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1. INTRODUCTION

The science of vacuum electron optics has benefitted tremendously from the close anal-
ogy with light optics. This analogy exists on the level of classical motion (geometrical
optics), as well as on the level of quantum mechanical motion (wave optics). The last two
decades have witnessed a surge of interest in transport phenomena in low-dimensional
semiconductor systems. Examples are the study of weak localization and conductance
fluctuations in two-dimensional (2D) electron gases, resonant tunneling through confined
states in quantum wells, transport through mini-bands in superlattices, and quantum
ballistic transport through quantum point contacts. All of these phenomena have an
optical analogue, and may be classified as manifestations of sold state electron optics.

In section 2 of this paper, we present the similarities in the fundamentals of optics
and electron optics in vacuum, to prepare the ground for a discussion of the principles of
solid state electron optics in section 3. Examples are discussed in section 4 and 5, which
deal with ballistic transport through a quantum point contact, and with 2D refraction
and (resonant) tunneling. respectively. The optical analogues of these phenomena are
discussed as well. We chose these particular examples because of their relative simplicity.
and because we wished to demonstrate how the quantum unit of conductance, ¢2/h,
appears in seemingly quite different transport phenomena (quantum ballistic transport
and resonant tunneling). The common origin is the unit transmission probability of a
single open scattering channel. The analogue for light scattering differs because e?/h
has no counterpart in optics. More precisely, the optical analogue of the conductance
1s the transmission cross section, which cannot be measured in units of fundamental
constants {the velocity of light being the only one available).

Since this article is intended as a tutorial introduction, we have chosen to give
a limited number of references to the original literature. A guide to the literature 1s
provided in section 6
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Figure L. Specular reflection of a rayaf light obevs o srvinciple of least sarll migzh. The
trajectory SAP, with equal a,ngle of incidence and reflection, has the minimum length,

as may be seen from the geometrical construction in this figure.

2. FUNDAMENTALS OF OPTICS AND ELECTRON OPTICS

2.1 Principles of Least Time and Action

A ray of light, propagating in a medium with a spatially varying index of refraction, or
reflected by mirrors, may often be treated to sufficient accuracy by the laws of geometri-
cal optics, which ignore the wave nature of light. This is analogous to the way in which
classical mechanics is often a sufficiently accurate description of the motion of material
particles in spatially varying potentials, or scattering elastically off a hard wall, even
though the wave nature of matter is not taken into consideration. The search for the
mathematical principles underlying the propagation of light and matter has intrigued
scientists since classical antiquity. In those times, when calculus had yet to be invented,
it may not have been as natural as it seems today to look for a principle governing
the local dynamics of objects (as Newton succeeded in finding for material particles).
Especially for light, it must have been quite natural to look for a principle governing
the path traced as a whole. This is what was done by Hero of Alexandria, who wished
to find an explanation for the equality of the angles of incidence and reflection for light
incident on a mirror surface. In considering the possible paths that might be taken by a
ray of light coming from a source at S, reflected at a mirror, and arriving at a point P,
he hypothesized that the path actually taken is the shortest possible one. This principle
of least path length indeed implies that the angle of incidence 6; equals that of reflection
., as may be proven by a simple geometrical construction (see Fig. 1).

Unfortunately, the minimum path length principle could not explain the refraction
of a ray of light at the interface between two media of different optical density (such as
air and water, see Fig. 2). This difficulty was removed in 1657, when Fermat introduced
his famous principle of least time, which dictates that the actual path traced out by a
ray of light is the one which takes the least time to complete. Since the velocity of light
at position r in a medium with refractive index n(r) is given by v(r) = ¢/n(r), Fermat’s
principle of least time may also be formulated as a principle of least optical path length

P
/ n(r)dr = minimum
s

Since there exist situations where the actual optical path has a maximum rather than
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a minimum length, it is more precise to express Fermat’s principle as a variational one

P
var/s n(r)dr = 0, (1)

stating that the optical path length is an extremum. Following common usage, we will
still refer to Fermat’s principle as the principle of least time. A derivation of Snell’s law
from Fermat’s principle may be found in textbooks on optics [1].

In 1831, Hamilton formulated a principle of similar generality as Fermat’s principle.
but now for the mechanical motion of material particles in spatially varying potentials
V(r). Hamilton’s principle of least action is the basis for formal treatments of classical
mechanics. Each system is characterized by a function L(r,r,¢) called the Lagrangian.
The general form of the Lagrangian can be constructed by considering the symmetries
of the system[2]. Imagine a motion starting at ¢, and ending at ¢;. One defines the
action of the motion as

t2
S=/ Ldt. (2)
t

According to Hamilton’s principle, the path actually taken is the one which puts S at an
extremum, so that varS = 0. From this variational principle one may derive Newton’s
equations of motion, describing the local dynamics of the system.

The analogy between Hamilton’s principle (involving an integral over time) and
Fermat’s principle (involving an integral over space) may be made more explicit if one
considers a single material particle with momentum p and kinetic energy T = Ip -t in
a potential V(r), for which the total energy T"+ V/(r) is a constant of the motion. The
Lagrangian for this system is L = T — V/(r), so that

ta T
varS = var/ 27dt = var/ p - dr,
t rp

where the integral is a line integral from r; = r(¢;) to r» = r(f;). Hamilton’s principle
may thus be expressed as .

T2
var/ p-dr=0. (3)
T
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A comparison with Eq. (1) tells us that the path taken by a beam of classical parti(':les
in a potential V(r) is analogous to that of a geometrical ray of light in a medium with
refractive index n(r), with the momentum playing the role of the refractive index This
analogy inspired Busch in 1925 to provide the first description of the focusing effects of
electric and magnetic fields on a beam of electrons in optical terms[3]. Soon afterwards
the electron microscope was invented, followed by other electron-optical instruments.

2.2 Huygens’ Principle and Feynman Paths

The foundations of quantum mechanics were being completed just in time to support
electron optics 1 1ts development as 1 uccestul branch of - < s .02
De Broglie[4] introduced his particle wave length A/mwv, and in 1925 Schrédinger(3]
presented his differential equation for the complex wave function, which describes the
state of a non-relativistic particle at each instant of time. Also in 1925. it was suggested

that the wave nature of particles might be demonstrated by studying the interaction of

Figure 3. If the classically allowed path from S to P is the straight (full) line. neighboring
paths have nearly the same classical action, so that they have little phase difference.
For non-classical neighboring paths (dash-dotted lines) the action (and thus the phase)
may differ strongly.

a beam of electrons with a single crystal[6]. Two years later Davisson and Germer{T7]
discovered (quite accidentally!) electron diffraction, and showed that the data were 1n
agreement with the new theory.

In view of the analogy between geometrical optics and classical mechanics discussed
above, it is natural to inquire whether a mathematical basis exists as well for the analogy
between wave optics and quantum mechanics. In fact, such questions inspired the
founding fathers of quantum mechanics to an extent that is perhaps not sufficiently
appreciated today. The analogy was pushed furthest by Feynman, in his article on
a “space-time approach to non-relativistic quantum mechanics”[8] This approach 1s
related to Schrodinger’s wave equation in a similar way as Hamilton’s principle of least
action is related to Newton’s equations. Feynman introduced a complex probability
amplitude &[r(t)], associated with a completely specified motion as a function of time
r(¢). This concept should be contrasted with Schrodinger’s wave function ¥(t), which
describes the state of a particle at a given instant of time. In Schrédinger’s approach.
the probability P to find the particle in a given region of space V at time ¢ is given by
P = [, | ¥(¢) |* dr. Feynman’s prescription treats space and time on equal footing:
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to calculate the probability that a particle has a path lying in a given region of space;

time R one should sum the amplitudes ¢[r(¢)] for all paths in that region, and take the
absolute square

P=| 3 o] (4)

paths€R

As proposed earlier by Dirac[9], the amplitudes are of the form

. @[r(8)] = constant x exp (;Sr;[r('f)}) (%
!

where S is the classical action for the path r(¢)

Salr(t)] = / Lt (6)

Thus, the amplitudes carry equal weight, and differ in their phase only. Feynman’s
principle forms a wave-mechanical analogue of Huygens’ principle in optics. The role of
the phase (w/c) f n(r)dr in optics is played by (1/A)Sa[r(¢)] in mechanics.

