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1. INTRODUCTION

The science of vacuum electron optics has benefitted tremendously from the close anal-
ogy with light optics. This analogy exists on the level of classical motion (geometncal
optics), äs well äs on the level of quantum mechanical motion (wave optics). The last t wo
decades have witnessed a surge of interest in transport phenomena in low-dimensional
semiconductor Systems. Examples are the study of weak localization and conductance
fluctuations in two-dimensional (2D) electron gases, resonant tunneling through confined
states in quantum wells, transport through mim-bands in superlattices, and quantum
ballistic transport through quantum point contacts. All of these phenomena have an
optical analogue, and may be classified äs manifestations of solid state electron optics.

In section 2 of this paper, we present the similarities in the fundamentals of optics
and electron optics in vacuum, to prepare the ground for a discussion of the principles of
solid state electron optics in section 3. Examples are discussed in section 4 and 5, which
deal with ballistic transport through a quantum point contact, and with 2D refraction
and (resonant) tunneling. respectively. The optical analogues of these phenomena are
discussed äs well. We chose these particular examples because of their relative simplicity.
and because we wished to demonstrate how the quantum unit of conductance, e2/h,
appears in seemingly quite different transport phenomena (quantum ballistic transport
and resonant tunneling). The comrnon origin is the unit transmission probability of a
single open scattering channel. The analogue for light scattering differs because e2//z
has no counterpart in optics. More precisely, the optical analogue of the conductance
is the transmission cross section, which cannot be measured in units of fundamental
constants (the velocity of light being the only one available).

Since this article is intended äs a tutorial introduction, we have chosen to give
a limited number of references to the original literature. A guide to the literature is
provided in section 6
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Fiüure I. .Specular reflection ot a ray o.f ϋ ς ΐ ι ΐ obeys a o r i n c i p i e <jf '_easr, oa. ' i i ^n_nh. Thi-.·
trajectory SAP, with equal angle of inciderice and reflection, has the minimum length,
äs may be seen from the geometrical construction in this figure.

2. FUNDAMENTALS OF OPTICS AND ELECTRON OPTICS

2.1 Principles of Least Time and Action

A ray of light, propagating in a mediurn with a spatially varying index of refraction. or
reflected by mirrors, may often be treated to sufficient accuracy by the laws of geometri-
cal optics, which ignore the wave nature of light. This is analogous to the way in which
classical mechanics is often a sufficiently accurate description of the motion of material
particles in spatially varying potentials, or scattering elastically off a hard wall, even
though the wave nature of matter is not taken into consideration. The search for the
mathematical principles underlying the propagation of light and matter has intrigued
scientists since classical antiquity. In those times, when calculus had yet to be invented,
it may not have been äs natural äs it seems today to look for a principle governing
the local dynamics of objects (äs Newton succeeded in finding for material particles).
Especially for light, it must have been quite natural to look for a principle governing
the path traced äs a whole. This is what was done by Hero of Alexandria, who wished
to find an explanation for the equality of the angles of incidence and reflection for light
incident on a mirror surface." In considering the possible paths that might be taken by a
ray of light coming from a source at S, reflected at a mirror, and arriving at a. point P.
he hypothesized that the path actually taken is the shortest possible one. This principle
of least path length indeed implies that the angle of incidence ö/equals that of reflection
θτ, äs may be proven by a simple geometrical construction (see Fig. 1).

Unfortunately. the minimum path length principle could not explain the refraction
of a ray of light at the Interface between two media of different optical density (such äs
air and water, see Fig. 2). This difficulty was removed in 1657, when Fermat introduced
his famous principle of least time, which dictates that the actual path traced out by a
ray of light is the one which takes the least time to complete. Since the velocity of light
at position r in a medium with refractive index ra(r) is given by u(r) = c/n(r), Fermat's
principle of least time may also be formulated äs a principle of least optical path length

n(r)dr = minimum

Since there exist situations where the actual optical path has a maximum rather than
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stating that the optical path length is an extremum. Following common usage, we will
still refer to Fermat's principle äs the principle of least time. A denvation of Snell's law
from Fermat's principle may be found in textbooks on optics [l].

In 1831, Hamilton formulated a principle of similar generality äs Fermat's principle,
but now for the mechanical motion of material particles in spatiaüy varying potentials
K(r). Hamilton's principle of least action is the basis for formal treatments of classical
mechanics. Each System is characterized by a function L(r,r,t) called the Lagrangian.
The general form of the Lagrangian can be constructed by considering the symmetries
of the system[2]. Imagine a motion starting at t\ and ending at ti. One defines the
action of the motion äs

Ldt. (2)

According to Hamilton's principle, the path actually taken is the one which puts S at an
extremum, so that varS = 0. From this variational principle one may derive Newton's
equations of motion, describing the local dynamics of the System.

The analogy between Hamilton's principle (involving an integral over time) and
Fermat's principle (involving an integral over space) may be made more explicit if one
considers a single material particle with momentum p and kinetic energy T = |p · r in
a potential K(r), for which the total energy T + V (r) is a constant of the motion. The
Lagrangian for this system is L = T — V(r), so that

varS = var / 2Tdt = var / p · dr,
Jti Jrl

where the integral is a line integral from ΓΙ = r(i j) to r2 = r(ti). Hamilton's principle
may thus be expressed äs

n rather than •rJri
var / p · dr = 0. (3)
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A comparison with Eq. (1) teils us that the path taken by a beam of classical particles
in a potential V(r) is analogous to that of a geometrical ray of light in a medium with
refractive index n(r), with the momentum playing the role of the refractive index This
analogy inspired Busch in 1925 to provide the first description of the focusing effects of
electric and magnetic fields on a beam of electrons in optical terms[3]. Soon afterwards
the electron microscope was invented, followed by other electron-optical Instruments.

2.2 Huygens' Principle and Feynman Paths

The foundations of quantum mechanics were being completed just in time to support
electron optios m its devolopment TS i nrresii:! Srinrb j t ~ , -Λ ·;!)< M < ·, . n2,
De Broglie[4] mtroduced his particle wave length /z/m?;, and in 1925 Schrodmger[5]
presented his differential equation for the complex wave function, which describes the
state of a non-relativistic particle at each instant of time. Also in 1925. it was suggested
that the wave nature of particles might be demonstrated by studymg the interactiori of

Figure 3. If the classically allowed path from S to P is the straight (füll) line, neighbonng
paths have nearly the same classical action, so that they have little phase difference.
For non-classical neighboring paths (dash-dotted lines) the action (and thus the phase)
may differ strongly.

a beam of electrons with a single crystalfö]. Two ye'ars later Davisson and Germer[7]
discovered (quite accidentally!) electron diffraction, and showed that the data were m
agreement with the new theory.

In view of the analogy between geometrical optics. and classical mechanics discussed
above, it is natural to inquire whether a mathematical basis exists äs well for the analogy
between wave optics and quantum mechanics. In fact, such questions inspired the
founding fathers of quantum mechanics to an extent that is perhaps not sufficiently
appreciated today. The analogy was pushed furthest by Feynman, in his article on
a "space-time approach to non-relativistic quantum mechanics" [8] This approach is
related to Schrödinger's wave equation in a similar wäy äs Hamilton's principle of least
action is related to Newton's equations. Feynman introduced a complex probability
amplitude o[r(t)}, associated with a completely specified motion äs a function of time
r(i). This concept should be contrasted with Schrödinger's wave function Φ(ί), which
describes the state of a particle at a given instant of time. In Schrödinger's approach.
the probability P to find the particle in a given region of space V at time t is given by
P = fv \ Φ(ί) P dr. Feynman's prescription treats space and time on equal footing:
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to calculate the probability that a particle has a path lying in a given region of spacer
time R one should sum the amplitudes φ[τ(ί)} for all paths in that region, and take the
absolute square

P=\
Z—l

path.se/?

o[r(t)] (4)

As proposed earlier by Dirac[9], the amplitudes are of the form

o[r(t)} = constant χ exp ( -k$Vj[r('/)j )
\ ή l

where Sci is the classical action for the path r ( t )

Sd(r(t)} = f .
*/path

Ldi. (6)

Thus, the amplitudes carry equal weight, and differ in their phase only. Feynman's
principle forms a wave-mechanical analogue of Huygens' principle in optics. The role of
the phase (ω/c) fn(r}dr in optics is played by (l/h)Sci[r(t)] in mechanics.

