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ABSTRACT

We have developed a model for a stellar wind driven by radiation pressure on dust grains in the
circumstellar envelopes of Mira variables. This theory couples for the first time the gas temperature
and the velocity variations. This coupling forms an essential aspect of the flow. The coupling is
present because the escape of cooling photons depends on the local velocity gradient. The topology
of the solution of the momentum equation of the gas is described, and it is shown that a critical point
exists in the flow, related to the sonic point in the familiar solar wind theory. A solution which
connects smoothly the region of subsonic flow close to the inner boundary with the region of
supersonic flow at the outer boundary has to pass through this point. Finally, the flow for a typical
Mira variable is calculated numerically, and its characteristics are briefly discussed.

Subject headings: stars: circumstellar shells — stars: late-type — stars: long-period variables —

stars: winds

1. INTRODUCTION

For 25 years we have known from optical studies that
M giants are losing mass at a high rate (>3X107% M,
yr~'; Deutsch 1956). However, the metallic absorption
lines and hydrogen emission lines in the optical spectra
show complex time variations which prevent a simple
interpretation in terms of a constant expanding en-
velope (Wallerstein 1975).

During the last decade our knowledge of the cir-
cumstellar envelopes around these stars has increased
considerably. First, broad-band infrared observations
show emission in excess of the expected stellar con-
tinnum (Merrill 1977). This emission is attributed to
dust grains condensing in the outflowing gas. In this
article we will concentrate on oxygen-rich Mira vari-
ables. The infrared spectra of these stars show two
broad emission features, one at 1030 cm ™! (9.7 pm) and
one at 570 cm ™! (17.5 pm). These are generally believed
to be due to the stretching and bending vibration in
silicate material (Gehrz and Woolf 1971; Merrill 1977;
Forrest et al. 1978). However, no infrared spectrum of
terrestrial minerals, moon rocks, meteorites, or labora-
tory-made amorphous silicates has yet reproduced both
features satisfactorily (Pollack, Toon, and Khare 1973;
Penman 1976; Day 1979). Lunar occultation measure-
ments and infrared interferometry show that the dust
emission starts only at 5-10 stellar radii (Toombs et al.
1972; Sutton et al. 1978).

Second, maser emission of OH, H,0, and SiO mole-
cules has been detected toward many of these stars. Line
observations of the OH maser—which is the best
studied—yield expansion velocities of circumstellar en-
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velopes between 5 and 20 km s~ ! (Winnberg 1977). The
OH line fluxes vary simultaneously with the infrared
fluxes. However, small differences between the phases of
the OH light curves from the front and from the back of
the expanding envelope yield a typical distance between -
the star and the masing region of about 10'°~10'7 cm
(Jewell, Webber, and Snyder 1980; Herman and Habing
1981). The H,0 and SiO masing region is much smaller,
typically about 10" cm (Spencer etal. 1979; Moran
et al. 1979).

Third, recently absorption and thermal emission
lines of CO, NH;, SiO, and H,0 molecules have been
detected at millimeter and infrared wavelengths (Morris
etal. 1979; Lo and Bechis 1977; Zuckerman et al. 1976,
1978; Betz and McLaren 1980; Bernat et al. 1979; Hinkle
1978; Hinkle and Barnes 1979; Hinkle, Hall, and
Ridgway 1982). In particular, the near-infrared absorp-
tion lines of CO and H,0O molecules yield insight into
the structure of the inner parts of the expanding en-
velope. The picture emanating from these data is that
three different regions are to be recognized: (1) an
extended pulsating photosphere terminated by (2) a
stationary layer from which starts (3) the cool expanding
envelope (Hinkle, Hall, and Ridgway 1982).

Oscillations of the star drive strong waves into the
photosphere. Shock fronts form at the interface of out-
ward driven material and material falling inward from
previous cycles. As inferred from their velocity behavior,
the hydrogen emission lines are formed in the shocked
gas, while the metallic absorption lines are formed in the
material falling back to the star. This observational
picture is corroborated by extensive shock model calcu-
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lations of a pulsating photosphere (Wood 1979; Willson
and Hill 1979; Hill and Willson 1979). In this way
material is transported to large distances (5-10 R,)
from the star, where it forms a stationary layer.

This layer acts as a reservoir from which material
drains back to the star and from which material is
accelerated outward. The SiO maser probably forms at
the outer layer of this stationary shell. Dust particles
condense in the stationary layer. Radiation pressure by
stellar photons accelerates the grains outward. Because
of gas-grain collisions the gas is dragged along (Gilman
1972). In this way a cool and expanding envelope is
formed that is detected in the OH maser lines and the
millimeter and infrared molecular absorption and emis-
sion lines.

This rather qualitative picture requires further theo-
retical and observational confirmation. For example,
there is no useful observational or theoretical tool to
connect the observed velocity or temperature to a defi-
nite distance from the stellar surface. This absence of
radial information prevents, for example, an accurate
determination of mass loss rates. The existing estimates
of mass loss rates are often uncertain by a factor of 10
or more. Since the mass loss rate influences the further
evolution of the star, a more accurate determination
appears quite important. Model calculations of the gas
flow in the circumstellar envelopes of M giants are thus
important. However, they hardly exist.

Several theoretical studies have been devoted to the
physics and chemistry of circumstellar shells around
late-type stars. The formation of dust grains has been
examined in some detail by Salpeter (19744, b), Kwok
(1975), Draine and Salpeter (1977), and Deguchi (1980).
The infrared continuum has been modeled by Jones
and Merrill (1976), Bedijn (1977), and Menietti and
Fix (1978). Chemistry models have been made by Tsuij
(1973), Goldreich and Scoville (1976), Scalo and Slavski
(1980), and Clegg, van IJzendoorn, and Allamandola
(1982). Maser models have been proposed by Elitzur,
Goldreich, and Scoville (1976) for the OH maser and by
Watson, Elitzur, and Bieniek (1980) for the SiO maser.
The dynamics of the outflow have been studied by
Kwok (1975), Goldreich and Scoville (1976), Olnon
(1977), and Menietti and Fix (1978). Because of the
complicated nature of the dynamical problem, simplify-
ing assumptions had to be made. In particular, in all of
the model calculations it has been assumed that the
temperature and velocity of the gas do not influence
each other and can thus be studied separately. This
assumption defies an essential aspect of the dynamical
problem. As will be shown in this article, the tempera-
ture and velocity of the gas are closely coupled. The
cooling of the gas is dominated by the escape of photons
produced in radiative decay of collisionally excited levels
of abundant molecules, in particular H,O (Goldreich
and Scoville 1976). The escape probability of the pho-

tons depends on the local value of the velocity gradient.
There is therefore a direct coupling between the temper-
ature of the gas and the gradient of its velocity.
Mathematically, the dependence of the cooling on the
velocity gradient introduces a nonlinearity in the
momentum equation of the gas that resembles one
encountered in radiatively driven winds in Of stars
(Castor, Abbott, and Klein 1975). It can be solved
numerically in the same way. Similarly to flows from
Of stars, there is a critical point in the flow of cool
circumstellar envelopes. A solution which connects
smoothly the region of subsonic flow at the inner
boundary with the region of supersonic flow at the outer
boundary has to pass through such a critical point.

