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COMMUNICATION FROM THE OBSERVATORY AT LEIDEN.

On the motion and the mutual perturbations of material particles in an expanding universe,
by W. de Sitter.

1. In an expanding universe, in which the material
density and the pressure are distributed entirely homo-
geneously and isotropically, the line-element being

(1) ds* = R’ (—y*de* + d7?),

the track of a material particle of negligible mass is
a geodesic in the three-dimensional space of which
the line-element is 4o, the position of the particle on
its track being determined by the differential equation
(for the derivation of which the reader may be referred
to my Hitchcock lectures *), p. 187)

do n I
d)/—‘/yz_i_.nz.‘/Q’
where 0 is a constant of integration belonging to the

individual particle considered, and Q determines the
value of y in the particular universe chosen, by

We have

(4) Q=B+ Vy +uns — ky* + ypt,

where 3 is the pressure of radiation, =z, is an average
of the values of n for all the particles in the universe,
and represents the kinematical pressure, and y =1 R,? 4,
A being the “cosmical constant”. The equation (3)
follows at once from LEMAITRE’s equation 2).

I /dy\* k1
— (= —=—(

by means of the energy equation

(2)

*) The astronomical aspect of the theory of relativity, by
W. DE SITTER, University of California Publications in
Mathematics, Volume 2, No. 8, pp. 143—196, Berkeley,
University of California Press, 1933. See also B. 4. V., Vol. V,
No. 193, pp. 217—218, 1930.

2) See e.g. Hitchcock lectures, p. 166. or B. A.N. Vol. V,
Nrs. 193 and 223 (1930 and 1931).

dp 3 dy _
(6) Z‘*‘;E(.ﬁ‘*‘ﬁ)—o-
The three-dimensional space of line-element &z has
constant unit curvature, do being given by:

(7)  dot=dy + S (7) (@Y + sin® $ab),
where we have put for convenience

s () = -S—i“x(—”v‘-g—@, C () =cos (x/ &), k=+1,0,—1I.

We have thus

l%[xs(x)]zc(x) , ‘% cx) =—rkxs(v),

c(x)+ kx*s*(x)=1, S(2x)=c(x)s(x), etc

These and similar formulae enable us to use the
same standard form (7) for positive, negative or zero
curvature (£ = + 1, — 1 or 0). For £ = 0 we have,
of course, c =8 — I.

The space of line-element de, with reference to
which the material particles, if their mutual gravitation
is neglected, have no systematic motion, may be called
the “cosmical space”. An observer in interpreting his
observations does not refer them to this “cosmical”
space, but uses his own local galilean coordinates, of
which the radius vector and time are, in the neigh-
bourhood of y = o0, t = 0, given by

dr — R,ydy, dt = R, cdr.

We are thus led to introduce another three-dimen-
sional space, of which the line-element is R, ydo,
which me may call the “observer’s space”. Its curva-
ture is also constant (in space), and it is

k
EZW. (k-l—I,O,—I)

The constant R,, which arises in the integration
of the energy equation (6), is the natural unit of
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length® and time. It is probably of the order of
10°7 ¢m, or 109 years. We will in the present artlcle
use this unit, i.e. we will put' R, = 1. »
The linear and areal velocities of the particle referred
to the cosmical space are given by the first integrals of
the differential equations for the geodesic, which are*).

doe =

db  ©
®  e=g=, T=rs®=5

where 1 and @ = 7y, S () are constants and y, is the
minimum radius vector of the track.
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The track in the cosmical space (do) is thus (if we
take # = o, or consider such a small portion of space
that the effect of the curvature is negligible) a straight
line like «f3 in the diagram. If we take the plane of
(x, 0) through this track, we have ¢ = 9o0°, d}/ds —=o,
and, counting ¢ along the track from the point of
minimum distance y,, we have

(9 o=y, tan 0, X = o Sec b.

The value of &, i.e. of tan 6, is determined by the
integration of the equation (2).

The track in the observer’s space (y o) is derived
from this by leaving 6 unaltered and multiplying y by y,
the radius vector thus becoming » = yy. It thus
becomes a curve like 4 O C, having a sharp cusp at

1) See Hitchcock lectures, p. 186, or B. A. V. 193, p. 217.