The difference may be clarified äs followsflO]. In optics, the frequency ω is a
constant along any trajectory, so that the phase shift may be written äs

/ k dr = (ω/c) f n(r)dr,
,/path v/path

with k = ωη/c the wave vector. In quantum mechanics, the energy E need not be a
constant along the (possibly non-classical) path, so that the phase shift is

I / p . dr _ I / Edt=j f (p - r - E)dt.
n ./path ft ./path ft ./path

(8)

For non-relativistic motion. and in Cartesian coordinates, one has p - f — E = 2T — (T +
V] = L, so that the phase shift along the path equals ( l / h ) fpaihLdi = S^/h.

One of the most appealing aspects of Feynman's path integral formulation is that
it gives insight in the connection between classical mechanics and quantum mechanics.
In the classical l imit h —> 0, so that the phase factors of neighboring trajectories differ
wildly — except for the classical paths, for which var 5ci = 0. Thus, one may imagine
a classical path (obeying Hamilton's principle of least action) to be the result of the
constructive interference between neighboring trajectories of constant phase, whereas
non-classical paths are suppressed because of destructive interference (see Fig. 3). A
similar connection exists between Fermat's principle of least time for geometrical optics
and Huygens' principle in wave optics.

Feynman's path integral formulation is completely equivalent to the Schrödinger
equation. The connection may be established by defining the wave function Φ(Γ, t) with
initial condition Φ(Γ, 0) = δ(τ) äs the sum or path integral of the complex amplitudes
4>[r(t)] over all paths with r(0) = 0 and r (t) = r,

r(0=r

Φ(Γ,ί)= Σ «Φ ( ς·'
r(o)=o

(9)
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2.3 Wave Equations

Let us finally examme the analogy between optics and electron optics from the wave
equation point of view The Schrodinger equation for an electron in a potential V (r)
reads

(10)
dt '

which reduces to a stationäre wave equation on substitutmg a mono energetir wave
]>( r ι — D o l - i * j | - £·· ", ι

This imphes a quadratic dispersion relation

E-V =
2m

(H)

(12)

for a plane wave Φ0 oc e lkr in the case of a slowly varymg potential
In contrast, the wave equation for the electric field £(r, t) of an optical wave in a

medmm with refractive mdex n(r) is second order m time J

- (P(r, t) r, i)) ( 1 3 )

For a monochromatic wave £(r t) = £O(r)exp( — iu>t) in a linear medium with polanza
tion -P(r,i) = (n(r)2 — I)e0£(r, i) this reduces to the Helmholtz equation

V 2f 0(r) = -

which imphes a linear dispersion relation

n r ω

ck

(14)

(15)

Electron waves and hght waves thus obey similar stationary wave equations, (11) and
(14) A companson of these equations teils us again that electron wave optics is similar
to hght wave optics if we treat the momentum (2m(E — K))1/2 äs the refractive inde\

2.4 Limitations of the Analogy

The analogy between electron and wave optics is not a perfect one In this sub-section
we bnefly discuss some fundamental hmitations of the analogy

The different dispersion relations (12) and (15) imply that an electron has a wave
length λ = 2-jr/k that is inversely proportional to its velocity (v = άΕ/fiak = h/m\:

whereas a photon has a wavelength that is directly proportional to its velocity υ = c/n =
λω/2π As a result, Snell's law, expressed in terms of phase velocities, reads differently
for electrons and photons (see section 5)

Further differences were discussed by Ehrenfest[ll] He pointed out that the elec-
tron wave function Φ is not an observable quantity, whereas the electnc field £ or the
magnetic field B is An implication is that Φ is an intrmsically complex quantity, but

'In derivmg Eq (13) from Maxwell's equations a term contammg a spatial derivative of n(r) has
been neglected This is just i f ied if n varies more slowly than S, l e slow on the scale of the wave length
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one could just äs well have opted to work exclusively with real quantities, but this is
impossible for electrons. A second difference mentioned by Ehrenfest is that | Φ j2 is a
probability density, but ) £2 + B2 j an energy density. If there is only a single energy in
the problem, then the energy density is also a probability density (apart from a propor-
tionality factor). However, for non-monochromatic light, it is impossible to obtain from
| £2 + B2 | the probability that one may find a photon in a given region of space-time.

Feynman has pointed out[8] that -whereas his formulation of quantum mechanics is
exact- Huygens' principle is not. The reason is that the optical wave equation is second
Order in time. In an exact theory of optical waves it is necessary to specify the derivative
of the wavefunction (in addition to its amplitude and phase) on a given wavefront, to
be able to predict its further evolution in space and time. This is known äs Kirchoff's
modification of Huygens' principle.

It is possible to construct an approximate wave equation for light which is more
closely analogous to Schrödinger's equation because it is also first order in time. This
may be done using the slowly-varying-envelope approximation[12]. There are some in-
teresting analogies that may be fruitfully discussed in terms of this Schrödinger equation
for light, one example being the analogy between Andreev reflection of electrons at nor-
mal metal-superconductor Interfaces and optical phase conjugation[13, 14].

Additional differences exist, such äs the different statistics for electrons and pho-
tons, but these require a discussion beyond the level of the Maxwell equations.

3. PRINCIPLES OF SOLID STATE ELECTRON OPTICS

The main theme of this paper is the idea that transport of conduction electrons in the
solid state can in many different regimes be treated äs a form of electron optics In this
section, we discuss the basic principles which justify such a treatment.

3.1 Electrical Conduction in Linear Response

An elementary electrical circuit consists of a conductor connected via a pair of contacts
and leads to a voltage source (Fig. 4). A current 7 flows through the conductor in
response to the application of a voltage difference V between the two contacts. For
small applied voltages, 7 depends linearly on V. This is the regime of linear response.
The coefficient of proportionality between current and voltage is the conductance G =
limi/_o I/V. The conductance of a macroscopic and homogeneous conducting wire in
zero magnetic field is proportional to its cross-section A and inversely proportional

1
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to its length L. The coefficient of proportionality is the conductivity σ, defined by
G = (A/L)a. The conductivity relates the current density j = I/A to the electric field
E = V/L by j = σε.

We emphasize the difference between conductance and conductivity. The conduc-
tivity is a property of the material, while the conductance is a property of a specific
sample (including contacts and leads). If the conductor is too small or not homoge-
neous, then its conductance does not scale with the dimensions of the sample and can
not be obtained from the conductivity of the material. Since conductance is a concept
of a more general expenmental significanre than conductivity, one needs a theoret i ra l
rramewonc wnicii deals v v i t h ine conductance expi ic i t ly

The most important property of the linear response regime is the possibility to
relate the conductance and conductivity to Fermi level properties of the conductor.
The Einstein relation is one such relation, the Landauer formula another. The Einstein
relation expresses the conductivity tensor äs the product of density of states and diffusion
coefficient, both evaluated at the Fermi level Ep. The Landauer formula relates the
conductance to the transmission probability at Ep. Since the Landauer formula involves
the conductance, rather than the conductivity, it is more generally applicable than the
Einstein relation. The Einstein relation is the more familiär of the two, so we discuss it
first. We restrict ourselves in this article to non-interacting electrons.

3.2 Einstein Relation

The Einstein relation follows from the thermodynamic rule that the current density is
zero if the electrochemical potential μ is uniform throughout the sample. The elec-
trochemical potential μ is the sum of the electrostatic potential energy —eV and the
chemical potential (or Fermi energy) Ep. A difference in electrochemical potential be-
tween two regions in the sample means that energy is gained (or lost) on transporting an
electron from one region to the other. The System is thus not in equilibrium. Electrons
will drift from the high μ region to the low μ region, until the electrochemical potentials
are equalized.