This article is organized as follows. In § II we outline
the theory of a stellar wind, driven by radiation pressure
on grains. The new, and essential, feature of the dy-
namics—the dependence of the cooling on the local
velocity gradient— is described in some detail. Proper-
ties of the resulting nonlinear differential equation and a
method to solve this equation are delineated in § III. In
§ IV the results of the numerical integration for one
particular case are presented and discussed. Finally, in
§ V the main results of our work are summarized.

II. THEORY OF A STELLAR WIND DRIVEN BY
RADIATION PRESSURE ON GRAINS

Dust particles condensate in the stationary layer.
Radiation pressure on the dust particles accelerates them
outward. The gas is dragged along by collisions with the
dust. The mean free path of a gas atom between two
collisions with a grain is large compared with the di-
mensions of the system. The dust and gas are therefore
not positionally coupled (Weyman 1962). There are,
however, enough collisions of gas atoms with a dust
particle to transfer essentially all the momentum which
the dust particle gains from the radiation field to the
colliding gas atoms. Internal collisions of the gas re-
distribute this momentum over all gas particles. The
dust and gas are therefore momentum coupled (Gilman
1972).

We are thus considering a two-component fluid, con-
sisting of dust and gas particles. Each component has its
own density, temperature, and velocity structure. The
two components are coupled through the dust-gas colli-
sions which transfer momentum and energy from the
dust to the gas.

We want to calculate the stationary, that is, steady in
time, solutions of the flow in the circumstellar envelopes
of late-type stars. In particular, we are interested in
those flows which start subsonically at the stationary
layer and become smoothly, that is, without shocks,
supersonic far from this layer. Furthermore, we will
assume that the flow is radial and spherically symmetric.
For each component we can write three equations de-
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scribing conservation of mass, momentum, and energy.
We will first consider the dust component and then the
gas component.

a) The Dust Component

We will assume that the grains condensate instanta-
neously in the stationary layer. All the grains are as-
sumed to have the same radius, a, and the same velocity,
v,. The mean free path between grain-grain collisions is
large compared with the dimensions of the system.
There is therefore no internal interaction within the dust
component and, consequently, no kinetic temperature.
A dust grain has, of course, an excitation temperature
which is largely determined by absorption and reemis-
sion of radiation. This temperature will not be consid-
ered further, as it has no influence on the question we
want to answer. There are therefore two equations de-
scribing the flow of the dust component. The equation
of continuity

B a2
M, =4dnr’n,mpp, (1)

and the momentum equation per dust particle

dv, 0,0.L, GM,m
mgox——g-_— g rpz * - *2 g_Fd> (2)
dr 47rec, r

where  is the radial coordinate; @IL Mg, My, g, 0, and
Q are the mass loss rate, number dens1ty, mass veloc-
1ty, geometrical cross section, and flux-weighted mean of
the radiation pressure efficiency of the grains; L, and
M, are the stellar luminosity and mass; G and c, are the
gravitational constant and the velocity of light. The
three terms on the right-hand side of equation (2) de-
scribe successively the radiation pressure force, the
gravitational force, and the drag force (F,) between gas
and dust. In the outflow of late-type giants the gravita-
tional force on dust grains can be neglected in compari-
son to the radiation pressure force (Gilman 1972). It has
been shown for the case of a Ori that the grains reach
their local terminal velocity within a distance of ~10"!
cm, which is small compared with the characteristic
dimensions of the envelope, 10'¥-10" cm (Gilman
1972). We will therefore assume that negligible force is
needed to accelerate the grains to their local terminal
velocity. As discussed before, all the momentum which
the grains gain from the radiation field is transferred to
the gas through the gas-grain collisions. The detailed
question of how the grains form and how they acquire
their speed is, however, important for dense flows (large
mass loss rates). We will come back to this point in § IV.

We can calculate the drift velocity, v, of the grains
with respect to the gas in the following way (v, = v, — v,
where v is the gas velocity). Following Kwok (1975), we
will approximate the drag force on a grain by the

following expression:

Fy= gPUd(c +”d)1/2’ ®)

where p and c are the density and local sound velocity of
the gas, respectively. Equation (3) has the correct limits
for a drift velocity much larger and much smaller than
the gas velocity. Because the radiation pressure on the
grains equals the drag force, we then find for the drift
velocity

1,2

= 2 1/2
1 QrpL* 4 2
O, == — +c —C . 4

Once we know the sound velocity (i.e., the temperature)
and density of the gas, we can calculate the velocity and
density of the dust from equations (1) and (4).

b) The Gas Component

The equations expressing conservation of mass,
momentum, and energy of the gas are

My = 4mrPpo, (5)

@_’_ldP GM
Yar p dr

r)=o, (6)
and

14 2|1 5 (L)ﬂ
AT P

GM
=—pv r2*(1—1‘)+q, @)

where G.)il*, v, P, and y are the mass loss rate, velocity,
pressure, and ratio of specific heats of the gas; I is the
ratio of the drag force to the gravitational force, to be
discussed in § IIc(i); ¢ is the net heat added to the flow
per unit volume.

Following Bondi (1952) and Holzer and Axford
(1970), we introduce the following variables: the radial
distance

E=r/r,,
the Mach number
MEE,
c
the enthalpy
) (L)ﬂ_l 2 2 2
H—zv + y=1)p "2 M+Y—1 ¢,
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and the heat function
Q =4nr3q(£)§%/M,.

Here r, is a free-to-choose reference radius, and we have
used

>=vyP/p.

With these definitions, assuming y = 5/3 and using the
ideal gas law

P=pkT/pmy

equations (6) and (7) can be rewritten into

2 _ 2 2 2GM.
M>-1dM> _M +3[2H_ . (1-T)

aM? df 3H | £ roé?

—%(M2+§)Q] ®)
and

dH  GM,
Z- e u-Dre ©)

It follows that the temperature gradient is given by

2
ar pmy 4 T(1 r dv)’ (10)

-3k 23 M s
and the heat function by
0=0,-0,,

where Q, is the viscous heating of the gas due to
gas-grain collisions, and Q, is the cooling through escape
of photons.

