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We identify the time T between Andieev teflections äs a classical adiabatic mvananl in a balhstic
chaotic cavity (Lyapunov exponent A), coupled to a supeiconductor by an N mode constnction
Quantization of the adiabatically mvananl toius in phase space gives a disciete sei of penods T„,
which in turn geneiate a laddei of excited states ε,,,,, = (m + \/2)πη/Τ,, The laigest quantized penod
is the Ehrenfest time TQ — A" 1 \nN Piojection of the invariant toius onto the coordmate plane shows
that the wave functions inside the cavity aie squeezed to a tiansverse dimension W/^/N, much below
the width W of the consti iction
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The notion that quantized energy levels may be asso-
ciated with classical adiabatic invaitants goes back to
Ehienfest and the bnth of quantum mechanics [1] It
was successful in providmg a semiclassical quantization
scheme foi special mtegiable dynamical Systems but
failed to desciibe the genenc nonintegiable case Adia-
batic invaiiants play an inteiesting but mmoi lole in the
quantization of chaotic Systems [2,3]

Since the existence of an adiabatic mvaiiant is the
exception rathei than the lule, the emeigence of a new
one quite often teaches us something useful about the
System An example fiom Condensed mattei physics is
the quantum Hall effect, in which the semiclassical
theoiy is based on two adiabatic invaiiants the flux
thiough a cyclotion oibit and the flux enclosed by the
oibit centei äs it slowly diifts along an equipotential [4]
The stiong magnetic field suppiesses chaotic dynamics in
a smooth potential landscape, lendenng the motion
quasi-mtegrable

Some time ago it was realized that Andieev reflection
has a similar effect on the chaotic motion in an electron
billiaid coupled to a supeiconductoi [5] An election
tiajectoiy is retiaced by the hole that is produced upon
absoiption of a Coopei pan by the supeiconductor At
the Feimi eneigy EF the dynamics of the hole is piecisely
the time leveise of the election dynamics, so that the
motion is stiictly penodic The penod fiom election
to hole and back to election is twice the time T between
Andieev leflections Foi finite excitation eneigy ε the
election (at energy EF + ε) and the hole (at eneigy
Ep — ε) follow shghtly diffeient tiajectoiies, so the oibit
does not quite close and dnfts aiound in phase space
This di i f t has been studied in a vanety of contexts [5-9]
but not in connection with adiabatic invaiiants and the
associated quantization conditions It is the puipose of
this Lettei to make that connection and pomt out a
st i iking physical consequence The wave functions of
Andieev levels fill the cavity in a highly nonumfoim
"squeezed" way, which has no counteipait in noimal

state chaotic 01 regulai bilhaids In paiticulai, the
squeezing is distinct fiom penodic oibit scaiimg [10]
and entnely different fiom the landom supeiposition of
plane waves expected foi a fully chaotic bi l l ia id [11]

Adiabatic quantization bieaks down near the excitation
gap, and we will argue that landom-matnx theoiy [12]
can be used to quantize the lowest-lymg excitations above
the gap This will lead us to a foimula foi the gap that
ciosses ovei fiom the Thouless eneigy to the inveise
Ehienfest time äs the number of modes in the pomt
contact is mcieased

To illustiate the pioblem we lepiesent in Figs l and 2
the quasipenodic motion m a paiticulai Andieev bi l l ia id
(It is similai to a Sinai billiaid but has a smooth potential
V m the intenoi to favoi adiabaticity) Figuie l shows a
tiajectoiy in leal space while Fig 2 is a section of phase
space at the mteiface with the supeiconductoi (y = 0)
The tangential component ρλ of the election momentum
is plotted äs a function of the cooidmate λ along the
mteiface Each pomt in this Pomcare map conesponds
to one colhsion of an election with the mteiface (The
colhsions of holes aie not plotted) The election is letio-
leflected äs a hole with the same p^ At ε = 0 the com-
ponent p) is also the same, and so the hole letiaces the
path of the election (the hole velocity being opposite to its
momentum) At nonzeio ε the letroieflection occurs with
a shght change in py, because of the diffeience 2ε in the
kinetic eneigy of elections and holes The lesulting slow
dnft of the penodic tiajectoiy tiaces out a contoui in the
suiface of section The adiabatic mvaiiant is the function
of x, pv that is constant on the contoui We have found
numencally that the di i f t follows isochionous contouis
CT of constant time T(x, pA) between Andieev leflections
[13] Let us now demonstiate analytically that T is an
adiabatic mvaiiant