The conduction electrons in a semiconductor or in a metal form an electron gas.
moving randomly through the crystaLlattice. Through the interaction with the periodic
electrostatic potential due to the lattice, the quantum states accessible to these electrons
are Bloch states organized in bands, with dispersion relation En(k) and density of states
pn(E). For our purposes it is sufficient to consider only a parabolic conduction band, for
which E ( k ) = h2k2/2m, with m the effective mass (which is typically less than the free
electron mass). The electrons occupy the available states according to the Fermi-Dirac
distribution function

f(E - EP) = [l + exp(£ - EF)/kT}- (16)

The density of electrons in the partially filled conduction band is thus given by

n = Γ P(E)f(E-Ep)dE. (17)
Jo

When Ep is more than a few kT below the bottom of the conduction band Ec(\.e. in
the band gap, where no states are available), the electron gas density is very low, and
the Fermi-Dirac distribution may be approximated by the classical Maxwell-Boltzmann
distribution. One then speaks of a non-degenerate electron gas. In this article, however,
we are concerned with the opposite limit of a degenerate electron gas, where Ep —
Ec ^> kT. We will now derive the Einstein relation for such a degenerate electron gas,
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Figure 5. A gradient in the electrochemical potential μ = — eV + EP can be caused by
an electric field £ = —W, or by a density gradient Vn = p(Ef)VEp.

considering for simplicity the limit of zero temperature (the generalization to a finite
temperature is straightforward).

At T = 0, Ep is the energy of the highest occupied energy level, measured relative to
the conduction band bottom. As illustrated in Fig. 5, a gradient in the electrochemical
potential μ = —eV + EP can be caused by an electric field £ = —W, or by a density
gradient Vn = p(Ep)VEp

V/i = e£ + (18)

An electric field induces a current density jdrift = σ£. Α density gradient induces a
current density jdiffusion = eDVn, with D the diffusion constant. If V/i = 0 we have
from Eq. (18) that Vn = —ep(Ep}£. Hence, the total current density is

3 — Jdrift 4" Jdiffusion

- (σ- e2p(Ef)D]E, whenV// = 0. (19)

The requirement j = 0 when V μ = 0 (for arbitrary £) yields the Einstein relation for a
degenerate electron gas at T = 0

σ = e2p(EF)D.

Because of the Einstein relation we can write

(20)

j - eDVn +

- crVV

= σνμ/e. (21)

This relation expresses the fact that the fundamental driving force for the current in a
System out of thermal equilibrium is V/i.2

For small V«, and at low temperatures, only states near Ep contribute to jdiSusion·
The diffusion coefficient D is thus by definition a Fermi level property. The current jdäft
caused by an electric field in general contains contributions from all states below Ep.
The different distribution over energies of drift and diffusion currents arises because e£
is a force which enters in the equations of motion, and hence acts on all electrons, while
Vn is a "thermodynamic" force, which only affects the occupation of states near the
Fermi level. The importance of the Einstein relation (20) is that it shows that, although

2Thus, a 'Voltmeter" actually measures μ, not V, and a "voltage source" maintains a constant
difiference in electrochemical potential between its two termmais.
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EF +δμ

0 k
Figure 6 a An ideal electron waveguide connected through ideal leads (the gradually
widenmg regions) to reservoirs at difFerent electro-chemical potentials b Plot of the
dispersion relation for the lowest three one-dimensional subbands in the waveguide The
combination of a reservoir and an ideal lead ensures complete filhng of all available states
up to the electro-chemical potential of the reservoirs (at zero temperature)

σ is not mamfestly a Fermi level property of the sample, it can nevertheless be expressed
entirely in terms of Fermi level properties This fact is at the heart of solid state electron
optics, because it allows us to treat electncal conduction äs a transmission problem of
(nearly) monochromatic particles

The Einstein relation for the conductivity may be generahzed to a relation for the
conductance Imagme two wide electron gas reservoirs havmg a slight difference δη
m electron density, which are brought mto contact by means of a narrow channel, äs
in Fig 6a A current / will flow m the channel, carned by electrons with energies
between the Fermi energies Εγ and Ef + δμ in the low and high-density regions At
zero temperature, and for small £n, one has δμ = δη/ ρ(Ερ) The diffusance T> is defined
by 7 = &Τ>δη, and is related to the conductance G by

which imphes

G = e2p(EF)T>,

I = Οδμ/e

(22)

(23)

Eq (22) is a generalization to the conductance G and diffusance T> of the Einstein
relation (20), and is derived in a completely analogous way The imphcation is that one
may express the conductance m terms of the properties of the quantum states at the
Fermi level

3.3 Electron Waveguide

The prototypical conductor is an electron waveguide An ideal waveguide has completely
smooth boundanes, a uniform electron density along the channel, and an absence of
defects that might scatter electrons Some elementary properties of the propagating
modes m an electron waveguide, which we will need to determme its conductance are
denved here We consider a cylmdncal conductmg channel along the x—axis, defined by
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a lateral confining potential V(y, z). For such a potential, the motion in the x—directidn
is separable. The Hamiltonian has the form (for a single spin component)

with p2 = Ρχ + p2 + p2· Because the momentum px = —ihd/dx along the channe]
commutes with Ή, the eigenfunctions of Ή can be chosen to be also eigenfunctions of
px. The wavefunction

(r }n,k) =

is an eigenfunction of p^ with eigenvalue
eigenvalue En(k) if Φ satisfies

„tfcr

It is also an eigenfunction of Ή with

h2 Θ2

' 2m dy2

h2 d2 H2k2

2m dz
+ —- + V(y, z) *„,*(</, z) = En(k)9n,k(y, z). (26)

Eq. (26) is the Schrödinger equation for motion in the y — z plane in the effective
potential

2m
(27)

Because the motion is bounded, Eq. (26) has for each k a discrete set of eigenvalues
En(k), n = 1,2,.... It should be emphasized that V^r, since it depends on k, is not a true
electrostatic potential (which should only depend on the coordinates). The eigenvalues
En(k) depend quadratically on k,

En(k) =
2rn

(28)

The conventional terminology in solid state physics refers to the collection of states
for a given value of n äs a one-dimensional subband. In a waveguide terminology, the
index n labels the modes, and the dependence of the energy En(k) on the wavenumber
k is called the dispersion relation of the n—th mode. The dispersion relation (28) is
illustrated in Fig. 6b for the lowest 3 subbands in an electron waveguide. The lowest
energy on the curve En(k) is the cutoff energy _££"" of the n—th mode. The propagating
modes at energy E are those for which E™n < E so that the equation En(k) — E has
a solution for a real value of k. The wavefunction (25) is then a non-decaying plane
wave along the channel. The modes with E™n > E do not propagate at energy E. A
localized perturbation (such äs the quantum point contact considered in section 4) can
excite such evanescent modes, but they then decay exponentially along the channel. For
a propagating mode, one can define the group velocity

Vn(k) = ̂ ^ß. (29)

In view of Eq. (28), one has vn(k) = hk/m. Note, however, that the group velocity
differs from the velocity hk/m derived from the wavenumber (the phase velocity) if one
places the waveguide in an external magnetic field[22].

To calculate the conductance, we need to know the number of states in a given
energy interval, in addition to their velocity. The number of states for the n—th mode
in an energy interval [En(k),En(k) + dEn(k)} in a waveguide section of length L may
be written äs pn(E)LdEn(k), where pn(E) is the density of states per unit length. This
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number is equal to 4Ldkf2K (the factor of 4 contams a factor of 2 from the spin-
degeneracy, and another factor of 2 from the two velocity directions) We thus find for
the density of states of a single subband

dk
2m

1/2

(30)

Companson with Eq (29) shows that the density of states of a waveguide mode is
mversely proportional to its group velocity,

It is useful to define also the density p£ of positive velocity states, which is just one half
pn, pn(E)+ — (vhvn(k))~l. The density of states for a multi-mode electron waveguide
m a 2D electron gas with a hard-wall confining potential is shown m Fig. 7.

