PHYSICS LETTERS

DIFFUSION OF SPHERES IN A CONCENTRATED SUSPENSION: RESUMMATION OF MANY-BODY HYDRODYNAMIC INTERACTIONS

C.W.J. BEENAKKER and P. MAZUR

Instituut-Lorentz, Rijksuniversiteit Leiden, Nieuwsteeg 18, 2311 SB Leiden, The Netherlands

Received 5 July 1983

We evaluate the wavevector dependent (short-time) diffusion coefficient D(k) for spherical particles in suspension. Our analysis is valid up to high concentrations and fully takes into account the many-body hydrodynamic interactions between an arbitrary number of spheres. By resumming moreover a certain class of correlations, we obtain results which agree well with available experimental data for the small and large wavevector limits of D(k).

1. Recently [1] we evaluated the concentration dependence of the (short-time) self-diffusion coefficient for spherical particles suspended in a fluid. This quantity, denoted by D_s , is the large-k limit of a wavevector dependent diffusion coefficient D(k), which describes the initial decay of the dynamic structure factor S(k, t)measured by inelastic light or neutron scattering [2]. In our analysis [1] we resummed the hydrodynamic interactions between an arbitrary number of spheres. The importance of these many-body interactions has been demonstrated both theoretically [3] and experimentally [4]. By including at most two-point correlations between the spheres, we obtained in ref. [1] a reasonable agreement with experimental results for $D_{\rm s}$ [4], for volume fractions $\varphi \lesssim 0.30$. At higher concentrations the calculated values were too large, indicating the importance of higher order correlations.

The extension to ref. [1] presented here is twofold: (i) we extend the formalism to diffusion at arbitrary (non-zero) values of the wavevector; (ii) we resum to all orders the contributions due to a certain class of correlations, the so-called ring-correlations, thereby obtaining results for D_s which agree with the experimental data up to the highest volume fractions.

2. The (short-time) diffusion coefficient D(k) is given by [2]

$$k^{2}S(k)D(k) = k_{B}TN^{-1}$$

$$\times \sum_{i,j=1}^{N} kk: \langle \boldsymbol{\mu}_{ij} \exp[i\boldsymbol{k} \cdot (\boldsymbol{R}_{j} - \boldsymbol{R}_{i})] \rangle, \qquad (1)$$

in terms of an average of the mobility tensor $\mathbf{\mu}_{ij}$ of spheres *i* and *j*, which have positions R_i and R_j respectively. The mobilities depend on the whole configuration of the *N* spheres and may be calculated from the linear Stokes equation [5]. Also, S(k) is the static structurefactor and k_B and *T* denote Boltzmann's constant and the temperature respectively.

Adopting the notation used in ref. [1], we may write $^{\pm 1}$

$$S(k)D(k)/D_0 - 1$$

= $-k^{-2}N^{-1}kk: P([nA(1 - nQA)^{-1}n](k|k))P.$ (2)

In eq. (2) an average is taken of the k, k element of the integral operator between braces. The propagator A is a matrix of which the elements characterize a hydrodynamic interaction between two induced-force multipoles. The microscopic numberdensity of the spheres is given by n. In r representation, the elements of A are convolution operators and n is a diagonal operator. The object P = 1 - Q projects out the first multipole moment of an induced force. The Stokes-Einstein value

^{± 1} The operator A used in eq. (2) corresponds to $\mathcal{B}^{-1}\mathcal{A}$ in ref. [1].

4

. ۲

į

of the diffusion coefficient is denoted by D_0 . In the limit $k \to \infty$, eq. (2) reduces to the expression for D_s given in ref. [1].

3. The expression between braces in eq. (2) may be expanded in powers of the density fluctuations $\delta n \equiv n - n_0$, where n_0 is the average numberdensity of the spheres. In ref. [1] we evaluated D_s to second order in this so-called fluctuation expansion. There is however a certain class of contributions due to correlations which may be resummed to all orders. To this end we define for arbitrary γ_0 a renormalized propagator A_{γ_0} by

$$A_{\gamma_0} \equiv A(1 - \gamma_0 Q A)^{-1}.$$
 (3)

