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SUMMARY

We present a précis of a description of the large-scale galaxy distribution in the
Universe. It is based on the finding that underdense regions in the cosmic mass
distribution expand with respect to the background and become more and more
spherical. This physical mechanism produces a geometrical model, which we have
called Voronoi foam, for the asymptotic distribution (‘ skeleton’) of the cosmic mass on
10200 Mpc scales. Voronoi foam is a packing of polyhedral cells uniquely determined
by the sites of the initial underdense regions. The walls are identified as the pancakes,
the edges as the filaments, and the vertices as the clusters in the galaxy distribution.

The Voronoi tessellation is a good model for the large-scale galaxy distribution. It
does not describe that distribution on small scales, but it forms a useful complement
to N-body techniques, which have a low dynamic range and which suffer from
sampling noise and boundary effects on very large scales. The Voronoi model enables
one to study, in arbitrary detail, what the consequences of a cellular galaxy distribution
are; we consider in particular the cluster distribution and the appearance of deep
pencil-beam surveys.

Probably the most remarkable result of this description is the fact that the
correlation function of the vertices in the Voronoi tessellation is a power law with a
slope and amplitude totally in accordance with the observed cluster—cluster correlation,
indicating that this function could be due to cellular geometry of the galaxy
distribution on large scales, rather than to the dynamics of these structures.

1 INTRODUCTION

On very large scales (on the order of the particle horizon, i.e. some 7 Gpc)
the Universe is well understood in the theoretical framework of the
Friedmann—Robertson-Walker (FRW) solutions of the Einstein equations.
This is most clearly shown by the near-perfect isotropy and black body
spectrum of the microwave background radiation. Deviations from isotropy,
which would be the most direct link to the origin of structure in the Universe,
have not yet been detected. In fact, the upper limits on the anisotropies are
so small that there seems to be a discrepancy with the graininess of the visible
baryon distribution. On small scales (on the order of small groups of
galaxies, up to I megaparsec or so) one expects that strongly non-linear
evolution and dissipative effects play an important role. This makes it very
difficult to extract direct information on the evolution of structures on these
scales.

On scales between 10 and 500 Mpc, the structure has evolved only mildly
since the recombination epoch. Hence, the mass and velocity distributions on
these scales are very suitable for studying the formation of such structure (see
Oort 1983, for a review).
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Radial velocities along the Virgo cluster (¢g)

FiG. 1. (a) A slice of the Universe in the constellation Virgo: left, elliptical and
lenticular galaxies; right, spiral and irregular galaxies. (b) Radial velocities of these
galaxies, as a function of their position along the major axis of the cluster (indicated
by the arrows). Today’s larger scale surveys usually show such data in the form of pie-
wedge diagrams. After Icke (1972).

The last two decades have brought a steadily improving collection of
observations of the properties of the large-scale structure (e.g. Kirshner ez al.
1981, 1987; Oort 1983; Giovanelli, Haynes & Chincarini 1986; De
Lapparent, Geller & Huchra 1986; Geller & Huchra 1989). We are even
getting an idea of the non-Hubble motions on these scales (Dressler et al.
1987; Lynden-Bell er al. 1988), providing us with a potentially unbiased
tracer of the mass distribution (e.g. Strauss & Davis 1989; Yahil 1989; Dekel,
Bertschinger & Faber 1990; Bertschinger et al. 1990).
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2 SOME HISTORY

The observations of large-scale structure date back to the work of Shapley
& Ames (1932), whose catalogue of bright stellar systems showed the
dramatic excess of galaxies in some regions of the sky, notably the Virgo
Cluster (see Oort 1983). Even in those early days, it was evident that the
distribution of luminous matter on large scales is distinctly non-Poissonian.
But until about 1970, this remarkable fact was hardly a subject of systematic
study, even though the catalogue of galaxy positions and redshifts compiled
by Humason, Mayall & Sandage (1956) contained a wealth of evidence about
the curious structure of the nearby Universe. The clustering first studied by
Abell (1958), and most apparent in the galaxy counts by Shane & Wirtanen
(1967), was thought to be analogous to that which is observed in open
clusters and associations of galactic stars.

Interpretation of the non-Poissonian galaxy distribution was initiated by
Rubin (1954) and Limber (1953, 1954), who introduced the two-point
correlation function, and by Neymann & Scott (1955), who used the angular
autocorrelation function of the Lick survey counts, but it was not until
Totsuji & Kihara (1969) and Peebles (1980, and references therein) that the
two-point correlation function of galaxies was reliably estimated.

Oort (1970) emphasized the importance of larger structures because these,
due to their long evolutionary time-scales, can be expected to give
information about the earliest times of structure formation. In keeping with
this, Icke (1972, 1973) hypothesized that such large aggregates (at least as
large as 15 Mpc) form before galaxies (a scenario which has been pioneered
by Zel’dovich and his co-workers in the context of the ‘pancake’ picture of
galaxy formation), and he tried to find evidence for coherent objects on a
scale of 15—20 Mpc by studying the distribution of galaxies in position-
velocity space, a technique that is now known as ‘slicing’ (Fig. 1).

Icke’s efforts to corroborate his hypothesis were largely unsuccessful, due
to a conspicuous lack of good observations. Appreciable improvements of
the data by Humason, Mayall & Sandage (1956) were not published until the
beginning of the 1980s, when several extensive galaxy redshift surveys
became available (Sandage & Tammann 1981 ; Fisher & Tully 1981 ; Huchra
et al. 1983). These redshift surveys provided evidence for the early suggestion
by Einasto (1978; see also Finasto, Joéveer & Saar 1980) of cell-like
structures in the distribution of galaxies. The mapping of, e.g. the Local
Supercluster (Tully 1982), the Coma Supercluster (Gregory & Thompson
1978), and the enormous 140 Mpc long chain of galaxies forming the Perseus
Supercluster (Giovanelli, Haynes & Chincarini 1986) showed that galaxies
cluster in pancake-like and filamentary structures, while the redshift surveys
also revealed the existence of voids in the distribution of galaxies (Gregory
& Thompson 1978; Einasto, Joéveer & Saar 1980; Davis et al. 1982;
Kirshner et al. 1981, 1987).

These voids are enormous regions, tens of megaparsecs in extent, wherein
few or no galaxies are found. In particular the discovery of the Boétes void
(Kirshner et al. 1981) made clear how large these voids can be. Since 1986 the
publication of new redshift slices from the second CfA redshift survey (De
Lapparent, Geller & Huchra 1986; see also Da Costa & Pellegrini 1988 for
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Right ascension

F1G. 2. A combination of CfA redshift survey slices; reproduced from Geller & Huchra
(1989), with the kind permission of the American Association for the Advancement of
Science (AAAS). See also De Lapparent, Geller & Huchra (1986).

the southern sky) confirmed the existence of a cellular or sponge-like

. arrangement of galaxies. The recent discovery by the CfA group (Geller &
Huchra 1989) of a 60 x 170 x 547 Mpc ‘Great Wall’ of galaxies, and the
discovery by Broadhurst et al. (1990) of a regular ‘spiky’ redshift distribution
of galaxies in a narrow pencil-beam survey along the South and North
galactic poles, are suggestive of cellular structures on scales as large as
100 Mpc.

