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In recent years semiconductor nanostructures have become the model
systems of choice for investigations of electrical conduction on short length
scales This development was made possible by the availability of semicon-
ducting matenials of unprecedented purity and crystalline perfection Such
materials can be structured to contain a thin layer of highly mobile electrons
Motion perpendicular to the layer 1s quantized, so that the electrons are
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constramed to move 1n a plane As a model system, this two-dimensional
electron gas (2D EG) combines a number of desirable properties, not shared by
thin metal films It has a low electron density, which may be readily varied by
means of an electric field (because of the large screening length) The low
density implies a large Ferm1 wavelength (typically 40 nm), comparable to the
dimensions of the smallest structures (nanostructures) that can be fabricated
today The electron mean free path can be quite large (exceeding 10 um)
Finally, the reduced dimensionality of the motion and the circular Fermi
surface form simplifying factors

Quantum transport s conveniently studied in a 2DEG because of the
combination of a large Ferm1 wavelength and large mean free path The
quantum mechanical phase coherence characteristic of a microscopic object
can be maintained at low temperatures (below 1 K) over distances of several
microns, which one would otherwise have classified as macroscopic The
physics of these systems has been referred to as mesoscopic,’ a word borrowed
from statistical mechanics 2 Elastic impurity scattering does not destroy
phase coherence, which 1s why the effects of quantum interference can modify
the conductivity of a disordered conductor This 1s the regime of diffusive
transport, characteristic for disordered metals Quantum interference
becomes more important as the dimensionality of the conductor 1s reduced
Quasi—one dimensionality can readily be achieved in a 2DEG by lateral
confinement

Semiconductor nanostructures are unique in offering the possibility of
studying quantum transport 1n an artificial potential landscape This 1s the
regime of ballistic transport, in which scattering with impurities can be
neglected The transport properties can then be tailored by varying the
geometry of the conductor, in much the same way as one would tailor the
transmission properties of a waveguide The physics of this transport regime
could be called electron optics 1n the solid state * The formal relation between
conduction and transmussion, known as the Landauer formula,'#® has
demonstrated its real power 1n this context For example, the quantization of
the conductance of a quantum point contact®’ (a short and narrow

'Y Imry, n “Directions n Condensed Matter Physics,” Vol 1 (G Grinstern and G Mazenko,
eds) World Scientific, Singapore, 1986

N G van Kampen, “Stochastic Processes in Physics and Chemustry ” North-Holland,
Amsterdam, 1981

3H van Houten and C W J Beenakker, in “Analogies 1 Optics and Microelectronics” (W
van Haeringen and D Lenstra, eds) Kluwer Academic, Dordrecht 1990

“R Landauer, IBM J Res Dev 1, 223 (1957), 32, 306 (1988)

M Buttiker, Phys Rev Lett 57, 1761 (1986)

5B J van Wees, H van Houten, C W J Beenakker, ] G Willlamson, L P Kouwenhoven, D
van der Marel, and C T Foxon, Phys Rev Lett 60 848 (1988)

"D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G
Hasko, D C Peacock, D A Ritchie, and G A C Jones, J Phys C 21, 1209 (1988)
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constriction 1n the 2DEG) can be understood using the Landauer formula as
resulting from the discreteness of the number of propagating modes n a
waveguide.

Two-dimensional systems 1n a perpendicular magnetic field have the
remarkable property of a quantized Hall resistance,® which results from the
quantization of the energy in a series of Landau levels. The magnetic length
(h/eB)'* (=~10nm at B = 5T) assumes the role of the wavelength 1n the
quantum Hall effect. The potential landscape in a 2DEG can be adjusted to
be smooth on the scale of the magnetic length, so that inter—Landau level
scattering 1s suppressed. One then enters the regime of adwabatic transport. In
this regime truly macroscopic behavior may noti be found even 1n samples as
large as 0.25 mm.