¢) Gas-Grain Coupling

The gas and grains are coupled by the momentum
and energy transfer in gas-grain collisions. In the flow
equations of the gas this coupling enters through the
ratio of the drag force to the gravitational attraction, T',
and through the viscous heating of the flow, Q,. We will
now first derive an expression relating I' to the flow
variables, £, M, and H. Then we will do the same for Q,.

i) The Momentum Transfer

All the momentum gained by the grains from the
radiation field is transferred to the gas. Using equations
(2) and (3), we find for T' the following expression:

= agQ,pL,, ng
4'ITCIGM* P ’
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Using the continuity equations for the dust (eq. [1]) and
for the gas (eq. [5]), we may write

- ogg_’PL_*s_ﬂ (11)
dmc,GM,ym, M,’

where & is the dust-to-gas mass loss ratio, and M, is
defined by

and M, is given by (cf. eq. [4])

e fp et o] ]

where

Yd %*C[ .

With equations (11) and (12), T is related to the vari-
ables M and H.

ii) Energy Transfer from Dust to Gas

The most important heat source of the gas is viscous
heating (Goldreich and Scoville 1976). We will ap-
proximate the heat added to the flow by this process by

1
q,=§pngogvg. (13)
For the heat function Q, we then find

M, &\ M 2H Y2
Q,= 2 *og—- d2( 5 ) . (14)
mro fmy | MM 2\ M? +3

d) Cooling by H,0 Molecules

H,0 molecules are rotationally excited by collisions
with H, molecules. Subsequent radiative decay will con-
tribute to the cooling of the gas when the photon
escapes from the circumstellar envelope. Although other
molecules undoubtedly contribute to the cooling, the
H,0 cooling is the most important (Goldreich and
Scoville 1976). We introduce the cooling equations in a
two-step process. First, we assume that the H,O mole-
cules have an excitation temperature, 7, which is less
than the kinetic temperature of the gas. This leads to an
expression for the cooling rate. Second, we relate the
ratio T, /T to the escape probability of the photons.

1) The Cooling Rate

Calculating the populations of the many H,O rota-
tional levels is beyond the scope of this model. Instead
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we will follow Goldreich and Scoville (1976) in repre-
senting H,O by a classical model molecule which
contains, however, the essential features of the H,O
rotational cooling. We assume that the model molecule
has two excited rotational levels in the ground vibra-
tional state. These levels are separated by an energy
difference hv and are both situated at an energy of
about 3kT, /2 above the ground rotational state. Where
T, is the excitation temperature of the model molecules,
generally hv < 3kT, /2. The heat loss rate per unit
volume is given by the difference between excitation and
de-excitation collisions between the two levels.

4y =nyny,o{ov)hy [exp(—hv/kT)
—exp(—hv/KT,)]. (15)
Here ny, and ny o are the number density of H, and

H,O0. For the collision rate constant, {(ov), we assume
that

(ov) =¢,T'?,

with ¢, a constant. For the frequency, », we take the
classical value of the rotational frequency of an H,O
molecule with a rotational energy of 3kT, /2:

v=y,T)?,
with v, a constant (Goldreich and Scoville 1976; see
Appendix). Assuming hv << kT and hv < kT, and intro-
ducing

x=T/T,,
we may write for the heat loss due to this process

3 |72
k3mil)

M,
0= ST’.OCO(AO_ Ac)(h"o)z(

2 1724 _
><(M +3) 1 (l/x)’ (16)
2H M2 52
where p is the mean molecular weight, and 4, and A
are the elemental abundances of oxygen and carbon,
respectively. We have assumed that all of the oxygen
which is not in the form of CO is in the form of H,O.
Note that cooling occurs when x > 1, i.e., when T>T,.
Equation (16) relates the H,O rotational cooling of
the gas to the variables £, H, and M and to the excita-
tion temperature, 7.

ii) The Excitation Temperature of the Rotational Levels of H,0

We will now relate the excitation temperature, 7., to
the flow variables. The two rotational levels are con-
nected by collisional excitation and de-excitation and

radiative decay. For simplicity we have neglected radia-
tive excitation induced by stellar photons. For the same
reason we have neglected radiative excitation to higher
vibrational levels followed by radiative de-excitation to
excited rotational levels in the ground vibrational state.
At the low temperatures of the flow (7' < 1000 K) colli-
sional excitational to higher vibrational levels can be
ignored.

Only those rotational photons that escape from the
local surroundings of the emitting molecule count for
the net cooling of the gas, that is, for making T, < T. In
order to calculate the net radiative decay we have there-
fore to solve the radiative transfer equation in the line,
in principle, an enormous task. However, in an expand-
ing envelope the velocity gradient dominates the photon
escape and thermalization process (Sobolev 1960). The
source function is then geometrically localized, and the
solution of the radiative transfer equation is replaced by
the calculation of escape probabilities. Defining f,,4,,
as the net radiative decay rate of the higher level (2), we
can write for the rate equation determining the level
populations in equilibrium

% =ByAnn, “<°U>[”1 €Xp (—_k#)_ ”2] =0,
(17)
and
n=n+n,, (18)

where the n,’s are the population of level i, and 7 is the
total molecular number density. The H,O rotational
transitions are optically thick (Goldreich and Scoville
1976). The escape probability is then given by (Castor
1970)

8av 1
BZI_3hc,rB12(n,—n2)(l+28)’ (19)

where B, is the Einstein transition probability, and & is
given by

£=

(20

Using some approximations discussed in the Appendix
we can rewrite equations (16) and (17) into

(VIR
&

2H !
gxM3§3(M2—+3)(1+ 3¢) =G -D), @

where g, is a constant. Equation (21) demonstrates that
the excitation temperature (and thus the cooling law)
depends on the local velocity gradient, e, and, of course,
on the variables ¢, H, and M. This is the essence of the
coupling between the H,O rotational cooling and the
gas flow.
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III. PROPERTIES AND METHOD OF SOLUTION OF THE
MOMENTUM EQUATION OF THE GAS

In order to find the velocity and density structure of
the gas and dust and the temperature structure of the
gas, we have to solve the two differential equations (8)
and (9) (i.e., the momentum and energy equation of the
gas) together with the three algebraic equations (1), (12),
and (5) (i.e., the continuum and momentum equation of
the grains and the continuum equation of the gas).
Because the H,O rotational cooling depends on the
velocity gradient (eq. [21]), the momentum equation for
the gas (eq. [8]) is nonlinear, and the familiar theory of
the solar wind (Parker 1960; Holzer and Axford 1970) is
no longer applicable. It may be profitable to think of the
solution to the flow equations as a one-dimensional
curve in the three-dimensional space of (¢, H, M?);
these three dimensions represent, respectively, (r, T, v).
We require that along this curve e(=dInv/dInr) is
continuous. Equation (10) shows that dT/dr is then
automatically continuous. The momentum equation can
be recast in the following schematic form

_H(M*-1)

G £

e— F(¢, H, M?)