The general impression from all these observations is a Universe in which
the galaxies are situated in walls (pancakes), denser filaments, and very dense
nodes, forming a network which surrounds huge voids (Fig. 2). Further
details about the observed properties of the large-scale galaxy distribution
can be found in the reviews by Oort (1983), Geller (1988), Bahcall (1988) and
Rood (1988).

3 PHYSICAL THEORY: SPOTLIGHT ON VOIDS

Most theories of the formation of structure on large scales are based on the
gravitational instability scenario (e.g. Peebles 1980). Comprehensive reviews
treating these theories were presented by Jones (1976), Efstathiou & Silk
(1983), Szalay (1988), Shandarin & Zel’dovich (1989), Bond (1990), and
Efstathiou (1990). Peebles & Silk (1990) have recently tested the five most
popular theories against a number of observational constraints. Although no
firm conclusions were reached, they find that either cold dark matter plus
inflation or a low-density Universe with baryonic dark matter are slightly
favoured.

The description of the large-scale structure which we are about to present
exploits the notion that voids play an essential dynamical role in the
formation of such structure. This description, which we have called ‘ Voronoi
foam’, is an approximation of clustering on large scales based on the
assumption that the dominant physical mechanism is Newtonian pressure-
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free gravity. We will show that this leads to a matter distribution which, in
an asymptotic sense, forms a unique partitioning of space called a Voronoi
tessellation.

On scales comparable with the particle horizon, the formation of structure
must be due to perturbations of a FRW-type universe (Lifschitz 1946), which
is analytically difficult and not securely linked to observations. On small
scales, galaxy formation is dominated by dissipative processes and is
theoretically still quite intractable. But on intermediate scales, Newtonian
gravitational instability should suffice for describing the formation of
structure. Hydrodynamical details such as pressure effects are unlikely to be
important in the progenitors of structures in the 10-500 Mpc regime, so we
can restrict ourselves to a ‘dust’ equation of state. The potential ® near any
point (x, y, z) of a self-gravitating medium can be written as

O =Y a,xy:z (1)
ijk ’
Near a density maximum, the leading terms are the quadratic ones, which,
by a suitable orientation of Cartesian coordinates, can be written as

D = Ax*+By*+Cz*+ ... (2)

Neglecting terms of higher than second order, this is the potential of a
homogeneous ellipsoid. That should be no surprise: the smallest closed
contours in any topographical map are ellipses.

The collapse of high-density regions can thus be approximated by
considering the homologous motion of ellipsoids. An early treatment of this
problem was given by Zel’dovich (1965), who considered the analogy
between the evolution of a Newtonian homogeneous spheroid with
anisotropic linear velocity and of a section of an anisotropic homogeneous
cosmological model in the general theory of relativity. The equations of
motion in both cases have the same form ; the tidal field is determined by the
shape of the surface of the ellipsoid in the first case, and by the topology of
the model in the second. However, the generic properties of collapsing or
expanding structures in Newtonian gravitating media are not always true in
general relativity (Barrow 1988 ; Barrow & Go6tz 1989).

Here we follow the description introduced by Lin, Mestel & Shu (1965),
and used by Icke (1972), for a collapsing Newtonian homogeneous spheroid.
Suppose that a particle of such a mass distribution were initially located at
(a, b, ¢), and that at some later time ¢ it had moved to the point (aX(¢), b¥(?),
¢Z(1)), then the density p would evolve according to

p(?) = po/XYZ. 3)

The equations of motion for the scaling functions X, Y, and Z are found as
follows. The potential ® obeys

D = k(ox?+By*+vz?)

= k(0a®’X?+ Bb2 Y2+ yc*Z?), 4)
and Poisson’s equation demands that
k(a+B+7) = 2nGp. (5
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The components of the gravitational force are —3®/dx = —(1/x)0®/da
et cycl., so that the equations of motion become

1d*X

—X,Ez— = 2nGpa, (6)
1d%Y

“YaE - 2nGpB, ¢)]
1d*Z

~ZIE 2nGpy, (®)

where the functions a, B, and y are defined as

*® ds
o = abc jo m et cycl., (9)

A% = (@®+5)(b®+5)(c2+ ), (10)

(cf. Chandrasekhar 1969, ch. 3). Here a, b, and ¢ are identified with the axes
of the ellipsoid.

Now comes a crucial observation, first made by Lynden-Bell (1964):
without loss of generality, we can order the axes according to a > b > ¢, in
which case a < B < v, so that equations (6)—(8) give

1 &?X 1 RY 1 27
XS TvaE S "Zam (1n)

Consequently, the axial ratios a:b:c always increase with time, and slight
initial asphericities are amplified during the collapse. This secular increase of
aspherical perturbations provides an explanation for the pancake-like, and
later filamentary, appearance of large-scale structures (cf. Zel’dovich 1970,
1978). Note also that, for the contraction described, the velocities inside the
ellipsoid are linear functions of position: the collapse produces a Hubble-type
velocity field.

The equations of motion for the homogeneous ellipsoid were solved
numerically by Icke (1972, 1973) for the particular case of prolate spheroidal
regions embedded in empty and in Einstein—De Sitter universes. White &
Silk (1979) and Barrow & Silk (1981) extended this analysis to general
ellipsoids and to arbitrary values of 2, the density of the background. White
& Silk found an approximate analytic solution of the equations of motion.
They clearly illustrated the relationship of the homogeneous ellipsoids to the
pancake formalism by showing the close resemblance of the approximate
solutions to the linearized equations of Zel’dovich (1970) for the non-linear
evolution of a general inhomogeneous density field. A fully analytic
treatment was given by Barrow & Silk (1981), who derived simple analytic
expressions for the density contrast at turn-around, the epoch at which
pancakes first form, and the infall velocity anisotropy at that epoch.

The homogeneous ellipsoid models neglect the effects of inhomogeneities
within the systems considered, as well as the possible role of tidal forces due
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to other nearby objects. White & Silk (1979) argue that the neglect of the
tidal forces is not critical. On the other hand, the quadratic potential
approximation will break down as soon as the inhomogeneities on smaller
scales become too large. Exactly how and when this occurs depends on the
spectrum of the fluctuations. An additional important problem is whether
one needs dissipation to keep the pancakes from re-expanding. In the
‘pancake picture’ of Zel’dovich and collaborators, gaseous dissipation
fixates the pancakes, automatically leading to a cellular galaxy distribution,
with voids surrounded by walls of galaxies. However, both Dekel (1983) and
Peebles (1982) found that even without dissipation pancakes can remain thin.

In order to avoid these complications with the high-density regions, we
may view the development of structure in a self-gravitating pressure-free
medium by considering the evolution of the low-density regions. These are
the progenitors of the observed voids. The arguments presented above can
still be applied, except that the sense of the final effect is reverse: because a
void is effectively a region of negative density in a uniform background, the
voids expand as the overdense regions collapse, while slight asphericities
decrease as the voids become larger (‘ Bubble Theorem’, Icke 1984). The proof
holds strictly only on a non-expanding background, though this should be no
objection for structures which are much smaller than the particle horizon.
Because [6p/p| does not exceed unity in a void, the approximation will
remain good for a longer period except, of course, near the outer parts of the
voids, where the matter gets swept up.