B.A.N. 249.

the origin™ O corresponding. to the point g, on the
track «f8 where the particle was at the time 7 = o

‘for which y becomes zero. Since the sign of y, or of y,

is undetermined, the branch O C is indistinguishable
from O B, which is derived from it by changing the
sign of 7, or, which comes to the same thing, by
adding 180° to 6, while leaving » unaltered. We then
get the parabola-like curve 4 O B. The velocity dr[d¢
at the point O is equal to the velocity of light ¢,
independently of the value of =, i.e. of the velocity

1-on the  “cosmical” track «f3 7).

If we suppose that in the actual universe the exact
value y = 0 is not reached, y having a finite minimum,
then the real track will not be 4 O B or 4 OC, but
presumably something like 4 4 C.

In- the Hitchcock lectures (art. 33, pp. 186—190,
fig. 4) some examples have been computed for different
universes, i.e. different values of u,, £ and y (8 was
taken zero throughout), and different values of =,
%o and of the value of y corresponding to ¢ = o,
X = Xo- The curve 4 OC of the diagram in the
present paper is actually the curve II of the Hitchcock
lectures, but the track «f3 has for the sake of clearness
been drawn much too near the origin. Its correct
position is at a distance from O equal to 25 times
the distance from O to the right hand edge of the
diagram.

2. By assuming the line-element (1) we neglect
the mutual gravitational interaction of the different
individual material particles constituting the universe,
and replace their combined action on any one of them
by that of the whole universe filled homogeneously
with matter of a certain density. It has been pointed
out ?) that this procédure, which is a good approxi-
mation if the mutual distances between the material
bodies are large as compared with their dimensions,
as they are at the present time in the actual universe,
ceases to be an approximation when these mutual
distances become very small, i.e. for very small values
of y. It thus becomes important to determine at least
the order of magnitude of the deviations of the actual
tracks of material particles, subject to their mutual
gravitational interaction, from the idealized simple
tracks described in the preceding article. A rigorous,

‘or even an approximate, determination of the field

of a number of massive particles, and the motion of
each of them in this field, is evidently a problem of
enormous complication, surpassing the power of our

1) See Hitchcock lectures, p. 186, or B. A. V. 193, p. 218.

2) Hitchcock lectures, p: 19o; “On the expanding universe”,
Proceedings Acad. of Sciences Amsterdam, XXXV, p. 596—607
(May 1932); The Observatory, June 1933, Pp- 182—185; M. V.
93, pp. 628—634, June 1933.
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mathematical resources. We must perforce introduce
simplifying assumptions.
I will assume that.the line-element is of the form

(10)

where y is still a function of t alone, while do* retains
the form (7). This involves spherical symmetry, i.e.
the active mass is restricted to a sphere; which may

ds* = — y? e?t do® + ¢** d7?,

be of. finite radius, round the origin, the gravitational |

action of the rest of the universe being still replaced
by that of a homogeneous and isotropic distribution
of density, as in (1). With regard to p and v I will
assume that they are functions of the distance-variable
r alone, r being defined by

r=y7.0

where » is a function of y alone. It would be simpler
to take w =y, and therefore r=—7, but it appears
that this is only possible for £=o0. Thus, although
in the numerical application I will restrict myself to
this simple case, I will retain the more general
definition of r in the general formulas.

We denote differential quotients with respect to
7 by dots, and with respect to r by accents. Further
we put

—_ ’ ® ”
7 ®, e ® .
Then we have »
o , . op.

g ’ _ﬂ__ . ’ 2 2 ' v
5y =7 =M, Sa=pet ey

and similarly for ».
The Christoffel symbols become

(e
——yCcS— xSy {33} {Igsinznp,

5

i

{23} — cot ¢, {323} =—singcosd,
H

|

{

Ill‘gzymly,’ i )5 +_

2(n—v) , .
= )y,

3

44] _ 20—@o' YV  {44) .,
= e

4

22) (10 .. (331 _122] .
Sl By
{24}:534§:1(1+r¢u'), %14}23/@'1}',
y
where ¢ and s stand for ¢ (x) and s (y) respectively.

If we take ¢ = constant = I =, the equations of
the geodesic become

LEIDEN 99
v/ . —(xSC+x*s* )<d6>2 +
a,2+ywp-<d> XSC+ 7787y o w)(—

J Xa"r: Z(V—f#)wlv <_*> .

