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ON THE STABILITY OF A HELICAL MAGNETIC
FIELD IN A SPIRAL ARM

G. SETTI*

Received 11 December 1964

The hydromagnetic stability of a spiral arm in which the field
lines are helices around the axis is considered. As a simplified
model an infinite cylinder with a longitudinal magnetic field
on the inside and an azimuthal one on the outside is investigated.
Both the incompressible and the compressible cases are discussed.

1. Introduction

CHANDRASEKHAR and FerMi (1953a) derived a model
of a spiral arm with a general magnetic field of the
order of 7 x 107 gauss running almost parallel to the
axis. Discussing the polarization of starlight SHAIN
(1956) has pointed out the presence of a local magnetic
field in Sagittarius inclined to the galactic equator.
Ireland has confirmed the Shajn results and suggested
in a recent paper (IRELAND, 1961) that the data on
interstellar polarization of starlight are favourable to a
helical model of the magnetic field in the spiral arms.
Now there are many arguments which indicate a mag-
netic field intensity B of about 3 x 1073 gauss in the
spiral arm near the Sun (WOLTJER, 1962a). It had been
shown by WOLTIER (1962b) that with such a value of
B only helical fields can satisfy the equilibrium con-
dition in the z-direction where the gravitational attrac-
tion is small. Starting from these considerations we can
visualize a real model in which the field lines are
parallel near the axis of a spiral arm and gradually
become more helical in the outer regions, so that the
magnetic field is largely force-free in the z-direction.
Then the problem arises whether or not such a configu-
ration can be stable from the hydromagnetic stand-
point. The azimuthal component of the magnetic field
tends to cause “pinch”-type instabilities. In fact, if we
outline a spiral arm as an infinite cylinder with a toroi-
dal magnetic field on the outside, then it is well known

* Osservatorio Astronomico di Roma and Laboratorio di Astro-
fisica, Frascati, Roma, Italy.

It is found that the gravitational field given by the distribution
of the stars in a spiral arm may stabilize the configuration, even
for a magnetic field intensity of the order of 3 X 10~° gauss. A
qualitative discussion is given on the stability of the actual
toroidal configuration.

that such a system is unstable to perturbations of a
sufficient long wavelength. But the gravitational field
given by the distribution of the stars in a spiral arm
may improve the situation. The investigation of the
stabilizing effect of such a gravitational field in the
geometry of the infinite cylinder will be the object of
this paper. Clearly the results could have a direct
meaning only for perturbations transverse to the galac-
tic plane, because the gravitational force in the galactic
plane is not determined by the local distribution of
matter. For radial perturbations one has to consider
that actually a spiral arm is a ring in the galactic plane
and therefore a torus constitutes the proper geometry
of the problem. Then, if angular momentum is con-
served, the gravitational force due to the main body of
the Galaxy may provide the restoring force. However,
the analysis of the toroidal configuration raises great
mathematical difficulties. We shall return to this pro-
blem only in the concluding remarks.

We investigate as a simplified model the stability of an
infinitely long cylinder (radius w,) of ideally conducting
plasma subject to the action of an axisymmetric gravi-
tational field of the form

9 = go’ , (1

where g = nGp*, G is the gravitational constant and
p*t is the mean stellar density in a spiral arm. The
equation (1) is derived on the assumption that p* is
constant through the cylinder. The magnetic field lines
are longitudinal inside the fluid and azimuthal in the
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surrounding empty space. The two regions are sepa-
rated by a current sheet.

It may be noted that if one considers a uniform flow
of the fluid, it is always possible in the geometry of an
infinite cylinder to transform to an equivalent frame
at rest with the fluid. We thus assume that the fluid is at
rest in the equilibrium state.

If a mean magnetic field of the order of 10~> gauss
is considered, then the pressure associated with random
cloud motions in a spiral arm turns out to be about
three orders of magnitude less than the magnetic pres-
sure, and therefore it may be considered as negligible.
It will be shown that that is true only for the incom-
pressible fluid, while in the compressible configuration
the hydrostatic pressure, even if small, plays an essen-
tial role. As the density of interstellar matter is only a
few per cent of the mean star density we shall neglect
the self-gravitation of the fluid. It may be noted that
the self-gravitation leads to the well known gravita-
tional instability of the infinite cylinder (CHANDRASEK-
HAR and FErRMI, 1953b), in which we are not interested
in this paper. However, it may be anticipated that
also in this case the gravitational field (1) increases the
stability. This point will be discussed further on.