We choose γ_0 to be a function of the concentration n_0 ,

$$\gamma_0 [1 - QA_{\gamma_0}(r=0)] = n_0, \tag{4}$$

where $A_{\gamma_0}(\mathbf{r})$ is the kernel of the operator A_{γ_0} defined above. One may now prove the identity

$$A(1 - nQA)^{-1}n = A_{\gamma_0}(1 - \delta\gamma Q A_{\gamma_0})^{-1}\gamma,$$
 (5)

where $\gamma \equiv \gamma_0 + \delta \gamma \equiv n\gamma_0/n_0$ is a renormalized vertex and \mathring{A}_{γ_0} is a cut-out propagator with kernel

$$\mathring{A}_{\gamma_0}(\mathbf{r}) = A_{\gamma_0}(\mathbf{r}) \text{ for } \mathbf{r} \neq 0, \quad \mathring{A}_{\gamma_0}(\mathbf{r} = 0) = 0.$$
 (6)

In ref. [1] we defined a renormalized propagator A_{n_0} according to eq. (3), with γ_0 equal to n_0 , and proved the identity

$$A(1 - nQA)^{-1}n = A_{n_0}(1 - \delta nQA_{n_0})^{-1}n,$$
(7)

which did not contain a renormalized vertex, nor a cutout propagator. Both expressions (5) and (7) are equivalent. However, the zeroth order term in the $\delta\gamma$ -expansion differs from the corresponding term in the δn -expansion: the latter contains the full hydrodynamic interactions between an arbitrary number of spheres in the absence of correlations, while the former moreover contains a class of self-correlations. In a diagrammatic representation this class corresponds to ringdiagrams. Through formulae (3) and (4) the resummation of these diagrams, is performed algebraically. Furthermore, the contributions of order $(\delta \gamma)^2$ in the $\delta \gamma$ -expansion are much smaller than those of order $(\delta n)^2$ in the fluctuation expansion described in ref. [1]. This indicates that the former expansion converges faster than the latter one. We remark that to linear order in the density γ_0 equals n_0 and both fluctuation expansions are identical.

Fig. 1. $D_0/D(k)$ as a function of the wavevector k times the particle radius a, for five values of the volume fraction φ .

4. We have evaluated D(k) given by eq. (2) up to and including terms of second order in $\delta\gamma$, using eq. (5). The pair distribution function (necessary for the calculation of S(k) and $\langle (\delta\gamma)^2 \rangle$) was approximated by the solution of the Percus—Yevick equation. The resulting wavevector dependence of $D_0/D(k)$ is plotted in fig. 1, for five values of the volume fraction φ [note that in the absence of hydrodynamic interactions $D_0/D(k)$ equals the

Fig. 2. D_s/D_0 and D_c/D_0 as a function of the volume fraction φ . The solid lines give the results of our calculations. Experimental data for D_s (shown by dots) are from ref. [4]; for D_c , dots are from ref. [6] and triangles from ref. [7].

Volume 98A, number 1,2

PHYSICS LETTERS

structurefactor S(k)]. In fig. 2 we have plotted the concentration dependence of the two limits

$$D_{\rm s} = \lim_{k \to \infty} D(k)$$
 and $D_{\rm c} = \lim_{k \to \infty} D(k)$, (8)

together with experimental results. The theoretical values for the self-diffusion coefficient D_s are given for $\varphi \leq 0.45$, while the values for the collective diffusion coefficient D_c are only shown for $\varphi \leq 0.30$. At higher concentrations the calculated values for D_c become less and less reliable due to cancellations.

For D_s agreement with the experiments of Pusey and van Megen [4] is obtained, up to the highest (experimental) volume fractions. The experimental data [6,7] for D_c indicate that this quantity is rather insensitive to changes in the concentration over a large range of volume fractions; a remarkable result, which is confirmed by our calculations.

Details of this work will be given elsewhere.

This investigation was performed as part of the research programme of the "Stichting voor Fundamenteel Onderzoek der Materie" (F.O.M.), with financial support from the "Nederlandse organisatie voor Zuiver Wetenschappelijk Onderzoek" (Z.W.O.).

References

- [1] C.W.J. Beenakker and P. Mazur, Physica A (1983), to be published.
- [2] P.N. Pusey and R.J.A. Tough, J. Phys. A15 (1982) 1291.
- [3] C.W.J. Beenakker and P Mazur, Phys. Lett. 91A (1982) 290.
- [4] P.N. Pusey and W. van Megen, J. Phys. (Paris) 44 (1983) 285.
- [5] P. Mazur and W. van Saarloos, Physica 115A (1982) 21.
- [6] M.M. Kops-Werkhoven and H.M. Fijnaut, J. Chem. Phys. 77 (1982) 2242.
- [7] D.J. Cebula, R.H. Ottewill, J. Ralston and P.N. Pusey, J. Chem. Soc. Faraday Trans. 1 77 (1981) 2585.