+2 (1+rp )a’sds y \ds) 7
@_+2<c_+ ) ,>a’xa’ 27 s detﬁ_o
PR O ) i - a5

The value of dr/ds is found at once from (10). It is

\2 —2v . 2(1‘4——14)2
<%> = +y2e ¢

For ¢ = dojds and I' = y* §* df/ds we find then

instead of (8)

(11)

where A is determined by

yrgr =t (14 4),

(12) a=—af (@t &) [woay +4 7

]_

and

(13) rlreét—u.

For y =y, we have I's = )0 S (Xo) 9o- Therefore
T=NXS (o) €2V + A, .

For the materal energy tensor I will continue to
use the values
(14) Tw=—gut, Tu=gup
The field-equations then become

G Ga Gy

II: 22 __ X+ g _ s __41:
gII g22 g33 (P p)

G,;=o0.

The conditions G,,=o0 and G,,[g:: =G..[g 22_.(“33/g33
give: . .
(15) 2y [ =Y+ —pV)]=0,
from which we find at once (if we exclude the pos-
sibility y =0); '
(16)

and

Toy=Typ=o.

—K(p+32),

I4rp =e,

(17) e [on 4+ 2 ) +

b — 2y — %&4— v)] o
LEMAITRE’s equation is
1 <G G,

Saa  S4s

Ce)ret
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where the term G./ga. is to be summed over @ from 1
to 3. This gives instead of (5):

(18) %r’“o +rp) +J§r2#_%g-w [ o+

i L co’
+ +—<2w +4—>]
B+ =
The energy equations div .7? —=o0 give:
4

=5+ Kp).

(19) a—x+yco'v’ (p+2)=0
¥
A

(20) p+3 %(r +rp) (o +2)=0.

If instead of the variables y and t we introduce
r and y, these become
V4

(19) L1y p+p=0

NI ,
(20)  ryArg st =o.

The equations (15), (17), (18), (19), (20) or (16),
(17), (18), (19'), (20") serve to determine y, p, p, 1
and v. If we neglect squares and products of p. and
v, (17) is satisfied by

(21) u+v=o.
Then we find from (16)
m
(22) b=
where 7z is a constant *), and (18) becomes
” &

2 + I—3 A+ Ko).
(23) 7T im=50+4p)

) In a remarkable and valuable paper: “The mass-particle
in an expanding universe”, read in the April meeting of the
Royal Astronomical Society (M. NV. 93, pp. 325—339, 1933),
Dr. Mc VITTIE gives a rigorous solution of the equations (15)
and (17), to which his equations (10) and (11) are equivalent.
The correspondence of the notations is:

McVitTiE: » , Rz , B ,¢, v 7N B%
present ys(}y) 2lgy+2p m J
,kR=F,2lgy 2 7 a3
paper: c(ky) 8752 yylgeiy)’y Sy,

Mc VITTIE’s solution is
w=y8(Ex), o’=cy), o’=—1}ko,
p=21lg(1+9) , v=lg(1—9)—lg(1+7),
where y=7/2r. It will be seen that this agrees with the solu-

tion given above to the first order of 5. The equation (18)
becomes

AL =104k),

which is the same as (23) to the first order.

© Astronomical Institutes of The Netherlands e
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The potential (22) becomes infinite for r = o. It
corresponds to a dimensionless particle with mass
M = 8mm/r at the origin. If we wish to replace this
by a sphere of finite radius, we cannot use the par-
ticular solution (21) of (17), but must replace it by
the general solution. Since we need only an approx-
imate solution, we continue to neglect the second
order, and we also neglect the curvature, i. e. we take
# = o and » = y (and consequently o’ = I, " = 0).
The difference between r = yw and » = yy thus
disappears, and we will write » for r. We have then
from (17),

(24)
and from (15) or (16) we find then

v+ vV = ar,

I I
2 = —ar* +- b6, v=—-ar® + c
(25)  er=¢ 3
If we take
a:—é—”—l — 3~ c=o0
7131 27’1’ ’

7, being the radius of the sphere, then p, v and '
are continuous at the boundary. It is evidently im-
possible to make also v’ continuous. Substituting the
solution (24) in LEMAITRE’s equation (18) we get
Jt 2
y: 3
where we have written p + p, for p, p, being the
addition to the normal density of the universe cor-
responding to the presence of the material sphere
within the radius »,. If we could suppose that (23),
which for £2=o0 does not contain p. or v, remains true
inside the sphere, we would find by subtraction