In this review we present a self-contained account of these three novel
transport regimes in semiconductor nanostructures. The experimental and
theoretical developments in this field have developed hand in hand, a fruitful
balance that we have tried to maintain here as well. We have opted for the
simplest possible theoretical explanations, avoiding the powerful—but more
formal—Green’s function techniques. If in some instances this choice has not
enabled us to do full justice to a subject, then we hope that this disadvantage
is compensated by a gain in accessibility. Lack of space and time has caused
us to hmit the scope of this review to metallic transport in the plane of a
2DEG at small currents and voltages. Transport in the regime of strong
localization is excluded, as well as that in the regime of a nonlinear current—
voltage dependence. Overviews of these, and other, topics not covered here
may be found in Refs. 911, as well as in recent conference proceedings.!2~17

We have attempted to give a comprehensive hist of references to theoretical

8K von Khtzing, G Dorda, and M Pepper, Phys Rev Lett 45,494 (1980)

M A Reed, ed, “Nanostructured Systems ” Academic Press, New York, to be published

0P A Lee,R A Webband B L Al'tshuler, eds, “Mesoscopic Phenomena 1n Solids ” Elsevier,
Amsterdam, to be published

"B L Al'tshuler, R A Webb,and R B Latbowttz, eds, IBM J Res Dev 32, 304437, 439-579
(1988)

'2“Proceedings of the International Conference on Electronic Properties of Two-Dimensional
Systems,” IV-VIII, Swif Scr 113 (1982), 142 (1984), 170 (1986), 196 (1988), 229 (1990)

13M J Kelly and C Weisbuch, eds, “The Physics and Fabrication of Microstructures and
Microdevices ” Proc Winter School Les Houches, 1986, Springer, Berlin, 1986

'“H Hemnrich, G Bauer, and F Kuchar, eds, “Physics and Technology of Submicron
Structures ” Springer, Berlin, 1988

1M Reed and W P Kurk, eds, “Nanostructure Physics and Fabrication ” Academic Press,
New York, 1989

'S P Beaumont and C M Sotomayor-Torres, eds, “Science and Engineering of 1- and 0-
Dimensional Semiconductors ” Plenum, London, 1990

7] M Chamberlain, L Eaves, and J C Portal, eds, “Electronic Properties of Multilayers and
Low-Dimensional Semiconductor Structures ” Plenum, London, to be published

s
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and experimental work on the subjects of this review We apologize to those
whose contributions we have overlooked Certain experiments are discussed
m some detail In selecting these experiments, our aim has been to choose
those that 1llustrate a particular phenomenon 1n the clearest fashion, not to
establish priorities We thank the authors and publishers for their kind
permussion to reproduce figures from the original publications Much of the
work reviewed here was a joint effort with colleagues at the Delft University
of Technology and at the Philips Research Laboratories, and we are grateful
for the stimulating collaboration

The study of quantum transport in semiconductor nanostructures 1s
motivated by more than scientific interest The fabrication of nanostructures
relies on sophisticated crystal growth and lithographic techniques that exist
because of the industrial effort toward the mimaturization of transistors
Conventional transistors operate 1n the regime of classical diffusive transport,
which breaks down on short length scales The discovery of novel transport
regimes 1n semiconductor nanostructures provides options for the develop-
ment of innovative future devices At this point, most of the proposals in the
literature for a quantum interference device have been presented primarily as
interesting possibilities, and they have not yet been critically analyzed A
quantitative comparison with conventional transistors will be needed, taking
circuit design and technological considerations mto account !® Some pro-
posals are very ambitious, in that they do not only consider a different
principle of operation for a single transistor, but envision entire computer
architectures in which arrays of quantum devices operate phase coherently *°

We hope that the present review will convey some of the excitement that
the workers m this rewarding field of research have experienced in its
exploration May the description of the variety of phenomena known at
present, and of the simplest way in which they can be understood, form an
mspiration for future investigations

2 NANOSTRUCTURES IN S1 INVERSION LAYERS

Electronic properties of the two-dimensional electron gas in St MOSFETSs
(metal-oxide-semiconductor field-effect transistors) have been reviewed by
Ando, Fowler, and Stern,?° while general technological and device aspects
are covered 1n detail 1n the books by Sze?! and by Nicollian and Brew 22 In
this section we only summarize those properties that are needed in the

'8R Landauer, Phys Today 42, 119 (1989)

YR T Bate, Sci Am 258 78 (1988)

29T Ando, A B Fowler, and F Stern, Rev Mod Phys 54, 437 (1982)

21IS M Sze, “Physics of Semiconductor Devices ” Wiley, New York, 1981

22E H Nicollian and J R Brew, “Metal Oxide Semiconductor Technology ” Wiley, New York,
1982
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metal 8102 p—Si