The difference may be clarified as follows[10]. In optics, the frequency w is a
constant along any trajectory, so that the phase shift may be written as

/pdmk dr:(w/c)/pathn(r)dr, (7)

with & = wn/c the wave vector. In quantum mechanics, the energy £ need not be a
constant along the (possibly non-classical) path, so that the phase shift is

1 / 1 1 .
- p-dr— — Edt:—/ p-r— F)dt (8
h path A path A path( ) )

For non-relativistic motion. and in Cartesian coordinates, one has p-¥— £ =27 — (T +
V) = L, so that the phase shift along the path equals (1/%) fpath Ldt = Sa/h.

One of the most appealing aspects of Feynman’s path integral formulation is that
it gives insight in the connection between classical mechanics and quantum mechanics.
In the classical limit & — 0, so that the phase factors of neighboring trajectories differ
wildly — except for the classical paths, for which var Sy = 0. Thus, one may imagine
a classical path (obeying Hamilton’s principle of least action) to be the result of the
constructive interference between neighboring trajectories of constant phase, whereas
non-classical paths are suppressed because of destructive interference (see Fig. 3). A
similar connection exists between Fermat’s principle of least time for geometrical optics
and Huygens’ principle in wave optics.

Feynman’s path integral formulation is completely equivalent to the Schrédinger
equation. The connection may be established by defining the wave function ¥(r,¢) with
initial condition ¥(r,0) = &(r) as the sum or path integral of the complex amplitudes
#{r(¢)] over all paths with r(0) = 0 and r(¢) =r,

r(t)=r i
¥(rt)= 3 exp (35u0r(0)]) ©)

r{0)=0
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2.3 Wave Equations

Let us finally examine the analogy between optics and electron optics from the wave
equation pomnt of view The Schrodinger equation for an electron in a potential V(r)
reads

R? ¥(r,t)

—— VA (r, t) + V(£)P(r,t) = th—"2, 10

V() + V() U(r, 1) = b (10)
which reduces to a stationary wave equation on 'substltuth a mono energetic wave
V(e = Ty po= D000

2 2m
ViW,(r) = 2T (F —V(r)) Uo(r) (11)
This implies a guadratic dispersion relation
h2k2
E-V = (12)

for a plane wave ¥y o €7 1n the case of a slowly varying potential

In contrast, the wave equation for the electric field £(r,¢) of an optical wave 1n a
medium with refractive index n(r) is second order in time !

1 92 N

ViE(r,t) = —E—O—CEEE(P(I-,t)—i—coE(r,t)) (13)

For a monochromatic wave £(r t) = &(r)exp(—iwt) in a hinear medium with polariza
tion P(r,t) = (n(r)? — 1)e&(r, t) this reduces to the Helmholtz equation

V2&(r) = — ("(Z)“ygo(r) (14)

which imphes a lnear dispersion relation

k
w:c—- (15)
n

Electron waves and light waves thus obey similar stationary wave equations, (11) and
(14) A companson of these equations tells us again that electron wave optics 1s similar
to hght wave optics 1f we treat the momentum (2m(E — V))¥/? as the refractive index

2.4 Limitations of the Analogy

The analogy between electron and wave optics 1s not a perfect one In this sub-section
we briefly discuss some fundamental limitations of the analogy

The different dispersion relations (12) and (15) imply that an electron has a wave
length A = 2« /k that 1s inversely proportional to 1ts velocity (v = dE/Adk = h/mA,
whereas a photon has a wavelength that 1s directly proportional to 1ts velocity v = ¢/n =
dw/2m As a result, Snell’s law, expressed 1n terms of phase velocities, reads differently
for electrons and photons (see section 5)

Further differences were discussed by Ehrenfest[11] He pointed out that the elec-
tron wave function ¥ i1s not an observable quantity, whereas the electric field £ or the
magnetic fleld B 1s An imphcation 1s that ¥ 1s an intrinsically complex quantity, but

1In denving Eq (13) from Maxwell’s equations a term containing a spatial derivative of n(r) has
been neglected This 1s Justified if n varies more slowly than £, 1e slow on the scale of the wave length
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Figure 4. A set-up for the measurement of the two-terminal conductance of a wire of
length L and cross-sectional area A.

€ is real. (When one writes £ = £¢e*T one really means £ = Re[£e*7T].) For light
one could just as well have opted to work exclusively with real quantities, but this is
impossible for electrons. A second difference mentioned by Ehrenfest is that | ¥ [®is a
probability density, but | £2 + B? | an energy density. If there is only a single energy in
the problem, then the energy density is also a probability density (apart from a propor-
tionality factor). However, for non-monochromatic light, it is impossible to obtain from
| £2 + B? | the probability that one may find a photon in a given region of space-time.

Feynman has pointed out[8] that —whereas his formulation of quantum mechanics is
exact- Huygens’ principle is not. The reason is that the optical wave equation is second
order in time. In an exact theory of optical waves it is necessary to specify the derivative
of the wavefunction (in addition to its amplitude and phase) on a given wavefront, to
be able to predict its further evolution in space and time. This is known as Kirchoff’s
modification of Huygens’ principle.

It is possible to construct an approximate wave equation for light which is more
closely analogous to Schrédinger’s equation because it is also first order in time. This
may be done using the slowly-varying-envelope approximation[12]. There are some in-
teresting analogies that may be fruitfully discussed in terms of this Schrédinger equation
for light, one example being the analogy between Andreev reflection of electrons at nor-
mal metal-superconductor interfaces and optical phase conjugation[13, 14].

Additional differences exist, such as the different statistics for electrons and pho-
tons, but these require a discussion beyond the level of the Maxwell equations.

3. PRINCIPLES OF SOLID STATE ELECTRON OPTICS

The main theme of this paper is the idea that transport of conduction electrons in the
solid state can in many different regimes be treated as a form of electron optics In this
section, we discuss the basic principles which justify such a treatment.

3.1 Electrical Conduction in Linear Response

An elementary electrical circuit consists of a conductor connected via a pair of contacts
and leads to a voltage source (Fig. 4). A current [ flows through the conductor in
response to the application of a voltage difference V' between the two contacts. For
small applied voltages, / depends linearly on V. This is the regime of linear response.
The coefficient of proportionality between current and voltage is the conductance G =
limy_,o I/V. The conductance of a macroscopic and homogeneous conducting wire in
zero magnetic field is proportional to its cross-section 4 and inversely proportional
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to its length L. The coefficient of proportionality is the conductinty o, defined f)y
G = (A/L)o. The conductivity relates the current density y = I/A to the electric field
E=V/Lbyj=c€&.

We emphasize the difference between conductance and conductivity. The conduc-
tivity is a property of the material, while the conductance is a property of a specific
sample (including contacts and leads). If the conductor is too small or not homoge-
neous, then its conductance does not scale with the dimensions of the sample and can
not be obtained from the conductivity of the material. Since conductance is a concept
of a more general experimental significance than copductivity, one needs a theoretical
framework wnich deals with ine conductance exphicitly

The most important property of the linear response regime 1s the possibility to
relate the conductance and conductivity to Fermi level properties of the conductor.
The Einstein relation is one such relation, the Landauer formula another. The Einstein
relation expresses the conductivity tensor as the product of density of states and diffusion
coefficient, both evaluated at the Fermi level £r. The Landauer formula relates the
conductance to the transmission probability at Er. Since the Landauer formula involves
the conductance, rather than the conductivity, it is more generally applicable than the
Einstein relation. The Einstein relation is the more familiar of the two, so we discuss it
first. We restrict ourselves in this article to non-interacting electrons.

3.2 Einstein Relation

The Einstein relation follows from the thermodynamic rule that the current density is
zero if the electrochemical potential p is uniform throughout the sample. The elec-
trochemical potential u is the sum of the electrostatic potential energy —eV and the
chemical potential (or Fermi energy) £r. A difference in electrochemical potential be-
tween two regions in the sample means that energy is gained (or lost) on transporting an
electron from one region to the other. The system is thus not in equilibrium. Electrons
will drift from the high g region to the low u region, until the electrochemical potentials
are equalized.