(26) :%D+x@+mﬂ,

— 2a = %0,

or, since a = — 3m[r3, M = 871772/%;
M = ‘—;-Ttp, 7.3

3. We suppose the universe to be of the expanding
type of the first kind, i.e, y decreases from infinity
to zero and then increases agam to infinity. The
velocity of decrease and increase in the unperturbed
case is given by

= Q; a7,

y

Instead of v I will use as independent variable z,
defined by dz =/Qdx/y, or dz = F dy, the upper
sign being used before and the lower sign after the
minimum y =o. We have thus £ = F y, y being the
unperturbed value. Since we are only interested in
the events very near the origin of time and space,
we can as a good approximation neglect the curvature

ay?
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of space and the influence of the cosmical constant.

Also the influence of the pressure of radiation is consi-

dered as negligible. We take thus §=0,%2=0,y=o0.
Then, if we put

tanxp:—y—, tanu:z,

Mo 0

we have in the “unperturbed” motion, by (2)

o= yo,tan 0, Y = Xo secf,
(27) .
do=Sds, dy=Ssindds 6= SC;’S b a5,
where
cos v cost 4)
S=—"—"1
(28) V.

It has been found convenient to continue to denote
the “unperturbed” angle 6 by the symbol 6. The
angle 6 is thus defined by the formulas (27). The
“perturbed” value then is 6 + 06. For y, on the
contrary, we denote the “perturbed” value by y, so
that y = . sec 6 + dy.

In the “perturbed” motion do and 46 are given
by (r1), (12) and (13) and &y must be derived from
these. We will neglect second orders of p, v and of
the “perturbations” dy, 6. From (12) we have then
at once

(29) @A = + [4xop sec O + 2 (' + v sec®v) Sz sin 6] dz.

If we change the sign of sin 6 and cos 6 after
passing through the minimum y = o, i.e. if we choose
for the ‘“unperturbed orbit” 4 O B in the diagram,
instead of 4 O C, the sign + in (29) must be dropped.

From

- ezv dtz
- I +J/2 82[‘”(?2

we find, replacing 4t by its value in terms of 4z,

nd
(30) 2 —[14v— (s +£A) cos ] Sdz.

Since
26 — I‘a;s _ I'cos:eds <I_2 <_§_)§>’
X Xo x

we find from (13), using the value (30) of nds/y?,
26 — Scos*8dz [ s (y o) — 11.COS*U + v —

— —(Acos*u— o) — 2 8X]
2 .
where p, and A, are the values of p. and A for y = y,,
6 = o.
Subtracting the unperturbed value 26 = Scos® 6dz/y,,
we have

LEIDEN 101

Scos?9

(o]

(31) dob=—

[z(y.—po) + pcos?v—v +
I . oy
+5(A cos’v—A,) + 2 —)C] ds.

Further, since dy* = ¢*ds*— y*d G,Land K220r=1"[y"
we have from (11) and (13) by subtraction

n?d s?

dy= [sinze + 4 (1 —po) cos?0 + A—A, cos?6+

+2 5_)( cos? 9] R
X
or, taking the square root and introducing (30)
dy = S sinbdz [1 + B+ %2—‘ cot26] ,
where we have written for abbreviation

(32)

Subtracting the unperturbed value &y = Ssinf6ds,
and remembering that Sdz = y, sec>640 by (27),
we have

@ = é Ssinbdz + 5—X cosecfdf.
Xo Xo X

Substituting in the last term y = y, secf, multi-
plying by cosec 6, and putting
&= 8_;( cosecH,

(o]

B=v+ p(2cot®d — cos®v) —2 pu, cot?f +
+ L A (cosec®8— cos®v) — LA, cot® .

we find

B

(33) dg :X—b strét dz,

where B is given by (32). After the integration we take

(34) l:gsinecos 0.