The tendency of underdense regions to become more and more spherical
in the course of time was first seen in the N-body simulations by Centrella &
Melott (1983) of a three-dimensional neutrino-dominated universe, as well
as in numerical calculations of void evolution (Fujimoto 1983 ; Bertschinger
1985).

While the ‘Bubble Theorem’ provides a useful insight into the qualitative
behaviour of a void, it is necessary to carry out more detailed studies in order
to get a better understanding of physical quantities like the size distribution
of voids in different clustering scenarios (see e.g. Ostriker & Strassler 1989;
Zeng & White 1990) and density and velocity profiles in and around voids
as a function of time and initial conditions.

Several authors have carried out numerical and analytical studies of the
evolution of voids, most of them concentrating on isolated spherically
symmetric holes in a uniform background, either with or without
compensating ridges. Hoffman & Shaham (1982) were amongst the first to
point out that voids could be a natural outcome of a dissipationless
clustering scenario as the result of the evolution of high negative-density
peaks in the primordial density field. Peebles (1982), Hoffman, Salpeter &
Wasserman (1983) and Hausman, Olson & Roth (1983) performed numerical
studies of the growth of holes in dissipationless matter. Qualitatively their
studies are similar, differing mainly in the density and velocity profile of the
matter in and around the void. Peebles (1982) and Hoffman, Salpeter &
Wasserman (1983) took initial density distributions that explicitly include
both an underdense core and a compensating overdense region around the
core. They showed that when Q ~ 1 a deep hole can form (Hoffman et al.
estimate that Q > 06 is needed), always surrounded by a dense, thin
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spherical ‘ridge’. Alternatively, Hausman, Olson & Roth (1983) started with
an initial density profile without a compensating ridge. They found that even
then narrow dense shells will develop in nearly all cases, except if the central
perturbation is not strong enough, the initial density profile is not steep
enough, or the initial density parameter €, is not high enough. That
conclusion was partly challenged by Bertschmger (1985), who argued that
dense shells will always form, for both purely compensated or uncompen-
sated holes, if Q = 1. Fujimoto (1983) performed a similar numerical study.
He integrated the equations of motion of a rotating underdense ellipsoid in
an expanding background, and found that the underdense region tends to
become spherical during its expansion relative to the background, thus
illustrating the ‘Bubble Theorem’. Ikeuchi & Umemura (1984) pursued the
evolution of negative spherical density perturbations of neutrinos and
baryons from decoupling up to the present. The negative-density per-
turbation of the neutrinos grows quickly to a void and surrounding ridge,
whereby shell-crossing occurs. The baryons are forced by gravity to
concentrate in the ridges, in which the temperature rises quickly due to
dissipation of the kinetic energy.

Analytically, the void evolution was studied by Occhionero, Santangelo &
Vittorio (1983). They used the Tolman solution to describe the evolution of
a spherically symmetric hole in an Einstein—De Sitter universe, and found
that it agreed quite well with the numerical calculations of Peebles (1982).
Extensive analytical calculations of void evolution were carried out by Sato
(1982), Maeda, Sasaki & Sato (1982), Maeda & Sato (1983), and Sato &
Maeda (1983) within the context of general relativity, using the thin wall’
approximation. They found asymptotic expansion laws of voids in an
Einstein—De Sitter universe of R oc t*® for adiabatic perturbations, and
R oc %7 for isothermal perturbations. Suto, Sato & Sato (1984) extended
this work numerically by including pressure. Pressure prevented shell
crossing as well as growth of a void below a scale of 107° times the particle
horizon scale at recombination. Lake & Pim (1985) and Pim & Lake (1986,
1988) generalized the work of Sato and collaborators on the general
relativistic thin-wall approximation to non-flat Robertson—-Walker back-
grounds. They studied the evolution of both vacuum- and radiation-filled
spherical voids, both analytically and numerically.

A very extensive study of the evolution of voids in Einstein—De Sitter
universes was carried out by Bertschinger (1983, 1985). He found similarity
solutions for the non-linear evolution of isolated, spherical holes. These grow
from initially small negative-density perturbations to a self-similar form after
becoming non-linear. Bertschinger found similarity solutions for voids in
collisionless (e.g. massive neutrinos or cold dark matter), collisional (e.g.
baryons), and mixed gases, for both compensated holes (no net mass deficit
at large distances) and uncompensated ones. In all these solutions, shell-
crossing and caustics occur in the collisionless component, while shocks form
in the collisional fluid. The similarity solution for a compensated hole in
collisional gas turns out to be the same solution as for blast waves (Schwarz,
Ostriker & Yahil 1975; Ikeuchi, Tomisaka & Ostriker 1983; Bertschinger
1983; see also Ostriker & Cowie 1981 ; Ikeuchi 1981; for a review see Ostriker
& McKee 1988). Independently, Fillmore & Goldreich (1984) derived
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similarity solutions for spherically symmetric voids in an Einstein—De Sitter
universe filled with cold, collisionless matter by numerical integration of the
equations of motion. They reproduced the similarity solution found by
Bertschinger, and in addition found that the character of the solution depends
upon the profile of the initial density deficit: gradual perturbations give rise
to holes within which the density rises smoothly to the background value,
while steep perturbations result in voids bounded by overdense shells with
sharp edges. Bertschinger (1985) also discussed several processes which might
modify the obtained similarity solutions. Evaluating the effects of non-
spherical symmetry, finite velocity dispersion, cooling and Q # 1 cos-
mological backgrounds by numerical simulations and heuristic arguments,
Bertschinger argued that they do not much affect the expansion of voids. The
exception is the case Q < 1, in which the expansion in comoving coordinates
will stop. Numerical simulations with a two-dimensional axisymmetric
hydrodynamics code showed that non-spherical holes tend to become more
spherical as they evolve, which confirms the ‘Bubble Theorem’.

Just as in the case of growing filaments, the velocity field inside the voids
(not in ridges surrounding them), in the regime where the quadratic potential
approximation is valid, is proportional to the distance inside them. The
numerical simulations by Peebles (1982) and Hoffman, Salpeter & Wasser-
man (1983) confirm this. Thus, voids can be described as ‘superhubble
bubbles’. This has non-trivial observational consequences, because the
linearity makes it impossible to separate local void expansion from true
cosmic Hubble motion. Hence, considerable deviations from the mean
Hubble flow may go undetected until the observations encompass a scale
larger than that of the voids. When such scales are reached, the void
expansion will appear in the form of large-scale streaming motions. The
corresponding velocities are evidently on the order of

v~ ¢eDH,, (12)

where D is the size of the void and ¢ is the local excess of the expansion over
the mean Hubble motion. The value of € is not known in detail, but might
be about 0-1-0-2 (Centrella & Melott 1983; Bertschinger 1985). If D is about
50 Mpc (De Lapparent, Geller & Huchra 1986), we find that
v = 500 km sec™, taking H, = 75 km sec™ Mpc™. This number does, how-
ever, depend on assumptions about the dependence of the mass-to-light ratio
on the local density (‘biasing’).