The conduction electrons in a semiconductor or in a metal form an electron gas.
moving randomly through the crystal lattice. Through the interaction with the periodic
electrostatic potential due to the lattice, the quantum states accessible to these electrons
are Bloch states organized in bands, with dispersion relation E,(k) and density of states
on(E). For our purposes it is sufficient to consider only a parabolic conduction band, for
which E(k) = h%k?/2m, with m the effective mass (which is typically less than the free
electron mass). The electrons occupy the available states according to the Fermi-Dirac

distribution function
f(E — Er) =[1+ exp(E — Ep)/kT]™". (16)

The density of electrons in the partially filled conduction band is thus given by
n= [ o(BI(E -~ Er)iE. (17)
0

When EF is more than a few kT below the bottom of the conduction band E.(i.e. in
the band gap, where no states are available), the electron gas density is very low, and
the Fermi-Dirac distribution may be approximated by the classical Maxwell-Boltzmann
distribution. One then speaks of a non-degenerate electron gas. In this article, however,
we are concerned with the opposite limit of a degenerate electron gas, where Ep —
E. > kT. We will now derive the Einstein relation for such a degenerate electron gas,
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Figure 5. A gradient in the electrochemical potential ¢ = —eV 4 Ef can be caused by
an electric field £ = —VV, or by a density gradient Vn = p(Er)V Ep.

considering for simplicity the limit of zero temperature (the generalization to a finite
temperature is straightforward).

At T = 0, EF is the energy of the highest occupied energy level, measured relative to
the conduction band bottom. As illustrated in Fig. 5, a gradient in the electrochemical
potential g = —eV + Ep can be caused by an electric field £€ = —VV, or by a density
gradient Vn = p(Er)V Ep

Vu = e€ + p(Ep) ' Vn. (18)

An electric field induces a current density jgrie = o&. A density gradient induces a
current density jdiffusion = ¢DVn, with D the diffusion constant. If Vu = 0 we have
from Eq. (18) that Vn = —ep(Er)E. Hence, the total current density is

J = jdrift + Jdiffusion
= [0 — e*p(Er)D)E, whenVy = 0. (19)

The requirement j = 0 when Vu = 0 (for arbitrary &) yields the Einstein relation for a
degenerate electron gas at T = 0

o = e’p(Er)D. (20)

Because of the Einstein relation we can write

j = eDVn+cof
= oVEp/e ~oVV
= oVyu/e. (21)

This relation expresses the fact that the fundamental driving force for the current in a
system out of thermal equilibrium is V.2

For small Vn, and at low temperatures, only states near Er contribute t0 Jdiffusion-
The diffusion coefficient D is thus by definition a Fermi level property. The current jgris;
caused by an electric field in general contains contributions from all states below Ef.
The different distribution over energies of drift and diffusion currents arises because e€
is a force which enters in the equations of motion, and hence acts on all electrons, while
Vn is a “thermodynamic” force, which only affects the occupation of states near the
Fermi level. The importance of the Einstein relation (20) is that it shows that, although

2Thus, a “voltmeter” actually measures g, not V, and a “voltage source” maintains a constant
difference in electrochemical potential between its two terminals.
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Figure 6 a An 1deal electron waveguide connected through ideal leads (the gradually
widening regions) to reservoirs at different electro-chemical potentials b Plot of the
dispersion relation for the lowest three one-dimensional subbands in the waveguide The
combination of a reservoir and an 1deal lead ensures complete filling of all available states
up to the electro-chemical potential of the reservoirs (at zero temperature)

o 1s not manifestly a Fermi level property of the sample, 1t can nevertheless be expressed
entirely in terms of Ferm level properties This fact 1s at the heart of solid state electron
optics, because 1t allows us to treat electrical conduction as a transmission problem of
(nearly) monochromatic particles

The Einstemn relation for the conductivity may be generalized to a relation for the
conductance Imagine two wide electron gas reservoirs having a shght difference én
n electron density, which are brought into contact by means of a narrow channel, as
m Fig 6a A current / will flow in the channel, carried by electrons with energies
between the Ferm energies Er and Ep + 6u 1n the low and high-density regions At
zero temperature, and for small én, one has §u = én/p(Er) The diffusance D 1s defined
by I = eDén, and 1s related to the conductance G by

G = *p( Ex)D, (22)

which implies

I=Gébufe (23)
Eq (22) 1s a generalization to the conductance G and diffusance D of the Einstemn
relation (20), and 1s derived 1n a completely analogous way The implication 1s that one
may express the conductance in terms of the properties of the quantum states at the

Fermi level

3.3 Electron Waveguide

The prototypical conductor 1s an electron waveguide An ideal waveguide has completely
smooth boundartes, a uniform electron density along the channel, and an absence of
defects that might scatter electrons Some elementary properties of the propagating
modes 1 an electron waveguide, which we will need to determine its conductance are
derived here We consider a cylindrical conducting channel along the z—axis, defined by
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a lateral confining potential V(y, z). For such a potential, the motion in the z—directidn
is separable. The Hamiltonian has the form (for a single spin component)

p?
H= o +V(y,2) (24)

with p? = pJ + pl + p?. Because the momentum p, = —:£39/0z along the channel
commutes with 7, the eigenfunctions of H can be chosen to be also eigenfunctions of
pz. The wavefunction

(r|n, k) =W, i(y,z)e™ (251

1s an eigenfunction ot p, with eigenvalue Ak. It is also an eigenfunction of 7 with
eigenvalue E,(k) if ¥ satisfies

52 92 K% B2 B2k2
[ dm g ImdS | om

V(. z>} Uonlr2) = Ba(B)Tus(,2).  (26)

Eq. (26) is the Schrédinger equation for motion in the y — z plane in the effective
potential

B2k?
‘/e 2 3 k = 7
7,2, 8) = V(y,2) + 5
Because the motion is bounded, Eq. (26) has for each k a discrete set of eigenvalues
E,(k),n=1,2,.... It should be emphasized that V.g, since it depends on %, is not a true
electrostatic potential (which should only depend on the coordinates). The eigenvalues
E, (k) depend quadratically on &,

(27)

B2k2
2m

The conventional terminology in solid state physics refers to the collection of states
for a given value of n as a one-dimensional subband. In a waveguide terminology, the
index n labels the modes, and the dependence of the energy E, (k) on the wavenumber
k is called the dispersion relation of the n—th mode. The dispersion relation (28) is
illustrated in Fig. 6b for the lowest 3 subbands in an electron waveguide. The lowest
energy on the curve E, (k) is the cutoff energy E™® of the n—th mode. The propagating
modes at energy E are those for which E™® < E so that the equation E,(k) = E has
a solution for a real value of k. The wavefunction (25) is then a non-decaying plane
wave along the channel. The modes with ™" > E do not propagate at energy E. A
localized perturbation (such as the quantum point contact considered in section 4) can
excite such evanescent modes, but they then decay exponentially along the channel. For
a propagating mode, one can define the group velocity

14B,(k)
nodk

In view of Eq. (28), one has v,(k) = %k/m. Note, however, that the group velocity
differs from the velocity fik/m derived from the wavenumber (the phase velocity) if one
places the waveguide in an external magnetic field[22].

To calculate the conductance, we need to know the number of states in a given
energy interval, in addition to their velocity. The number of states for the n—~th mode
in an energy interval [E,(k), E.(k) + dE,(k)] in a waveguide section of length L may
be written as p,(E)LdE,(k), where p,(F) is the density of states per unit length. This

En(k) = B™ + (28)

v (k) =

(29)

279

kT




number is equal to 4Ldk/2nr (the factor of 4 contamns a factor of 2 from the spip-
degeneracy, and another factor of 2 from the two velocity directions) We thus find for
the density of states of a single subband

2 (dE(R)7") _ 2m 12 e
m(B) =2 <77;“ > = (m) (30)

Comparison with Eq (29) shows that the density of states of a waveguide mode 1s
inversely proportional to 1ts group velocity,

o BV e (whoa(F)/2)71 (30

It 1s useful to define also the density pi of positive velocity states, which 1s just one halt
Pn> pn(E)T = (rhv,(k))~'. The density of states for a multi-mode electron waveguide
1 a 2D electron gas with a hard-wall confining potential is shown n Fig. 7.

