¢,Tdm=——|pdV
,[) ’ y—1 J P
(where c, is the specific heat per gram at constant volume and y
the ratio of specific heats at constant pressure and volume)
exceed their gravitational energies

M
W=-G J mdm/r

0
by only a small factor, unlike the small-index models where U
can exceed W by nearly an order of magnitude. (U and W are
calculated using the equations given in Viala and Horedt
1974b.) For a given boundary pressure and polytropic index,
the internal energy per unit volume averaged over a cloud is
constant along the equilibrium sequence of increasing central
density and decreasing radius.

V. IMPLICATIONS

As we have seen above, pressure-bounded polytropes predict
the observed size-line width relations and inferred mean
density-size relations found in dark clouds. A “universal”
value of the conversion factor relating integrated 2CO line
intensity, I, to H, column density, is usually considered to be
a consequence of self-gravitating, “virialized” clouds
(Dickman, Snell, and Schloerb 1986; Solomon et al. 1986),
where the term “ virialized ” is here used in the sense defined in
§ I, to mean that the velocity dispersion ¢ is determined
directly by the cloud mass and radius (see Maloney and Black
1988). It is of interest to derive a corresponding relation for
pressure-bounded clouds. The cloud-averaged column density
of H, is given by

— 1/2
N(H,) = 1.20 x 1019[—(;%3 (%)] g, cm™2. (8)

Note that this is the true column density of molecular hydro-
gen, not the column density of particles of mean mass. The
integrated CO intensity averaged over the cloud can be
approximated by

ICO = as(zn)l/l TA ) (9)

where o, is the one-dimensional velocity dispersion, T, is the

antenna temperature at line center averaged over the cloud,
and o, depends on the degree of line saturation. For realistic
cloud parameters, o, is probably in the range 1.5-2.0 for }2CO
(Kleiner and Dickman 1985). I will adopt &, = 1.75 and use the
cloud center value of ¢,. Equations (6), (8), and (9) imply that
the cloud-averaged value of N(H,)/I o is

NHY) _, 1019<¢_e )1/2 [A [_(N L1y Pe/k]lm’ (10)

ICO TA 05 1

with I in K km s ™! and r, in parsecs. A value for T, = 6.7 K
corresponds to optically thick CO at an excitation temperature
of 10 K. With this and P./k = 10%, ¢, = 20,and N = —3,

N—(Hz)/lco = 1.4 X 10207;”2 (11)

in units of cm~2 (K km s ™)~ 1. Thus N(H,)/I¢, = 2.0 x 10?°
for r,=0.5 pc, while for r,=5pc it has fallen only to
6.4 x 10'°. Note that for the small clouds the line width for
molecules like CO is overestimated, while the cloud-averaged
value will substantially underestimate N(H,)/Io for resolved
clouds. The ratio of the cloud center column density to the
cloud-averaged column density for a polytropic cloud model is
given by

Te

N(Hz)cent - E)e ON dé
NH,) 20,

12)

For N = —3, this ratio is equal to 3.4 and 8.7 for {, = 5 and
20, respectively. Thus for clouds which are substantially resolv-
ed by the antenna beam, such as those in the LKM sample, the
appropriate predicted value of N(H,)/I, is a few times larger
than the value given by equation (11).

This number can be compared with the value derived from
large-scale gamma-ray studies by Bloemen et al. (1986), which
is (2.8 £ 1.0) x 102°, Equations (11) and (12) show that the
predicted N(H,)/I o for the model clouds is in good agreement
for the small clouds (<5 pc), while it is too small for the larger
clouds. Of course, it is well known that the large molecular
clouds do not have smooth density profiles, but are extremely
clumpy on small scales. One could thus imagine complexes
made up of small pressure-bounded clumps embedded in a
lower density envelope in pressure equilibrium with the inter-
cloud medium. Such a scenario was suggested by Elmegreen
(1985), although he considered self-gravitating clumps within
lower density, self-gravitating envelopes in pressure equi-
librium with the intercloud medium. Systems like giant molec-
ular cloud complexes, with large masses in clumps, would
probably be gravitationally bound in any case. However, one
must be extremely cautious in interpreting conventional plots
of virial mass versus CO luminosity, since the observed correl-
ation of these quantities is solely an artifact of the line width—

TABLE 2
PARAMETERS OF PRESSURE-BOUNDED CLOUDS

Radius Mass n(H,)

T, AV, U w

0

Index (pc) (M) (cm™3) (K) (kms™?) (ergs) (ergs)
—15........ 0.80 23.6 171. 8.0 0.11 1.53 x 10** —4.09 x 10%3
—20........ 1.73 148. 108. 18.5 043 1.71 x 10%* —7.79 x 10**
—30........ 444 1248. 54.0 60.7 1.02 3.37 x 10%*¢ —2.29 x 10%¢
—40........ 8.16 4843. 338 137. 1.61 2.36 x 10*7 —1.95 x 10*7
—50........ 12.7 12700. 234 249. 221 9.66 x 10*7 —8.87 x 1047

Note—Properties of pressure-bounded polytropes: P/k = 10%; no(H,) = 3000.
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size relation which is seen for giant molecular clouds as well as
dark clouds.