According to the above, taking voids as the dominant dynamical
component of the Universe, we may think of the large-scale structure as a
close packing of spheres of different sizes, out of which matter flows in a
slightly super-Hubble expansion towards the interstices of the spheres. Thus,
the importance of the Bubble Theorem is that it provides a specific physical
mechanism for producing the non-Poissonian matter distribution in the large-
scale Universe.

4 VORONOI FOAM

We have now found at least a partial answer to the question: If the
distribution of galaxies is not Poissonian, then what is it? Continuing the
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above argument, we can construct the ‘skeleton’ of the mass distribution by
considering the locus of points towards which the matter streams out of the
voids. Suppose that some cosmic process produces a collection of regions
where the density is slightly less than average (the origin and statistical
properties of the requisite fluctuations is a very important unsolved problem).
As we have seen, these regions are the seeds of the voids, because underdense
patches become expansion centres, from which matter flows away until it
encounters similar material flowing out of an adjacent void. Making the
approximation that the excess Hubble parameter is the same in all voids, the
matter must collect on planes that perpendicularly bisect the axes connecting
the expansion centres.

For any given set of expansion centres, or nuclei, the arrangement of these
planes defines a unique process for the partitioning of space, a Voronoi
tessellation (Voronoi 1908). A particular realization of this process (i.e. a
specific subdivision of N-space according to the Voronoi tessellation) may be
called a Voronoi foam (Icke & Van de Weygaert 1987). In three dimensions
a Voronoi foam consists of a packing of Voronoi cells, each cell being a
convex polyhedron enclosed by the bisecting planes between the nuclei and
their neighbours. A Voronoi foam consists of four geometrically distinct
elements : the polyhedral cells (voids), their walls (pancakes), edges (filaments)
where three walls intersect, and nodes (clusters) where four filaments come
together.

This mathematical construct is used in many other fields, e.g. molecular
physics, metallurgy, geology and forestry (cf. Meyering 1953; Miles 1970;
Stoyan, Kendall & Mecke 1987). Due to these diverse applications it has
acquired a set of alternative names, such as Dirichlet regions (Dirichlet 1850),
Wigner-Seitz cells, and Thiessen figures. Kiang (1966) was the first to apply
Voronoi tessellations to astrophysics, in his study of the mass spectrum
obtained in the fragmentation of interstellar clouds. Matsuda & Shima
(1984) were the first to propose the use of Voronoi tessellations in cosmology.
They pointed out the similarity between two-dimensional Voronoi tessel-
lations and the outcome of numerical clustering simulations, in particular of
the simulation of a neutrino-dominated universe by Melott (1983). However,
they did not explicitly supply the physical mechanism behind this
phenomenon.

In the cosmological context each Voronoi cell is considered to be a void.
The planes are identified with the ‘walls’ in the galaxy distribution (see, e.g.
Geller & Huchra 1989), the filaments are identified with the elongated ‘super’
clusters (Icke 1972; Oort 1983 ; Giovanelli, Haynes & Chincarini 1986), and
the vertices correspond to the virialized Abell clusters.

We have constructed two- and three-dimensional Voronoi foams geo-
metrically (Icke & Van de Weygaert 1987; Van de Weygaert & Icke 1989).
The example in Fig. 3 shows the characteristic appearance of two-
dimensional Voronoi foams; the similarity with 2-D numerical simulations
of gravitational clustering of collisionless particles is indeed quite striking
(Melott 1983 ; Matsuda & Shima 1984). In three dimensions, the similarity is
even more remarkable, in projection as well as in a slice (compare Figs. 2 and
6). A stereogram of three geometrically constructed Voronoi cells is given in
Fig. 4, showing the disposition of the walls, filaments and nodes.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1991QJRAS..32...85I&amp;db_key=AST

[T991QIRAS. 732, Z. 851

No. 2 GALAXY DISTRIBUTION AS VORONOI FOAM 95

F1G. 3. Two examples of two-dimensional Voronoi foams, for different values of the
correlation between the nuclei, which are indicated by dots. After Icke & Van de
Weygaert (1987).

F1G. 4. Stereo pair of three Voronoi cells and their nuclei (stars). The cell edges
(‘filaments”) are drawn in thick lines, the edges of the three walls where the cells touch
are thinly drawn, and hidden lines are dashed.

The advantage of using these geometrically constructed models is that one
is not restricted by the resolution or number of particles. A cellular structure
can be generated over a part of space beyond the reach of any N-body
experiment. This makes the Voronoi model particularly suited for studying
the properties of galaxy clustering in cellular structures on very large scales,
for example in very deep pencil-beam surveys, and for studying the clustering
of clusters in these models.

If one relaxes the constraint of equal excess Hubble expansion in every
void, one obtains a Johnson—Mehl tessellation (Johnson & Mehl 1939), which
would be more realistic. This structure closely resembles the cells produced
in the ‘adhesion’ model by Kofman & Shandarin (1988). In Johnson-Mehl
tessellations the walls are not bisecting planes but hyperboloids with their
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axes along the lines connecting the nuclei. It is very difficult to construct such
a tessellation geometrically, but one might do it approximately by using a
kinematical approach* such as the one described in the next section. It will
be interesting to see how large the differences of the statistical properties of
Johnson—-Mehl and Voronoi tessellations are. But it is not a priori clear
whether Johnson—Mehl tessellations are a real improvement, or whether they
just complicate the calculations, while losing the attractive simplicity of the
Voronoi model.

The Voronoi foams are expected to give a good asymptotic description of
the matter distribution at late times in several physical models. Models to
which the Voronoi foams apply can be either gravitational instability models
in which the structure formation is dominated by the negative-density
fluctuations, as in models with fluctuation spectra having a high-frequency
cutoff or considerable power at low wavelengths; or models in which the
driving force is due to explosions. The Voronoi foams outline the ‘skeleton’
of the mass distribution, around which matter assembles during the evolution
of the Universe.

5 A KINEMATICAL MODEL OF VORONOI CELL FORMATION

As argued in the previous section, the Voronoi tessellation can be
considered as the skeleton of the mass distribution. The galaxy distribution
itself depends on the initial fluctuation spectrum, and on the details of the
small-scale interactions of the gravitating matter. N-body simulations are
preferred for solving that problem, but even those may not suffice. It seems
probable that the small-scale structure in the baryonic matter is considerably
influenced (maybe even determined) by dissipational processes. But it can be
very useful to distribute galaxies on a Voronoi skeleton according to some
plausible description, in order to study the clustering properties in a cellular
model of large-scale structure.

In this way a better understanding of the outcome of statistical measures
from observational catalogues or N-body simulations can be achieved. For
example, one might use a uniform distribution within each wall, as was done
by Yoshioka & Ikeuchi (1989), Weinberg (1989), and Van de Weygaert
(1991). One may also resort to a more realistic distribution based on an
idealized description of dynamical simulations. Such a model is the
kinematical model used by Van de Weygaert & Icke (1989).