Recapitulating we determine first A by (29), then
dx/x by (33), (34) and finally 06 by (31). In accor-
dance with (21), (22) and (24), (25), the values of
u, v, ¢, v are as follows, 7, being the radius of the
material sphere round the origin:

Jor r=yy, sec §>r,:

_m ,_m . . ,
(-"—7’ {}'—_F) V—=— W, V=—U;
Sor v <<w,:
3Im m ,
= —_— _— v
27, 273 ¢ ro
m 2m
V—— —? V=—
73 7,3

The values of 06 and Jy thus determined are the
‘“perturbations” of the coordinates of the moving
particle in the ‘“cosmical space”. For those of the
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coordinates 8 and ” in the “observer’s space” we
then have

(35) 3r:ra—zx+xosec65y,

whilst 06 remains the same. For the determination
of 0y we must consider LEMAITRE’s equation, which

in our simplified case becomes
. # o1

36 —==Kp,
(36) 3%

where p miust be found from the energy equations (19)
and (20) or (19') and (20°), to which must be added
an ‘“equation of state” connecting p and p. If our
original assumption, that the line-element is of the
form (10), is admissible, it should be possible to
choose this equation of state in such a way that
the resulting value of y becomes independent of y,
whilst p and p are functions of both y and 7, or of
» and p. I have not attempted to investigate this
possibility. The following analysis is, of course, not
rigorous. It may be interpreted as giving, not a
“radius” p, which would be valid for the whole uni-
verse, but a multiplyer to reduce the radius vector of
the particular particle considered from the “cosmical”
to the “observer’s” space by the formula »=yy.

In the ‘“unperturbed” case the equation of state to
be used is ¥) ‘

3]7_ Po

By the same reasoning which leads to this equation
we are led in the perturbed case to adopt

“ 2

No
= e** o s
32 5 P
or, since p = p, + 3 2,
():(I—l—g"’/“ 2)90.

Then, neglecting higher orders of p and v, we find

from (19")
7\, _
n°2>v ]Po—oy

(37)

%, [7V'+2y-'+<4£+3
o7 Yo

and (20) becomes

(38) i?fi_if_—@_’”—c
pa_y“ 3 tey
where . .
e=3Y, et apm i)

o

b=34rp —77rv, e=n(1+2y).

1) See LEMAITRE B. 4. V. Vol. V, No. 200, p. 273 (1930) or
Hitchcock lectures, p. 162.
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Treating », and therefore also p, v, p/, v, as con-

stants we find from (38)

ae+ b
2

lgp:const.—l——;—ayz—glgy-{—(;—e— >lg(y’+e),

or

l/J/ +no

(39) (1+2a),

where

Tlo +3rv _——2»+2r(p.'+v')lgy—

=z P‘
— 371 1g(y* +15%).
If for C we write 3R,/ as in the unperturbed
case, and take again R, = 1, we have by substitution
in (36)
0y = ay,
or

(40) ddy = F adz

The corresponding perturbation in the time is
found by ‘

sin ¥ cos
dar——‘/—Q 5}/:;&-_—11%—‘—}‘0(42’2.

For the greater part of the track the value of «
is negative, consequently the value of y in the per-
turbed motion is numerically smaller than in the un-
perturbed case: y decreases less rapidly, and the value
y = 0 is not reached.

The velocity of the particle in its track in the
observer’s space near the origin is

(41)

o do _ neV'1i+ A
TG T et (A

of which the limit for y =0 is 1 + v — p. This is
less than unity, so the velocity never reaches the
velocity of light, as it does in the unperturbed case.

4. Sgme examples have been computed in order
to getfidea of the order of magnitude of the per-
turbations.. As unit of length and time we use R,
for which we take 10?7 cm. For the unit of mass we
take 10" (O = 2.10* gr. In these units the value
of » is very nearly '

%= 4.107"°
For m 1 take as a convenient value

m=%.1077°,
corresponding to M = 8 mw m [z = 1°57.10* (O, a
rather high estimate, which has been chosen on
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purpose to exaggerate the perturbations. For the
radius of the material sphere near the origin I take

7, == 1075,
or roughly 3000 parsecs. For 7, I take
Ne == O°0OI,

which corresponds to an average peculiar velocity of
the extragalactic nebulae at the present moment of
about 300 km/sec. For the minimum distance y, I take

%o = 0°00I,

which is about the average distance in the cosmical
space between neighbouring galaxies.

For the velocity of the perturbed galaxy two values
were used, viz:

@ n = 00I,

equal to the average velocity =,, and a relatively
small velocity

1D

. For the value of 7, or of z, at which the minimum
distance y, is reached, also two different cases were

N = 0O°00I.