We considei the Pomcaie map CT —> C(s, T) at eneigy
ε If ε = 0 the Pomcaie map is the identity, so
C(0 Γ) = CT Foi adiabatic invaiiance we need to piove
that hme_o dC/ds = 0, so that the diffeience between
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FIG. 1. Classical trajectory in an Andreev bilhard. Parlicles
in a two-dimensional electron gas are deflected by the potential
V = [l - (r/L)2]VQ for r < L, V = 0 for r > L. (The dotted
circles are equipotentials.) There is specular refiection at the
boundaries wilh an msulator (thick solid hnes) and Andreev
reflection at the boundary with a superconductor (dashed hne).
The tiajectory follows the motion between two Andreev re-
flections of an electron near the Fermi energy EF — 0.84V0-
The Andreev reflected hole retraces this trajectory m the
opposite direction.

C(s, T) and CT is of higher order than ε [14]. Since the
contour C(s, T) can be locally represented by a function
px(x, ε), we need to prove that 1ίηιε̂ 0 dp^(x, ε)/θε = 0.

In order to prove this, it is convenient to decompose the
map CT —> C(s, T) into three separate stages, starting out
äs an electron (from CT to C+), followed by Andreev
reflection (C+ —* C_), and then concluded äs a hole
[from C_ to C(e, T)]. Andreev reflection introduces a
discontinuity in py but leaves px unchanged, so C+ =
C_. The flow inphase space äs electron ( + ) or hole (—) at
energy ε is described by the action S±(q, ε), such that
p±(q, ε) = 35±/dq gives the local dependence of (elec-
tron or hole) momentum p = (ρλ, py) on position q =
(x,y). The derivative dS±/ds = t±(q,s) is the time
elapsed since the previous Andreev reflection. Since by
construction t±(x,y = 0,s = 0) = T is independent of
the position χ of the end of the trajectory, we find that
1ΐιηε_ο dp~(x, y = Ο, ε)/3ε = 0, completing the proof.

The drift (δχ, δρχ) of a point in the Poincare map is
perpendicular to the vector (dT/dx, dT/dpx). Using also
that the map is area preserving, it follows that

(δχ, δΡι) = Bf(T)(dT/dp„ -dT/dx) + 0(s2), (1)

with a prefactor f ( T ) that is the same along the entire
contour.

The adiabatic invariance of isochronous contours may
altematively be obtained from the adiabatic invariance of
the action integral / over the quasiperiodic motion from
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FIG. 2 (color online). Poincare map foi the Andreev bi l l ia id
of Fig. 1. Each dot represents a starting point of an electron
trajectory, at position χ (m unils of L) along the Interface y — 0
and with langential momentum p v (in units of *JmV0). The
inset shows the füll surface of the scction, while the main plot
is an enlargement of the central region. The diiftmg quasiperi-
odic motion follows contours of conslant time T between
Andreev reflections. The cross marks the starting point of
the trajectory shown in the previous figure, havmg T= 18
(in units of ^/mL2/V0).

electron to hole and back to electron:

/ = φ pdq = ε φ — = 2εΤ. (2)

Since ε is a constant of the motion, adiabatic invari-
ance of / implies adiabatic invariance of the time T
between Andreev reflections. This is the way in which
adiabatic invariance is usually proven in textbooks. Our
proof explicitly takes into account the fact that phase
space in the Andreev billiard consists of two sheets,
joined in the constriction at the Interface with the super-
conductor, with a discontinuity in the action on going
from one sheet to the other.