The kinematical model is based on the notion that when matter streams
out of the voids towards the Voronoi skeleton (i.e. the mathematical
tessellation corresponding to a given distribution of expansion centres), cell
walls form when material from one void encounters that from an adjacent
one. If the matter is collisionless (as in some species of dark matter), only self-
gravity will tend to hold it together. Moreover, if galaxies form during the
expansion of the voids, the formation of the walls may be amplified by

* This was done by Icke (unpublished, 1989); it is found that the difference is indeed small,
due to the fact that the deviation between a hyperboloidal and a plane wall is of second order
in the ‘excess Hubble constant’ of the voids.
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FIG. 5. Perspective cube showing the distribution of 10000 galaxies expanding away
from 15 Voronoi nuclei, at dimensionless time ¢=2; the amplitude of the
galaxy—galaxy two-point correlation function at this time corresponds approximately
to what is observed today.

dynamical friction between the galaxies (Toomre & Toomre 1972; Binney &
Tremaine 1987, ch. 7).

Accordingly, the structure formation scenario of the kinematical model is
as follows. Within a void, the mean distance between galaxies increases
uniformly in the course of time; this amounts to an excess Hubble expansion
about the cell nucleus. When a galaxy tries to enter an adjacent cell, the
gravity of the wall, aided and abetted by dissipational processes, will slow its
motion down. On the average, this amounts to the disappearance of its
velocity component perpendicular to the cell wall. Thereafter, the galaxy
continues to move within the wall, until it tries to enter the next cell; it then
loses its velocity component towards that cell, so that the galaxy continues
along a filament. Finally, it comes to rest in a node, as soon as it tries to enter
a fourth neighbouring void. In a Voronoi foam, there are exactly four cells
adjoining each node, and the above process is unique. An immediate
consequence of this kinematic behaviour is that the density in the walls
quickly becomes smaller than in the filaments which, in turn, remain less
dense than the nodes, where all matter eventually congregates. This is the
main reason why we identify the nodes with the rich Abell clusters.

Voronoi cell formation with periodic boundary conditions, as described
above, is shown in Fig. 5. When taking slices, as in Fig. 6, one sees a striking
resemblance with the observed redshift distributions of galaxies (e.g. De
Lapparent, Geller & Huchra 1986; see Fig. 2, reproduced from Geller &
Huchra 1989). Of course, the picture is expected to differ considerably in the
non-linear areas. In particular, the velocity fields near the clusters and
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F1G. 6. The cube of Fig. 5, sliced into five equal slabs.

filaments are expected to be dominated by their gravity, and not by the
expansion of the void.

6 COMPARISON WITH OBSERVATIONS: CLUSTERING STATISTICS

To quantify the comparison between the Voronoi tessellation and
observations, one has to derive the statistical properties of the clustering.
Quantification of the complicated three-dimensional pattern in the large-
scale galaxy distribution, however, has proved to be a difficult task. A
complete statistical description of any point process demands higher order
N-point correlation functions (Peebles 1980), yet it is practically impossible
to measure N > 4 correlation functions from galaxy catalogues. This has led
to the use of several techniques highlighting different geometrical properties.

The most widely used statistic is the two-point correlation function, &(r),
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and its sky-projected equivalent, the angular two-point correlation function
w(0). The two-point correlation function provides a straightforward measure
of deviations from Poissonian statistics. It is defined such that the number N
of objects found in a spherical shell with volume 87 and radius r, centred
on a randomly chosen object, is

ON = n[1+E(r)] oV, | (13)

where r is the distance between the two volume elements and » is the average
number density of objects. The popularity of {(r) can be understood from its
direct relationship to the dynamics of the matter distribution on small scales,
for £ > 1, via the cosmic virial theorem, and the hope that on large scales,
where the clustering is weak (§ < 1), £ can be related directly to the
perturbation power spectrum of Gaussian fluctuations.

In the case of galaxies, the value of the mean density # is unknown, in part
because the Universe has been insufficiently sampled (the deeper the redshift
surveys go, the larger structures they reveal: cf. Geller & Huchra 1989). For
the CfA1 survey Davis & Peebles (1983) found

Ego(r) = (ro/1), (14)
Y =1771004; r,=(54103)h Mpc, (15)

so that it seems fairly certain that  can be adequately described by a power
law over a decade and a half in r. In particular, there is no good evidence for
the existence of a preferred length-scale in the small-scale galaxy clustering,
though there are some indications from the CfA2 survey that §,, has a
shoulder at a few megaparsec.

The form of £ , is most convincingly shown by the power-law behaviour
of the angular correlation function w(6). We can learn a lot from w(0),
because it can be determined from far larger samples of galaxies, and because
it is intimately coupled to §,, by Limber’s equation (Limber 1954). Both
Groth & Peebles (1977), in the case of the Lick survey, and Maddox et al.
(1990) in the APM survey, find a power law behaviour of w(0) up to around
3°, and a break afterwards (although they disagree on the sharpness of the
break).

This is quite surprising, because just looking at the redshift surveys shows
that there is a lot of structure on scales of at least 50 Mpc. Filamentary
structures have been studied using percolation analysis (Zel’dovich, Einasto
& Shandarin 1982), and more recently using the cleaner method of Minimal
Spanning Trees (Barrow, Bhavsar & Sonoda 1985; Ling 1987; Bhavsar &
Ling 1988). Although looking quite promising at first, studies of the
percolation method by Bhavsar & Barrow (1983) and Dekel & West (1985)
showed that percolation statistics suffer from severe problems. Percolation
does not distinguish well between some patterns which appear clearly
different to the eye, while they are dependent on sampling parameters (mean
number density and sample depth) in a way which is unknown a priori
because the test depends on the same properties which it ought to measure.
Minimal Spanning Trees seem to do a better job in detecting filamentary
structures, while their recently discovered connection to the dimensional
properties of the sample (Martinez et al. 1990; Van de Weygaert, Jones &
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Martinez 1991) may lead to a better understanding of their connections to
other statistical measures.

Gott and collaborators studied the topology of the galaxy distribution by
characterizing it by the mean Gaussian curvature per unit volume of surfaces
of constant density. This method was introduced by Gott, Melott &
Dickinson (1986), and discussed at length by Melott, Weinberg & Gott
(1988). Based on a small volume-limited sample of galaxies, Gott et al.
reached the conclusion that the topology is sponge-like, meaning that the
high- and low-density regions are both connected, as opposed to a purely
cellular topology, in which only the high-density regions are connected.
Although this descriptor looks very promising, its application suffers from
small-number statistics (and from insensitivity to underlying statistics: Coles
& Jones 1991).

A potentially very powerful method is the void probability function (VPF),
and the related number count distributions, as different models predict large
differences. White (1979) showed that the VPF, the probability that a
randomly placed volume V' is empty, depends on correlation functions of all
orders. The VPF has been determined for angular and redshift catalogues of
galaxies by several groups (e.g. Bouchet & Lachiéze-Rey 1986; Mauro-
gordato & Lachieze-Rey 1987). The VPF is interesting because it is a
combination of the correlation function and the pattern recognition
approach to clustering statistics. A disadvantage is that one needs quite large
samples to estimate the VPF with confidence, in particular at low values, so
that its use is as yet rather limited.