In section 2 we shall discuss the case of an incompres-
sible fluid by means of a normal mode technique. It
will be possible to find a complete solution.

The analysis of the compressible fluid encounters
analytical difficulties. In section 3 we shall discuss an
approximation method in which the gravitational field
will be taken as weak. Comparing the results obtained
through this perturbation method for both the incom-
pressible and the compressible case, we shall get some
information about the stabilizing effect of the gravita-
tional field on the compressible fluid.

Section 4 will be devoted to the examination of two
somewhat different configurations. The results clarify
and complete the analysis developed in the previous
sections. The linearized hydromagnetic equations which
will be used later on are

7% _

Por =

1
1 [(V x 0B)x B-+(V x B) x 5B] - Vop~pV 9, ()
/i

V6B =0, 3)

B = Vx(ExB), 4
dp = =V - (pb), %)
op = —ypV - Vp, 6

where € is a small displacement applied to the equili-
brium configuration, B the magnetic field, p the hy-
drostatic pressure, p the fluid density, and y the ratio
of specific heats. For an incompressible fluid one has
to add the equation

V-&=0. (7

As the equilibrium configuration has cylindrical sym-
metry we suppose that all perturbed quantities depend
on ¢, ¢ and z through a factor exp i(ot + me + kz)
only.

We derive from KRUSKAL and SCHWARZSCHILD
(1954) the boundary conditions which apply at the
interface between the fluid and the vacuum

L] =0, ®)

n-B"=n-B*=0, (%a, b)

where IT = p+| B |*/8n is the total pressure, [IT] the
discontinuity of IT, B™ and B the magnetic fields
inside and outside the fluid, and n the unit vector
normal to the interface.

2. Incompressible fluid

Let us consider a fluid with uniform density p and
let the magnetic fields be given by

B" = (0,0,b), B™= (o, [l 0), (10a, b)
w

where b and 4 are constants.
With equation (1) we have for the pressure in the
static state

P = p—gpaw’. (1
From equations (2), (4) and (7) it follows that

p(6®>—K*VHe = VoI, VI =0, (12a,b)
where V, is the Alfvén velocity and 81T the perturbed
total pressure. As the fluid is incompressible and the
gravitational field not perturbed no explicit gravita-

tional term occurs in (2). It enters through the boundary
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conditions. The solution of equation (12b) which is
finite at w = 0 is

SII = Al (x) exp i(ot+mo +kz), (13)

where x = |k|w, I,{x) is the modified Bessel function
of the first kind of order m, and A is a constant.
The perturbation equations for the vacuum field are

V x6B* = 0, V6B =0, (l4a,b)
hence

SB™ = Vi, V2 =0, (152, b)

and the desired solution which tends exponentially to
Zero as w — oo is

0B = CV[K,(x) exp i(ct+mo+kz)], (16)

where K, (x) is a modified Bessel function of the second
kind of order m, and C is a constant.

Applying (8) and (9a, b) to the deformed boundary
and developing everything to the first order we find

dIi

[517(1210) + (a)wfﬂ, (wo)] =0, a7

imh
—— &u(@o) = 0, (18)
o

0B (mo) —

while equation (9a) is satisfied identically. Then making
use of the equations (11), (12a), (13) and (16) one
obtains a homogeneous system of equations in 4 and
C which has a non-trivial solution only if

where the prime means the derivation with respect to
the total argument. For all positive values of x,:
L(x0)[1(x0) > 0 and K,,(x)/K.(x,) < 0. Therefore
the gravitational field actually gives a positive contri-
bution. The only term which contributes towards insta-
bility is —xoh*b=21,,(x0)/1.(xo).