The contours of large T enclose a very small area. This
will play a crucial role when we quantize the billiard,
so let us estimate the area. It is convenient for this
estimate to measure px and χ in units of the Fermi
momentum pF and width W of the constriction to the
superconductor. The highly elongated shape evident in
Fig. 2 is a consequence of the exponential divergence in
time of nearby trajectories, characteristic of chaotic dy-
namics. The rate of divergence is the Lyapunov exponent
Λ. (We consider a fully chaotic phase space.) Since the
Hamiltonian flow is area preserving, a stretching €+(/) =
€+(0)eA ' of the dimension in one direction needs to be
compensated by a squeezing £_( / ) = €_(0)e~A ' of the
dimension in the olher direction. The area A — €+€_ is
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then time mdependent Initially, €±(0) < l The constnc-
tion at the supeiconductoi acts äs a bottleneck, enfoicmg
€±(T) < l These two inequahties imply €+(i) < ex(t~T},
€_ < e~At The enclosed aiea, theiefoie, has the uppei
bound

Amax - pFWe~*T - ΗΝε-λτ, (3)

wheie N - pFW/h » l is the number of channels in the
point contact

We now contmue with the quantization The two
invanants ε and T define a two-dimensional toius in the
foui-dimensional phase space Quantization of this adia-
batically invai iant toius pioceeds following Einstein
Bullouin-Kellei [3], by quantizmg the aiea

Φ pdq = 2πΗ(ηι + v/4), m = 0, l, 2, (4)

enclosed by each of the two topologically mdependent
contouis on the toius Equation (4) ensuies that the wave
functions aie smgle valued (See Ref [15] foi a denvation
m a two-sheeted phase space) The integei v counts the
numbei of caustics (Maslov index) and in oui case should
also mclude the numbei of Andieev leflections

The fiist contoui follows the quasipenodic oibit of
Eq (2), leading to

εΤ = (m + }j)irh, m = 0, l, 2, (5)

The quantization condition (5) is sufficient to deteimme
the smoothed density of states ρ(ε), usmg the classical
piobabihty distnbution P (T) oc exp(-7W<5//0 [16] foi
the time between Andieev leflections (We denote by δ
the level spacing in the isolated b i lha id) The density of
states

r«
ρ(ε) = Ν

Jo

00 Γ / l
dTP(T) Υ' δ\ ε - (m + - \TTh/T \ (6)

V ^ >ιη=0

has no gap but vamshes smoothly κ exp(—Νδ/4-ε) at
eneigies below the Thouless eneigy Νδ This "Bohi-
Sommeifeld appioximation" [12] has been qmte success-
ful [17-19], but it gives no infoimation on the location
of mdividual eneigy level—noi can it be used to detei-
mme the wave functions

To find these we need a second quantization condition,
which is piovided by the aiea <j>T ρλάχ enclosed by the
contouis of constant T(x, px),

= 2ττΗ(η + v/4), n = 0,1, 2, (7)

Equation (7) amounts to a quantization of the penod
T, which togethei with Eq (5) leads to a quantization
of ε Foi each Tn theie is a laddei of Andieev levels
εηη, = (m + jH/z/r,,

Whi le the classical T can become aibit ianly laige, the
quantized T„ has a cutoff The cutoff follows fiom the
maximal aiea (3) enclosed by an isochionous contoui

Smce Eq (7) lequnes Amax > 2πΗ, we find that the
longest quantized penod is T0 = λ~][\ηΝ + 0(1)] The
lowest Andieev level associated with an adiabatically
invaiiant toius is theiefoie

rrh _ ττΗλ

2T~0 ~ 2 liWV
(8)

The time scale TQ α | ln/i| repiesents the Ehienfest time
of the Andieev bilhaid, which sets the scale foi the
excitation gap m the semiclassical hmit [20-22]