Another promising method is the description of galaxy clustering in terms
of its generalized, fractal dimensions (Jones et al. 1988; Martinez & Jones
1990; Martinez et al. 1990). By using the minimal spanning tree as an
estimator (Van de Weygaert, Jones & Martinez 1991), Martinez & Jones
(1990) showed that the Hausdorff dimension D,, of the galaxy distribution,
which one may consider as the ‘geometrical’ dimension, in the CfA1
catalogue is D, ~2-1+o01, differing significantly from its correlation
dimension D, (D, =3—vy ~ 1-3+01). This means that the spatial distri-
bution of galaxies cannot be described by a simple fractal as advocated by
Coleman, Pietronero & Sanders (1988), but possesses a more complex,
possibly multifractal, structure. A nice feature of the multifractal method is
that theoretical models can be compared quantitatively with observations on
the basis of at least two numbers, D, and D,, instead of just the two-point
correlation function, providing a far better discriminating power (see
Martinez et al. 1990).

Very interesting and useful could be the use of the Voronoi tessellation
itself, and its dual, the Delaunay tessellation, as a tool in studying the higher-
order clustering properties of a point process. The statistics of the geometrical
properties of two-dimensional Voronoi tessellations were studied in Icke &
Van de Weygaert (1987). One of the conclusions was that the distribution of
angles between edges is very sensitive to the underlying point process. In fact,
Ling (1987) used this approach in his thesis and illustrated its use in two
dimensions on artificial point processes, the CfA catalogue, and a CDM
simulation. He concluded that the statistic is very flexible, allowing a scale-
dependent study of the distribution. However, the translation of this
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statistical information to more familiar statistical descriptors is not
straightforward, and might prohibit an extensive use of the Voronoi
distribution as a tool in statistics.

Evidence for structure on large scales is also provided by the two-point
correlation function of Abell clusters, which has the same slope as, but a far
larger amplitude than, the galaxy—galaxy correlation (Bahcall & Soneira
1983 ; Klypin & Kopylov 1983; Postman, Geller & Huchra 1986):

gcc(r) = (rO/r)Y’ (16)
y=18+02; r,=(26+4)h"Mpc, (17)

up to a scale of 1004~ Mpc (taken from Bahcall 1988). Although there are
some indications that r, in equation (17) is an overestimate, due to
contamination effects in the Abell catalogue (Sutherland 1988 ; Dekel et al.
1989; Olivier et al. 1990), the difference in amplitude between &, and &,
suggests that at least one of them does not properly sample the underlying
mass distribution. The difference in amplitude can, of course, be attributed
to a dependence of the mass-to-luminosity ratio on the local mass density
(‘biasing’; see, e.g. Kaiser 1984).

We now proceed to show that the cluster—luster correlation function
could also be due to the cellular geometry of a Voronoi distribution.

7 CONFRONTING THE VORONOI MODEL WITH OBSERVATIONS

Comparing observations of the galaxy distribution and the theory of the
evolution of the gravitational field requires knowledge of how light traces the
gravitational potential; in other words, knowledge of the biasing. As we do
not know what the dark matter is, nor how its kinetic behaviour differs from
that of the baryons, we assume for simplicity that light traces mass faithfully.
However, our main result (the pair correlation behaviour of Abell clusters
and of Voronoi vertices) does not depend on this, provided that the dark
mass and the luminous matter are positively correlated.

In order to compare the Voronoi model with the statistical properties of
the observed galaxy distribution, we have determined the two-point
correlation functions of the kinematic simulations and of the Voronoi
vertices (Van de Weygaert & Icke 1989).

Because we identify the vertices with Abell clusters, the comparison could
be done without further assumptions. When doing this, we can use the fact
that the Voronoi node distribution is a topological invariant in co-moving
coordinates, and does not depend on the way in which the walls, filaments,
and nodes are populated with galaxies. Thus, the statistics of the nodes
should provide a robust measure of the Voronoi properties.

For a random distribution of 1000 expansion centres, generating a
Voronoi tessellation with 6733 vertices, we got the remarkable result shown
in Fig. 7. In order to make a proper comparison between theory and
- observations, we must specify a single scaling parameter, with the dimension
of length: the only free parameter of the Voronoi tessellation can always be
specified in this way. We might, for example, choose the mean distance
between nuclei. Observationally, however, this would be a very awkward
choice. Instead, we applied our scaling by expressing r in units of d/2, where

5 BRA 32

-

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1991QJRAS..32...85I&amp;db_key=AST

[T991QIRAS. 732, Z. 851

102 V.ICKE AND R.VAN DE WEYGAERT Vol. 32
; B
II ~§\§
103F {‘I 3 03 .z 1
By Py,
% ‘g
. I\“\ , H’v
10°F N 3 _ 10F .
x
< w
S ¥
o' o't
.\‘
e,
1 [ -
x
lonl3 E 10~'F
5
(op | 10! '

X

FI1G. 7. The spatial vertex—vertex correlation function of a Voronoi foam with 1000
Poissonian nuclei. The left panel shows &, the right one 1+£. Both have been plotted
as functions of the dimensionless quantity x = 2r/d, in which d is the mean separation
between vertices. The heavy solid line is an approximate fit to the observational data.

d is the mean separation between vertices (in the model) or clusters (in the
observations). The vertex—vertex correlation function we obtained is a power
law from small scales up to the scale of one Voronoi cell, beyond which it

vanishes:
&) = (ro /1), (18)

Y =20; ry=1r13 (19)
(in dimensionless units; taking d equal to 554~ Mpc for Abell clusters of
richness class R>1 we get r,=31hMpc in physical units). The
uncertainties shown in Fig. 7 are purely Monte Carlo scatter; we have not
performed other estimates of the uncertainty of the calculations, such as
bootstrap resampling, because the Monte Carlo spread is very small already
(and is, in any case, very much smaller than the scatter of the correlation
function derived from observations).

Thus, both the slope (&~ —2) and the amplitude of the vertex—vertex
correlation function are in good accordance with the cluster—cluster
correlation of Bahcall & Soneira. Although several other models of large
scale structure formation, including the popular cold dark matter scenario
(e.g. White et al. 1987), have succeeded in obtaining the right slope, they did
not succeed in reproducing the amplitude. Thus, it is remarkable that we have
reproduced the amplitude of the correlation function. It should be noted that
this fit is not obtained arbitrarily, but comes about spontaneously by
choosing the natural normalization in which the mean density of Voronoi
vertices equals the observed density of Abell clusters.
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The normalization, which gives r, = 31A7' Mpc, also determines the
average size of the Voronoi cells. When this size is used in a calculation of
the distribution of redshifts of galaxies populating Voronoi foam in a deep
pencil-beam survey, the results obtained are in excellent agreement with the
observations (Broadhurst ez al. 1990; Coles 1990; Van de Weygaert 1991).
We will return to this below.