Clearly in the equilibrium state the magnetic fields
must satisfy the condition h > b. Let us consider the
case & = b which is the force-free case. If m = 0,
equation (19) becomes

Va Zw(z)az =

Xolxo —I1(x0)iTo(x0)] +2gx0wg Vi 211(xo)/10(xo) .
(20)

From the properties of the Bessel functions it is easily
seen that 1;(x,)/1o(xo) < % X,, s0 that the first term on
the right-hand side of equation (20) is positive. Thus
the system is stable to all axisymmetric perturbations
even in the absence of the gravitational field.
. Let us next consider the case m = 1. Let p = 2 x
1072* g/em?, p* = 2 x 10723 g/cm?®, w, = 150 parsecs
and b = h = 3 x 1077 gauss be the physical quantities
characteristic of a spiral arm. Then we find the results
summarized in table 1, which show that the configura-
tion is stable to all perturbation wavelengths. The
stabilizing effect of the gravitational field is apparent.
Let us consider the modes m > 2. From the recur-
rence formulae of the Bessel functions (WATSON, 1958)

we obtain
-2_2 2 _ ,
VaTmoo” = I,,(xo) 2 Kul0)
2 ’ 271 - T (v Xo +m ’ >
xz +x <2gw2 % 2 h \ Im(xO) m2 h Im(xO)Km(xO) Im(’)”O) Km(xo) (21&)
0 0 oA — 13 - 2 >
b*) L(x)  b’Ln(x0)Kn(x0) I(x0) m?
xo ISErE— “—'xo + 2_ 0
(19) I,(xo) Xo+m
TABLE 1
The values of the various terms in equation (19) as function of x, (m=1)
X Xo? xoI |1 Lk 2 g Weix V‘?IL’ V2w gie?
] o ol1 /11 1 K 0" X0V A I, A Wo
0.1 0.01 1.002 — 0.972 0.050 0.030
0.2 0.04 1.010 — 0.939 0.050 0.019
0.3 0.09 1.022 — 0.899 0.051 0.018
0.4 0.16 1.039 — 0.862 0.052 0.035
0.5 0.25 1.060 — 0.827 ' 0.053 0.070
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for all x, < m, and

Xo (xo - M) > Xo(xg—1)—m = 0 (21b)
Im(xO)

for all x, > m. Thus all modes m > 2 are stable even
in the absence of the gravitational field.

3. Compressible fluid

3.1. Solution of the compressible cylinder when g = 0

We shall first discuss the case of an axisymmetric
compressible fluid in the absence of a gravitational
field, as we shall need this later on. The geometry of
the problem is the same as before, so that in the
static state our assumptions are: @ = 0, p and p are
constant, and the magnetic fields are given by (10a, b).

From equations (2), (4) and (5) we obtain

0
p(a> —k*VE, = — Ol
ow

PO —ICVDE, = — ol (@)

ik [0
paié, = pV} i [T (wém)+im€¢] + k&Il .
w | Cw

Taking the divergence of equation (22) and making
use of equations (4), (6) and of the third component
of (22) we have

10 0 2
. (w—éH) - (ﬂz + k2F> o =0, (23)

wow\ Jw w
where
0_2 2 ) ) 0,2 s -1
Foi- (%) [oserd -] e

with Vg the sound velocity.
The solution of equation (23) which is finite at the
origin is
SII = AJ,(ixF*) exp (ot + mo+kz), 25

where x = |k|w and J,, is the Bessel function of order
m, the argument of which can be real or imaginary
according to the sign of F. 6B°* is again given by
equation (16). Making use of the boundary conditions
(8) and (9a, b) we obtain the following dispersion equa-
tion

J(ixoF®) ih*F*
Ji(ixoF*)  4npw(a®—k*V)D)

: Km<xo)] _

Xo+m
[ 0 K. (x)

(26)

The solution of equation (26) for any possible pair of
the parameters k and m gives an infinite set of real
eigenvalues o7 ;. It is usually assumed that the corres-
ponding set of eigenvectors &, ;,, is complete. This prop-
erty will be used in the development of the pertur-
bation theory. Let us consider the occurrence of nega-
tive o7 (instability). From expression (24) it follows
that F > 0, so that the argument of the functions J,
in (26) is imaginary. Using some properties of the
Bessel functions it is possible to show that for every
pair (m,k) there may be one and only one negative o2
which is a solution of equation (26). This eigenvalue
has been calculated (for the mode m = 1) for two
values of the fluid pressure: p = 0 and p = 0.1 5%/8x.
All other quantities entering in (26) had the same
values as in section 2. The results are given in figure 1,
together with the curves for the corresponding in-
compressible cases obtained from equation (19) by
putting g = 0.