Most analyses of the stability of molecular clouds have
ignored the role of the boundary pressure. Exceptions are the
work of Elmegreen (1985), referred to above, Dickman and
Clemens (1983), and Chieze (1987). Elmegreen specifically con-
sidered the role of magnetic fields, and from a viral theorem
analysis obtained the result AV oc r'/2, More directly related to
this work is the analysis of Dickman and Clemens (1983), who
considered pressure-bounded isothermal and polytropic
models for a low-mass, very quiescent Bok globule, and con-
cluded that it could well be in a state of hydrostatic equi-
librium. Dickman and Clemens used a smaller value for the
pressure in the interstellar medium (P/k = 5 x 10%) and found
no reason to appeal to magnetic support to stabilize the cloud,
based on the derived cloud temperature and mass. Adopting a
value for the pressure 2 or 3 times higher might alter that
conclusion. Finally, it is important to call attention to the work
of Chieze (1987) (first referenced in Silk 1985), who was the first
to point out that if molecular clouds are in equilibrium with an
external pressure, then the expected scaling of velocity disper-
sion with cloud radius and intercloud pressure is o oc r1/2P1/4,

The predominance of pressure-bounded clouds has a
number of interesting implications for the ISM. If we identify
these clouds with dark clouds, it implies that they are inher-
ently stable and are not likely to form stars unless exposed to
an increase in intercloud pressure which compresses them
enough for gravitational forces to dominate; this might result
from a supernova blast wave, for example. Star formation
would then be a consequence of the collection of these clouds
into large complexes which are gravitationally bound. In a
very actively star-forming environment such as a starburst
galaxy, the increase of pressure in the interstellar medium
caused by the presence of many early-type stars might trigger
the widespread collapse of such objects.

The success of the pressure-bounded cloud model in explain-
ing the properties of dark clouds suggests that these clouds
may be quite distinct from the larger molecular cloud complex-
es. The size-line width relation of Solomon et al. (1986) for a
large sample of giant molecular clouds predicts lines that are
too broad at size scales corresponding to the dark clouds
(~1 pc and less). This lack of continuity may represent a tran-
sition from pressure-bounded to gravitationally bound clouds.
However, the fact that the giant molecular clouds also display
a relation of the same form as predicted for pressure-bounded
clouds suggests that the effect of the intercloud pressure on
cloud complexes may still have important consequences. It
should be noted that Roberts and Stewart (1987), in empha-
sizing the possible importance of orbit crowding for the forma-
tion of giant molecular cloud complexes in galaxies with spiral
density waves, suggest that a substantially smaller fraction of
such cloud complexes may be self-gravitating than has pre-
viously been thought.

A few cautionary remarks should be made here. The line
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widths of most molecular clouds are considerably in excess of
thermal, so that justification of a polytropic equation of state
on the basis of thermal balance calculations is not really viable.
However, whatever process produces the turbulence observed
in the ISM may lead to an equation of state that can be reason-
ably described by a polytropic law if the heating and dissi-
pation rates have an appropriate dependence on cloud density.
If, for example, we regard the observed cloud velocity disper-
sions as arising from the motions of clumps within the cloud
envelope, then the rate of energy dissipation per unit volume
due to clump collisions is given by

Ac = CMc vrzms nc2 OgeomV 5 (13)

where v, is the one-dimensional clump velocity dispersion, v
is the relative velocity between clumps, M, the mass of the
clumps (assumed identical), n, is the number density of clumps,
Ogeom 1S the geometric clump cross section, and C is a constant
of order unity (Scalo and Pumphrey 1982; Elmegreen 1985).
This expression holds whether magnetic fields are present or
not; only the value of the constant C is affected (Elmegreen
1985). Since the dark clouds studied by Arquilla and Gold-
smith (1985) are strongly centrally condensed, equation (13)
indicates that the dissipation rate will increase rapidly toward
the cloud center. If whatever mechanism powers the turbulence
does not have an equally strong dependence on clump density
(equal to the mass density if the clumps dominate the cloud
mass), then it is to be expected that the velocity dispersion will
decline toward the cloud center, and the equation of state
describing the cloud may resemble a polytropic one. Unfor-
tunately, our understanding of turbulence in the interstellar
medium is so inadequate that it is very difficult to quantify this
further (see Scalo 1987).

Magnetic fields have not been specifically included in the
present work; a realistic cloud model should discuss them
explicitly and relax the assumption of spherical symmetry. In
addition to the work of Elmegreen (1985), important papers
dealing with the possible role of magnetic fields in clouds are
Myers (1987) and especially Falgarone and Puget (1986).