The slope is not very sensitive to the details of the stochastic process which
determines the distribution of the nuclei. When we looked at the vertices of
Voronoi tessellations based on non-Poissonian, clustered, expansion centres,
we found that they also had power-law correlation functions, with slopes and
amplitudes which only vary mildly with the correlation properties of the
nuclei.

The broad conclusion we draw from this is that the cluster—cluster
correlation function is determined by the geometrical properties of the galaxy
distribution, i.e. their cell-like or sponge-like arrangement. Because this
conclusion is purely based on the geometry of the structures which have
formed, instead of their dynamics, we consider this as the key result in the
study of the Voronoi tessellations and their relation to large-scale structures.

The Voronoi vertices not only reproduce the cluster—cluster two-point
correlation function very well, but their superclustering properties as
expressed in the cluster multiplicity function are remarkably similar to the
observed ones too. By identifying superclusters in a percolation algorithm,
one can find the percentage of clusters lying in superclusters of a certain size.
Batuski, Melott & Burns (1987) had concluded that all ‘standard’ models
(CDM, HDM and isothermal) failed to reproduce the Abell catalogue
multiplicity function by large margins. In this respect it is striking that the
Voronoi vertex multiplicity function is within 6 per cent of the observed one.

To give an impression of the distribution of our ‘Voronoi clusters’, we
have plotted in Fig. 8 some 1700 Voronoi vertices projected onto the sky,
within an area of 413 steradian, which should be compared with the
projected distribution_of 1682 Abell clusters, constituting a complete
statistical sample on the Northern Hemisphere (Bahcall 1988). Although the
eye is not the best statistical tool, the general conclusion is that the Voronoi
vertex catalog resembles the Abell catalog quite well, thereby visually
confirming the statistical tests.

Another test of the Voronoi model will be the topology of the galaxy
distribution. In such analyses one should distinguish between the math-
ematical Voronoi skeleton and the actual mass density with which that
skeleton is covered. Weinberg, Gott & Melott (1987) used a Voronoi foam
with galaxies distributed uniformly within each wall (but with a number
density differing from wall to wall, being proportional to the distance of the
wall from the nucleus). They showed that this model has a clear non-Gaussian
‘bubble’ topology, with isolated negative contour surfaces, and multiply
connected positive contours. In the kinematical model described in Section
5 the walls become porous, leading to a matter distribution which is much
more sponge-like. This will be tested using the same topology algorithm in
a future study.

Recently Broadhurst et al. (1990) found a striking, quasi-periodic, galaxy
redshift distribution in a pencil-beam survey. The mean spacing between the

5-2
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FI1G. 8. Projected distribution of 1700 Voronoi vertices on the sky within a solid angle
of 413 steradian. The projected distribution of 1682 Abell clusters on the Northern
Hemisphere within 4-26 steradian, with which this should be compared, can be found
in Bahcall (1988).

peaks in the redshift distribution was found to be 12847 Mpc. Another
remarkable discovery was the evidence for ‘ pleated walls’ spanning hundreds
of megaparsec (Geller & Huchra 1989; Fig. 2). Both of these phenomena
arise quite naturally within a Voronoi model. In the Voronoi picture the
‘Great Wall’ occurs because adjacent Voronoi walls form large pleated
sheets. Both Coles (1990) and Van de Weygaert (1991) interpreted the
Broadhurst et al. results on the basis of the Voronoi model. Coles (1990) used
some new analytical results on Voronoi tessellations derived by Mpller
(1989). He showed that in a Voronoi foam resulting from Poissonian nuclei
with a mean density of n ~ (100A™ Mpc)~2 (i.e. using the normalization we
discussed above), the mean distance between intersections of different cells is
{A,;» ~ 137h7* Mpc, while he estimated that along about § per cent of the
lines of sight one can expect a more or less ‘periodic’ redshift distribution.

These analytical estimates were confirmed by the Monte Carlo simulations
of Van de Weygaert (1991). He computed a three-dimensional Voronoi
tessellation resulting from 2500 Poissonian nuclei. Galaxies, whose lumin-
osities are selected from a Schechter luminosity function, were placed
randomly within the walls of the cellular model, while taking account of the
proper density in each topological feature. Simulations of deep magnitude-
limited pencil-beam surveys (cones) through these structures were performed.
The redshift distribution in two opposite beams, showing periodicity, is
shown in Fig. 9, together with the corresponding pair counts. On the basis
of some 30 pairs of opposing beams out to a depth of z = 0-5 it is estimated
that 15 per cent of the beams show the observed regular pattern, with a
spacing between the peaks on the order of 105-15047! Mpc (normalizing on
the mean distance between clusters, as described above).
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FIG. 9. A deep pencil-beam redshift survey through a Voronoi foam (m,,,, = 215). (a)

The redshift distribution for pencil beam surveys taken in opposite directions through

a 3-D Voronoi tessellation. Positive redshift means the galaxy is in the cone pointing

in one direction, while negative redshift means the opposite direction. (b) The

corresponding pair-count correlation diagram. The dashed lines indicate scales as
multiples of 10747 Mpc.

Most pencil beams show striking peaks in the galaxy distribution, on the
same scale, but without periodicity. It is striking that both the quasi-
periodicity, and its observed scale, can be explained easily within the Voronoi
picture.

The Voronoi model has so far met several statistical tests (see also the
following section), but a grave objection was raised by Coles & Barrow
(1990) concerning the smoothness of the cosmic microwave background
radiation (CMBR). They estimated the redshift at which void shells coalesce
in a universe filled with homogeneous undecelerated expanding shells around
Poissonian nuclei (assuming that the self-similar non-linear expansion phase
is not yet reached), whilst requiring that the voids did not percolate at
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recombination; that the voids grow large enough to coalesce (i.e. cellular
large-scale structure has formed); and that the temperature fluctuations of
the CMBR produced by the primordial underdensities are less than the
observed limits.

Coles & Barrow found that the Sachs-Wolfe effect leads to fluctuations
which are only marginally in agreement with observations if a period of re-
ionization is invoked. In that case a redshift of coalescence of z, ~ 516 is
obtained, while Saarinen, Dekel & Carr (1987) showed that z, ~ 5-10 is
needed to give the shells time enough to cool and fragment. Moreover, for
adiabatic density fluctuations, or fluctuations with non-zero velocities on the
last scattering surface, the model is completely excluded by small-angle
limits, unless there is extensive re-ionization. However, such a process should
have left its marks on small angular scales by the Sunyaev—Zel’dovich effect
and as anisotropies in the X-ray background. It is not clear yet whether these
would exceed the observational limits.

We find these objections very serious, even though they might depend on
the specific model of void evolution which Coles & Barrow (1990) analysed.
CMBR fluctuations in our kinematical Voronoi model might behave
differently, because in that case the walls form by the gradual crossing of
particle orbits, instead of the crossing of material shells. A detailed study of
the CMBR in an evolving kinematic Voronoi distribution is under way (Icke
& Poelman 1991); preliminary results show CMBR peak-to-peak fluctua-
tions in the range between AT/T ~ 107* and AT/T ~ 1072, depending on
when the Voronoi evolution is assumed to begin. Thus, it appears that the
objections by Coles & Barrow will be sustained. The usual recourse to dark
matter and biasing would help, but at the expense of simplicity.