Fig 1 Band-bending diagram (showing conduction band Ec, valence band Ey, and Ferm
level Ep) of a metal-oxide-semiconductor (MOS) structure A 2DEG 1s formed at the mterface
between the oxide and the p-type silicon substrate, as a consequence of the positive voltage ¥, on
the metal gate electrode

following A typical device consists of a p-type S1 substrate, covered by a S10,
layer that serves as an insulator between the (100) S1 surface and a metallic
gate electrode By application of a sufficiently strong positive voltage V. on
the gate, a 2DEG 1s induced electrostatically in the p-type St under the gate
The band bending leading to the formation of this mversion layer 1s
schematically indicated in Fig 1 The areal electron concentration (or sheet
density) n, follows from en, = C,(V, — V;), where V¥, 1s the threshold voltage
beyond which the inversion layer 1s created, and C,, 1s the capacitance per
umt area of the gate electrode with respect to the electron gas Approximate-
ly, one has C,, = &,/d,, (With ¢, = 3 9¢, the dielectric constant of the S1O,
layer),*! so

80)(
ed,,

21

n, =

The linear dependence of the sheet density on the applied gate voltage 1s one
of the most useful properties of Si inversion layers

The electric field across the oxide layer resulting from the applied gate
voltage can be quite strong Typically, ¥V, — ¥V, =5V and d,, = 50 nm, so the
field strength 1s of order 1 MV/cm, at best a factor of 10 lower than typical
fields for the dielectric breakdown of S10, It 1s possible to change the electric
field at the interface, without altering n,, by applying an additional voltage
across the p-n junction that isolates the inversion layer from the p-type
substrate (such a voltage 1s referred to as a substrate bias) At the S1-S10,
interface the electric field 1s continuous, but there 1s an electrostatic potential
step of about 3¢V An approximately triangular potential well 1s thus formed
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at the interface (see Fig. 1). The actual shape of the potential deviates
somewhat from the triangular one due to the electronic charge in the
inversion layer, and has to be calculated self-consistently.2® Due to the
confinement in one direction in this potential well, the three-dimensional
conduction band splits into a series of two-dimensional subbands. Under
typical conditions (for a sheet electron density n, = 10''~10'2cm~2) only a
single two-dimensional subband is occupied. Bulk Si has an indirect band
gap, with six equivalent conduction band valleys in the {100> direction in
reciprocal space. In inversion layers on the (100) Si surface, the degeneracy
between these valleys is partially lifted. A twofold valley degeneracy remains.
In the following, we treat these two valleys as completely independent,
ignoring complications due to intervalley scattering. For each valley, the
(one-dimensional) Fermi surface is simply a circle, corresponding to free
motion in a plane with effective electron mass?® m = 0.19m,. For easy
reference, this and other relevant numbers are listed in Table 1.

The electronic properties of the Si inversion layer can be studied by
capacitive or spectroscopic techniques (which are outside the scope of this
review), as well as by transport measurements in the plane of the 2DEG. To
determine the intrinsic transport properties of the 2DEG (e.g., the electron
mobility), one defines a wide channel by fabricating a gate electrode with the
appropriate shape. Ohmic contacts to the channel are then made by ion
implantation, followed by a lateral diffusion and annealing process. The two
current-carrying contacts are referred to as the source and the drain. One of
these also serves as zero reference for the gate voltage. Additional side
contacts to the channel are often fabricated as well (for example, in the Hall
bar geometry), to serve as voltage probes for measurements of the longi-
tudinal and Hall resistance. Insulation is automatically provided by the p-n
junctions surrounding the inversion layer. (Moreover, at the low temper-
atures of interest here, the substrate conduction vanishes anyway due to
carrier freeze-out.) The electron mobility u, is an important figure of merit for
the quality of the device. At low temperatures the mobility in a given sample
varies nonmonotonically2® with increasing electron density n, (or increasing
gate voltage), due to the opposite effects of enhanced screening (which reduces
ionized impurity scattering) and enhanced confinement (which leads to an
increase in surface roughness scattering at the Si—SiO, interface). The
maximum low-temperature mobility of electrons in high-quality samples is
around 10* cm?/Vs. This review deals with the modifications of the transport
properties of the 2DEG in narrow geometries. Several lateral confinement
schemes have been tried in order to achieve narrow inversion layer channels
(see Fig. 2). Many more have been proposed, but here we discuss only those
realized experimentally.