It may be noted that the marginal states for the in-
compressible and compressible fluids coincide as for
6? = 0 and g = 0 equation (26) reduces to equation

(19).

3.2. Perturbation theory

Formally we can represent the problem which arises
from equations (2) to (6) together with the boundary
conditions (8) and (9a, b) as

0’8 = L(¥)
@7
M) =0,

where L is a self-adjoint second-order linear differential
operator (HAIN et al., 1957) and M applies to the
interface between the fluid and the vacuum. Since L
is self-adjoint the eigenvectors form an orthogonal
system. It is also physically reasonable to assume that
such a system is complete for every vector which satis-
fies the boundary conditions M (§) = 0. If a weak
gravitational field is introduced we have to the first
order in g
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[0:°1°8,+ 078" = L&)+ LV,
(28)
ME)+MPE) =0,

where the index (1) marks first-order changes in the
various quantities, due to the gravitational field.

We cannot directly develop the & ’s in terms of the
unperturbed eigenvectors &, as the boundary condi-
tions in the systems (27) and (28) are different. Let us
put €0 = { + 1, where n satisfies the eigenvalue
problem

#’n = L(n)
(29)
M) +MPE,) = 0.

Substituting in equation (28) we obtain a system in
which the { ’s obey the boundary condition M (§) = 0,
and thus they can be expanded in terms of the complete
set of the unperturbed eigenvectors.

After multiplication by &,, the complex conjugates
of €, and integration over the whole configuration
we obtain ‘

[T = [of 217+ (o4, 17 =

( [e d) [aroe) aes

( f g, dr)_l(u?—af) f g, dr,

with [¢§!)]* and [o{;’,]* the changes in o7 due to the
changes in the operator L and in the boundary con-
ditions.

Writing the equation (30) for two different possible
vaiues of pf, p2and p7, subtracting and developing the
vector n, —1g, which obeys the boundary condition
M(n,—mnp) = 0, in terms of the &, it is easily shown
that [¢{"]? is unchanged if a different solution of the
system (29) is chosen, as it should be.

(30)

3.3. Determination of the gravitational perturbationto L

We introduce a gravitational field of the form & =
gw? as the perturbing quantity on the hydromagnetic
system of section 3.1, where g is now a small para-
meter which represents a first-order perturbation. As
we do not want to change the model of section 2, we

assume that in the static state the perturbing gravita-
tional field only modifies the fluid pressure, while p and
B are left constant. The pressure at w, will also be
kept constant. Then we have for the change in the
pressure due to the gravitational field

(3D

So the magnetic terms in the operator L are not modi-
fied and we easily find for the change in L due to the
g-term

L@ =
¢{= W@~ IVV £+ (= DV(@) +VIE - V(@)]}.

P = gp(ws—w).

(32)
3.4. Determination of the gravitational perturbation to M

From the boundary conditions (8) and (9a, b), and
the second component of (22) we find

d ’
<_£'> ém(wo) + kEém(mO) + %(: (62 - kz VAz)étp(wo) = 0,

do (33)
where
l 2
E = ! 3 [x0+l 2 t"(xO)] .
4npxg Kiu(xo)
Hence

M(E) = KEE (wo)+(c? —k*V2) ':i Efmo)  (34)

and
M®E) = —2gwoé,(m,).

3.5. Computation of [o3% 1>

(35)

Here we shall derive a new expression for [o$p]?
somewhat different from that found in the end of
section 3.2. First a more useful expression for the
unperturbed eigenvectors & is derived from equations
(22), (23) and (24):

u im ik

£ = (P~ kYD) {%, " [szi(F—1)+62]u}’

o?
(36a)

where u is in the place of 6II and the other symbols
have the usual meaning. Moreover, the eigenvectors
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of system (29) have the same structure as those of (27),
so that one can write

A
R hai 2[k2V3<F 1)+u2:1v},
(36b)

where F), is defined in the same way as F except for the
fact that u? replaces o2. The functions # and v obey
the equations

2
ou’+u + (kzF - m__z) wu =0,
w
(37a, b)

2
” ’ 2 m
@ +v +<kF”-——2>wv=0.
w

Now p? is a continuous function of g, so that to the
first order we have

d 2
[T = g (—d";) . (38)
g=0

Making use of equations (34), (35) and (37a, b) we can
write down the boundary condition of the system (29)
as a function of g

A(g, 1) = M)+ M) =

4 kE av 2gw, [ou 0
U _— —_—— — =

W —k*Vi\ow/,, 2=k \ow @
The total derivative of the latter equation with respect

to g gives an expression for du?/dg to be substituted
in equation (38)

d,ﬁ o4 [04
- ( . (40)
dg dg | ou?