LEIDEN
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(A) g=o0 for z2—=o0

(B)

The case (B) is as drawn in the diagram. In the
case (A) ¢, coincides with y, and @ with O. The
track is then symmetrical with respect to O.

The integrations were started at # = — ‘020, but
the resulting perturbations only become appreciable
much nearer the origin. The values of 7 corresponding
to those of z are

¢ = o0 for 2 = — O'OI.

b4 T
+ ‘020 + ‘001563
16 1061
12 635
8 299
4 - 78
o e)

The unit of t is roughly 109 years.

The results of the computations are given in the
following tables. The values of 6 given (in degrees)
are those for the track A O C. The values of 30 are,

considered, viz:

of course, in radians.

= F ‘000997
z G 6 1057 107 A 107 & 1076—% 107 d9 10°dy | 1014y 10117
F -0200. | F 12552 F 89 54 251'0 o o o o o o
160 11194 8949 179°1 — 02 — 21 +002 o +4 + 4 — 4
120 9414 8939 1130 ‘10 66 ‘07 o 9 10 10
8o 7026 89°18 5622 ‘45 19 27 | -4 o004 23 18 20
40 3852 8852 15°41 27 72 19 4+ 20 59 25 38
20 1980 87°11 3'97 11'g 192 9'7 + ‘13 126 29 57
16 1590 8640 2°55 18-8 253 158 — 25 160 29 76
12 1196 8522 144 339 356 295 16 206 30 78
8 799 82:86 0644 86 529 65 74 160 17 67
4 400 75'95 165 110 687 162 39 99 7 64
2 200 6342 ‘045 IT1 762 305 162 94 4 63
T 100 450 ‘014 112 800 400 419 92 2 63
o o o o 112 837 o —817 90 I 63
IB. 2, = #-000122, - 000119
z ¢ 6 1057 108 A 106 & 107% 105 d9 10%dy | rowdr 10717
o
— '0200 — 04243 — 8865 849 o o o o o o o
180 3608 8841 71°5 + 2 |— o1 o + 5 4+ 2 |+ oI — 6
160 2885 8801 462 6 4 | + o1 10 I ‘4 14
140 2058 8722 288 I3 -8 0’4 16 22 ‘5 27
120 1105 8483 13°31 31 17 1’5 22 42 7 46
112 682 8166 772 58 2°4 3'5 24 59 7 61
108 462 7778 5'I0 88 30 62 25 73 6 75
104 234 6689 265 173 43 15°5 26 100 6 95
102 118 49°72 148 296 7'2 35 24 123 6 120
1o1 — 59 — 3063 1’17 397 97 | +4z2 19 141 6 137
100 o o 1°00 457 132 o I5 163 | 4+ o2 154
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104 LEIDEN B.A.N. 249.
IB. z,=-—'000122, + 000119 (continued)
g ¢ 0 1057 108A 1092 107§7—< 10509 10%°dy | 10™dr 1071 dt
o
— ‘0100 o o 1'00 4+ 457 | — 132 o + 135 + 163 4+ o2 — 154
99 -+ roooto + 3080 I'I§ 377 1609 | —74 18 186 | — 06 171
98 120 50°15 1'53 263 19°5 96 29 205 12 188
96 241 67'50 2°51 127 228 81 53 229 I's 213
92 490 7847 460 + 28 263 52 98 257 I'1 234
88 747 8237 663 | — 18 283 37 135 274 | — o4 247
8o 1283 85°54 1029 53 324 25 201 304 | + 13 266
60 2766 8793 16°61 103 40 14°§ 359 343 7°1 291
40 4457 8371 17°83 140 46 10°2 522 373 14'8 305
20 6329 8909 12°66 196 53 84 695 409 25 317
10 7312 8922 731 268 58 79 783 438 31 321
2 8109 89729 €2 783 112 13.7 853 495 40 323
— I 8209 8930 082 1339 119 14°4 859 486 40 323
o 8309 8931 o 1678 119 14'3 359 443 37 323
+ 1 8409 8932 084 1326 119 142 859 400 34 323
2 8509 8933 1'70 774 120 142 860 446 38 323
10 9306 8938 931 324 129 139 868 496 48 323
20 10289 89°44 2058 272 134 12°9 878 514 56 323
40 12161 " 8953 486 254 138 11°3 898 532 70 328
60 13852 8959 83°1 248 143 10°3 916 540 83 331
8o "15335 8963 1227 246 150 97 930 545 96 335
-+ ‘o100 + 16618 8965 1662 — 244 156 94 941 548 | + 107 337
ITA. z = F-oo107
9%
z G 6 1057 107 A 107 & 107Y 106 49 107 dy 10716y 1011 d%
F 0200 F '03426 F 88?33 686 o o o o o o o
160 3271 8825 52°4 + 12 + 4 | — o1 |+ -oog + 12 + 4 — 15
120 3052 8812 368 26 24 -8 ‘024 31 12 35
8o 2712 87-89 2171 45 81 30 ‘054 65 24 64
40 2078 8755 832 71 248 119 ‘144 142 40 104