—hl(g,H,Mz)(l— l)=0, (22)

X

where we have used (see eq. [20])

L

¢ dH 3 am?

+
2H d§  2M?*(M?*+3) 4§’

£=

and F and h, are defined by

po2H _(M?+3)\GM, (1-T)| (M?+3 0
¢ 2 7o &2 3 P
and
_ & (M2+3)
1= 73 H'/2M282

where g, is a constant. The equation, G=0, is a dif-
ferential equation in e=dlnv/dlnr. It is nonlinear
because of the dependence of x on ¢ (see eq. [21]). The
momentum equation written in the form of equation
(22) is quite similar to the momentum equation encoun-
tered in the theory of radiatively driven winds in Of
stars (Castor, Abbott, and Klein 1975), despite the vast
difference in physics of the two problems. We will
follow their discussion for our equation to arrive at the
correct way to integrate the differential equation.

CIRCUMSTELLAR ENVELOPES OF M GIANTS 707

a) The Existence of a Critical Point in the Flow

There exists a critical point in the flow through which
a stationary solution should pass. If one solves the
differential equation (22), starting either at the sta-
tionary layer, the sonic point, or at large distances, one
encounters numerical problems. These numerical prob-
lems can be understood by analyzing the structure of
equation (22) in a way similar to Castor, Abbott, and
Klein (1975; see also Cassinelli 1979). Introducing the
functions G, and G,,

_H(M*-1)

e— F(¢,H,M?),
which is linear in ¢, and
G,=h,(¢§, H,M?) (1—%),

which depends in a nonlinear way on ¢ through x, the
differential equation, G = 0, can be written as

G=G,—G,=0. (23)

Considerable insight into the behavior of equation (22)
can be gained by considering a diagram of G, and G, as
functions of & for a given set of ¢, H, and M? (Abbott
1977; Cassinelli 1979). The function G, (e) is a straight
line. The slope and intercept depend on the value of the
variables ¢, H, and M2, The function G, (&) is a concave
function of & which is zero for e=—2, and which
approaches asymptotically the value 4, for large e. The
functions G, and G, change continuously in moving
outward, that is, for increasing £, but G, always has a
form similar to that sketched in Figure 1. In the solution
of the differential equation G = 0, five cases (a through
e) can be distinguished depending on the slope and
intercept of G, relative to G,. These different forms of
G, relative to G, are sketched in Figures 1a, 15, and 1c.
The solution(s) of the differential equation (22) is given
by the intersection(s) of G, with G,. The five cases are
identified in Table 1. Obviously, equation (22) can have
none (d and e), one (a and c), or two (b) solutions. Close
to the stationary layer the outflow will be subsonic
(M?*<1), and the solution is similar to case a (Fig. la
and Table 1). Far from the stationary layer the flow is
supersonic (M?2>1), and the intercept of G, (— F)
becomes negative. The solution of equation (22) is then
similar to case ¢ (Fig. lc, Table 1). For a continuous
transition from case a to case ¢ the solution has to pass
through case b (Fig. 1b, Table 1). The leftward root of
case b is continuously connected to the solution in case
a while the rightward root is continuously connected to
case c. Consequently, for a continuous transition from
case a to case ¢, the straight line G, should at some
point (¢, H, M?) become tangential to the curve G,.
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G,.case b
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/
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/ G,,case a , //
// G;/
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/ G, ,case e //
// J/
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F1G. la FiG. 1b

G, ,case ¢
/
/
/
/
/
/
/
/
/
/
/
/ -
-2 0 €
Fi1G. 1c Fi1G. 1d

F1G. 1.—(a-c) Graphical solution of the momentum equation of the gas (eq. [23]). The curved line shows G,. The straight lines indicate
several forms of G, (a through e). The intersection of G, with G, is the solution of the momentum equation of the gas. (d) Topology of the
solutions of the momentum equation of the gas in the (£, M?)-plane. For simplicity the dependence on H is ignored. The dashed-dotted lines
divide the plane into five distinct regions (a through €) corresponding to the different graphical solutions displayed in Figs. la—1c. The
dashed lines are leftward solutions of case b which connect smoothly to case a. The solid lines are rightward solutions of case b which
connect smoothly to case c. The only solution which goes smoothly from subsonic velocities close to the inner boundary to supersonic
velocities at the outer boundary is indicated by the heavy line.
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TABLE 1
PROPERTIES OF THE MOMENTUM EQUATION OF THE GAS

Number of
Case Constraints Solutions
a ... M?*<1;G,(e=0)<—F 1
b...... M?>1;G,(e=0)<—F 2
... M?>1;G,(e=0)< — F;dG/de=0 2
Covininn. M?>1;Gy(e=0)>—-F 1
d...... M?*>1;G,(e=0)<—F,G>0 none
€rnrnnn. M?<1;G,(e=0)>—F;G<0 none
This condition is given by
dG dG dG, dx
=1l 222, (24)

de de dx de

where the derivatives are taken for constant, £, H, and
M?, and dx /de follows from equation (21). The three
equations (21), (22), and (24) define a singular locus,
which is a two-dimensional topology because there are
five unknowns (£, H, M2, ¢ , and x).

In Figure 1d (adapted from Cassinelli 1979) we show
the situation regarding the solution and possible abor-
tive solution curves in the (¢, M?)-plane. This diagram
gives a rather simplified impression, because the third
dimension (H) is left out. In this diagram a correct
solution will be a continuous curve connecting the lower
left corner with the upper right corner. The five cases
mentioned before can be characterized by definite re-
gions in the diagram. Regions b and d are separated by
the singular locus. Regions a and b and regions c and e
are separated by the plane M? =1. Regions a and e and
regions b and c are separated by the condition G,(e=0)
+ F=0. These boundaries are indicated by the
dashed-dotted lines in Figure 1d. For each ¢, H, and M?
there exists one solution in region a which connects
smoothly to the leftward root in region b. A few of these
solution curves are indicated by dashed lines in Figure
1d. In region c there is also one solution which connects
smoothly to the rightward root in region b. A few of
these solution curves are indicated by solid lines in
Figure 1d. In regions d and e there is no solution to the
equation G = 0. Obviously, there is only one point on
the singular locus, hereafter called the critical point,
which connects the solutions in regions a and ¢ smoothly.
In effect this is because the solution curve should be-
come tangential to the singular locus in the critical
point. Other solutions for the flow have a singular point
at which the solutions terminate or show nodes or cusps.
To find the condition for a continuous & we use

dG _ 3G | 3G dH | 3G dM’
dé¢ 9t  OH dt  gpm2 dé

3G dx _ 3G de

toxdE " Ge dE

0. (25)