3.4 Conductance of an Ideal Electron Waveguide

To calculate the conductance of an electron waveguide, we adopt Landauer’s viewpoint,

“NW &

PE)

E,E, Eg Er

Figure 7 Density of states of a multi-mode electron waveguide in a 2D electron gas,
with a hard-wall lateral confining potential.

which is to treat transport as a transmission problem. This point of view 1s justified by
the following considerations. The inelastic scattering length at low temperatures can be
quite long (on the order of 10 um), exceeding the length of micron or sub-micron sized
conductors, typically used for the study of quantum transport It 1s then reasonable to
ignore nelastic scattering in the conductor entirely, and to assume that 1t occurs in the
contacts exclusively. Ideal contacts function as electron reservoirs A source reservoir at
electrochemical potential Ep+8u feeds the conductor with an incoherent flux of incident
electrons, a second reservoir at electrochemical potential Fr 1s a drawn for the electrons
that have traversed the conductor. The conductance can thus be expressed in terms of
the transmission probability from source to drain. Elastic scattering in the conductor
reduces the transmission probability, because some electrons are reflected back mnto the
source contact

In this section we consider the case of an ideal electron waveguide between two
ideal contacts. An ideal contact can be formed by inserting a smoothly widening region
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(an ideal lead) between the reservoirs and the waveguide proper (see section 4 for a
discussion of the role of a smooth region). Because of the assumed absence of scattering
processes in the waveguide, an electron occupying a certain quantum state | n, k) at one
point in the waveguide will occupy the same state further downstream. The assumption
of ideal contacts implies that within the waveguide the right-moving states are occupied
up to Fr + 8y (the electro-chemical potential of the left reservoir), while the left-moving
states are occupied up to Er (cf. Fig. 6b). We write I = E,}Ll I, with I, the current
in mode n and NV the number of propagating modes. The current I, is carried by the
occupied states in mode n with energy between £r and Fr+6p. States below Er give no
net contribution to the current, because the contribution of each positive velocity state
cancels against that of the corresponding negative velocity state. The amount of current
41, carried by stapes ~f mede 7 1 the .nfinisesimal ineerval (Bnla), Zn(k) + dEL (k)] 1s
given by the product of the charge e, the number of positive velocity states in that
interval p}(F)dE, (k), and the group velocity v,(k). This yields simply

dI, = %dE,,(k), (32)

because the group velocity cancels against the density of states, cf. Eq. (31). Again, we
assume a two-fold spin degeneracy of the energy levels, hence the prefactor of 2. The
total current 7, in mode n follows on integration from Ep to Er + éu,

9¢ [Er+bp

I, = dE, (k) = 255;4. (33)

h Ep
Remarkably, for an ideal electron waveguide, the current I, induced in mode n
by a difference du in Fermi energies between the ideal contacts, equals (2¢/h)dy inde-
pendent of mode index or Fermi energy. The current in the channel is shared equally
(“equipartitioned”) among the NV propagating modes at the Fermi level, because of the
cancellation of group velocity and density of states (cf. Egs. (29) and (30)). Since
G = I/(6p/€), this equipartition rule implies that the conductance of an ideal electron
waveguide is quantized in units of 2e*/A:
2e?

G=5-N, (34)

with NV the number of propagating modes in the waveguide.

It is instructive to consider the special case of a channel in a 2D electron gas,
defined by a square-well confining potential. In this case, the equipartitioning of the
current among the modes can be understood graphically, see Fig. 8. This diagram
shows the Fermi circle of an unbounded 2D electron gas in k—space. The right-moving
states in the energy interval (Eg, Ep + du) are shaded. The modes in the channel (of
width W) correspond to the pairs of horizontal lines at &y, = nx/W,n = 1,2,.... The
number of propagating modes at the Fermi level is V = Int[kpW/x]. Each mode can be
characterized by an angle ¢, (indicated in Fig. 8), such that n = (kgW/7)sin ¢,. The
group velocity v, = kk;/m is proportional to cos ¢,,, and thus decreases with increasing
n. However, the decrease in v, is compensated by an increase in the number of states in
the shaded region in Fig. 8. This number is proportional to the length of the horizontal
lines within the shaded region, and hence to 1/cos ¢.. The current I, in mode n is
proportional to the product of group velocity and number of states (per unit channel
length), and hence the dependence on the mode index n drops out. Each mode carries
the same amount of current.
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These correspond to quantized values for &k, = +nw /W, and continuous values for k.

3.5 Landauer Formula

We need to take just one more step to arrive at the Landauer formula, for a conductor
with scattering (for example due to impurities). Scattering causes partial reflection of
the injected current back into the source reservoir. If a fraction T, of the current I,
injected by the source reservoir is transmitted to the drain reservoir, then the total
current through the conductor becomes I = (2¢/h)ép Zivﬂ T.. Using G = I/(bufe)
one obtains the Landauer formula

Eq. (35) may also be written in the form

) 2¢e? N 2 2e?
— E : =2 t :
G = A 2 | tan | 3 Tret?, (36)

where T, = Efle | tmn |* has been expressed in terms of the matrix t (with elements
tmn) of transmission probability amplitudes from an incident mode » to a transmitted

mode m.
So far, we have treated the case of zero temperature, where only electrons at the

Fermi level have to be considered. This may be expressed in Landauer’s formula by
making the energy dependence of the transmission probability explicit

Z T.(Ep) = T T(EF). (37)
At finite temperatures, energies within a few £7 from Er have to be taken into account.

The current 7 may now be written as the difference /15 — Iy of the current from source
to drain

112_—/f (Br + 6T (E)aB
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and the current from drain to source

Iy = 2—he/f(E — Ep)T(E)dE.

For small §u one has f(E — (Er + 6p)) = f(E — Ep) — (8f/0E)éu, so that

_ 2 [T (_0F
=% ( aE) T(E)dESu,

or, in view of Eq (23)

”-%e_z_[oo/_gji\'ﬁ(g,dr -
hoJo \ OE/

This is the finite temperature generalization of the Landauer formula. The effect of a
finite temperature 1s to average T'(E) near Er over a range of energies of a few k7 1n
width.

4. CONDUCTANCE QUANTIZATION AND TRANSMISSION STEPS

4.1 Quantum Point Contacts

In the previous section we have shown that the conductance of an ideal electron wave-
guide, attached to ideal contacts, is quantized in units of 2¢?/A (for a two-fold spin-
degeneracy),
2

G = 2—2—1\’ , (39)
with N the number of propagating modes at the Fermi level. In 1988, 1t was discovered
[15, 16] that the conductance of a quantum point contact obeys Eq (39) to a quite
reasonable accuracy (better than 1 %). A quantum point contact is a constriction
in a 2D electron gas, defined electrostatically by means of a split gate on top of the
heterostructure (a schematical view is given in Fig 9). In the experiment[15], the width
is continuously variable from 0 to 250 nm, or from 0 to about 7 times the Fermi wave
length of the electrons in the 2D electron gas. The length is much less than the mean
free path, so that transport through the point contact is ballistic. The conductance
of a quantum point contact is shown in Fig. 10. Each step reflects an increase in the
number of propagating modes by one due to the increase of the point contact width.
This effect is a manifestation of the equipartition of current among an integer number
of propagating modes in the constriction, each mode carrying a current of 2e%/h times
the applied voltage V, as in an ideal electron waveguide.

It remains to be explained, of course, why the quantum point contact behaves as an
ideal electron waveguide, since diffraction at the entrance and exit of the constriction
might be expected to induce large deviations from precise quantization. To analyze such
deviations it is necessary to solve the Schrédinger equation in the narrow point contact
and the adjacent wide regions, with plane wave boundary conditions at infinity. The
resulting transmission coefficients determine the conductance via the Landauer formula
(36). This scattering problem has been solved numerically for point contacts of a variety
of shapes and analytically in special geometries. When considering the mode coupling
at the entrance and exit of the constriction it is important to distinguish between the
case of a gradual (adiabatic) and of an abrupt transition from wide to narrow regions.