3.4 Conductance of an Ideal Electron Waveguide

To calculate the conductance of an electron waveguide, we adopt Landauer's viewpomt,

P (E)

E, E2 E3 EF

Figure 7 Density of states of a multi-mode electron waveguide m a 2D electron gas,
with a hard-wall lateral confining potential.

which is to treat transport äs a transmission problem. This point of view is justified by
the following considerations. The melastic scattering length at low temperatures can be
quite long (on the order of 10 μπα), exceeding the length of micron or sub-micron sized
conductors, typically used for the study of quantum transport It is then reasonable to
ignore melastic scattering m the conductor entirely, and to assume that it occurs in the
contacts exclusively. Ideal contacts function äs electron reservoirs A source reservoir at
electrochemical potential Ερ + δμ feeds the conductor with an incoherent flux of incident
electrons, a second reservoir at electrochemical potential EP is a drain for the electrons
that have traversed the conductor. The conductance can thus be expressed in terms of
the transmission probability from source to drain. Elastic scattering in the conductor
reduces the transmission probability, because some electrons are reflected back into the
source contact

In this section we consider the case of an ideal electron waveguide between two
ideal contacts. An ideal contact can be formed by inserting a smoothly widening region
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(an ideal lead) between the reservoirs and the waveguide proper (see section 4 for a
discussion of the role of a smooth region). Because of the assumed absence of scatterfng
processes in the waveguide, an electron occupying a certain quantum state ] n, k} at one
point in the waveguide will occupy the same state further downstream. The assumption
of ideal contacts implies that within the waveguide the right-moving states are occupied
up to Ef + δμ (the electro-chemical potential of the left reservoir), while the left-moving
states are occupied up to EF (cf. Fig. 6b). We write / = /„, with /„ the current
in mode n and TV the number of propagating modes. The current 7n is carried by the
occupied states in mode n with energy between EF and ßp + δμ. States below EF give n°
net contribution to the current, because the contribution of each positive velocity state
cancels against that of the corresponding negative velocity state. The arnount of current
<//, carried by •^tc.fs ^f -pode Ί n the .nfim;esimai jncervai \_£n(ic),En(!c) + dßn(k)] is
given by the product of the charge e, the number of positive velocity states in that
interval p+(J£)dEn(k), and the group velocity vn(k). This yields simply

dln = (32)

because the group velocity cancels against the density of states, cf. Eq. (31). Again, we
assume a two-fold spin degeneracy of the energy levels, hence the prefactor of 2. The
total current In in mode n follows on Integration from EF to EF + δμ,

2e [E?+s»2e F*
/n = T" /h JE?

dEn(k) = - (33)

Remarkably, for an ideal electron waveguide, the current ln induced in mode n

by a difference δμ in Fermi energies between the ideal contacts, equals (2β/Η)δμ inde-
pendent of mode index or Fermi energy. The current in the channel is shared equally
("equipartitioned") among the N propagating modes at the Fermi level, because of the
cancellation of group velocity and density of states (cf. Eqs. (29) and (30)). Since
G = 1/(δμ/β), this equipartition rule implies that the conductance of an ideal electron
waveguide is quantized in units of 2e2/A:

G = —N, .(34)

with N the number of propagating modes in the waveguide.
It is instructive to consider the special case of a channel in a 2D electron gas,

defined by a square-well confining potential. In this case, the equipartitioning of the
current among the modes can be understood graphically, see Fig. 8. This diagram
shows the Fermi circle of an unbounded 2D electron gas in k—spa.ce. The right-moving
sta.tes in the energy interval (Ep, Ep + δμ) are shaded. The modes in the channel (of
width W) correspond to the pairs of horizontal lines at ky = ±.mrfW^n = 1,2,.... The
number of propagating modes at the Fermi level is N = Int[kpW/7r}. Each mode can be
characterized by an angle φη (indicated in Fig. 8), such that n — (kpW/Tr)s\n φη· The
group velocity vn = fikx/m is proportional to cos φη, and thus decreases with increasing
n. However, the decrease in vn is compensated by an increase in the number of states in
the shaded region in Fig. 8. This number is proportional to the length of the horizontal
lines within the shaded region, and hence to 1/εο5φη. The current In in mode n is
proportional to the product of group velocity and number of states (per unit channel
length), and hence the dependence on the mode index n drops out. Each mode carries
the same amount of current.
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bands in an ideal electron waveguide. The net current is carried by the shaded region in
k—space. In an ideal electron waveguide the allowed states lie on the horizontal lines.
These correspond to quantized values for ky = ±mr/W, and continuous values for kx.

3.5 Landauer Formula

We need to take just one more Step to arrive at the Landauer formula. for a conductor
with scattering (for example due to impurities). Scattering causes partial reflection of
the injected current back into the source reservoir. If a fraction T„ of the current 7„
injected by the source reservoir is transmitted to the drain reservoir. theri the total
current through the conductor becomes / = (2ε//ί)£μ Σ^ΐι Tn. Using G = 7/(<5μ/ε)
one obtains the Landauer formula

Eq. (35) may also be written in the form

0-2

l 2— Trtft
l — ~ l rU '

(35)

(36)

where T„ = Sm=i l tmn \2 has been expressed in terms of the matrix t (with elements
imn) of transmission probability amplitudes frorn an incident mode n to a. transmitted
mode m.

So far, we have treated the case of zero temperature, where only electrons at the
Fermi level have to be considered. This may be expressed in Landauer's formula by
making the energy dependence of the transmission probability explicit

(37)

At finite temperatures, energies within a few kT from Ep have to be taken into account.
The current 7 may now be written äs the difference 712 — /2i of the current from source
to drain

f(E - (EF + 8μ))Τ(Ε}άΕ
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and the current from drain to source

In = ̂  J f(E - Ev)T(E)dE.

For small δμ one has f(E - (EF + δμ)) = f(E - EF) - (δ//ΘΕ)δμ, so that

'-Tf(-!
or, in view of Eq (23)

Λ, ν
This is the finite temperature generalization of the Landauer formula. The effect of a
finite temperature is to average T(E) near EF over a ränge of energies of a few kT in
width.

for a conductor
lal reflection of
the ourrent Jn

theri the total
G = Ι / ( δ μ / β )

(35)
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(37)
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4. CONDUCTANCE QUANTIZATION AND TRANSMISSION STEPS

4.1 Quantum Point Contacts

In the previous section we have shown that the conductance of an ideal electron wave-
guide, attached to ideal contacts, is quantized in units of 2e2//i (for a two-fold spin-
degeneracy),

G = ~N, (39)

with 7V the number of propagating modes at the Fermi level. In 1988, it was discovered
[15, 16] that the conductance of a quantum point contact obeys Eq (39) to a quite
reasonable accuracy (better than l %). A quantum point contact is a constriction
in a 2D electron gas, defined electrostatically by means of a split gate on top of the
heterostructure (a schematical view is given in Fig 9). In the experiment[15], the width
is contmuously variable from 0 to 250 nm, or from 0 to about 7 times the Fermi wave
length of the electrons in the 2D electron gas. The length is much less than the mean
free path, so that transport through the point contact is ballistic. The conductance
of a quantum point contact is shown in Fig. 10. Each step reflects an increase in the
number of propagating modes by one due to the increase of the point contact width.
This effect is a manifestation of the equipartition of current among an integer number
of propagating modes in the constriction, each mode carrying a current of 2e2/h times
the applied voltage V, äs in an ideal electron waveguide.

It remains to be explained, of course, why the quantum point contact behaves äs an
ideal electron waveguide, since diffraction at the entrance and exit of the constriction
might be expected to induce large deviations from precise quantization. To analyze such
deviations it is necessary to solve the Schrödinger equation in the narrow point contact
and the adjacent wide regions, with plane wave boundary conditions at infinity. The
resulting transmission coefficients determine the conductance via the Landauer formula
(36). This scattering problem has been solved numerically for point contacts of a variety
of shapes and analytically in special geometries. When considering the mode coupling
at the entrance and exit of the constriction it is important to distinguish between the
case of a gradual (adiabatic) and of an abrupt transition from wide to narrow regions.

If the constriction width W(x] changes sufficiently gradually, the transport through
the constriction is adiabatic, i.e. without intersubband scattering[18]. The transmission



Gate

Figure 9. Schematic cross-sectional view of a quantum point contact, defined in a high
mobility 2D electron gas at the interface of a GaAs-AlGaAs heterostructure. The point
contact is formed when a negative voltage is applied to the gate electrodes on top of
AlGaAs layer.
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Figure 10 Point contact conductance äs a functiori of gate voltage at 0.3-4 K demon-
strating the conductance quantization in units of 2e2/h. The conductance is obtained
from a two-terminal measurement (after subtraction of a small background resistance).
The constnction width increases with mcreasing voltage on the gate. (From Van Weeset al. [15]).