In summary, the sizes, masses, and predicted CO emission
from negative-index polytropic cloud models in equilibrium
with external pressures P/k 2 10* are in good agreement with
the properties of dark clouds. Furthermore, the pressure
bounded clouds are predicted to have size-line width and
mean density-size relations of the same form and absolute
value as have been observed and inferred for dark clouds. Thus
the observed features of these interstellar clouds do not require
that they be completely self-gravitating.

I would like to thank John Black for valuable comments on
a draft of this paper, as well as for providing data in advance of
publication. I would also like to thank the referee for a number
of insightful comments, and for providing several important
references. This work was supported by NASA Theoretical
Astrophysics grant NAGW-763 to the University of Arizona.

APPENDIX
STABILITY OF NEGATIVE-INDEX POLYTROPES WITH CONSTANT CENTRAL TEMPERATURES

The general properties of negative-index polytropes are extensively discussed by Viala and Horedt (1974a, b). In their second
paper, Viala and Horedt discuss the stability of negative-index polytropes and demonstrate that they are unstable for values of the
dimensionless radius ¢ in excess of a critical value which is a function of the polytropic index, N. Here I consider the stability of such
polytropes to external perturbations, under the constraint that their central temperatures remain constant.
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It is easy to see that a polytropic gas sphere will be unstable if (0P/0V), is positive, where the subscript 0 denotes that the
derivative is evaluated at the boundary of the polytrope. If an external perturbation such as an increase in the bounding pressure is
applied to such a polytrope, the corresponding decrease in the volume of the sphere will result in a fruther decrease in the surface
pressure, with the result that the polytrope will contract still further. We wish to derive an expression for (0P/dV), applicable to a
polytrope undergoing such a perturbation, which can then be evaluated to determine its stability according to this criterion.

Following Bonnor (1958), we will consider a spherical mass of gas in equilibrium, with density p(r) and pressure P(r) at radius r.
The gas is assumed to have spherical symmetry, so that the equation of hydrostatic equilibrium is

dP(r) GM(r)
o = PO =, (A1)
where M(r) is the mass inside radius r. Assuming that the gas is polytropic, it will obey the equation of state
P =Kp'+iN (A2)

Since we are requiring the central temperature of the cloud T; to stay constant, the polytropic constant K is not invariant if the
sphere is subjected to an external perturbation, since
RT, p, '™
K = Llehpe , (A3)
u

where p, is the central density of the polytrope, R is the gas constant, and p is the molecular weight of the gas. Along the equilibrium
sequence of constant K, T, must decrease as the central density increases, and vice versa. We therefore define a new constant
K’ = RT/u, so that the polytropic equation of state under the restriction of constant T.is

P=K1pc—1/Np1+1/N . (A4)

Imagine a sphere with radius r, concentric with the polytrope boundary. The quantity r, may or may not be coincident with the
radius of the polytrope. This sphere contains a mass of gas M. We will allow ro to vary by a small amount, subject to the constraints:
(1) M stays constant; (2) Equation (A1) remains satisfied throughout; (3) Equation (A4) is satisfied during the variation. We will also
assume that the pressure at the new value of r, is that appropriate for equilibrium.

The usual polytropic variables § and & are introduced through the formulae

p=p09N’ é:r/a’ (AS)
where
K1 +N) |2
o= [_ —_47sz‘c“”"’:| . (A6)
Since « will not be constant as the sphere is perturbed, we will define the new variable
K'(1+N)|'?
= - K (a7
then
a=yp 2 (A8)
The structure of a polytrope is determined by the solution to the Lane-Emden equation of index N,
1d /[, ,do
e )=0"; A9
s (%) "
6(¢) is also constrained to satisfy
do(0)
00)=1, —=0. Al10
(0) i (A10)
The mass of the polytrope within radius r, can then be written as
M= 4nv3pc‘”’€3<d—0) (A11)
d¢/o
(Viala and Horedt 1974b), where the subscript 0 refers to the values at r = ro(and thus ¢ = &). Since the mass must remain constant,
d de do
=0=4ny’p 12 — (&2 =) 8¢, — 2myPp 3283 =) §p . Al12
oM e 3 <é dé)o o — 2my°p; €o<d€>0 Pe (A12)
Using equations (A5) and (A8), we can express 6&, as
1 rop; !
0o = ySTE oro + 2 op, . (A13)
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Substituting equation (A13) into equation (A12) and simplifying the resulting expression using equations (A9) and (A11) yields
P r |
dmy? p—f fé(éro + 2;)’0 5pc> +5Mp:top. =0, (A14)
where po = p(¢o). Equation (A14) can be solved for r, and further simplified by noting that y2 = a2p_, so that
M o
Org =| —— — .
o <8nr3 Po pe 2pc> o (A13)