Technically simplest, because it does not require electron beam lit-
hography, is an approach first used by Fowler et al., following a suggestion by




TaBLE I ELECTRONIC PROPERTIES OF THE 2DEG IN GaAs—AlGaAs HETEROSTRUCTURES AND S1
INVERSION LAYERS

GaAs(100) St (100) Units
Effective Mass m 0067 019 m,=91x10"28g
Spin Degeneracy gs 2 2
Valley Degeneracy g, 1 2
Duelectric Constant € 131 119 g=89
x10712Fm™*
Density of States p(E)=gg,(m/2nh?) 028 159 10''cm ™ ?meV~?
Electronic Sheet
Density® n, 4 1-10 10" cm ™2
Ferm1 Wave Vector  kg=(4nn,/g.g,)'"* 158 056-177  10°cm™!
Ferm1 Velocity vp=hke/m 27 034-11 107 cm/s
Fermi Energy Eg=(hkg)*/2m 14 063-63 meV
Electron Mobulity® Ue 10*-10° 104 cm?/V s
Scattering Time T=my./e 038-38 11 ps
Diffusion Constant D=vt/2 140-14000 64-64 cm?/s
Resistivity p=(neu,)* 16-0016  63-063 kQ
Ferm1 Wavelength Ap=2n/ky 40 112-35 nm
Mean Free Path I=vp1 102-10* 37-118 nm
Phase Coherence
Length® A 200~ 40-400 nm(T/K)~1/?

Thermal Length Iy =(AD/kyT)'1? 330-3300  70-220 nm(7T/K)~1/?
Cyclotron Radius loya=hke/eB 100 37-116 nm(B/T)"!
Magnetic Length I,=(h/eB)!/? 26 26 nm(B/T)~ /2

kgl 158~1580 21-21

P 1-100 1 (B/T)

E/ho, 79 1-10 (B/T)"!

*A typical (fixed) density value 15 taken for GaAs—AlGaAs heterostructures, and a typical range
of values 1 the metallic conduction regime for St MOSFETs For the mobulity, a range of
representattve values 1s histed for GaAs—AlGaAs heterostructures, and a typical “good” value for
S1 MOSFETs The vanation 1n the other quantities reflects that in »n, and p,

PRough estimate of the phase coherence length, based on weak localization experiments 1n
laterally confined heterostructures?3~27 and St MOSFETs 28 29 The stated T~ '/? temperature
dependence should be regarded as an indication only, since a simple power law dependence 1s not
always found (see, for example, Refs 30 and 25) For high-mobility GaAs—AlGaAs hetero-
structures the phase coherence length 1s not known, but 1s presumably®! comparable to the
(elastic) mean free path [

?*B J F Lin, M A Paalanen, A C Gossard, and D C Tsui, Phys Rev B 29, 927 (1984)

2*H Z Zheng, H P We1, D C Tsui, and G Weimann Phys Rev B 34, 5635 (1986)

K K Choi, D C Tsu, and K Alavi, Phys Rev B 36, 7751 (1987), Appl Phys Lett 50, 110
(1987)

*H van Houten, C W J Beenakker, B J van Wees, and J E Mooy, Surf Sci 196, 144 (1988)

2"H van Houten, C W J Beenakker, M E I Broekaart, M G J Heyman, B J van Wees,J E
Mooy, and J P Andre, Acta Electionica, 28, 27 (1988)

28D J Bishop, R C Dynes, and D C Tsui, Phys Rev B 26, 773 (1982)

W J Skocpol, L D Jackel, E L Hu,R E Howard, and L A Fetter, Phys Rev Lett 49,951
(1982)

3K K Choy, Phys Rev B 28, 5774 (1983)

3'H van Houten, B J van Wees, and C W J Beenakker, in Ref 14
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a b
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0d G =
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F1G 2 Schematic cross-sectional views of the lateral pinch-off techmque used to define a
narrow electron accumulation layer (a), and of three different methods to define a narrow
mversion layer m S1 MOSFETs (b—d) Positive (+) and negative (—) charges on the gate
electrodes are indicated The location of the 2DEG 1s shown 1n black

Pepper 32734 (Fig. 2a). By adjusting the negative voltage over p-n junctions
on either side of a relatively wide gate, they were able to vary the electron
channel width as well as its electron density. This technique has been used to
define narrow accumulation layers on n-type Si substrates, rather than
inversion layers. Specifically, it has been used for the exploration of quantum
transport in the strongly localized regime32-33737 (which is not discussed in
this review). Perhaps the techmique is particularly suited to this highly
resistive regime, since a tail of the diffusion profile inevitably extends into the
channel, providing additional scattering centers.>* Some studies in the weak
localization regime have also been reported.?3

The conceptually simplest approach (Fig. 2b) to define a narrow channel is
to scale down the width of the gate by means of electron beam lithography>2

32A B Fowler, A Hartstemn, and R A Webb, Phys Rev Lett 48, 196 (1982)