285



coefficients then vanish, | tnm |2= 0, unless n == m < Nm-m, with ΛΊηίη the smallest
number of propagating modes in the constriction. The conductance quantization (39),
with N replaced by Afm;n, then follows immediately from Eq. (36). The criterion for
adiabatic transport is dW/dx < l/N(x), with N(x) ~ kpW(z)/K the local number of
subbands. As the constriction widens, N(x) increases and adiabaticity is preserved only
if W(x) increases more and more slowly. In practice, adiabaticity breaks down at a
width Wmax which is at most a factor of two larger than the minimum width Winin·
This does not affect the conductance of the constriction, however, if the breakdown of
adiabaticity results in a mixing of the subbands without causing reflection back through
the constriction. If such is the case, the total transmission probability through the
constriction rernaVns the same äs in the hypothetical case of l u l l v adiabat i r iran.soort.
As pointed out by V'acoby and Imry[17], a relatively small adiabatic increase in width
from Wmin to Wmax is sufficient to ensure a drastic suppression of reflections at Wmax-
The reason is that the subbands with the largest reflection probability are close to cut-off,
i.e. they have subband index close to 7Vmax, the number of subbands occupied at Wma.x.
Because the transport is adiabatic from Wm\n to Wmax, only the yVmin subbands with the
smallest n arrive at Wmax, and these subbands have a small reflection probability. In the
language of waveguide transmission, one has impedance matched the constriction to the
wide regions. The filtering of subbands by a gradually widening constriction restricts
the emission cone of electrons injected through it into the wide regions. This hörn
collimation effect[l9] has been observed experimentally[20]. It allows one to perform
solid state electron optical experiments using a quantum point contact äs injector of a
collimated electron beam (cf. section 5).

An adiabatic constriction improves the accuracy of the conductance quantization,.
but is not required to observe the stepwise increase of the conductance. Calculations
have shown that well-defined conductance plateaux persist for abrupt constrictions, al-
though transmission resonances lead to periodic dips in the conductance below the
quantized plateau value[21]. Further details and references to the literature may be
found in ref. [22].

The results described above do not only explain the conductance quantization of a
quantum point contact, but they also show that equipartitioning of the current over the
waveguide modes inside the constriction is approximately valid regardless of the detailed
shape of the connection to the wide 2D electron gas. This provides some justification
for" the use of the concept of a reservoir and an ideal lead, and thus for the use of the
Landauer formula in practical cases.

4.2 Steps in the Optical Transmission through a Slit

The unexpected discovery of the conductance quantization of a quantum point contact
has led to a search for its optical analogue. A considerable literature exists on the
coupling of light into fibers, or microwaves into waveguides, but the optical analogue
was not noticed previously. At the basis for the analogy are three facts.

- Firstly, äs we have seen, linear response implies transport at Ef, which is analogous
to optical experiments with monochromatic light. The Helmholtz equation (14) for the
electric field of monochromatic light in vacuum (polarized in the z—direction)

is similar to the Schrödinger equation. Secondly,' the boundary condition at a metal
surface parallel to z is that E, vanishes, which corresponds to the vanishing of the
electron wavefunction Φ at an infmitely steep potential wall. Thirdly, the expression for
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Slltwidth (μηη)

Figure 12 Expenmental demonstration of equidistant steps m the transmission cross-
section of a sht of adjustable width A 2D Lambertian monochromatic source is obtamed
by illummatmg a diffusor consistmg of a random array of parallel fibers by a diode laser
beam An mtegratmg sphere ,s used to obtam a detector Signal proportional to the
transmission crosssection [From Montie et al [23]]

per mode But m the previous paragraph we have proved that the t wo ratlos are ihe
same, hence T = T and (h/2e*)G = (2/λ)σ The dependence of transmiss.on cross
section σ on the sht width W should thus be a stair case, with steps separated by λ/2
and with a constant step height g,ven also by A/2 The role of the shape of the sht
should be identical to the role of the shape of a hard wall confimng potent.al m the case
of a quantum pomt contact This is why one expects σ = /VA/2 to a good aproxunation

This prediction[25] has been venfied expenmentally by Montie et al p3] Their
result ,s reproduced m Fig 12 The generahzation of the optical analogue to the case
where a dielectnc fills the w.de reglons (but not the sht) is straightforward smce (äs
explamed m the next section) a negative step m refractive mdex ,s analogous to a
positive step m the electrostatic potential (or m the local conduction band bottom) m
the solid state electron optics case Such a step reduces the number of propa-atm-
modes m the constnction - but has no effect on the conductance quantization ° °

Absorption at the sht boundanes gives nse to a roundmg of the transmission
steps[23] Ihis effect has of course no counterpart m solid state electron optics We
also note that, unhke m the electromc case, it is straightforward to generahze the opti
cal expenment to transmission through an aperture (a hole m a screen) Although this
expenment has not yet been performed, the theory[25] predicts σ = Νλ*/2π for this
case (assummg that the two mdependent polanzations of the modes m the aperture can
be resolved)

5 REFRACTION AND TUNNELING

5.1 Snell's Law for Electrons and Photons

Consider a 2D electron gas, with Perm, energy EF, containmg a region of reduced
electron density The local conduct.on band bottom ,s raised m such a reg.on to a value
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n electron at the Fermi level, impinging on the region of reduced density, thus
potential barrier of height Ec. Classically, there are just two possibilities. Tne

n wi l l be reflected specularly if its kinetic energy along the direction of normal
ice is less than Ec, or

(44)

(45)

vJ T r - >

sin (48)

EF cos2 #] < Ec —> reflection

tory (1) in Fig. 13a). The electron will be refracted when

EF cos2 θι > Ec —» refraction

tor} f 2 ) in Fig l ?a) One mav ·!ΡΠ' ρ Snel l

ris by mvoKing conservation of tangential momentum

ki sin 0j = & 2 s in# 2 , (46)
ation of equidistant steps in the transm

A 2D Lambertian monochromatic sourcfcj = (2ητ.Ερ/Ά2)1/2, and k2 = (2m(EF — £C)/Ä2)1/'2. This result is identical to
of a random array of parallel fibers by ;law in optics. In terms of the velocity v, = hkt/m, Snell's law for electrons reads
ed to obtain a detector signal proport
ontie et a] [23]] «i sin θι = ?;2 sin 9i. (47)

tices a difference with Snell's law in optics, n\ sin &\ = n2 sin Θ2, which corresponds
(46), but which mav be rewritten äs

agraph we have proved that the two rc
= (2/λ)σ. The dependence of transn ν>3ΐηθ

d thus be a stair case, with steps separ;

/en also by A/2. The role of the shape velocity of light is t>, = c/nt = ω /k,, i.e. inversely proportional to the wavenum-
shape of a hard-wall confining potentia

>vhy one expects σ = Νλ/2 to a good ap Ülustrated in Fig. 14 (see also Fig. 13b)~ this has the amusing consequence
'rified experimentally by Montie et al.)osjtive lens in solid state electron optics, constructed out of a region of reduced

generalization of the optical analogue, density (i.e. with reduced velocity) has a concave shape, in contrast to optics.
ons (but not the slit) is straightforwa, positive lens made out of a material with reduced velocity (such äs glass) is
>gative step in refractive index is ana This difference is a consequence of the different dispersion laws for electrons
sntial (or in the local conduction band>tons (cf. Section 2).

Such a step reduces the number of |ng a quantum point contact to inject an electron beam at the Fermi level in a 2D
10 effect on the conductance quantizat gas it has been possible to demonstrate total specular reflection of electrons at
ies gives rise to a rounding of the trostatic boundary and magnetic focusing[25], and focusing of an electron beam
no counterpart in solid state electron! electrostatic lens[26, 27].
c case, it is straightforward to generalithis section, we have discussed Snell's law for electrons and photons in terms
gh an aperture (a hole in a screen). Alctories (or rays). Alternatively, one may derive Snell's law by matching the
led, the theory[25] predicts σ = /VA 2 s of the wave equations for electrons or for light at the Interface between two
ent polarizations of the modes in the a, regions. Such a derivation adds to our understanding, but the result is the

•fraction being essentially a classical phenomenon. In the next section we discuss
g, which may only be understood in terms pf quantum mechanics, and which
malogue in geometrical optics.

