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We identify the time T between Andieev 1eflections as a classical adiabatic 1nvariant 1 a ballistic
chaotic cavity (Lyapunov exponent A), coupled to a supeiconductor by an N mode constriction
Quantization of the adiabatically 1nvariant torus 1n phase space gives a disciete set of petiods T,
which 1n turn geneiate a ladder of excited states g, = (m + 1/2)7h/T, The laigest quantized period
15 the Ehrenfest time Ty = A~!InN Projection of the ivariant to1 us onto the coordinate plane shows
that the wave functions inside the cavity are squeezed to a tiansverse dimension W/+/N, much below

the width W of the constiiction
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The notion that quantized energy levels may be asso-
ciated with classical adiabatic invaiiants goes back to
Ehienfest and the buth of quantum mechanics [1] It
was successful 1n providing a semiclassical quantization
scheme for special integiable dynamical systems but
failed to desciibe the generic nonintegiable case Adia-
batic invariants play an intetesting but mino1 1ole in the
quantization of chaotic systems [2,3]

Since the existence of an adiabatic nvaiiant is the
exception rather than the 1ule, the emeigence of a new
one quite often teaches us something useful about the
system An example fiom condensed matter physics 1s
the quantum Hall effect, in which the semiclassical
theoty 1s based on two adiabatic invanants the flux
thiough a cyclotron oibit and the flux enclosed by the
o1bit center as 1t slowly diifts along an equipotential [4]
The stiong magnetic field suppiesses chaotic dynamics 1n
a smooth potential landscape, 1endering the motion
quasi-integrable

Some time ago 1t was realized that Andieev reflection
has a similar effect on the chaotic motion in an electron
billiaid coupled to a supeiconductor [5] An election
tiajectory 1s retrtaced by the hole that 1s produced upon
absoiption of a Cooper pant by the supeiconductor At
the Ferm1 ene1gy Er the dynamics of the hole 1s precisely
the time 1eveise of the election dynamics, so that the
motion 18 stiictly periodic The petiod fiom election
to hole and back to election is twice the time 7 between
Andieev 1eflections For finite excitation eneigy & the
election (at energy Er + &) and the hole (at eneigy
Er — ¢) follow shightly different tiajectories, so the o1bit
does not quite close and diifts atound 1n phase space
This diaft has been studied 1n a vartiety of contexts [5—9]
but not in connection with adiabatic invanants and the
associated quantization conditions It 1s the puipose of
this Letter to make that connection and point out a
stitking physical consequence The wave functions of
Andieev levels fill the cavity mn a highly nonuntfoim
“squeezed” way, which has no counteipait in normal
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state chaotic o1 regulair bilhaids In paiticulai, the
squeezing 15 distinct fiom periodic oibit scarring [10]
and enturely different fiom the 1andom supetposition of
plane waves expected for a fully chaotic bilhard [11]

Adiabatic quantization breaks down near the excitation
gap, and we will argue that 1andom-matrix theory [12]
can be used to quantize the lowest-lying excitations above
the gap This will lead us to a formula for the gap that
ciosses ovet from the Thouless eneigy to the inverse
Ehienfest time as the number of modes in the point
contact 1s incieased

To illustiate the pioblem we 1epiesent 1n Figs 1 and 2
the quasiperiodic motion 1n a paiticular Andreev bilhaid
(It 1s stmilat to a Sinar billia1d but has a smooth potential
V 1n the intenior to favor adiabaticity ) Figuie 1 shows a
tiajectory 1n teal space while Fig 2 1s a section of phase
space at the inteiface with the supeiconductor (y = 0)
The tangential component p, of the electton momentum
18 plotted as a function of the coordinate 1 along the
intetface Each point 1n this Poincaré map coiiesponds
to one collision of an election with the inteiface (The
collisions of holes aie not plotted ) The election 1s 1eti0-
teflected as a hole with the same p, At e = 0 the com-
ponent p, 1s also the same, and so the hole 1etiaces the
path of the election (the hole velocity being opposite to its
momentum) At nonzeio & the 1etroieflection occurs with
a slight change 1n p,, because of the diffeience 2¢ 1n the
kinetic eneigy of elections and holes The 1esulting slow
duift of the periodic tiajectory tiaces out a contour in the
sutface of section The adiabatic 1nvanant 1s the function
of x, p, that 1s constant on the contour We have found
numetically that the diift follows sochronous contours
Cy of constant time T(x, p,) between Andieev 1eflections
[13] Let us now demonstiate analytically that T 1s an
adiabatic 1nvariant