If the constriction width W(z) changes sufficiently gradually, the transport through
the constriction is adiabatic, i.e. without intersubband scattering[18]. The transmission
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2D - electron gas

Figure 9. Schematic cross-sectional view of a quantum point contact, defined in a high
mobility 2D electron gas at the interface of a GaAs-AlGaAs heterostructure. The point
contact is formed when a negative voltage is applied to the gate electrodes on top of
AlGaAs layer.
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coefficients then vanish, | ., |?= 0, unless n = m < Ngjn, With Npi, the smallest
number of propagating modes in the constriction. The conductance quantization (39),
with N replaced by Numin, then follows immediately from Eq. (36). The criterion for
adiabatic transport is dW/dz S1/N(z), with N(z) ~ keW(z)/7 the local number of
subbands. As the constriction widens, N(z) increases and adiabaticity is preserved only
if W(z) increases more and more slowly. In practice, adiabaticity breaks down at a
width Wy, which is at most a factor of two larger than the minimum width Wiy;,.
This does not affect the conductance of the constriction, however, if the breakdown of
adiabaticity results in a mixing of the subbands without causing reflection back through

the constriction. If such is the case, the total transmission probability through the -

constriction remakns the same as ‘in th_gé, }'1}fpothetical case of ‘fu]ly’ adiabatic transoort,
As pointed out by Yacoby and Imry[17], a relatively small adiabatic increase in width
from Wpin to Winax is sufficient to ensure a drastic suppression of reflections at Wy,,..
The reason is that the subbands with the largest reflection probability are close to cut-off,
i.e. they have subband index close to Npyax, the number of subbands occupied at Wig,,.
Because the transport is adiabatic from Wi, to Wiax, Only the Ny, subbands with the
smallest n arrive at Wiax, and these subbands have a small reflection probability. In the
language of waveguide transmission, one has impedance matched the constriction to the
wide regions. The filtering of subbands by a gradually widening constriction restricts
the emission cone of electrons injected through it into the wide regions. This horn
collimation effect[19] has been observed experimentally{20]. It allows one to perform
solid state electron optical experiments using a quantum point contact as injector of a
collimated electron beam (cf. section 5).

An adiabatic constriction improves the accuracy of the conductance quantization,,

but is not required to observe the stepwise increase of the conductance. Calculations
have shown that well-defined conductance plateaux persist for abrupt constrictions, al-
though transmission resonances lead to periodic dips in the conductance below the
quantized plateau value[21]. Further details and references to the literature may be
found in ref. [22].

The results described above do not only explain the conductance quantization of a
quantum point contact, but they also show that equipartitioning of the current over the
waveguide modes inside the constriction 1s approximately valid regardless of the detailed
shape of the connection to the wide 2D electron gas. This provides some justification
for the use of the concept of a reservoir and an ideal lead, and thus for the use of the
Landauer formula in practical cases.

4.2 Steps in the Optical Transmission through a Slit

The unexpected discovery of the conductance quantization of a quantum point contact
has led to a search for its optical analogue. A considerable literature exists on the
coupling of light into fibers, or microwaves into waveguides, but the optical analogue
was not noticed previously. At the basis for the analogy are three facts.

- Firstly, as we have seen, linear response implies transport at £g, which is analogous
to optical experiments with monochromatic light. The Helmholtz equation (14) for the
electric field of monochromatic light in vacuum (polarized in the z—direction)

V2, = —(w/c)%E, ’ (40)

is similar to the Schrédinger equation. Secondly; the boundary condition at a metal
surface parallel to z is that £ vanishes, which corresponds to the vanishing of the
electron wavefunction ¥ at an infinitely steep potential wall. Thirdly, the expression for
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Figure 12 Experimental demonstration of equidistant steps in the transmission cross-
section of a shit of adjustable width A 2D Lambertian monochromatic source 1s obtarned
by illuminating a diffusor consisting of a random array of paraile] fibers by a diode laser
beam An integrating sphere is used to obtain a detector signal proportional to the
transmission crosssection [From Montie et al (23]

per mode But in the previous paragraph we have proved that the two ratios are the
same, hence T = T” and (h/2e?)G = (2/A)o The dependence of transmission cross
section o on the sht width W should thus be a stair case, with steps separated by A/2,
and with a constant step height given also by A/2 The role of the shape of the sht
should be 1dentical to the role of the shape of a hard wall confining potential 1n the case
of a quantum point contact This 1s why one expects ¢ = NA/2 to a good aproximation

This prediction[25] has been verified expenmentally by Montie et al {23] Their
result 1s reproduced m Fig 12 The generalization of the optical analogue to the case
where a dielectric fills the wide regions (but not the sht) 1s straightforward since (as
explained in the next section) a negative step 1n refractive index 1s analogous to a
positive step in the electrostatic potentral (or in the local conduction band bottom) n
the solid state electron optics case Such a step reduces the number of propagating
modes 1n the constriction - but has no effect on the conductance quantization

Absorption at the shit boundaries gives rise to a rounding of the transmission
steps[23] This effect has of course no counterpart in solid state electron optics We
also note that, unlike 1n the electronic case, 1t 1s straightforward to generalize the opt:
cal expeniment to transmission through an aperture (a hole in a screen) Although this
experiment has not yet been performed, the theory[25] predicts o = NA%/2r for this
case (assuming that the two independent polarizations of the modes n the aperture can
be resolved)

5 REFRACTION AND TUNNELING

5.1 Snell’s Law for Electrons and Photons

Consider a 2D electron gas, with Fermu energy Fp, containing a region of reduced
electron density The local conduction band bottorn 1s raised 1 such a region to a value
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WL diffusor

n electron at the Fermi level, impinging on the region of reduced density, thus
potential barrier of height £.. Classically, there are just two possibilities. The
n will be reflected specularly if its kinetic energy along the direction of normal

1ce is less than E., or

E detector

Er cos® §; < E. — reflection (44)

tory (1) in Fig. 13a). The electron will be refracted when

2 .
Fr cos® 0; > E. — refraction (45)
' @ ) A
tory {2)1n Fig 13a) One mav derre Snell o 'uv -ar sirocion 0 undoet.un
i A .
8 12 18 20 24 ns by mnvoking conservation of tangential momentum
slit wdth (um) . .

kisinf, = kysinb,, (46)

ation of equidistant steps in the transm
A 2D Lambertian monochromatic sourck; = (2mEp/i*)'/?, and ky = (2m(Er — E.)/%%)V/2. This result is identical to

of a random array of parallel fibers by daw in optics. In terms of the velocity v, = kk,/m, Snell’s law for electrons reads
ed to obtain a detector signal proport

ontie et al [23]] vysiné; = wv,sinbs. (47)

tices a difference with Snell’s law in optics, n; sin #; = n, sin #,, which corresponds

6), but which may be rewritt :
agraph we have proved that the two rz(4 ), but whic “ rewntten as

= (2/X)o. The dependence of transn
1 thus be a stair case, with steps separ:
sen also by A/2. The role of the shape velocity of light is v, = ¢/n, = w/k,, i.e. inversely proportional to the wavenum-
shape of a hard-wall confining potentia
why one expects o = NA/2 to a good af i[lustrated in Fig. 14 (see also Fig. 13b); this has the amusing consequence
rrified experimentally by Montie et al.;ositive lens in solid state electron optics, constructed out of a region of reduced
generalization of the optical analogue, density (i.e. with reduced velocity) has a concave shape, in contrast to optics.
ons (but not the slit) is straightforwa, positive lens made out of a material with reduced velocity (such as glass) 1s
'gative step in refractive index is ana This difference is a consequence of the different dispersion laws for electrons
sntial (or in the local conduction bandtons (cf. Section 2).

Such a step reduces the number of ing a quantum point contact to inject an electron beam at the Fermi level in a 2D
10 effect on the conductance quantizat gas it has been possible to demonstrate total specular reflection of electrons at
ies gives rise to a rounding of the trostatic boundary and magnetic focusing[25], and focusing of an electron beam
no counterpart in solid state electron, electrostatic lens[26, 27].

c case, it is straightforward to generalthis section, we have discussed Snell’s law for electrons and photons in terms

gh an aperture (a hole in a screen). Altories (or rays). Alternatively, one may derive Snell’s law by matching the

1ed, the theory[25] predicts ¢ = NA%s of the wave equations for electrons or for light at the interface between two

ent polarizations of the modes in the & regions. Such a derivation adds to our understanding, but the result is the
fraction being essentially a classical phenomenon. In the next section we discuss
g, which may only be understood in terms of quantum mechanics, and which
malogue in geometrical optics.

vy sin@; = v; sin by, (48)

SLING

mneling of Electrons and Photons
Photons

1sition from refraction to tunneling occurs when the potential barrier in the re-
; C i M educed electron density is increased above the Fermi energy. The optical coun-
band bottom is raised in such a regioif thjg phenomenon is known as frustrated total internal reflection (FTIR). One
ly encounters treatments of FTIR[28, 29] as a (somewhat imperfect) analogue
wmensional electron tunneling. As we will show, a2 more satisfactory analogy

Tmi energy Ep, containing a region
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o 14. Experimental device used to demonstrate focusing of a ballistic electron beam
gle of incidence) and total reflection (fo,, et al.[26] and by Spector et al.[27] A concave lens 1s positive, even though it