(39

From equation (39) and (37a, b) it follows

oA 2igx F* ,
=7 Jh(ixoF?), (41)

(6A> _
aﬂz g=0

L KoxoE <1+ m2> aF“) J(ixoFH)+  (42)
R E——— —— = ix
26—k} x3F) \ow?),o ™

xo [OF, K*E ] . -
L e ) A Y.
[2F (auz)Fo A

But the unperturbed boundary condition (A),-, = 0
gives
ik’F*E

Jm(ion%) = — GTW
A

Jo(ixoF?), (43)

so that the expression (42) becomes

ZANT)! k*E? <1+ m’ )] aF”)
o g=0 - {[F (a?—K*V2)? xoF o’ g=0
2k*E

m} %l’on%J;n(ion%) . (44)

Therefore the expression of [o4)]* is immediately
obtained by substitution of (41) and (44) in equation
(40).

3.6. Computation of [o%"]?

We begin by seeking an expression for [E*LV(€) dr.
The equations (4), (6), (22) and (23) lead to

2

K>
Vg =5 (F-lu. (45)

With this expression for V - § and integrating the equa-
tion (32) over a unit length of the cylinder, after multi-
plication by &*, we obtain

[ECEE
L[ RE=D o
ng —(-———kz—l}A— (w5 —a@?) {u u'™ +

2 2

k
r_nw_z uu® + = [kK*VZ(F—1) +02]uu*}w dw +

2k*(F—1) 2( T )j uu*o® dw+ (46)
A

2
(0*—K2VD)?

2 i "1k m2 [
(a——_z—szj)z , u'u +;§uu +

k2
— [K? Vj(F—1)+azju'u*}w2 dw} .
g

o
f u'u'*w do+
0
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The integrals are calculated in the Appendix. After
straightforward but lengthy algebra the expression (46)
becomes

(2n:uu* m)_l J g LVE) dr =

{ 2§ | 2AF=1)(Q—x3)
TN T PR

, 47
m-—1
wWF=1)%"* [Q (%xé + 7 ) +
% (), —x"—(oz—k2V2))]}
3F K2E M
where
_, [x&(e*—K*VD)
Q=xg—F ! |'0k4—122A—m2].
By the same procedure we get
wo\ —1
<2nuu* ) f&*&_, dt =
0
=12V 2| = 2 (2 iy 48
A sz A ( )

10 [(g V;f(F—l)-i—l)z—F]}.

As derived in section 3.2 the ratio of (47) to (48)
determines [o{"]>.

3.7. Calculation of [¢1]?

Let us look at the m = 1 mode which tends to be the
most unstable in our problem. Let us first consider the
case p = 0. From inspection of figure 1 (a) it is seen that
the lowest eigenvalue is given by wie® = —1.2x10'?
for x, = 0.28. Substituting this in the expressions deter-
mined in sections 3.5 and 3.6 and using the same
values of section 2 for the physical parameters in-
volved, we get: [a47’]* = 2.09 g and [o{"]? = 1.96 g.

Thus

(1)72
| [“_.1_ —3.38x10712g. (49)

2
I @0 comp.

We want to compare this result with the one that is

valid in the case of an incompressible fluid. It follows
from equation (19) that the eigenvalues are shifted
because of the gravitational field by

[6V1? = 2gxoL (%) In(Xo) - (50)

With the same physical conditions as in the compres-
sible case, the lowest eigenvalue for g = 0 is at about
x, = 0.26, where wgo? = — 1.16 x 10'2. From equa-
tion (50) it follows that [¢(?]? = 2.03 g and therefore

(o7’
2

=175x10"2g, (51)

inc.

wio

and so the relative stabilization is twice as large in the
compressible case, at least for small g.

We have made a second calculation in which
p = 0.1 b*/87. In this case, as shown in figure 1 (b),
the lowest eigenvalue for the compressible fluid is given
by @oe? = —1.48x10'? at x, = 0.30. We find
[o4f]> = 2.08 g and [a"]* = 2.00 g, and thus

[

wio?