We consider the Poincaté map Cyr — C(g, T) at ene1gy
¢ If ¢=0 the Poincaié map 1s the identity, so
C(0 T) = C; For adiabatic invariance we need to piove
that lim,_, dC/de = 0, so that the diffeience between
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FIG. 1. Classical trajectory in an Andreev billiard. Particles
1n a two-dimensional electron gas are deflected by the potential
V=[1-(r/L)*]V, for r<L, V=0 for r > L. (The dotted
circles are equipotentials.) There 1s specular reflection at the
boundaries with an nsulator (thick solid lines) and Andreev
reflection at the boundary with a superconductor (dashed line).
The tiajectory follows the motion between two Andreev re-
flections of an electron near the Fermi energy Ep = 0.84V).
The Andreev reflected hole retraces this trajectory in the
opposite direction.

C(e, T) and Cy is of higher order than & [14]. Since the
contour C(e, T) can be locally represented by a function
p.(x, £), we need to prove that lim,_, dp,(x, &)/de = 0.

In order to prove this, it is convenient to decompose the
map Cy; — C(e, T) into three separate stages, starting out
as an electron (from Cy to C.), followed by Andreev
reflection (C, — C_), and then concluded as a hole
[from C_ to C(g, T)). Andreev reflection introduces a
discontinuity in p, but leaves p, unchanged, so C; =
C... The flow in phase space as electron (+) or hole (—) at
energy & is described by the action S..(q, €), such that
p=(q, &) = 3S../dq gives the local dependence of (elec-
tron or hole) momentum p = (p,, py) on position q =
(x,y). The derivative d8./ds = t.{(q, &) is the time
elapsed since the previous Andreev reflection. Since by
construction t.(x,y = 0,& = 0) = T is independent of
the position x of the end of the trajectory, we find that
lim,_q dps(x,y =0, &)/de = 0, completing the proof.

The drift (6x, 8p,) of a point in the Poincaré map is
perpendicular to the vector (37/dx, dT/dp,). Using also
that the map is area preserving, it follows that

(6x, 8p,) = ef(T)(3T/dp,, —dT/dx) + O(e?), (1)

with a prefactor f(7) that is the same along the entire
contour.

The adiabatic invariance of isochronous contours may
alternatively be obtained from the adiabatic invariance of
the action integral / over the quasiperiodic motion from
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FIG. 2 (color online). Pomcaré map for the Andreev billiaid
of Fig. 1. Bach dot represents a starting point of an electron
trajectory, at position x (1n units of L) along the interface y = 0
and with tangential momentum p, (in units of /mVy). The
inset shows the full surface of the scction, while the mamn plot
1s an enlargement of the central region. The diifting quasiperi-
odic motion follows contours of constant time 7 between
Andreev reflections. The cross marks the starting pomnt of
the trajectory shown 1n the previous figure, having 7 = 8

(in units of /mL?/ V).

electron to hole and back to electron:

1
I=%pdq=e<¢—(—q=28T. (2)
q

Since £ is a constant of the motion, adiabatic invari-
ance of [ implies adiabatic invariance of the time T
between Andreev reflections. This is the way in which
adiabatic invariance is usually proven in textbooks. Our
proof explicitly takes into account the fact that phase
space in the Andreev billiard consists of two sheets,
joined in the constriction at the interface with the super-
conductor, with a discontinuity in the action on going
from one sheet to the other.