33M Pepper and M J Uren, J Phys C 15, L617 (1982)

34C C Dean and M Pepper, J Phys C 15, L1287 (1982)

35A B Fowler,J J Wamner, and R A Webb, IBM J Res Dev 32, 372 (1988)

36S B Kaplan and A C Warren, Phys Rev B 34, 1346 (1986)

37S B Kaplan and A Hartstemn, IBM J Res Dev 32, 347 (1988), Phys Rev Lett 56,2403 (1986)

38R G Wheeler, K K Choi, A Goel, R Wisnieff, and D E Prober, Phys Rev Lett 49, 1674
(1982)
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or other advanced techmiques *°~*! A difficulty for the characterization of the
device 1s that fringing fields beyond the gate induce a considerable un-
certainty 1n the channel width, as well as i1ts density Such a problem 1s shared
to some degree by all approaches, however, and this technique has been quite
successful (as we will discuss m Section II) For a theoretical study of the
electrostatic confining potential induced by the narrow gate, we refer to the
work by Laux and Stern #? This 1s a complicated problem, which requires a
self-consistent solution of the Poisson and Schrodinger equations, and must
be solved numerically

The narrow gate technique has been modified by Warren et al 3 ** (Fig
2c), who covered a multiple narrow-gate structure with a second dielectric
followed by a second gate covering the entire device (This structure was
specifically mtended to study one-dimensional superlattice effects, which 1s
why multiple narrow gates were used ) By separately varying the voltages on
the two gates, one achieves an increased control over channel width and
density The electrostatics of this particular structure has been studied in Ref
43 1n a semiclassical approximation

Skocpol et al *° *> have combined a narrow gate with a deep self-aligned
mesa structure (Fig 2d), fabricated using dry-etching techniques One
advantage of their method 1s that at least an upper bound on the channetl
width 1s known unequivocally A disadvantage 1s that the deep etch exposes
the sidewalls of the electron gas, so that 1t 1s likely that some mobility
reduction occurs due to sidewall scattering In addition, the deep etch may
damage the 2DEG itself This approach has been used successfully 1n the
exploration of nonlocal quantum transport in multiprobe channels, which 1n
addition to being narrow have a very small separation of the voltage
probes ** #5 In another 1nvestigation these narrow channels have been used
as struments sensitive to the charging and discharging of a single electron
trap, allowing a detailed study of the statistics of trap kinetics #6748

3%R F Kwasnick, M A Kastner, ] Melngailis, and P A Lee, Phys Rev Lett 52,224 (1984)

40F C Licim, D J Bishop, M A Kastner, and J Melngailis, Phys Rev Lett 55, 2987 (1985)

“1p H Woerlee, G A M Hurkx, W J M J Josquin, and J F C M Verhoeven, Appl Phys
Lett 47,700 (1985), see also H van Houten and P H Woerlee, “Proc ICPS 18, p 1515(O
Engstrom, ed ) World Scientific, Singapore, 1987

42§ E Laux and F Stern, Appl Phys Lett 49, 91 (1986)

43A C Warren, D A Antomadis, and H I Smith, Phys Rev Lett 56, 1858 (1986)

44A C Warren, D A Antoniadis, and H 1 Smuth, IEEE Electron Device Lett, EDL-7, 413
(1986)

45W J Skocpol, P M Mankiewich, R E Howard, L D Jackel, D M Tennant, and A D
Stone, Phys Rev Lett 56, 2865 (1986)

46W J Skocpol, Physica Scripta T19, 95 (1987)

47K S Ralls, W J Skocpol, L D Jackel, R E Howard, L A Fetter, R W Epworth,and D M
Tennant, Phys Rev Lett 52, 228 (1984)

“8R E Howard, W J Skocpol, L D Jackel, P M Mankiewich,L A Fetter, D M Tennant, R
Epworth, and K S Ralls, IEEE Trans ED-32, 1669 (1985)



10 C W J BEENAKKER AND H VAN HOUTEN

Alg 3Gag 7As GaAs

FiG 3 Band-bending diagram of a modulation doped GaAs—Al Ga, _,As heterostructure A
2DEG 1s formed n the undoped GaAs at the interface with the p-type doped AlGaAs Note the
Schottky barrier between the semiconductor and a metal electrode