=277Tx1071%g. (52)

jcomp.

Similarly for the incompressible fluid we have wis? =
—1.42x10? at x, = 0.3, [6'V]*> = 2.04 g and thus

[ 7

wio?

=1.44%x10"12 ¢4, (53)

inc.

and the relative stabilization is therefore about the
same as in the case p = 0. The results should not be
interpreted to mean that the compressible fluid is
“more stable’” than the incompressible one, because for
g = 0 the lowest eigenvalue in the compressible case
is smaller than the corresponding one in the incom-
pressible case.

4. Discussion of two other models

In this section we investigate two different cylindrical
models: one in which the fluid is considered as iso-
thermal and the other one in which a magnetic pres-
sure gradient wholly balances the gravitational force
given by (1). Also in this case the “normal modes”
analysis encounters analytical difficulties. Here the
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stability of the two configurations will be treated fol-
lowing the procedures developed by BERNSTEIN et al.
(1958) for the energy principle technique. Again it
would be very difficult to find a complete solution, but
it will be possible to find some general results without
solving the whole problem of stability.

It may be noted that the application of the energy
principle technique to the models of sections 2 and 3
does not lead to some simple criteria that could clarify
the role of the compressibility of the fluid on the sta-
bility, because the pressure and the gravitational terms
are coupled.

4.1. In the previous sections we have investigated a
model in which the fluid density had been kept con-
stant throughout the configuration, while a pressure
gradient balances the gravitational force. Thus im-
plicitly a temperature gradient has been assumed. Let
us now consider an isothermal fluid with p = xp. The
gravitational and magnetic fields are again given by
equations (1) and (10a, b). Then the equilibrium pres-
sure is given by

p = pe ¥, (54)

where p, is the pressure at the axis.

Again 6B is expressed by (16), so that, making use
of the boundary conditions and of equation (6), one
obtains the following relation which must be satisfied
atw = wy,:

1 _. .
—ypV-& + —B" 6B" =
4n
(5

2 Km(xo)] _

h2
- Xo+m
dnmoxo [ ° K;.(x0)

From equations (2), (5) and (6) and integrating over a
unit length of the undeformed cylinder, after multipli-
cation by &*, we obtain

azfpé*é dt = — %f&*-[(VxéB"“)xBi“] dr—
f £ V(pV - E4E - Vp) die (56)

f&*‘V(D(F,'Vp+pV'§)d'c.

The first integral on the right-hand side can be trans-

formed by using well known vector identities. Then,
introducing the real variables

E=1¢,
10 im
w 0w w
{=1i&,

and making use of equations (5), (55) and of the equili-
brium conditions one can rewrite equation (56) as

P

Do 1 o ) .
a? J P& ew do = — J (6B™* - 6B"w dw +
0 4r J o

el

wo 2 2
(e oo
v/ Jo p \dw
h? Ku(x0)
2 2 D 2
{29PW0 - Zn—xo [xo+m K,’,,(xo)]} &(@o)

where

2

) VX

w 0w yp dw

(38)

Asy > 1 all integrals are positive definite and the only
negative contribution comes from the surface term.
The configuration is unstable if, and only if, it is
possible to find a set of functions &, 1, { subject to the
boundary condition (55) that makes the right-hand
side of equation (58) negative.

If we would have applied the same procedure to the
incompressible model of section 2 we would have
obtained

2 e * 1 e inyk in
o pEwdo = — (0B™)™ - B"w dw +
0 4n J o

(59

{2gpw§ - ch—o [x0+m2 %]} E(wo) -

It is easily shown that the minimization of the right-
hand side of equation (59) with respect to ¢ and {
immediately leads to the result of section 2, as it should
do.
For arbitrary functions &,{ the right-hand part of
(58) is minimized with respect to n by taking
10wé p dd

LA ialty 60
+w 0w ypdwé (60)

© Astronomical Institutes of The Netherlands ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1965BAN....18...51S&amp;db_key=AST