1 at a potential barrier defined electroed out of a region with reduced phase velocity.
tron is refracted away from the surfac
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exists with two-dimensional electron tunneling The relevant geometrnies are depicted

Fig 15 3
Consider a monochromatic electro-magnetic wave, polarized linearly with £ in the
z—direction, propagating in the z — y plane in a medium of refractive index nr The

scalar wave equation (13) becomes
2
v? ud 2g =
£+ (C) n(z)26 = 0 (49)

Let us now see what happens at a step in refractive index, from n; to the lower value
n, We look for a plane wave solution 1n the y—direction,

=T e ply? — 1] (
Substitution of this wave in Eq (49) yields an equation for ¥(z),

&*vy w\Z 5 ol o
axz-f-{(:)n—k}\ll—-o (51)

For an incident plane wave at angle 6; with the z—axis, one has k£ = (wn;/c)sm 8,
Hence, 1n region 1 Eq (50) reduces to

2 2
g—x‘g (%) nfcos? ¥ =0 (52)
whereas 1 region 2 one has
v 2
o + (%)) (n}~n?sin?6,) ¥ =0 (53)

Tunneling of hight occurs when nZ — n?sm?8; < 0, so that Eq (53) does not have a
propagating solution (Note that the frequency w does not enter 1n this conditton )
The Schrodinger equation for tunneling at the Fermui level through a planar potential

barrier of height E. i a 2D electron gas reads

9*Y 2m

5o+ gz Broos’ ¥ =0, (54)
in the 2D electron gas, and
v 2
5o+ 33 (Broos?0i — Eo) ¥ =0, (55)

in the barrier region Tunneling thus occurs whenever Er cos? 8; — E. < 0, a condition
that depends exphicitly on the energy of the electron, Er In contrast to the optical case,
tunneling at normal incidence (#; = 0) 1s possible in the electronic case if £; > Er (The
optical condition nZ — n?sin?@; < 0 has no solution for #; < arcsinny/ng ) Apart from
these differences, a comparison with Eqs (52) and (53) shows that 2D electron tunneling
through a planar barrier 1s analogous to 2D photon tunneling (FTIR) through a region
of reduced refractive index, with the following 1dentifications

2 2
EL?EF cos’h, < (%) n? cos? 6, (56)

275—”: (Ercos® 8, — E;) <= (%)2 (n?cos® 6, — (n? —n2)) (57)

3FTIR 1s commonly studied by bringing two rectangular prisms in close proxirmty m such a way
that they nearly form a cube consisting of the two prisms separated by a narrow air gap A plane wave
mcident perpendicularly on one of the rectangular faces of a prism 1s deflected by 90 degrees through
total internal reflection On narrowing the air gap some of the light may be transmitted towards the
second prism, because of tunneling The total internal reflection 1s then frustrated
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lectro-magnetic wave, polarized linearly 1
- — y plane in a medium of refractive in E¢
s X

w2 2 (
+(2) n(2re =0, >{ -
step in refractive index, from n; to the i

X
ion in the y—direction, A ‘

)t . electron incident on a region ol increased electrostamc H
tial (reduced momentum) at an angle such that classically it would be totally
7) yields an equation for ¥(z), ed. b. Frustrated total reflection of light incident on a region of reduced refractive

(%>2n2——k2} ¥ =0

le #; with the z—axis, one has k = (u
to

» 13 3 Tunneling

Py =1y

rst relation (56) expresses noth;ng but the correspondence of the wavenumber of

w2 cident electron wave at the Fermi level to that of the incident optical wave. The
“> nicos®6;¥ =0 [ relation (57) may thus be rewritten as

2m w\2 . 4 2
-;i_z—Ec e (:) [nl — n2] , (58)
(nd = n?sin?6,) ¥ = 0. | . |
expresses the fact that a change in electrostatic potential in the electronic problem
- n? sin?6, < 0, so that Eq. (53) doest change in sq'uared .moment‘um) _corresponds to a ch'ange in the square of the
frequency w does not enter in this corive index. This specific example illustrates the assertion of Sec. 2 that electron
neling at the Fermi level through aplanis analogous to optics when one identifies the refractive index with the electron
gas reads atum.

;L‘Ep cos? G, =

andauer Formula and Fermi’s Golden Rule for Tunneling

i 2 andauer formula for the conductance in terms of the energy dependent transmis-
Fcos® 0y — Ec) ¥ =0, cobability T'(£) (for one spin direction)

occurs whenever Ep cos?8; — £, < 0,

62 d af
f the electron, Er. In contrast to the o =7 / T(E) ( 3E> dE (59)

is possible in the electronic case if E. :

1s no solution for #; < arcsinny/n;.) : applied straightforwardly to elastic tunneling. This approach is equivalent to

s. (52) and (53) shows that 2D electrore traditional approach, based on Fermi’s golden rule, as we now discuss for 1D
o 2D photon tunneling (FTIR) throuing. The generalization to the 2D case is straightforward.

lowing identifications onsider a planar barrier across which a voltage V is maintained (see Fig. 16). The

n gas regions on each side are characterized by shifted Fermi-Dirac distribution
= ( ) n? cos® 6, ns fi(E) =[1+exp(E — Ep)/kT]™! and fo(E) = [1 + exp(E + eV — Er)/kT]?
w ansverse momentum is conserved in the tunneling process, so that we can consider
2 .2 2 2
> (:) (n} cos® 8y — (n? —n2)).

-ansverse momentum state separately. The following results are for just one such

or conduction channel. The tunnel rate for an electron approaching the barrier
vo rectangular prisms in close proximity, ir

two prisms separated by a narrow air gap. !
1lar faces of a prism is deflected by 90 deg:
gap, some of the light may be transmitted
nternal reflection is then frustrated.
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from region 1 with energy £ 1s

[§
To(B) = 3 [ dBapa(E)WarlB)PS(E - B2)
= T B Wl B)F (60)

Here |Wi,(£)| 1s the tunnel matrix element, and p;( ) 1s the density of states 1n electron
gas region 2 at energy E for the specified transverse momentum state Note that po(£)
depends on the applied voltage, due to the shift in conduction band bottom 1n region
2 (see F1g 16) To armve at the current due to electrons moving from 1 to 2 we have
to sum the tunnel rate times the electron charge over 1ll occupicd tiles n rezion

excluding the occupied states 1n region 2 (in view of the Pauli principle) The result is

In = e / 2 (B)A(E)Twa(E)1 — fo E)JdE

- %/wiwl 2 P2on(E)Fu(E)pa(B)L — f2(E)JdE o1)

B e

Figure 16 Planar potential barrier separating two degenerate electron gas regions of
equal chemical potential, but with shifted Ferm: levels because of the voltage V' applied

across the barrier

The term n the integrand containing the product of Fermi functions cancels on adding
I, so that the net current 7 = 15 — I5; 1s given by

I= %/471-2'”/1zlzpl(E)Pz(E)[ﬂ(E) ~ f2(E))dE (62)

For small applied voltage f2(E) = f(E) + eV3f/OF (the subscript 1 1s now dropped)

so that one finds a linear response conductance (for a single spin direction)

¢ = _%/Ooomzlwlzlzpl(E)pz(E)g_ng (63)
= ]:—T/FIZ(E)PI(E)f(E)[l—f(E)]dE (64)

To arrive at the final result we used the identity —8f/3F = (kT)"1 f(1 — f)

This equation explicitly contains the density of states of the electron gas regions on
erther side of the tunnel barrier This may seem puzzling, because of the cancellation
of group velocity and 1D density of states in the derivation of Landauer’s formula (59)
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tates in electron
Note that po(F)
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1 to 2. we have

o Saataa L.

). The result is

(61)

gas regions of
tage V applied

icels on adding

(62)

now dropped),
n)

(63)
(64)

gas regions on
e cancellation

formula (59).