Using equation (24) and the condition that de /d§ should
exist everywhere we find

3G 3G dx (BG acggc_)dH

9t " ox ot "\om T ox oH ) dt

dG | G dx \dM?
+(3M2 " ox 8M2) a ~ > (26)
The differentials dx/d¢, dx/dH, and dx/IM?* are
found from equation (21). The derivatives dM2/d¢ and
dH/d§¢ can be eliminated from equation (26) using
equations (8) and (9). We are thus left with four equa-
tions (21, 22, 24, and 26) in the five unknowns (£, H,
M?, ¢, and x). For a stationary solution of the flow
these four equations should be fulfilled in the critical
point. Since there are more parameters than equations,
there is still some freedom left. This implies that, apart
from M, , we are free to choose £,.

The existence of a critical point is no surprise. In a
flow without cooling, the flow must also fulfill special
conditions at one special point. This is the so-called
sonic point, where M? becomes equal to one. Obviously,
for a smooth transition from subsonic to supersonic
velocities the flow without cooling should fulfill the
condition

F(¢,H,M?)=0

at the sonic point (cf. egs. [8] or [22]). The acceleration
at the sonic point is then found from equation (8) or
equation (22) using ’'Hospital’s rule.

These conditions stem from the fact that the flow
velocity becomes equal to the velocity of sound at the
sonic point. In effect this point is the farthest point
downstream which can still communicate with the flow
upstream by exchanging pressure disturbances. In-
cluding cooling in the way described above makes it
possible for the flow to communicate also by exchanging
energy through the radiation field. The local velocity of
communication lies therefore somewhere between the
local velocity of sound and the velocity of light. This
shifts the special point effectively from the sonic point
to the critical point, farther downstream.

In the limit of vanishing cooling, equation (22) be-
comes the sonic condition, equation (24) is always
fulfilled, and equation (26) becomes 1'Hospital’s rule
applied to the momentum equation at M?=1. Obvi-
ously, the rate equation, equation (21), does no longer
apply. The familiar sonic condition for a flow without
cooling is therefore a special case of the more general
case described above.

b) Solving the Flow Equations

A calculation of the flow is started at the critical
point. First, the conditions at the critical point are
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determined by solving equations (21), (22), (24), and
(26) simultaneously. Then the differential equations (9)
and (22) are integrated inward and outward. Special
care is taken to ensure that the correct root of equation
(22) is taken in region b. For a specific solution two
boundary conditions have to be specified. In our calcu-
lations we have chosen to specify the stellar mass loss
rate, M,, and the radius of the critical point, £,. The
Mach number, enthalpy, velocity gradient, and excita-
tion parameter at the critical point are then calculated
from the conditions at the critical point (egs. [21], [22],
[24], [26)]). In contrast, for a flow without cooling three
boundary conditions need to be specified at the sonic
point. This difference is due to the extra condition in
our problem (eq. [24]). It stems from the nonlinearity of
the differential equation, expressing the coupling be-
tween T, and e. Once the conditions at the critical point
have been determined, the differential equations (9) and
(22) can be integrated inward to give the conditions at
the inner boundary, in particular, the radius and tem-
perature of the stationary layer. In reality these condi-
tions are the natural boundary conditions, determined
by the mass loss process in the stellar photosphere. The
radius of the critical point and the mass loss rate will
adjust themselves until the flow fulfills these boundary
conditions. Thus, like the theory of radiatively driven
winds in Of stars, the mass loss rate is an eigenvalue
determined by the boundary conditions (Castor, Abbott,
and Klein 1975). A similar situation exists in the theory
of the solar wind, albeit that the constraint on the
mass flux is less stringent than in our case (Couturier,
Mangeney, and Souffrin 1979).

IV. RESULTS AND DISCUSSION

In this section we will show that the method of
solution described in § III is indeed capable of solving
the problem. For this consistency check we will specify a
set of parameters which enter into the calculations. We
think that the chosen set is representative for oxygen-rich
Mira variables. In a future publication we will investi-
gate how variations in these parameters influence the
flow and the observations thereof. The most important
parameters are the parameters describing the properties
of the dust. There are four of these: the flux-weighted
mean of the radiation pressure efficiency, Q,p, the size
of the dust grain, a, the dust-to-gas mass ratio, §, and
the specific weight of the dust particle, p,. We have
adopted the followmg values: Q,,=2X107%, a=5X
107%cm, 8§ =4X1073, and p, —25gcm 3. The stellar
mass and luminosity are fixed at 1 Mg and 10% Lo,
respectively. The effective temperature of the star only
enters through the flux-weighted mean of the radiation
pressure efficiency and is implicit in our assumption of
Q,,- The following parameters enter into the H,O rota-
tional cooling of the gas: the moments of inertia of the
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H,0 molecule, I, I,, and I;, which are equal to 6.4 %
10740, 1.2%x107%, and 1.76 X 10~*° g cm?, respectively
(Townes and Schawlow 1955); and the collision cross
section (ov), which is set equal to 2x10~ ! T2
cm® s™! (Goldreich and Scoville 1976). For the abun-
dance of carbon and oxygen we have adopted the cosmic
abundance values. For simplicity in the discussion 7, is
set equal to one.

For the two boundary conditions, the mass loss rate,
M*, and the radius of the critical point, §,, we have
chosen the values 1.4 X 10 g s™! (~2x 1077 Mg yr ™)
and 1.7X 10" cm ( ~ 3.5 R, for a star with an effective
temperature of 2500 K). The conditions at the critical
point, which are determined from equations (21), (22),
(24), and (26), are given in Table 2. In Figures 2, 3, and
4 we give the velocities (v, v,, and M?), the densities p
and p,/p, and the temperature T as a function of ¢ for
this model. The conditions at the inner boundary, that
is, where the velocity becomes 5% of the sound velocity,
are given in Table 3.

a) Velocity Structure

The velocities increase rapidly from the stationary
layer outward. At about 10 times the inner radius the
terminal velocities have already been reached (see
Fig. 2). This is in agreement with earlier work (Kwok
1975). The Mach number continues to rise beyond this
point because of the decrease in temperature and will
ultimately go to infinity. The calculated value of the
terminal velocity of the gas (12 km s~ ') lies in the range
5-20 km s~ !, typically observed for OH masers associ-
ated with oxygen-rich Mira variables (Dickinson and
Chaisson 1973; Dickinson, Kollberg, and Yngnesson
1975; Olnon 1977). The terminal velocity depends
strongly on the value chosen for £_. The velocity of the
grains is much larger than the gas velocity. The large
drift velocity is due to the low density of the circumstel-
lar envelope and the high radiation pressure efficiency
of the dust.