The contours of large T enclose a very small area. This
will play a crucial role when we quantize the billiard,
so let us estimate the area. It is convenient for this
estimate to measure p, and x in units of the Fermi
momentum pr and width W of the constriction to the
superconductor. The highly elongated shape evident in
Fig. 2 is a consequence of the exponential divergence in
time of nearby trajectories, characteristic of chaotic dy-
namics. The rate of divergence is the Lyapunov exponent
A. (We consider a fully chaotic phase space.) Since the
Hamiltonian flow is area preserving, a stretching €, (1) =
£.(0)e* of the dimenston in one direction needs to be
compensated by a squeezing €_(¢) = €_(0)e " of the
dimension in the other direction. The area A = €, €_ is
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then time independent Initially, €.(0) <1 The constric-
tion at the supetconductor acts as a bottleneck, enforcing
€.(T) <1 These two mequalities tmply €, (r) < e*=7),
£_ < e The enclosed aiea, thetefoie, has the uppet
bound

Amax = pFWE_AT = ﬁN(g_’\T’ (3)

wheile N = ppW/k > 1 1s the number of channels 1n the
point contact

We now continue with the quantization The two
invatiants € and 7 define a two-dimensional totus 1n the
four-dimensional phase space Quantization of this adia-
batically 1nvaiiant torus proceeds following Einstein
Biillouin-Kellei [3], by quantizing the aiea

fpdq = 2mh(m + v/4), m=0,1,2, 4)

enclosed by each of the two topologically independent
contous on the torus Equation (4) ensuies that the wave
functions aie single valued (See Ref [15] fo1 a derrvation
in a two-sheeted phase space ) The integer v counts the
number of caustics (Maslov index) and 1n our case should
also include the number of Andieev 1eflections

The fiist contour follows the quasiperiodic oibit of
Eq (2), leading to

eT = (m + D7h, m=20,1,2, 5

The quantization condition (5) 1s sufficient to deteimine
the smoothed density of states p(e), using the classical
probability distuibution P(T) o« exp(—=TNS/h) [16] for
the time between Andieev 1eflections (We denote by &
the level spacing 1n the 1solated bilhaid ) The density of
states

o(e) = N fo " arPm Y 5[8 - (m + %)wﬁ/T} ©6)

m=0

has no gap but vanishes smoothly o« exp(—N&/4¢e) at
energies below the Thouless eneigy N6 This “Bohi-
Sommet feld approximation” [12] has been quite success-
ful [17-19], but 1t gives no information on the location
of 1individual eneigy level—not can 1t be used to detet-
mine the wave functions
To find these we need a second quantization condition,
which is provided by the aiea ¢, p,dx enclosed by the
contouis of constant T(x, p,),
jg puda = 27hi(n + v/4), n=012 (7N
T
Equation (7) amounts to a quantization of the period
T, which together with Eq (5) leads to a quantization
of ¢ For each T, theie 1s a laddet of Andieev levels
Cnm = (’71 + %)WE/TH
While the classical T can become aibitiaiily laige, the
quantized T,, has a cutoff The cutoff follows fiom the
maximal atea (3) enclosed by an 1sochionous contour

116801-3

Since Eq (7) 1equuies A, > 27h, we find that the
longest quantized period 1s Ty = A~ [InN + O(1)] The
lowest Andieev level associated with an adiabatically
invatiant torus 18 theiefoie

h ThA

=70 8
#0757, 2InN ®)

The time scale Ty « | Infi] repiesents the Ehienfest time
of the Andieev billiaid, which sets the scale for the
excitation gap 1n the semiclassical hmit [20-22]

We now tuin fiom the eneigy levels to the wave func-
tions The wave function has electron and hole compo-
nents ¥ (x, y), cottesponding to the two sheets of phase
space By piojecting the invaiiant toius tn a single sheet
onto the x-y plane we obtain the suppott of the election o1
hole wave function This 1s shown 1n Fig 3, for the same
billiaid presented 1n the pievious figuies The curves ate
stieamlines that follow the motion of individual elec-
tions, all shaiing the same time 7 between Andieev
reflections (A single one of these tiajectories was shown
m Fig 1)