3LING

ineling of Electrons and Photons
Photons

isition from refraction to tunneling occurs when the potential barrier in the re-
•rmi energy £F, containing a region educed electron density is increased above the Fermi energy. The optical coun-
band bottom is raised in such a regiotf this phenomenon is known äs frustrated total internal reflection (FTIR). One

ly encounters treatments of FTIR[28, 29] äs a (somewhat imperfect) analogue
imensional electron tunneling. As we will show, a more satisfactory analogy

289



Figure 13 a Refraction (for small angle of mcidence) and total reflection (for large angle
of mcidence) of a conduction electron at a potential barner defined electrostatically in
a 2D electron gas Note that the electron is refracted away from the surface normal on
entering the barner region b In optics, a ray is refracted towards the surface normal,
at a positive step m refractive mdex
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-Ec

14. Experimental device used to demonstrate focusing of a ballistic electron beam
gle of incidence) and total reflection (fc^n et al.[26] and by Spector et al.[27] A concave lens is positive, even though it
i at a potential barrier defined electroecj out of a region with reduced phase velocity.
tron is refracted away from the surfac
ics, a ray is refracted towards the suri
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exists with two-dimensional electron tunnelmg The relevant geometnes are depicted in ,
Fig 15 3

Consider a monochromatic electro-magnetic wave, polanzed hnearly with £ m the
z—direction, propagatmg in the χ — y plane m a medmm of refractive mdex nr The
scalar wave equation (13) becomes

V2^ + ( — ) n(x)2£ = 0 (49)

Let us now see what happens at a step m refractive mdex, from n\ to the lower value
ra2 We look for a plane wave solution m the y—direction,

(51)

Substitution of this wave m Eq (49) yields an equation for

For an incident plane wave at angle 6>i with the s— axis, one has k = (ωηι/c) sin
Hence, in region l Eq (50) reduces to

(52)

whereas m region 2 one has

Tunnelmg of light occurs when n\ — n\ sin2 #1 < 0, so that Eq (53) does, not have a
propagatmg solution (Note that the frequency ω does not enter m this condition )

The Schrodmger equation for tunnelmg at the Fermi level through a planar potential
barner of height Ec m a 2D electron gas reads

<92Φ 2m

in the 2D electron gas, and

+ cos 0, -

(o4)

(55)

in the barner region Tunnelmg thus occurs whenever E-p cos2 0] — Ec < 0, a condition
that depends exphcitly on the energy of the electron, Ep In contrast to the optical case,
tunnelmg at normal mcidence (θ\ = 0) is possible m the electromc case if Ec > EF (The
optical condition n\ — n\ sm2 θι < 0 has no solution for #1 < arcsinn.2/n] ) Apart from
these differences, a companson with Eqs (52) and (53) shows that 2D electron tunnelmg
through a planar barner is analogous to 2D photon tunnelmg (FTIR) through a region
of reduced refractive mdex, with the following identifications

ϊ2 cos2 #1

?7i / „ ο

-y- (EF COS2 θτ -
h

(56)

(57)

3FTIR is commonly studied by brmgmg two rectangular pnsms m close proximity in such a way
that they nearly form a cube consisting of the two pnsms separated by a narrow air gap A plane wave
incident perpendicularly on one of the rectangular faces of a pnsm is deflected by 90 degrees through
total mternal reflection On narrowing the air gap some of the light may be transmitted towards the
second pnsm, because of tunnelmg The total mternal reflection is then frustrated
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ΌΠ tunneling. The relevant geometries ar

lectro-magnetic wave, polarized linearly \
• — y plane in a medium of refractive in

step in refractive index, from
ion in the y— direction,

9) yields an equation for Φ(χ)

to thf

> ι", α Tunneling Λ *n diectrori inciaenr, ori a region ot mcreased electrostatic
tial (reduced momentum) at an angle such that classically it would be totally
ed. b. Frustrated total reflection of light incident on a region of reduced refractive

le ö] with the x—axis, one has k
to

f)'-i

rst relation (56) expresses nothing but the correspondence of the wavenumber of
cident electron wave at the Fermi level to that of the incident optical wave. The
l relation (57) may thus be rewritten äs

(58)

(nij-njsin2^,) Φ = 0. .
expresses the fact that a change in electrostatic potential in the electronic problem

- n\ sin2 θ ι < 0, so that Eq. (53) does1 change in squared momentum) corresponds to a change in the square of the
frequency ω does not enter in this cor've index. This specific example illustrates the assertion of See. 2 that electron

melingat the Fermi level through a plan is analogous to optics when one identifies the refractive index with the electron

gas reads ntum.

cos

F COS2 0j - Ec] Φ = 0,

indauer Formula and Fermi's Golden Rule for Tunneling

andauer formula for the conductance in terms of the energy dependent transmis-
robability T(E) (for one spin direction)

° = T
Τι f?\ l -iT(E) ( - aE (59)

occurs whenever Ep cos2 θι — E^ < 0,
if the electron, Ep. In contrast to the o
is possible in the electronic case if Ec '.

is no solution for öj < arcsinraz/raj.) ; applied straightforwardly to elastic tunneling. This approach is equivalent to
s. (52) and (53) shows that 2D electrcore traditional approach, based on Fermi's golden rule, äs we now discuss for 1D
o 2D photon tunneling (FTIR) throuing. The generalization to the_2D case is straightforward.

onsider a planar barrier across which a voltage V is maintained (see Fig. 16). The
n gas regions on each side are characterized by shifted Fermi-Dirac distribution
ms /,(£) = [1+ exp(£ - EF)/kT}~1 and f2(E) = [l + exp(E + eV - EF)/kT\-1.
ansverse momentum is conserved in the tunneling process, so that we can consider
•ansverse momentum state separately. The following results are for just one such
ar conduction channel. The tunnel rate for an electron approaching the barrier

fo rectangular prisms in close proximity, ii
two prisms separated by a narrow a)r ga.p. /
jlar faces of a prism is deflected by 90 degi
gap, some of the light may be transmitted
nternal refiection is then frustrated.

>llowing identifications

f — J n2cos2#]

• 2
-) (ra2cos2öi -(n2-n2))
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from region l with energy E is

ΓΙ2(£) = γ ί dE2p2(E2)\W12(E)\2S(E - E2)

(60)

Here |W]2(jE)| is the tunnel matnx element, and p2(E] is the density of states m elertron
gas region 2 at energy E for the specified transverse momentum state Note that p 2 ( E ]
depends on the apphed voltage, due to the shift in conduction band bottom in region
2 (see Fig 16) To arnve at the current due to electrons moving from l to 2 we have
to sum the tanne l rate times the electron charge over i l l O C C U D K d f i t e s n region
e\cludmg the occupied states in region 2 (m view ot the Pauh pnnciplej The result is

= e J P,(E)f,(E)rl2(E)[l - ME)}dE

-h(E}}dE (61)

EF-eV

Figure 16 Planar potential barner separating two degenerate electron gas regions of
equal chemical potential, but with shifted Fermi levels because of the voltage V apphed
across the barner

The term in the integrand contammg the product of Fermi functions cancels on adding
/2i, so that the net current / = /12 — 721 is given by

(62)

For small apphed voltage f z ( E ) « f ( E ) + eVdf/dE (the subscnpt l is now dropped)
so that one finds a linear response conductance (for a smgle spin direction)

G = -~ (63)

(64)

To arrive at the final result we used the identity -df/dE = (kT)-lf(l - J)
This equation explicitly contams the density of states of the electron gas regions on

either side of the tunnel barner This may seem puzzlmg, because of the cancellation
of group velocity and 1D density of states in the derivation of Landauer's formula (59)
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0 L

(60)

tates in electron
Note that p2(E]
ottom in region
l t,o 2. vve have

j. The result is

(61)

gas regioris of
tage V applied

icels on adding

(62)

now dropped),
>n)

(63)

(64)

gas regions on
e cancellation
formula (59).

Figure 17. Rectangular planar barrier of height Ec, with incident wave of amplitude A,
reflected wave of amplitude B, and transmitted wave of amplitude C.