0 L

Figure 17. Rectangular planar barrier of height E., with incident wave of amplitude A.
reflected wave of amplitude £. and transmitted wave of amplitude C.

hS
To »stabilsn ihe equivalence of poth resuits. we note that the tunnel rate from region |
to region 2 may also be written as the product of an attempt frequency vy2(E) and the
transmission probability T'(E)

Flz(E) = I/]z(E)T(E) - (65)

The attempt frequency equals the group velocity of the electron incident on the barrier,
divided by twice the length L of electron gas region 1 or, equivalently.

na(E) = 1/kpi(E), (66)

where we have used the relation v; = 2L/hp; between group velocity and density of
states for one spin direction (cf. Eq. (31), which is for two spin directions). Consequently,
one may write

T(E) = hl12(E)p(E) . (67)

One may thus express the transmission probability T(F) in terms of the tunnel matrix
element, according to

T(E) = 47*[Wy 2l p1(E)pa( E) . (68)

This relation proves the equivalence of the standard result (63) for the conductance due
to tunneling through a single barrier and the Landauer formula (59). The analysis given
above closely follows the one given in 1970 in a textbook by Harrison[30]. However,
at that time it was not obVious that the result (59) applies for any value of T: the
equivalence to the Fermi golden rule formula holds only in the limit T" < 1, since this
rule is based on perturbation theory.

5.4 Rectangular potential

To illustrate how T(£) is calculated, we discuss the text-book example of one-dimensional
tunneling through a rectangular potential barrier of height E., separating two regions
of zero potential (see Fig. 17). The solutions u(z) of the Schrédinger equation in the re-
gions on either side of the barrier are plane waves with (positive or negative) wavevector
k = (2mFE)"?/h. By reference to Fig. 17 it is clear that

z<0; u(z) = Ae** 4 Be™** (69)
z>L; ulz) = Ce*, . (70)
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Figure 18 Transmussion probability versus energy for a rectangular barrier of height £
and thickness L, for the case that A%/2mL? = 0 01E, The curve has been calculated

from Eqs (72) and (75)

whereas 1 the barrier region the solutions are plane waves with wavevector x = [2m(E —

B/
0<2<L,u(s) = Fe™+Ge™, (71)

For the tunneling problem E < E., so that x 1s imaginary, & = :[2m(E. — E)]'/?/h The
transmission probability T(E) = [C|?/]A|? can be found by matching the propagating
wavefunctions 1 the regions adjacent to the barrier to the the decaying wavefunction
m the barrier The matching conditions require that both u(z) and du(z)/dz are con-
tinuous at z = 0 and z = [ The result for £ < E. reads

E?sinh®(| x| L)

1B —E) ) (72)

TE)=[1+
This general result has a number of interesting limits If the barrier 1s high and thick,
| & | L> 1 (or equvalently E. — E > h%/2mL?), then

E(E. - E)
E2

C

T(E)= 16 exp(—2 |« | L) (73)

The transmission probabihity due to tunneling 1s exponentially small for such a barrier

Eq (72) reduces to the transmussion probability for tunneling through a potential
of the form Hér, if one takes the limit | £ | L <« 1 and defines H = E.L,

e

T(E)
z

[1+ 2%
H/W(2E [m)'/? (74)

1l

The reflection probability at such a one-dimensional delta-scatterer 1s R =1 -7 =
1+ Z-%?
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Figure 19 Double planar barrier forming a well with quasi-bound state at energy £.

The above approach 15 applicable as well to the transmissron Sf =lecrrons orer
square parrier kqs (6Y)-(71) still hold, but 1n this case & 1s real. The result for £ > £,
1s

£2sin®(kL)

T(B) =1+ 55— 5y

7. (75)

A plot of T(E) is given in Fig 18, for the case that k2/2mL* = 0.01E.. The transmis-
sion resonances seen for £ > E. correspond to virtual bound states above the barrier,
occurring at energies for which <L is an integer times 7.

The resonances due to “over-the-barrier” reflection are less pronounced if the po-
tential barrier is rounded, as is often the case experimentally [31]. A similar suppression
of transmission resonances occurs in the case of the conductance quantization of a quan-
tum point contact, due to the rounding of the shape of the constriction near entrance
and exit. .

5.5 Resonant Tunneling

When two barriers are placed mn series, the transmission probability T'(£) may show
resonances due to tunneling through quasi-bound states in the well between the barriers
(see Fig. 19). The double barner is the analogue of the Fabry-Pérot resonator in optics.
A theoretical study of resonant tunneling has been made by Breit and Wigner, 1n the
context of resonant enhancement of the neutron capture cross section observed in nu-
clear physics [32]. Resonant tunneling has since become relevant for solid state physics
as well, in particular because of the proposal by Tsu and Esaki [33] to build multiple bar-
rier “superlattice” devices using semiconductor heterostructures. Evidence for resonant
tunneling through a double barrier structure was first reported by Chang, Esaki and
Tsu [34] As in most of the subsequent experiments, they measured the current-voltage
characteristic to detect the resonance as a negative differential resistance at finite bias.
In this section we will discuss instead the transmission probability at zero or negligibly
small bias, which determines the linear response conductance It will be assurned that
either the Fermi energy or the energy of the quasi-bound states in the well can be tuned
by means of an external parameter (such as gate voltage or magnetic field).

Resonant tunneling through a double barrier may be treated by summing the com-
plex amplitudes of all possible paths which finally lead to transmission. We denote the
complex transmission amplitudes of the individual barriers by #; and ¢, and the complex
reflection amplitudes by »; and r.. These amplitudes are related to the transmission
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] »‘ and reflection probabilities T, and R, (z = 1,2) by
B ‘
; 3 ; J o= R (76)
; <] 4 | T1, = 1 - R1 (77)
LS, 0
“ fx ﬁ'{t In addition to the phase shifts A¢, incurred on reflection off a barrier, there i1s a phase
! ahﬁ | shift ¢4 corresponding to traversal of the well in the positive or negative x—direction
j *{1? >1 The total transmission amplitude through the double barrier then 1s
t = f‘le"‘s*tz + 10 et et e, -

l
1 -
1 ~ ryrpete++e-)

Eies

| The transmission probability follows from T == [t|?

o

Sy

1

LA
Bk _ T,T,
B T G (79)
%,%q] M ”1 1+ RiRy — 2R "Ry cos x

bt

y i ;;;; where x 1s the total phase shift for one round trip in the well
i ]
‘ “jg}[: X = Op + O + Ady + Ay (80)
{ ! ‘IQ’ The transmission probability 7" has a maximum whenever x = n2x as a con-

sequence of destructive interference of the backscattered partial waves Since this 1s
precisely the condition for the existence of a quasi bound state in the well the reso-

|
Ei il nance occurs when the energy of the incident electron coincides with the energv E. of
; ﬁ‘h a quast bound state The maximum and minimum transmission probabilities are given
I ‘Vl by
' ;1 T, T, AT,
i 1'} Tmax = 11/2 2, 2 (81)
ks l}'&’i (1—RV?R*:  (Ti+T2)
14 L ", AV
§ § Trn Troire < g (82)
L (1+ R/°R)")?
ﬂim where the approximate equalities hold only 1f T} « 1, and T, < 1 Note that 1f the

double barrier 1s symmetric (T} = T3}, the maximum transmission probability 1s unity,
¢ regardless of the magnitude of the barrier transparencies The conductance then equals
| e?/h (for one spin direction) A plot of T as a function of x 1s given in Fig 20, for

Ty =T, =08 and 77 = T> = 02 The energy dependent transmission probabilitv
T(F) may be obtained from Eq (79) provided the phase shift x and the transmission
| probabilities of the individual barriers are known as a function of energy Foi planar

T I TG e
imtaks

1 f
JRRY
4 m‘ }l ,E rectangular barriers this may be done by the wavefunction matching method discussed
7 o ‘} : in the previous subsection [36]
% i H If the barrners are sufficiently high and thich, both Ty « 1 and T3 < 1, and T(E)
[ % v{i}i} reduces to the Breit Wigner form for energies close to a resonance, as we will now discuss
) J‘ ! [33] The phase shifts incurred on reflection off the barnier are Aé, = —7 /2, independent
2 ! ('1‘; of energy If the separation of the barrers 1s L, then the resonance condition \ = n2n
¢ iyﬁ%}lj reduces to the farmliar Bohr Sommerfeld quantization condition 2L/A = n +  (here
i i}{“{ ‘ A= 2r/L with k = (2mE)V2/f) Consider one such state at energy E. For energies
3 :“}33‘1# ! close to E; the round-trip phase shift x 1s linear mn ¢, = FE — Ei,

il !

i d _ dxdk _ _
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27, as a con-

Since this is
well, the reso-
e energy £ of
ities are given

(81)
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(83)

X/ 2w

Figure 20. Transmission probability through a double barrier as a function of the round-
trip phase shift x, calculated from Egs. {79) and (80), for 77 = T, = 0.8 (upper full
curve) and 77 = T3 = 0.2 (lower full curve). Also shown are the corresponding Breit-
Wigner lineshapes for a single quasi-bound state, calculated from Eq. (85) assuming a
linear dependence of x on £ — E, as in Eq. (84) (dashed curves).

with v = 1/hp the attempt frequency and p = (L/7)dk/dE the density of states in the
well. Close to resonance we may thus write

X = 2mn + &/hv (84)

By expanding cos x &~ 1 — (e&/fiv)? and RV =1 — 3T, we then find from Eq. (79)

iV
(Th +T2)%/4 + (&) Fiv)?
r,r,
(L/2)? + (/)2

where we have used I', = vT} and I’ = I'; + ;. Eq. (85), with its characteristic lorentzian
lineshape, is known as the Breit-Wigner formula [32]. The Breit-Wigner formula is a
good approximation of the lineshape close to a resonance, where ¢ < fiv, provided
Ty1,T2 < 1 (or, equivalently, AI' « AFE = 1/p). The deviations from the exact result
(79) can be quite large if the barrier transparencies approach unity, as shown in Fig. 20.