Together the stieamlines form a flux tube that 1epre-
sents the suppoit of ¢y, The width 6W of the flux tube 1s
of order W at the constiiction but becomes much smaller
in the 1ntet1o1 of the billiard Since SW/W < £, + {_ <
eM=T) 4 o= (with 0 < ¢ < T), we conclude that the flux
tube 1s squeezed down to a width

SW o = WeAT/2 )

The flux tube for the level g5y has a minimal width
SWom = W//N Particle conservation 1mplies that
[, |* = 1/8W, so that the squeezing of the flux tube 1s

L

FIG 3 Piojection onto the x y plane of the invariant toius
with T = 18, 1epresenting the support of the election compo
nent of the wave function The flux tube has a laige width nea1
the supeiconductor which 1s squeezed to an ndistinguishably
small value after a few collisions with the boundaries

116801-3



VOLUME 90, NUMBER 11

PHYSICAL REVIEW LETTERS

week ending
21 MARCH 2003

associated with an inctease of the election density by a
factor of +/N as one moves away fiom the constriction

Let us examine the 1ange of validity of adiabatic quan-
tization The diift éx, p, upon one iteration of the
Poincare map should be small compared to W p, We
estimate

ox _dp,
W pr

For low-lying levels (im ~ 1) the dimensionless diift 1s
<1 for T, <T, Even for T, = T, one has Sx/W =
1/1InN < |

Semiclassical methods allow one to quantize only the
trajectories with petriods 7 = T, The pait of phase space
with longer periods can be quantized by 1andom-matiix
theory, accotding to which the excitation gap £, 1s the
invetse of the mean time between Andieev 1eflections in
that part of phase space [12,17]

f"Tj) P(TYdT _ v32h
f‘;‘(’) TP(T)dT Ty -+ 2wh/N8

(10)

e I \e AMTu—T)
= T oAl (m + —)i—————
FAN 2/ AT,

Egp = v*/*h an
Heie v =%(\/§— 1) 1s the golden 1atio This formula
describes the crossover fiom Ey, = y/*h/Ty =
y2HA/InN to Eg, = y¥/2N§/2m at NInN =/fiA/8
It tequires AA/NS > 1 (mean dwell time laige com-
pated to the Lyapunov time) The semiclassical
(large-N) limit of Eq (11), impy_,e Egay = 030//Tj 15 2
factor of 5 below the lowest adiabatic level, gy =
16/%/Ty, so that indeed the energy 1ange near the gap
1s not accessible by adiabatic quantization [23]

Up to now we consideied two-dimensional Andieev
billiaids Adiabatic quantization may equally well be
applied to thiee-dimensional systems, with the aiea en-
closed by an 1sochionous contour as the second adiabatic
mvauant For a fully chaotic phase space with two
Lyapunov exponents A;, A,, the longest quantized period
18Ty = %(/\1 + A7) "'InN We expect interesting quantum
size effects on the classical localization of Andieev levels
discoveied 1n Ref [7], which should be measuiable in a
thin metal film on a superconducting substiate

One 1mportant challenge for future 1eseaich is to test
the adiabatic quantization of Andreev levels numerically,
by solving the Bogoliubov—de Gennes equation on a
computer The chaiacteristic signatuie of the adiabatic
nvatiant that we have discovered, a naiitow 1egion of
enhanced 1ntensity 1n a chaotic 1egion that 1s squeezed as
one moves away from the supetconductot, should be 1ead-
ily observable and distinguishable from other featuies
that aie untelated to the piesence of the supeiconductor,
such as scars of unstable periodic otbits [10] Experi-
mentally these 1egions might be observable using a scan-
ning tunneling probe, which provides an eneigy and
spatially 1esolved measutement of the election density
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Foundation NWO/FOM We thank 1 Adagidelr and
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