To .-"std-Dübn ϊίιρ equiCaience οι ooth resuits, vve note that ehe cunnel rate from region l
to region 2 may also be written äs the product of an attempt frequency ν\·ζ(Ε) and the
transmission probability T (E]

The attempt frequency equals the group velocity of the electron incident on the barrier,
divided by twice the length L of electron gas region l or, equivalently.

where we have used the relation vt = 2L/hpi between group velocity and density of
states for one spin direction (cf. Eq. (31), which is for two spin directions). Consequently,
one may write

T(E] = (67)

One may thus express the transmission probability T(E) in terms of the turmel matrix
element, according to

This relation proves the equivalence of the Standard result (63) for the conductance due
to tunneling through a single barrier and the Landauer formula (59). The analysis given
above closely follows the one given in 1970 in a textbook by Harrison[30]. However,
at that time it was not obvious that the result (59) applies for any value of T: the
equivalence to the Fermi golden rule formula holds only in the l imit T <C l, since this
rule is based on perturbation theory.

5.4 Rectangular potential

To illustrate how T (E) is calculated, we discuss the text-book example of one-dimensional
tunneling through a rectangular potential barrier of height Ec, separating two regions
of zero potential (see Fig. 17-). The Solutions u(x) of the Schrödinger equation in the re-
gions on either side of the barrier are plane waves with (positive or negative) wavevector
k = (2m£)I /2/ft. By reference to Fig. 17 it is clear that

x < 0 ; u(x) =
χ > L ; u(x) =

-ikx (69)

(70)
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Figure 18 Transmission probabihty versus energy for a rectangular barner of height Ec

and thickness L, for the case that h2/2mL2 = 0 QlEc The curve has been calculated
from Eqs (72) and (75)

whereas m the barner region the Solutions are plane waves with wavevector κ = [2m(E —

0 < χ < L , u(x) = Fe'K* + Ge~'KX , (71)

For the tunnelmg problem E < Ec, so that κ is imaginary, κ = z[2m(Ec — E)]1/2 /H The
transmission probabihty T(E) = \C\2/\A\2 can be found by matchmg the propagating
wavefunctions in the regions adjacent to the barner to the the decaymg wavefunction
in the barner The matchmg conditions require that both u(x) and du(x)/dx are con-
tmuous at χ — 0 and χ = L The result for E < Ec reads

(72)

This general result has a number of mterestmg hmits If the barner is high and thick,
| κ \ L » l (or equivalently Ec - E > Ä2/2rn£2), then

T(E) « 16 \K\L) (73)

The transmission probabihty due to tunnelmg is exponentially small for such a barner

Eq (72) reduces to the transmission probabihty for tunnelmg through a potential
of the form Ηδτ, if one takes the hmit | κ \ L <C l and defines H Ξ ECL,

)1/2 (74)

The reflection probability at such a one-dimensional delta-scatterer is R = l — T =
[i + z-2}-*
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Fiffure 19 Double planar barrier formmg a well with quasi-bound state at energy E,.

The above approach is applicable äs well to ("he i ransmissOn jf "'er Tons .·ν ,
square barner £qs (t>i>)-(7l) stil l hold, but in this case AC is real. The result for E > Ec

er of height Ec

een calculated

r κ = [2τη(Ε-

(71)

£·)]'/2/Α. The
e propagating
wavefunction

•)/dx are con-

(72)

gh and thick,

(73)

uch a barrier.

h a potential

(74)

T(£) = [!+- (75)

s l

A plot of T(E) is given in Fig 18, for the case that Ä2/2mI2 = 0.01£c. The transmis-
sion resonances seen for E > Ec correspond to virtual bound states above the barrier,
occurring at energies for which K,L is an integer times π.

The resonances due to 'Over-the-barrier" reflection are less pronouriced if the po-
tential barrier is rounded, äs is often the case experimentally [3l]. A similar suppression
of transmission resonances occursinthe case of the conductance quantization of a quan-
tum point contact, due to the rounding of the shape of the constriction near entrance
and exit.

5.5 Resonant Tunneling

When two barners are placed in series, the transmission probability T(E] may show
resonances due to tunneling through qua.si-bound states in the well between the barriers
(see Fig. 19). The double barner is the a,nalogue of the Fabry-Perot resonator in optics.
A theoretical study of resonant tiinneling has been made by Breit and Wigner, in the
context of resonant enhancement of the neutron capture cross section observed in nu-
clear physics [32]. Resonant tunneling has since become relevant for solid state physics
äs well, in particular because of theproposa] by Tsu and Esaki [33] to build multiple bar-
rier "superlattice" devices using semiconductor heterostructures. Evidence for resonant
tunneling through a double barrier structure was first reported by Chang, Esaki and
Tsu [34] As in most of the subsequent experiments, they measured the current-voltage
characteristic to detect the resonance äs a negative differential resistance at finite bias.
In this section we will discuss instead the transmission probability at zero or negligibly
small bias, which determines the linear response conductance It will be assumed_that
either the Fermi energy or the energy of the quasi-bound states in the well can be tuned
by means of an external pararneter (such äs gate voltage or magnetic field).

Resonant tunneling through a double barrier may be treated by summing the com-
plex amplitudes of all possible paths which finally lead to transmission. We denote the
complex transmission amplitudes of the individual barriers by ti and £2, and the complex
reflection amplitudes by ΓΙ and r2- These amplitudes are related to the transmission



i*

Ψ

*

and reflection probabihties Γ, and R, (i = 1,2) by

r, = Ä,1/2e'^

T, = l - R,
(76)

(77)

In addition to the phase shifts Δψ, mcurred on reflection off a barner, there is a phase
shift φ± correspondmg to traversal of the well in the positive or negative x — direction
The total transmission amphtude through the double barner then is

The transmission probabihty follows from T = |i|2

T =
l + AI Ä2 - 2R\/2R1

2
/2 cos χ '

where χ is the total phase shift for one round trip in the well

X = Φ+ + Φ- ·

(79)

- Δ<έ2 (80)

The transmission probabihty T has a maximum whenever χ = η2ττ äs a con-
sequence of destructive mterference of the backscattered partial waves Since this is
precisely the condition for the existence of a quasi bound state in the well the reso-
nance occurs when the energy of the incident electron comcides with the energv Er of
a quasi bound state The maximum and mmimum transmission probabihties are given
by

i-J-i
* max —

T —·*· min —

Γ,Γ2
4Γ,Γ2

(l-R}'
7\

4 '

(81)

(82)

where the approximate equahties hold only if ΓΙ <C l, and T2 <C l Note that if the
double barner is symmetnc (T\ — T2), the maximum transmission probabihty is unity,
regardless of the magmtude of the barner transparencies The conductance then equals
e 2 / h (for one spm direction) A plot of T äs a function of χ is given m Fig 20, for
ΓΙ = T2 = 0 8 and ΓΙ = T2 = Ο 2 The energy dependent transmission probabilitv
T (E) may be obtamed from Eq (79) provided the phase shift χ and the transmission
probabihties of the mdividual barners are known äs a function of energy Foi planar
rectangular barriers this may be done by the wavefunction matchmg method discussed
in the previous subsection [36]

If the barriers are sufficiently high and thick, both TI -C l and TI <C l, and T (E)
reduces to the Breit Wigner form for energies close to a resonance, äs we will now discuss
[35] The phase shifts mcurred on reflection off the barner are Δία, = — ττ/2, mdependent
of energy If the Separation of the barners is L, then the resonance condition \ = η2π
reduces to the familiär Bohr Sommerfeld quantization condition 2L/X = n + | (here
λ = 2ττ/Α, with k — (2τηΕ):/Ι2/Η) Consider one such state at energy Er For energies
close to Er the round-tnp phase shift χ is linear in cr Ξ E — ET,

(83)
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(76)
(77)

here is a phase
/e x — direction.

Figure 20. Transmission probability through a double barrier äs a function of the round-
trip phase shift χ, calculated from Eqs. (79) and (80), for TI = T-z = 0.8 (upper fü l l
curve) and T\ = TI = 0.2 (lower füll curve). Also shown are the corresponding Breit-
Wigner lineshapes for a single quasi-bound state, calculated from Eq. (85) assuming a
linear dependence of χ on E — ET äs in Eq. (84) (dashed curves).