BBAN T ©IB; I 515

rt

ON THE STABILITY OF A HELICAL MAGNETIC FIELD IN A SPIRAL ARM 59

Then if y = 1 the problem (58) is reduced to the pro-
blem (59) and in other cases it differs from it only by
an additional term which is positive definite in £. Thus
if the incompressible model of section 2 is stable, then
the isothermal compressible configuration, which has
the same fluid density at @ = @,, and the same magne-
tic and gravitational fields, is stable too. Of course the
two models are not equivalent because of the different
mass and pressure distributions. Let us consider y = 1,
and require that the total amount of fluid is the same
in both systems. Due to the exponential form of equa-
tion (54) the fluid density at w, of the isothermal con-
figuration is lower than that of the incompressible
system of section 2, and therefore it may in general be
unstable, the physical reason being that the gravita-
tional force is proportional to @ while in the isothermal
cylinder the fluid is concentrated near the axis. But,
ify > 1, the last integral in equation (58) (the perturbed
thermal energy) increases the stability.

4.2. Here we consider a model in which the gravita-
tional field is wholly balanced by a gradient in the
magnetic pressure. Therefore in the equilibrium state
we have: p = const., p = constant, B®® = [0,0,b(w)],
while B** and @ are again given by (10b) and (1). Then
in the equilibrium state

b*/8n = pg(wi—w’)—p+h*[8n. (61)
Making use of the boundary conditions and of equa-

tions (6), (16) and (61) one obtains the following rela-
tion that must be satisfied on the unperturbed interface

s (] i -

4w, || 0w
(62)
W K.(x0)
- m T
dnxqw, [x0+ Ko(x 0)] (@)

By the same procedure as followed in the preceding
subsection we obtain

Do
a’p E*tw do =
0

L™,
), e

[:(gﬂi) mC] 2} b’w do+

ANE i"(w@] o do— (63)
0 w 0117

2p JWO [r] + L(D(wf)] 4 dj wdo+
0 w Jw dw

h* Ki(x0)
[xo m? ]} & (wo) .-
X0 m( 0)
The two integrals which contain # clearly represent the

compressibility terms. It may be noted by comparing
equation (63) for

{2gpa% ~ 3

i + _1_ 6(__1175_) — 0

w 0w

with equation (55) that the incompressible configura-
tion of the model here investigated is more stable than
that of section 2, because of the greater magnetic
energy accumulated in the longitudinal field. To find a
complete solution of the compressible configuration
would again be very difficult. Moreover the analysis
has been complicated by the presence of interchange
instabilities in which we are not interested. It is, how-
ever, worth while to consider the case p = 0. Then 7 is
no longer restricted by the boundary condition (62)
and it may be chosen in such a way that the last integral
in equation (63) becomes arbitrarily large and negative.
Thus the configuration is unstable. It may be noted
that all modes come out to be unstable. Looking at the
minimization problem involved in equation (63) and
recalling the definition of #, it is also clear that the
instability is associated with the longitudinal compo-
nent of &. Therefore it seems physically reasonable to
explain the origin of the instability as due to the fact
that, when the fluid pressure vanishes, there are no
restoring forces against displacements parallel to the
field lines, which are induced by the tangential compo-
nent of the gravitational field (1).

5. Concluding remarks

For the incompressible models of sections 2 and 4 we
have shown that, under the conditions prevailing in a
spiral arm, the gravitational attraction supplied by the
stars can effectively suppress instabilities connected
with the helical component of the magnetic field.

But, obviously, the matter of which a spiral arm is
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made is not incompressible, and therefore the investiga-
tion of a compressible fluid deserves particular atten-
tion. Due to the mathematical difficulties we have no
complete analytical solutions for a compressible model,
but the results of the perturbation theory developed in
section 3 strongly suggest that the stability of the in-
compressible model of section 2 is not substantially
modified by compressibility effects. The main effect
which could be relevant to our problem can be clearly
understood by looking at the kink-deformed cylinder.
Then the fluid particles may fall down along the per-
turbed magnetic lines towards regions of lower gravi-
tational potential, and thus the stabilization due to the
gravitational field (1) may be strongly reduced. As a
matter of fact we have shown in section 4.2 that a
configuration with a zero-pressure fluid on the inside
is always unstable. This may be considered as a proof
of the existence of the above mentioned effect. In sec-
tion 4.1, on the other hand, it has been explicitly
demonstrated that under suitable conditions a com-
pressible cylinder may be stable. It appears that, though
the compressibility contributes towards the instability,
the destabilization itself depends essentially on the
particular model at hand. However, let us consider in
more detail the qualitative aspects of the problem.
Generally, a gradient of the perturbed pressure along
the field lines, that might prevent the fall of the fluid,
could take place if the equilibrium pressure did not
vanish. But this is possible only if the pressure is greater
than a minimum value p,, that we can evaluate as an
order of magnitude in the following manner. Let us
consider in the kink-deformed cylinder a perturbed
field line on the ¢ = O plane. Evaluating the first-order
component of the gravitational field (1) tangent to the
line and integrating over a half wavelength of the per-
turbation we obtain