We now need an expression for 6P,. As noted above, under the constraint of 1. = constant we must write the polytropic equation
of state in the form (A4), so that

1 1 1\ P 1\ P
SP=K/| —=|p - UN-1,(+1/N) 5 Kp VN1 4 —pWNsp=( -——]= 14+—)= . 16
( N>pc p p. + K'p; ( +N>p P ( N>pc‘5”‘+< +N>p5p (A16)
Hence
6P 1) ép, 1\ 6p
So(-—) —) 2. A17
P ( N>pc+<1+N>p (17
Using the defining equation (AS5) for 6, we can expand the term dp as dp = dp, 8 + p, N6V =1 56, so that
o o
% _0  Nyy. (A18)
p. 0
Substituting into equation (A17),
0P o6p, N
—=—4+—2050. A19
P=, T8 0 (A19)

An expression for 60, = (d6/d&), 6, can be obtained from equations (A11) and (A13), which after simplifying as in equation (A15) is

M
00y =—75= 4 — . A
6o dnyr Toto + 8777 b, op. (A20)
Putting this expression for 66, into equation (A19) and using equation (A15) for dr,, we obtain after some algebra
0P, 1 3 2.2 2,24 p\'"™ 2
~ 5 (M — 4nrg poYdny®rd) = 32n%y*rdpo + (N + D =) M?2. (A21)
ory Py Po

This is nearly the desired expression; we merely have to arrange it into a more convenient form. If we divide by 4ny*r2, then the
right-hand side becomes

UN  pp2
8nr2 po + (N + 1)<&>

Po

dmy?rd

Making use of the definitions of y and K’, the second term on the right-hand side may be written as —(GM?/P,r2)p,, and so the
right-hand side can be written

GM? >

2
1 — 2
8o po< 8nPyré

The term in parentheses on the left-hand side may be rearranged as
M
4nrd pol —— —
o iz 1)

L 0Py _ 2 [1 = (GM*8nPyrd)]

so that equation (A21) becomes

- B A22
Py ory 1o [(M/4nrdpe) — 1] (A22)
which, in the limit of infinitesimal 6 P, ér, becomes
1 _ 2 4
ar /o 3ro [1—(M/3V,p0)]

where we have also made use of V, = (4r/3)r3.
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From the chain rule,
13! opP oP\/[ or oP\/ 3\ 1 23
! PN (EN )V (EN ) 2wy, A24
é: (av) <6r>(6V> (6r>(4n> 370 (A24)
S Alsor, = (3/4n)'® V§/3,and so
_ 2 4
v /o 3V [1—(M/3Vpo)]

Note that all explicit dependence on the polytropic index has been lost.
In order for polytropes with constant T; to be unstable, the term
(M/4nrg po) — 1
1 — (M/3V5 po)
must be less than zero. Thus if the numerator is positive, the denominator must be negative, and vice versa. Does this occur for any
values of £?
To determine whether these polytropes are stable or not, we must examine the behavior of the terms M/4nr3 p, and M/3V; p, as
functions of ¢ for different values of the polytropic index. Consider first M/3V, p,. We can write the mass of the polytrope as
M = V, p, where p is the volume-averaged density. Using equations (A7) and (A11), one can show that

p = 3p.06/So - (A26)
Thus we can write

using equation (AS5), the definition of 6.
The maximum value of 8/, 6% can be evaluated from the tables of Viala and Horedt (1974a); it increases with increasing | N |, but
is less than unity for all N. Thus in order for any of these polytropes to be unstable, we must have
M

4nrg po

(A28)

Again writing M = V,, p, we can write M/4nr3 p, as

M GMp
4nrdp, 6Pyro

(A29)

We want to eliminate M, P,, and r, from this equation. Using equations (A4), (A8), (A11), (A7), and (A26), we can express M, /4nry po
in terms of the poltropic variables as

/2
4nf;po - . ;0’:‘)’,)1?0) ’ (A30)
and so negative-index polytropes with constant T, will be unstable only if
— (1_-;111 60?0,V > 1. (A31)
Once again we can use the tables of Viala and Horedt (1974a) to evaluate these functions. It is simplest to write
(60 —2 (A32)

RN+ 1)

so that for the various values of N, the critical values of (65)?/65 * ! are given in Table 3.

TABLE 3
CRITICAL VALUES OF (6,)%/05*!
N [(6,)*/65 7 1.
—15.......... 4
—20.......... 2
—30.......... 1
—40.......... 2
50 1
—10. ......nes 2
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Although (6;)*/65 ** gets closer to the critical value with increasing | N|, the criterion (A32) is never satisfied. Therefore the
sequences of polytropes with constant T, are unconditionally stable to perturbations in external pressure of the type described at the

beginning of the Appendix.
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