(80)

'.2ir. äs a con-
Since this is

well, the reso-
e energy Er of
ities are giveri

with v = 1/hp the attempt frequency and p = (L/ir)dk/dE the density of states in the
well. Close to resonance we may thus write

(84)

By expanding cos χ « l — i(e r/Äi/)2 and R, « l — ij1, we then find from Eq. (79)

(81)

(82)

>te that if the
nility is unity,
•e then equals
τ Fig. 20, for
in probability

transmission
,'. For planar
lod discussed

l, and T (E)
'λ now discuss
independent

,ίοη χ = η2π
n + \ (here
For energies

(83)

T =
(T,

(Γ/2)' + (e r/Ä)i '
(85)

where we have used Γ, = vT, and Γ = ΓΙ +Γ2. Eq. (85), with its characteristic lorentzian
lineshape, is known äs the Breit-Wigner formula [32]. The Breit-Wigner formula is a
good approximation of the lineshape close to a resonance, where e -C Hv, provided
ΤΊ,Τί <C l (or, equivalently, ΛΓ <C Δ.Ε = l/p). The deviations from the exact result
(79) can be quite large if the barrier transparencies approach unity, äs shown in Fig. 20.

The Breit-Wigner formula has a wider ränge of validity than to the one-dimensional
tunneling problem considered here, where only a single conduction channel or 1D-
subband in the electron gas regions adjacent to the potential well couples to the quasi-
bound state in the well. As discussed by Büttiker [35], in the multi-channel case one
simply has to replace the tunnel rates ΓΙ and Γ2 by the sum of the tunnel rates of the
localized state to each of the available conduction channels. This has the consequence
that the maximum transmission probability due to resonant tunneling through a sin-
gle localized state is unity, regardless of the number of scattering channels in the leads
which couple to the localized state. This implies a maximum contribution of e 2 / h to the
conductance (for one spin direction) for each localized state in the well, the maximum



being realized if the tunneling rates through the two barriers are equal. This import^nt
result has been found following a different route by Kaimeyer and Laughlin [37], and by
Xue and Lee [38].

This example and the one discussed in section 4 iüustrate how e2 jh may show up
in seemingly unreiated contexts (quanturri ballistic transport through a point conta.ct,
and resonant tunneling through a localized state): Further exampies are the quantum
Hall effect, and universal conductance fluctuations[22]. Solid state electron optics is the
viewpoint that transport properties are in essence transmission properties of the modes
(or quantum channels) in the conductor. A single open channel universally contributes
&11 h to the conductance. which explains why this qua.ntitv is nbiqui tou.s in .-
n ranspor t . - ' - · . . · - - · _ r - -

6. READING GUIDE

Fundamental« of the Analogy

1. R.P. Feynman, Space-Time Approach io Non-Relaiivisiic Quantum Mechanics, Rev.Mod.Phys.
20, 367 (1948). A iucid and self-contained description of Feynman's path-mtegral formulation of
quantum mechanics, that may also be regarded äs the final building block of the fundamental
analogy between non-relativistic mechanics and optics.

2. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, vol. II. chapter 19:
The Principie of Least Action (Addison-Wesley, New York, 1964). A personal account of Feynman's
fascination with variational principles, which led to his formulation of quantum mechanics.

3. M. Born and E. Wolf, Principles of Optics, (Pergamon, Oxford, 1965). Appendix II describes the
basics of the analogy with electron optics.

Principles of Solid State Electron Optics

1. W. van Haeringen and D. Lenstra, eds. Analogies in Optics and Micro-Electronics, (Kluwer Aca-
"demic, Dordrecht, 1990) and also Physica B 175 (1990). Two collections of articles on analogies,
which provide an excellent reading guide for those interested in this field.

2. We would also like to refer to the Chapters in this volume by Agranovich, John, and Yablonovitch,
which deal with particular analogies between optics and solid state transport.

3. R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scaiterers in Metallic
Conduciion, IBM J.Res.Dev. l, 223 (1957). The main rnessage of this paper was that rnore
attention should be given to the role of the strongly inhomogeneous (self-consistent) electric field
in some transport problems, but i t is most often cited because it pioneered the idea of a relation
between conductance and the transmission probability: transport is viewed äs a consequence of a
flux of carriers, incident from a reservoir, rather than äs a result of an applied electric field.

4. R. Landauer, Conductance from Transmission: Common Sense Points, Physica Scripta T42, 110
(1992). A highly readable discussion of some objections that one might raise (or that some have in
fact raised) against the transmission approach, complete with arguments why they are irrelevant
in many cases.

5. M. Büttiker, Four-Terminal Phase-Coherent Conductance, Phys.Rev.Lett. 57, 1761 (1986). An-
other pioneering paper, that provided the generalization of the Landauer formula (äs we know it.
today) to multi-probe measurements of the conductance. A reciprocity relation is derived for the
conductance (generalizing Onsager's reciprocity relation to one for the conductivity).

6. M. Büttiker, Symm.etry of Electncal Conduction, IBM J.Res.Dev. 32, 317 (1988). A detailed and
more tutorial account of the Landauer-Büttiker formalism.

7. L. Esaki and R. Tsu, Superlattice and Negative Differential Conductivity in Semiconductors, IBM
J.Res.Dev. 14, 61 (1970). The first paper on the idea of a semiconductor superlattice, which has
had a tremendous influence on semiconductor physics ever since.

8. Y. Imry, Physics of Mesoscopic Systems, in Directions in Condensed Matter Physics, G. Grinstein
and G. Mazenko, eds. (World Scientific Press, Singapore, 1986). A review that has set the agenda
for much of the subsequent developments in mesoscopic physics.

9. V.S. Tsoi, J. Bass, and P. Wyder, Transverse Electron Focusing äs a Way of Studying Surface
Crystallography, Advances in Physics 41, 365 (1992). A review of pioneering work on ballistic
electron transport. in metals.
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10. H. van Houten, C.W.J. Beenakker, J.G. Wilhamson, M E.I Broekaart, P.H.M. van Loosdrecht,

B..7. van Wees, J.E. Mooij, C.T. Foxon, and J.J. Harris, Cohereni e/ectron focusing weih quaniiAn
point contacts m a two dimensional eleciron gas, Phys. Rev. B. 39, 8556 (1989). This paper
established the idea of solid state electron optics using quantum point contacts äs coherent point
sources, potential walls äs mirrors, and a magnetic field äs a lens.

Conductance Quantization and Transmission Steps

1. C.W.J. Beenakker and H. van Houten, Quantum Transport in Semiconducting Nanostructures,
Solid State Physics 44, l (1991) A review dealing with the regimes of coherent diffusion, quanturn
ballistic Transport, lateral tunneling, and adiabatic transport in the quantum Hall effect regime.

2. M A. Reed, ed. Nanostructured Systems, a volume of Semiconductors and Semimetals, (Academic
Press, New York. 1992). This book contains 4 extended reviews enti t led Quantum Prnnl Canlarl.·,
b\ H van Houten C W J Bwnakker irxi 8.! van Wees 'v'hi'i '»<"· > l'n «' · ·· "i " " . , ' - / ;
. b a i f g i t i c t . j v . Γιιηρ ΐΐιι Quantum daü öffect m Open Cunductort,, by Vi Bu t t i kc r . and
Electroni, m Laterally Periodic Nanostructures, by W. Hansen, J.P Kotthaus, and U Merkt.

Refraction and Tunneling

1. E. Burstein and S Lundquist. eds. Tunneling Phenomena m Solids, (Plenum, New York. 1969).
Still the best introduction to solid-state tunneling.

2 L. Solymar, Superconductive Tunnehng and Applications, (Chapman and Hall. London 1972)
This book also contains a chapter on normal metal tunneling, and has an extensive bibliography

3. H. Grabert and M. Devoret, eds Smgle Charge Tunneling. Coulomb Blockade Phenomena tn
Nanosiructures, NATO ASI Series B: vol. 294 (Plenum, New York, 1992). This book is a collection
of review articles of tunnel ing beyond the mdependent electron approximation. where the analogy
with optics no longer holds.

4. M. Büttiker, Coherent and Sequential Tunneling in Series Bamers, IBM J Res.Dev 32, 63 (1988)
Contains a good introduction and guide to the literature on resonant tunneling
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