The Breit-Wigner formula has a wider range of validity than to the one-dimensional
tunneling problem considered here, where only a single conduction channel or 1D-
subband in the electron gas regions adjacent to the potential well couples to the quasi-
bound state in the well. As discussed by Bittiker [35], in the multi-channel case one
simply has to replace the tunnel rates I'; and I'; by the sum of the tunnel rates of the
localized state to each of the available conduction channels. This has the consequence
that the maximum transmission probability due to resonant tunneling through a sin-
gle localized state is unity, regardless of the number of scattering channels in the leads
which couple to the localized state. This implies a maximum contribution of e2/A to the
conductance (for one spin direction) for each localized state in the well, the maximum

T =

(85)
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being realized if the tunneling rates through the two barriers are equal. This importdnt
result has been found following a different route by Kalmeyer and Laughlin [37], and by
Xue and Lee [38].

~ This example and the one discussed in section 4 illustrate how e?/h may show up
in seemingly unrelated contexts (quantum ballistic transport through a point contact,
and resonant tunneling through a localized state): Further examples are the quantum
Hall effect, and universal conductance fluctuations[22]. Solid state electron optics is the
viewpoint that transport properties are in essence transmission properties of the modes
(or quantum channels) in the conductor. A single open channel universally contributes

e?/h to the condlictance. which explains why this quantity is nbiguitous in aquantum

nrapspoert. .

6. READING GUIDE

Fundamentals of the Analogy

1. R.P. Feynman, Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev.Mod.Phys.
20, 367 (1948). A lucid and self-contained description of Feynman’s path-integral formulation of
quantum mechanics, that may also be regarded as the final building block of the fundarnental
analogy between non-relativistic mechanics and optics.

2. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, vol. 11, chapter 19:
The Principle of Least Action (Addison-Wesley, New York, 1964). A personal account of Feynman’s
fascination with variational principles, which led to his formulation of quantum mechanics.

3. M. Born and E. Wolf, Principles of Optics, (Pergamon, Oxford, 1965). Appendix II describes the
basics of the analogy with electron optics.

Principles of Solid State Electron Optics

1. W. van Haeringen and D. Lenstra, eds. Analogies in Optics and Micro-Electronics, (Kluwer Aca-
“demic, Dordrecht, 1990) and also Physica B 175 (1990). Two collections of articles on analogies,
which provide an excellent reading guide for those interested in this field.

2. We would also like to refer to the Chapters in this volume by Agranovich, John, and Yablonovitch,
which deal with particular analogies between optics and solid state transport.

3. R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic
Conduction, IBM J.Res.Dev. 1, 223 (1957). The main message of this paper was that more
attention should be given to the role of the strongly inhomogeneous (self-consistent) electric field
in some transport problems, but it is most often cited because it pioneered the idea of a relation
between conductance and the transmission probability: transport is viewed as a consequence of a
flux of carriers, incident from a reservoir, rather than as a result of an applied electric field.

4. R. Landauer, Conductance from Transmission: Common Sense Points, Physica Scripta T42, 110
(1992). A highly readable discussion of some objections that one might raise (or that some have in
fact raised) against the transmission approach, complete with arguments why they are irrelevant
in many cases.

5. M. Biittiker, Four-Terminal Phase-Coherent Conductance, Phys.Rev.Lett. 57, 1761 (1986). An-
other pioneering paper, that provided the generalization of the Landauer formula (as we know it
today) to multi-probe measurements of the conductance. A reciprocity relation is derived for the
conductance (generalizing Onsager’s reciprocity relation to one for the conductivity).

6. M. Bittiker, Symmetry of Electrical Conduction, IBM J.Res.Dev. 32, 317 (1988). A detailed and
more tutorial account of the Landauer-Biittiker formalism.

7. L. Esaki and R. Tsu, Superlaitice and Negative Differential Conductivity in Semiconductors, IBM
J.Res.Dev. 14, 61 (1970). The first paper on the idea of a semiconductor superlattice, which has
had a tremendous influence on semiconductor physics ever since.

8. Y. Imry, Physics of Mesoscopic Systems, in Direclions in Condensed Matier Physics, G. Grinstein
and G. Mazenko, eds. (World Scientific Press, Singapore, 1986). A review that has set the agenda
for much of the subsequent developments in mesoscopic physics.

9. V.S. Tsoi, J. Bass, and P. Wyder, Transverse Electron Focusing as a Way of Studying Surface
Crystallography, Advances in Physics 41, 365 (1992). A review of pioneering work on ballistic
electron transport in metals,

300




This important
hlin [37]. and by

h may show up
1 point contact,
re the quantum
on optics 1s the
es of the modes
ally contributes
wus in quantum

. Rev Mod.Phys.
al formulation of
the fundarnental

>l II, chapter 19
unt of Feynman’s
nechanics.

II describes the

s. (Kluwer Aca-

les on analogies.
d Yablonovitch,

~ers 1 Metallic
was that more
1t) electric field
ea of a relation
»nsequence of a
tric field.

ripta T42, 110
it some have 1n
; are irrelevant

51 (1986). An-
(as we know it
derived for the

).
A detailed and

nductors, IBM
ice, which has

. G Guinstein
et the agenda

dytng Surface
k on ballistic

10. H. van Houten, C.W.J. Beenakker, J.G. Williamson, M E.I Broekaart, P.H.M. van Loosdrecht,

B.J. van Wees, J.E. Mooij, C.T. Foxon, and J.J. Harris, Coherent eleciron focusing with quaniidn
pownt conlacts m a two dimensional eleciron gas, Phys. Rev. B. 39, 8556 (1989). This paper
established the 1dea of solid state electron optics using quantum point contacts as coherent pomnt
sources, potential walls as mirrors, and a magnetic field as a lens.

C

1. C.W.J. Beenakker and H. van Houten, Quantum Transpor! in Semiconducting Nanostructures,
Solid State Physics 44, 1 (1991) A review dealing with the regimes of coherent diffusion, quantum

onductance Quantization and Transmission Steps

ballistic transport, lateral tunneling, and adiabatic transport in the quantum Hall effect regime.

Press, New York. 1992). This book contains 4 extended reviews entitled Quantum Pmn‘i Contarts
by H van Houten C W.J Beenakker ind B.J van Wees Vhen foec o+ Ur e v S Ty,
Javeguia, oy 0 Tump Dhe wuentum dall Effect i Open Conductors, by M Buttiker. and
Electrons wn Laterally Perrodic Nanostructures, by W. Hansen, J.P Kotthaus, and U Merkt.

Refraction and Tunneling

1.

2

7.

E. Burstein and S Lundqust. eds. Tunneling Phenomena in Solhds, (Plenum, New York. 1969).
Still the best introduction to solid-state tunneling.

L. Solymar, Superconductive Tunnelng and Applcations, (Chapman and Hall. London 1972)

This book also contains a chapter on normal metal tunneling, and has an extensive bibliography

H. Grabert and M. Devoret, eds Single Charge Tunneling. Coulomb Blockade Phenomena in
Nanostructures, NATO ASI Series B: vol. 294 (Plenum, New York, 1992). This book 1s a collection
of review articles of tunneling beyond the independent electron approximation. where the analogy
with optics no longer holds.

M. Biittiker, Coherent and Sequential Tunneling 1n Series Barriers, IBM J Res.Dev 32, 63 (1988)

Contains a good introduction and guide to the literature on resonant tunneling .
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