Other ways out may be found by using very non-Gaussian primordial
fluctuations, or in the assistance of the gravitational expansion by early
explosions. The limits are far less stringent for explosion models, in which
only the baryonic component needs to expand, accelerated by the explosive
energy from an ad hoc population of exploding objects.

Similar conclusions were reached by Hoffman, Salpeter & Wasserman
(1983) for their model of a honeycomb universe resulting from expanding
holes centred on initial underdense seeds on a regular lattice (a degenerate
Voronoi tessellation). They determined the underdensity at the cell centres at
recombination required to reach a density contrast between the void interior
and the mean density of the Universe of p,/p = o'1. For Q = 1, the required
initial underdensity is (3p/p),., = 0-0I, while for smaller Q even larger
underdensities are required. While they ignore the resulting Sachs—Wolfe
effect, the resulting CMBR anisotropies in the case of adiabatic fluctuations
are clearly too large. The limits on those fluctuations are decreased
substantially by invoking a dominant dark matter component, although it
will not solve the problem of the Sachs—Wolfe induced anisotropies. Other
possible solutions to the problem include more exotic possibilities, such as a
cosmological constant A > o which is sufficiently large that a ‘coasting
phase’ has already occurred, or explosion-driven bubbles instead of
gravitationally driven ones.

If none of these alternatives provides a satisfying solution, the inter-
pretation of large scale structure formation dominated by the expansion
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of voids is wrong. This would not only exclude the Voronoi model, but also
similar models in which the voids play an important role (like pancake
models, or neutrino-dominated models).

8 RELATION TO OTHER WORK

The Voronoi model is based on the formation of irregularities in the mass
distribution in the early universe, which are amplified by the gravitational
force. The statistical properties of a Voronoi distribution can be computed
with confidence and ease. We have found that Voronoi distributions do not
only look strikingly like the observed galaxy distribution, but also pass the
statistical tests.

Our model is a useful description of the outcome of the evolution of a
perturbation field with a high-frequency cutoff or with much power on large
scales, as in a universe dominated by massive neutrinos (cf. Centrella &
Melott 1983; Centrella et al. 1988). In this sense, it is closely related to
pancake theories of galaxy formation, as studied by Zel’dovich (1970),
Klypin & Shandarin (1983), and Buchert (1989). Moreover, the ‘adhesion’
approach to clustering evolution, based on the use of Burgers’s equation,
produces a cellular structure of dark matter which bears some resemblance
to our Voronoi tessellations (Kofman & Shandarin 1988 ; Gurbatov, Saichev
& Shandarin 1989; Kofman 1989; Kofman, Pogosyan & Shandarin 1990;
Weinberg & Gunn 1990; for a review of these models see Shandarin &
Zel’dovich 1989). Voronoi models may be very useful in this context because
one can easily derive statistical properties with high statistical significance,
which is difficult in models involving large computational effort.

Another approach to clustering was taken by Ikeuchi (1981) and by
Ostriker & Cowie (1981), who proposed that the bubble-like distribution of
galaxies was caused by enormous explosions in the early Universe, driving
the matter out of voids, sweeping primordial gas into dense, expanding shells
that cool and fragment into galaxies. Taking this view and basing themselves
on N-body simulations by Saarinen, Dekel & Carr (1987), Weinberg,
Ostriker & Dekel (1989) studied the clustering in a universe of interacting
shells. In their model the clusters appear at the vertices where three shells
intersect; the shells are distributed randomly throughout the volume. By
investigating the model as a function of three free parameters, they try to
obtain a fit to the observations. Interestingly, they find that the vertex—vertex
correlation function is a power law. However, the most successful choice of
parameters yields the right slope but an amplitude which is too high. With
these same parameters they also succeed in getting a supercluster multiplicity
function roughly consistent with the data. A similar model was proposed by
Bahcall, Henriksen & Smith (1989) on the basis of observational consider-
ations.

Yoshioka & Ikeuchi (1989) and Weinberg (1989) adopted the Voronoi
foam as a ‘toy model’ of large-scale structure in the explosion scenario. The
former pursued the explosion scenario by using 64000 particles in a box,
which expanded away from a set of 100 expansion centres. The particles were
stopped short in either the walls, the filaments, or the nodes of the
corresponding Voronoi tessellation. They used the galaxy paths merely as
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convenient markers for the location of the Voronoi features, and did not
allow the galaxies to stream along the walls and the filaments, as we did in
our simulations. Their goal was to see what the clustering properties of the
particles were if they were all situated in either the walls, the filaments, or the
nodes. This version of the explosion scenario did produce power laws for the
correlation functions, although the slopes were too shallow when all the
particles were situated within the walls or the filaments. The vertex—vertex
correlation function confirms the slope of —2 which we found, but because
their method is not mathematically exact, they retrieve only a limited subset
of vertices (only around 670 in the case of 100 voids). Thus, they could not
study the correlation function over a large range, or estimate the amplitude
(this is a big advantage of being able to construct the tessellation
geometrically, because a large, statistically reliable, sample of vertices is
easily and quickly obtained).

Weinberg (1989) followed the same approach, distributing 322 particles in
a 64 volume and choosing random locations for N, = 16 nuclei, representing
the sites of the explosions that sweep up the surrounding material. Each
particle is then projected radially outward from the nearest nucleus until it
becomes equidistant from this and another one. This leaves all the particles
on the walls of the tessellation, each wall having a uniform distribution of
particles (but number density differing from wall to wall). Weinberg used this
distribution to test the behaviour of his ‘ Gaussianization’ initial density field
reconstruction method on a model which violates the method’s central
assumption of Gaussian fluctuations and gravitational instability. The
method was fairly successful in reproducing the density distribution, but
showed clear differences between model and reconstructed correlation
function. This showed that his method is potentially a powerful one for
determining whether the observed galaxy distribution evolved from Gaussian
initial density fluctuations by gravitational instability.

Finally, from an observational point of view, Pierre, Shaver & Iovino
(1988) and Pierre (1990) used the Voronoi tessellation to see whether one
could say anything about the presence of cellular structures in the distribution
of Lyman-a clouds, as derived from the absorption line spectra of quasars.
The main conclusion was that any structure amongst the Ly-a absorbers is
less pronounced than the void structure defined by the distribution of
galaxies today.

9 CONCLUSIONS

The structure of our Universe on a scale of about 10-500 Mpc can be
plausibly modelled by means of pressure-free Newtonian gravitational
collapse. This mechanism produces a mass distribution which, asympto-
tically, is described by a statistical process known as Voronoi tessellation.
Visual comparison between Voronoi foams and the observed distribution of
galaxies shows a promising similarity. Detailed statistical study shows that
the two-point correlation of Voronoi foam is practically indistinguishable
from that which is obtained for the actual galaxy distribution. This holds in
particular for the slope and the amplitude of the two-point correlation
function of Abell clusters and of three-dimensional Voronoi vertices.
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Likewise, the cluster multiplicity function is properly reproduced. The most
serious problem is that the CMBR fluctuations may be far too large.
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