TABLE 2
CONDITIONS AT THE CRITICAL POINT

Mz/d§ . 609
dH/d§ ...... 1.74x 10" cm? s2
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F1G. 2.—The velocity of the gas (v), the drift velocity of the
dust (v,), and the Mach number of the gas as a function of £. The
dots indicate the sonic and critical points.

b) Density Structure

Going outward, the density initially drops much fas-
ter than expected on the basis of an r-squared law (see
Fig. 3). When the gas has reached its terminal velocity,
the density obviously follows such a law (cf. eq. [5]). The
total mass column density, N, is about 2.4x107?
g cm ™ 2. If one had to calculate the mass loss rate from
this column density, using the terminal velocity and the
inner radius and assuming an r-squared dependence for
the density, then the mass loss rate would be overesti-
mated by about a factor of 3.5. The value of N is,
however, quite dependent on the exact value assumed
for the inner radius, that is, the velocity at which the
calculations are terminated (cf. eq. [S]). The dust-to-gas
ratio, p,/p, in the circumstellar shell varies because of
the large drift velocity of the grains with respect to the
gas (Fig. 3). This ratio is nowhere in the circumstellar
shell equal to the value chosen for §( = 4x 107?). Again
this is due to the difference in velocity between dust and
gas (cf. egs. [1] and [5]). This effect should be kept in
mind in estimating mass loss rates from infrared con-
tinuum observations of circumstellar dust. The dust
column density is 3X 1075 g cm ™2, and the ratio of dust
column density to gas column density is 1.2X1073,
which is much less than the value assumed for &. Since
the drift velocity depends on the mass loss rate (cf. eq.
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F1G. 3.—The gas density, p, and the dust-to-gas density ratio,
04/, as a function of £ The gas density is scaled by a factor

£2/¢3.
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F1G. 4.—The kinetic temperature of the gas as a function of £.
The dots indicate the sonic and critical points.

TABLE 3
CONDITIONS AT THE INNER BOUNDARY

Eo oo 1.30x 10
ME........... 50x1072

Hy ..ooo...... 6.0x10'% cm? s~2
O i, 44x10%cms™!
Vg wvnernnnnn 2.6x10° cms™!
D ovneninnnnn 3.0x10°cms™!
PO ceereenes 1.5x10" ¥ gem™3
Tyoroeeennnn. 550 K
Ty, 550 K

€ v 3.12x 10"
dM?*/dk...... 1.9

dH/d¢ ....... 57%10" cm? 572
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[12]), one may expect variations in the observed ratios of
dust-to-gas column densities. Adopting a typical value
for the strength of the 10 pm feature in amorphous
silicates (3 10 cm? g~ !; Day 1979), we infer a 10 pm
optical depth of about 0.1.

¢) Temperature Structure

After an initial rise, the temperature drops steadily
(Fig. 4). In our calculations three competitive processes
determine the temperature of the gas: the viscous heat-
ing by gas-grain collisions, the H,O rotational cooling,
and the cooling due to expansion (cf. eq. [10]). The
behavior of these terms as a function of ¢ is shown in
Figure 5. The heating due to gas-grain collisions is more
or less constant throughout the flow. The H,O rota-
tional cooling initially increases rapidly, reaches a maxi-
mum, and then falls off again. Close to the inner
boundary, the density is high. Because of the resulting
low escape probability, only a small number of photons
are able to escape. The excitation temperature is there-
fore equal to the kinetic temperature, and the cooling is
small. Going outward the gas is accelerated rapidly, and
the cooling increases. Far from the inner boundary the
H,0 rotational cooling decreases again, because fewer
and fewer rotational levels of H,O can be populated.
Furthermore, because of the drop in density, fewer and
fewer H,O molecules are excited by collisions. For a
constant acceleration, ¢, the third term in equation (10)
is just the cooling due to adiabatic expansion. In the
absence of other heating and cooling terms and accelera-
tion, this term would give rise to a —4/3 power depen-
dence of temperature on the radius. As is obvious from
Figure 5, this term decreases sharply in going outward
from the inner radius because of the decrease in the
velocity gradient. This decrease gives rise to the increase
in temperature close to the stationary layer (Fig. 4). Far
from the inner radius the temperature drops again,

3.
T

H,0 rotational cooling

Heating and Cooling processes

sadiabatic expansion "

L
10" 10° 10° € 107

F1G. 5.—The behavior of the three different terms in the
temperature gradient as a function of £. In order to display the
changes better these terms are multiplied by £2.
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basically because of the adiabatic expansion. However,
nowhere in the flow does the temperature show a —4/3
power dependence on radius.

In our calculations of the heating function we have
limited ourselves to heating due to gas-grain collisions
and H,0 rotational cooling. As was shown by Goldreich
and Scoville (1976), the latter process will act as an
energy source for the gas close to the star, because H,O
molecules can be vibrationally excited by stellar pho-
tons. Subsequent radiative decay leaves the molecules in
an excited rotational level of the ground vibrational
state. Collisional de-excitation transfers the rotational
energy then to translational energy of the gas. For
simplicity we have ignored this process. Including it in
the rate equation governing the level population will
change the functional dependence of the excitation
parameter, x, and the H,O rotational cooling, Q,, on
the velocity gradient (eq. [21]). However, the essential
point of this calculation remains intact. The cooling will
still depend on the velocity gradient, and qualitatively
our analysis of the flow is still correct. Quantitatively
there may be some differences.