P R 4gpwéo(w) .- (64)
It may noted that p, does not depend on the wave
number k in agreement with the remark made at the
end of section 4.2. Let us give some numerical estima-
tes. For instance, assuming w = 100 parsecs, &, (w) =
1072 @, and for g and p, the above used values, we ob-
tain p, ~ 2 x 107'* dyne/cm?, which incidentally
turns out to be of the same order of magnitude as the
pressure associated with the random clouds motion in
a spiral arm. This shows that the fluid pressure, even if
small compared to the magnetic pressure, is very im-

portant in the investigation of the stability of a com-
pressible model. Though the foregoing discussion is
very crude and not conclusive it supports the idea that
the compressibility of the fluid does not substantially
modify the results of the incompressible models if
appropriate values of the pressure in a spiral arm are
considered. Which fact confirms the result obtained in
section 3.

Throughout the whole analysis the self-gravity of the
fluid has been neglected. Introducing the self-gravita-
tion term in the model of section 2, and putting there
b = h = 0, one easily finds the dispersion equation

o’ _ I(%o) 1 p*
el o [7 (1 ; 7) —Km(xoﬂm(xo)] . (63)

Thus, even in this case, the gravitational attraction due
to the stars increases the stability, but, like in the classi-
cal paper of CHANDRASEKHAR and Ferwmi (1953b), it
cannot cancel the gravitational instability of an infinite
incompressible cylinder. However, using the same quan-
tities of section 2, we find that the mode of maximum
instability occurs at x, = 2.3 x 1073, with a charac-
teristic time for break-up of the order of 3.4 x 101°
years, which is longer than the life time of the Galaxy.
When compressibility is considered the problem ap-
pears to be more difficult, and in fact there is no clear
understanding of the self-gravitation effects in such a
case (SMON, 1963). Anyhow it may be noted that the
persistence of the gravitational instability for sufficient-
ly long waves is strictly connected with the geometry of
an infinite cylinder, but the wavelengths may be so
long as to be meaningless in the case of a spiral arm.

As remarked in the Introduction, from the point of
view of the stability of a spiral arm the analysis devel-
oped in the present paper is strictly valid only for per-
turbations perpendicular to the galactic plane. But in
other cases, e.g. for perturbations on the galactic plane,
one has to consider the actual shape of a spiral arm
in the galactic disk. Then a restoring force could arise
due to the conservation of the energy and of the angular
momentum. A rough estimate on the efficiency of this
mechanism may be given here. Let us assume that a
spiral arm is a ring in the galactic plane in equilibrium
under the action of centrifugal and gravitational forces.
Now let us suppose that, due to perturbations, an ele-
ment of fluid is displaced by the quantity 4 in radial
direction. Then, by imposing the conservation of the
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angular momentum and eliminating the radial gravita-
tional force in terms of the circular velocity @, we ob-
tain a restoring force of the order of 20©24/R? where R
is the distance from the galactic centre. It should be
compared now with the gravitational attraction in the
z-direction. For instance, from Oort’s data (OORT,
1960) for the gravitational acceleration K, near the Sun
and for a displacement 4 = 100 pc, we find that the
two forces are of the same order of magnitude. Thus
it may reasonably be argued that a spiral arm could be
stable to all kinds of perturbations discussed above. But
this clearly is only tentative. In a refined theory the
stability of a toroidal configuration with magnetic
fields has to be fully investigated.
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Appendix
The reduction of the expression (46) in section 3.6 in-
volves the following integrals

'0.5 T T 1

@202 x 10'2
1
T

Figure 1. The dispersion relations for the unstable modem =1
andforg=0:a)p =0;b)p = 0.1 b2/8n.
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