We now tuin fiom the eneigy levels to the wave func-
tions The wave function has electron and hole compo-
nents φ±(χ, y), conespondmg to the two sheets of phase
space By piojectmg the invaiiant toius m a smgle sheet
onto the x-y plane we obtain the suppoi t of the election 01
hole wave function This is shown m Fig 3, foi the same
bilhaid presented m the pievious figuies The curves aie
stieamhnes that follow the motion of mdividual elec-
tions, all shaimg the same time T between Andieev
leflections (A smgle one of these tiajectones was shown
m Fig l )

Togethei the stieamhnes foim a flux tube that lepie-
sents the suppoi t of ψ+ The width 8W of the flux tube is
of oidei W at the constuction but becomes much smallei
in the mtenoi of the bilhard Smce δ W/W < € + + € _ <
£λ(ι-τ) + e-\t (Wlth o < ί < Γ), we conclude that the flux

tube is squeezed down to a width

SW =*u ' ' m m (9)

The flux tube foi the level ε00 has a minimal width
^Wmm — W/\[N Paiticle conseivation implies that
\ψ+\2 α l /δ W, so that the squeezing of the flux tube is

FIG 3 Piojcclion onto the χ y plane of the invaiiant toius
with T = 18, lepiesentmg the suppoit of the election compo
nent of the wave function The flux tube has a laige width neai
the supeiconductoi which is squeezed to an mdistmguishably
small value aftei a iew colhsions with the boundaiies
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associated with an mciease of the election density by a
factor of V/V äs one moves away fiom the constnction

Let us examine the lange of vahdity of adiabatic quan-
tization The dnft δχ, δρλ upon one iteiation of the
Poincare map should be small compared to W pr We
estimate

—
W pF h\N

ΛΓ, ~
e ' ~

,-A(T„-T )

(10)

Foi low-Iymg levels (in— 1) the dimensionless dnft is
<3C l foi Tn < T0 Even foi Tn = T0 one has δχ/W —
1/lnW « l

Semiclassical methods allow one to quantize only the
tiajectoiies with penods T < T0 The pait of phase space
with longei penods can be quantized by landom-matnx
theoiy, accoidmg to which the excitation gap £gdp is the
inveise of the mean time between Andieev leflections in
that part of phase space [12,17]

E =gap
rS/2R

ÖD

Heie y=|(V5 — 1) is the golden latio This foimula
descnbes the crossovei fiom Egap = y5/2h/TQ =
γί/2Ηλ/\ηΝ to £gap = γ5/2Νδ/2ττ at ΝΙηΝ^Ηλ/δ
It lequires Ηλ/Νδ » l (mean dwell time laige com-
paied to the Lyapunov time) The semiclassical
(large-ΛΟ hmit of Eq (11), hm//-,«, E&ap = 030fi/T0 is a
factor of 5 below the lowest adiabatic level, ε00 =
l 6/ζ/Γ0, so that indeed the eneigy lange neai the gap
is not accessible by adiabatic quantization [23]

Up to now we consideied two-dimensional Andieev
bilhaids Adiabatic quantization may equally well be
applied to thiee-dimensional Systems, with the aiea en-
closed by an isochionous contour äs the second adiabatic
invanant Foi a fully chaotic phase space with two
Lyapunov exponents A1( A2, the longest quantized penod
is T0 = jCA] + A2)~ ' In/V We expect interestmg quantum
size effects on the classical locahzation of Andieev levels
discoveied in Ref [7], which should be measmable in a
thin metal film on a superconducting substiate

One important challenge for futuie leseaich is to lest
the adiabatic quantization of Andreev levels numencally,
by solvmg the Bogohubov-de Gennes equation on a
Computer The chaiactenstic signatuie of the adiabatic
invanant that we have discovered, a nanow legion of
enhanced mtensity in a chaotic legion that is squeezed äs
one moves away fiom the supeiconductoi, should be lead-
ily obseivable and distinguishable fiom other featuies
that aie umelated to the piesence of the supeiconductoi,
such äs scars of unstable penodic oibits [10] Expen-
mentally these legions might be obseivable usmg a scan-
mng tunneling piobe, which piovides an eneigy and
spatially icsolved measuiement of the election density
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