We will now discuss two cooling processes suggested
by Goldreich and Scoville (1976) which are not included
in our calculation. Goldreich and Scoville (1976) iden-
tify chemical energy stored in the gas as an important
cooling process of the gas. They consider, in particular,
the reaction

H, +OH - H,0+H(+0.7eV),

which is exothermic by about 0.7 €V in the forward
direction. Part of the excess energy goes into vibrational
excitation of the resulting H,O molecule. This fraction
of the excess energy is lost for the gas since radiative
decay will dominate over collisional de-excitation of the
H,0 molecule, and all the photons so produced will
escape. However, in their definition of the internal en-
ergy of the gas, the chemically stored energy is not
included. If it had been included, then the forward
reaction would indeed decrease the internal energy of
the gas. It should be noted, however, that the forward
reaction will act as an energy source for the kinetic
temperature of the gas since a considerable fraction of
the chemical energy is carried away as translational
energy of the product molecules. The backward reaction
is, of course, a sink for the kinetic energy of the gas. The
net result of the forward and backward reaction is that
the gas is heated. From the results of Goldreich and
Scoville (1976) we have estimated that this heating term
is less important than the excitation of H,0 molecules
through absorption of stellar photons discussed above.
Goldreich and Scoville (1976) also take into account
collisional excitation of vibrational levels of H, mole-
cules followed by radiative decay. However, at the low
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kinetic temperatures (7' <1000 K) we are interested in,
this process can be neglected.

d) The Importance of the Heating and Cooling
Processes

Our results described above show that for a qualita-
tive description of the outflow the cooling of the gas
should be included. It is of some interest to study the
quantitative influence of the flow. We have therefore
also calculated the structure of the outflow in the ab-
sence of H,O rotational cooling. In this calculation the
gas is still heated by grain-gas collisions and cooled
through adiabatic expansion.

In this calculation the critical point coincides with the
sonic point (see § IIla). Choosing the temperature at the
sonic point, the radius is found from equation (22) using
M? =1. The acceleration at the sonic point follows then
from equation 26. Finally, integrating inward yields the
condition at the inner boundary. Through a trial and
error procedure, the density at the inner boundary was
made equal to the value found in the calculation includ-
ing H,O rotational cooling (Table 3). The gas velocity is
then automatically equal to the value in the previous
calculation. The gas is now cooled only by adiabatic
expansion. Its temperature at the inner boundary is
therefore slightly higher than previously (7 = 690 K).
Choosing the temperature instead of the density as the
boundary condition introduces only small differences in
this calculation. It has no effect on the subsequent
discussion.

Neglecting H,O rotational cooling has a profound
influence on the structure of the flow. Obviously, the
largest effect occurs in the temperature, which initially
rises sharply to a maximum of about 3800 K at £ =3.3
% 10", Beyond that point it drops steadily and reaches
a value of 50 K at £ =10, The changes in the velocity
structure are, however, also nonnegligible. The accelera-
tion of the gas is much larger than in the previous
calculation leading to a considerably larger terminal
velocity (18 km s~ versus 12 km s™1).

In order to understand this difference it is important
to realize that grain-gas collisions drive the outflow in
two ways. First, there is the direct momentum transport,
described in § II¢(i). Second, the gas is heated (§ IIcl[ii]).
This causes the gas to expand, that is, to convert its
thermal energy into systematic kinetic energy. The larger
terminal velocity is therefore not too surprising. The
only way the gas can lose the viscous heat in this
calculation is by adiabatic expansion. It should be noted
that in this case the outflow is still mainly driven by
process 1. Process 2 contributes only about 20%.

If we had neglected both the grain-gas viscous heating
and the H,O rotational cooling, then no stationary
solution for the gas outflow would exist. This can be
shown in the following way (cf. Kwok 1975). In the
absence of energy sources or sinks, the sonic condition
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implies that I' should be about unity at the sonic point
(cf. eq. [22]). Using equations (11) and (12) and M? =1,
we find for the mass loss rate

_Q,pL,( 0,0, Lsd _1)‘2

R cc \dme,GMym,

Because the temperature is monotonically decreasing
outward, this yields a lower limit for the mass loss rate
for a given temperature at the inner boundary. Inserting
numerical values, we find a minimum mass loss rate of
1.7%x 10" g s™! for an inner boundary temperature of
550 K. Our chosen value for the mass loss rate (1.4 X 10°
g s~ ') is below this value, and consequently, no sta-
tionary solution to the flow exists. The physics behind
this equation is that for certain inner boundary condi-
tions the grain-gas coupling is too small for the gas to
overcome the gravitational potential of the star. Includ-
ing gas heating and cooling changes this considerably.
Obviously, the condition at the critical point differs
from the one used above because of the presence of
heating and cooling terms (cf. eq. [22]). More im-
portantly, the flow can adjust the temperature at the
critical point. This lowers the lower limit to the mass
loss rate. Clearly, both heating and cooling processes are
of prime importance for a proper understanding of
stellar winds.

e) Some Further Remarks on the Flow

In addition to the solution discussed above (§§
IVa-c), we found for a limited range of critical radii
another continuous flow solution. This solution starts
supersonically at the inner boundary and decelerates
smoothly to a subsonic flow at the outer boundary. This
is somewhat surprising since, at first sight, one would
expect that the radiation pressure on the grains will
accelerate a flow. The second solution is the result of the
viscous interaction between the dust and gas. Because of
the large drift velocity at the inner boundary, the viscous
heating of the gas is large. This gives rise to a negative
pressure gradient and therefore decelerates the flow.
Since the gas velocity decreases faster than the grain
velocity (cf. eq. [12]), the ratio of radiation pressure to
gravitational force, T, also decreases (cf. eq. [11]), and
the flow will decelerate further. This kind of solution is,
however, an artifact of our theory arising from neglect-
ing grain formation at the inner boundary. In a theory
which treats grain formation properly, this kind of solu-
tion does not exist.

Close to the inner boundary the ratio of the radiation
pressure to the gravitational force, I', should go to zero
because n, should go to zero. In the model calculation
presented above, I' indeed does go to zero. This is,
however, due to the fact that p, /p goes to zero (see Fig.
3) as a result of the large drift velocity of grains with
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respect to the gas. For increasing mass loss rates, the
drift velocity will decrease (cf. eq. [12]). Consequently,
for large enough mass loss rates (> 3X 1076 Mg yr™ 1),
TI" will not go to zero at the inner boundary unless the
kinetic temperature is very low. For a mass loss rate of
3x107% M yr~', a kinetic temperature of about 10 K
is needed for I" to become zero at the inner boundary.
This is unacceptably low. Obviously, at these high mass
loss rates, dust formation should be included if we want
to attain an acceptable solution to the dynamical prob-
lem.

f) Grain Formation

The observational picture for the circumstellar en-
velope of late-type stars losing mass, described in the
Introduction, has important consequences for our
thoughts on dust formation. The small clusters which
act as nucleation centers for the dust grains can proba-
bly not survive the high gas temperature (7 = 2000-4000
K) and the shocks in the extended pulsating photo-
sphere. Dust particles can then only start to form in the
stationary layer, where most of the activity has decayed
already. At these large distances from the star the dust
temperature will be less than the condensation tempera-
ture of the silicate material (T, ~ 1000 K). This is in
agreement with infrared interferometric observations
(Sutton etal. 1978). Because of the low temperature,
more than one molecule might be able to condense out
at the same nucleation center. The disorder in the solid
produced by this and by the low condensation tempera-
ture will broaden the infrared vibration features of the
solid particles (Day 1976; Day and Donn 1978). The
impurity molecules which also have condensed out may
give rise to the high absorptivity around 1 pm pos-
tulated by Jones and Merrill (1976) and Bedijn (1977).
Obviously, laboratory experiments on the condensation
of a supercooled mixture resembling the one expected
around Mira variables will be useful in testing this
hypothesis.