20 1440 8603 2'89 86 434 300 34 249 45 135
10 881 8352 0886 70 471 528 74 353 36 156
6 569 8003 *346 + 45 394 672 1'40 228 15 152
4 390 7562 161 — 18 339 816 233 213 10 152
2 199 6329 ‘044 33 273 110 57 208 4 152
I 100 4404 ‘014 34 237 118 12 206 3 152
o o o o — 35 | 200 o 19 204 2 152
IIB. 2z, =— 00040, + ‘00031
z T 6 1057 106 A 105& 1059;%C 106 J9 109 dy 10%° g 1010 gt
— 020 — '00524 —79'19 1067 o o o o o o o
18 452 7758 837 + 27 | —o3 |+ 06 |+ 74 + 36 |+ o7 -5
16 368 74°81 611 65 +o04 |— o9 19°6 88 |— o2 IL
14 269 6961 402 129 2'9 95 437 17°1 33 20
12 149 5613 2°1§ 263 97 45 116 320 91 35
11 — 79 | —382 140 393 163 | — 79 235 454 | — 106 50
10 o o 1'00 506 264 o 477 663 |+ o7 67
9 + 8 + 41770 1'20 387 392 | +195 504 892 247 8¢
8 191 62°37 1'72 265 584 240 438 107 437 104
6 449 7744 276 175 111 235 373 130 70°9 114
4 825 8309 333 149 167 198 355 147 785 122
2 1463 8609 2'93 139 246 168 349 164 731 127
— 1 2022 87:17 2'02 135 294 145 347 175 65 128
o 2902 8803 o 121 312 108 347 199 58 129
+ 1 3783 8849 379 132 321 85 347 218 115 130
2 4342 88-68 8-69 133 326 75 347 223 162 131
4 4980 8883 1993 133 338 68 348 227 248 132
6 5356 8893 32°1 133 350 65 349 229 332 133
8 5614 8893 449 133 363 65 350 230 429 134
+ ro10 5805 89 o1 581 133 377 + 65 350 231 |+ 511 135
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It will be seen that the “perturbations” dy are
always positive; 07, though in some cases negative
in the beginning, always becomes positive before the
origin of coordinates is reached. The minimum distance
is in the case B of the order of a few lightyears
(4 in IB and 6 in II B). In the cases I A and II A,
where a considerable part of the track lies inside the
material sphere (galaxy) at the origin of coordinates,
the minimum distance is much smaller, of the order
of a few hundredths of a lightyear, but still essentially
positive.

These are the perturbations of a material particle
(galaxy) by one galaxy at the origin of coordinates.
It would be rash to conclude from these to the
perturbations in the actual universe, which contains
uncounted millions of galaxies, but the following
reasoning may be of some help.

The perturbations of the minimum distance are

LEIDEN 105

always positive, and therefore additive *). The per-
turbations in the time are somewhat smaller than
those in dy, the ratio being of the order of one tenth
in the cases considered in this paper. The deviation
from simultaneity of the passing of the different
galaxies near the origin will thus be less than the
spreading in space. Suppose we consider a million
galaxies. If these occupied the same space that is
occupied by the one in our example, the perturbations
would be a million times as large. They do, however,
occupy a much larger space, say ten times the diameter
at least, and consequently the case A, which gives
much smaller perturbations, will be more frequent,
and the total perturbations will be considerably
smaller than a million times that by one galaxy.
If a still larger number is considered this same reas-
oning applies with still more force, and the total
perturbation will fall still further below the simple sum.

*) The estimate made M. V. 93, p. 634, that the total perturbation will be proportional to the square root of the number

of galaxies, is therefore not correct. It will be much larger.
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