The density in circumstellar envelopes might be high
enough for other molecules to condense out on the
silicate grains when they reach the condensation temper-
ature of the particular molecule. The most abundant
molecules after H, are H,0 and CO. They have con-
densation temperatures of 90 K and 10 K, respectively
(Nakagawa 1980). Because the condensation tempera-
ture of CO is much lower than that of H,O, the H,0O
will condense in the form of pure amorphous solid water
H,O0 (as). The relatively high condensation temperature
implies that H,O (as) will be partially annealed (Hagen,
Tielens, and Greenberg 1981). Both the pure H,O (as)
grain mantle as well as the high condensation tempera-
ture are in agreement with the shape of the 3250 cm™!
(3.07 pm) absorption band observed in the spectrum of
OH 231.8+4.2 (Hagen, Tielens, and Greenberg 1982).
For stars with a mass loss rate as low as in the model
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calculations discussed above, H,O grain mantles will
not form. This is due to the low gas density at the
condensation radius of H,0 (~10'® cm). Typically, a
mass loss rate of about 107° M, yr~! is needed for an
appreciable H,O grain mantle to form. The H,O grain
mantles will not survive long in the harsh surroundings
of the normal interstellar medium. The time scale for the
destruction of a pure H,O grain mantle due to photode-
sorption and due to sputtering in cloud-cloud collisions
is estimated to be about 5X10* to 5x10° yr (Barlow
1978; Draine and Salpeter 1979).

g) The Outer Boundary

In our analysis of the flow in the circumstellar shells
of oxygen-rich Mira variables we have only taken into
account the inner boundary conditions. Far from the
inner boundary the stellar wind will merge with the
interstellar medium. Since for large £ the density drops
proportionally to £ squared, while the velocity becomes
constant, there will be a point in the flow where the
momentum transport by the flow, pv?, becomes equal to
the interstellar gas pressure, p,. In the neighborhood of
this point there will be a shock front (McCrea 1956;
Parker 1960). Assuming an interstellar gas pressure of
2.6 X 10~ 13 dyn cm 2 (Spitzer 1978), this condition yields
a radius of the shock front in our model of 2.5Xx10'®
cm. The time to reach this radius, ~7Xx10* yr, is
however, long compared with the mass loss phase. Con-
sequently, the outflow of Mira variable will not have
accommodated itself to the boundary condition at “in-
finity.”

h) Comparison with Previous Work

In previous work the essential importance of the
molecular cooling on the dynamics has not been consid-
ered, probably because previous investigators were
studying the effects of dynamics on grain formation,
chemistry, or infrared spectra. Because these problems
are already very complicated by themselves, simplifying
assumptions were introduced. They have either com-
pletely neglected the pressure gradient in the momentum
equation (Olnon 1977), assumed an adiabatic rela-
tionship (Kwok 1975), assumed that the temperature is
dominated by radiative processes (Menietti and Fix
1978), or even just assumed a velocity distribution
(Goldreich and Scoville 1976). As our results show, the
dynamics of the outflow are dominated by the cooling
of the gas. For a proper assessment of the effects of
dynamics on the other processes occurring in a cir-
cumstellar shell, the cooling should be included. In the
future we hope to investigate the effects on the dy-
namics of varying the parameters involved in the calcu-
lations, e.g., the radius and temperature of the stationary
layer and the properties of the dust. We expect that
more and more detailed velocity and temperature in-
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formation will become available in the near future, and
these calculations will be a useful guideline for ob-
servers. We also intend to study the effects of grain
growth and radiative transfer on the dynamics.

V. SUMMARY

We can summarize our work as follows. A model for
the stellar wind driven by radiation pressure on grains
has been developed. This theory includes the essential
aspect of the coupling between velocity and temperature
structure of the gas. As in the familiar theory of the
solar wind, there exists a critical point in the flow
through which a stationary solution has to pass. For a
typical Mira variable, this flow is calculated numerically,
and its characteristics are discussed briefly. It is shown
that, for a stellar wind driven by radiation pressure on
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dust grains, not only the momentum transfer but also
the energy transfer by gas-dust collisions drives the gas
outflow.

I would like to thank Dr. B. van Leer for the clarify-
ing discussions on the flow equations and the properties
of the critical point. I am grateful to Dr. F. Olnon for
the many stimulating discussions on the outflows of
Mira variables, for his meticulous checking of the alge-
bra, and his Bokma. Dr. H. J. Habing originally made
the suggestion of modeling the dynamics, radiative
transfer, chemistry, and maser emission in the outflows
of M giants in the last chapter of my thesis. I am
indebted to him for this, for relaxing the criteria for this
chapter in view of an impossible time limit, and for
support during critical stages of my Ph.D. research.

APPENDIX

In this Appendix we will derive the equations describing the rotational cooling of H,O (egs. [16] and [21]). We have
represented the H,0 molecule by a classical two-level rotor. For a good approximation of the excitation temperature
and the cooling of circumstellar H,O by this model molecule, the value of the energy difference between the two levels
(hv) and the number of model molecules in the system (n) should be chosen with care (Goldreich and Scoville 1976).
The rms value of the angular velocity of the model molecule is (Landau and Lifshitz 1980)

11 1)\]"2
o ferfg e g z)]
where the I; are the molecular moments of inertia. The rotational frequency is thus
=T, (A1)

with », a constant.

Our model molecule has (2J + 1) rotational levels available, where the rotational quantum number J is given by
(Landau and Lifshitz 1980)

J= % (kT (5, + I+ 1)]'.

A circumstellar H,0 molecule has Z,_, rotational levels available at an excitation temperature, T, where the rotational
partition function, Z_,, is given by (Landau and Lifshitz 1980)

_ kT H(eL 1)

Zrot 2h3

The appropriate value of n is thus

2027 +1) 47
"= Mo = 7 Mmo. (A2)

rot

With equations (Al) and (A2), equation (15) can now be rewritten to equation (16), and equations (17)-(20) to
equation (21).
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