3 NANOSTRUCTURES IN GaAs—AlGaAs HETEROSTRUCTURES

In a modulation-doped*® GaAs—AlGaAs heterostructure, the 2DEG 1s
present at the interface between GaAs and Al Ga, _,As layers (for a recent
review, see Ref 50) Typically, the Al mole fraction x = 03 As shown 1n the
band-bending diagram of Fig 3, the electrons are confined to the GaAs—
AlGaAs mterface by a potential well, formed by the repulsive barrier due to
the conduction band offset of about 0 3 V between the two semiconductors,
and by the attractive electrostatic potential due to the positively charged
1onized donors in the n-doped AlGaAs layer To reduce scattering from these
donors, the doped layer 1s separated from the interface by an undoped
AlGaAs spacer layer Two-dimensional subbands are formed as a result of
confinement perpendicular to the interface and free motion along the
mnterface An mmportant advantage over a MOSFET 1s that the present
mterface does not interrupt the crystaline periodicity This 1s possible
because GaAs and AlGaAs have almost the same lattice spacing Because of
the absence of boundary scattering at the interface, the electron mobility can
be higher by many orders of magnitude (see Table I) The mobility 1s also high
because of the low effective mass m = 0 067m, 1n GaAs (for a review of GaAs
matenal properties, see Ref 51) Asin a Siinversion layer, only a single two-
dimensional subband (associated with the lowest discrete confinement level
m the well) 1s usually populated Since GaAs has a direct band gap, with a

“°H L Stormer, R Dingle, A C Gossard, and W Wiegman, “Proc 14th ICPS,”p 6(B L H
Wilson, ed ) Institute of Physics, London, 1978, R Dingle, H L Stormer, A C Gossard, and
W Wiegman, Appl Phys Lett 7, 665 (1978)

50y J Harns, J A Pals and R Wolyer, Rep Prog Phys 52, 1217 (1989)

51S Adachi, J App! Phys 58, R1 (1985)
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FIG 4 Schematic cross-sectional views of four different ways to define narrow 2DEG
channels in a GaAs—AlGaAs heterostructure Positive tonized donors and negative charges on a
Schottky gate electrode are indicated The hatched squares in d represent unremoved resist used
as a gate dielectric

single conduction band minimum, complications due to intervalley scattering
(as 1n Si) are absent. The one-dimensional Fermi surface is a circle, for the
commonly used (100} substrate orientation.

Since the 2DEG 1s present “naturally” due to the modulation doping (i.e.,
even in the absence of a gate), the creation of a narrow channel now requires
the selective depletion of the electron gas in spatially separated regions. In
principle, one could imagine using a combination of an undoped hetero-
structure and a narrow gate (similarly to a MOSFET), but in practice this
does not work very well due to the lack of a natural oxide to serve as an
insulator on top of the AlGaAs. The Schottky barrier between a metal and
{ADGaAs (see Fig. 3) is too low (only 0.9 V) to sustain a large positive voltage
on the gate. For depletion-type devices, where a negative voltage is applied
on the gate, the Schottky barrier 1s quite sufficient as a gate insulator (see, e.g.,
Ref. 52).

The simplest lateral confinement technique is illustrated in Fig. 4a. The

52D Delagebeaudeuf and N T Linh, JEEE Trans ED-28, 790 (1981)
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appropriate device geometry (such as a Hall bar) 1s realized by defining a deep
mesa, by means of wet chemical etching Wide Hall bars are usually
fabricated 1n this way This approach has also been used to fabricate the first
micron-scale devices, such as the constrictions used in the study of the
breakdown of the quantum Hall effect by Kirtley et al * and Bliek et al ,**
and the narrow channels used 1n the first study of quasi-one-dimensional
quantum transport in heterostructures by Choi et al ®> The deep-mesa
confinement technique using wet?> 3¢ or dry>” etching 1s still of use for some
experimental studies, but 1t 1s generally felt to be unreliable for channels less
than lum wide (in particular because of the exposed sidewalls of the
structure)

The first working alternative confinement scheme was developed by
Thornton et al °® and Zheng et al ,>* who ntroduced the split-gate lateral
confinement technique (Fig 4b) On application of a negative voltage to a
sphit Schottky gate, wide 2DEG regions under the gate are depleted, leaving a
narrow channel undepleted The most appealing feature of this confinement
scheme 1s that the channel width and electron density can be varied
continuously (but not independently) by increasing the negative gate voltage
beyond the depletion threshold 1n the wide regions (typically about —06V)
The split-gate technique has become very popular, especially after 1t was used
to fabricate the short and narrow constrictions known as quantum point
contacts® 7 *? (see Section III) The electrostatic confinement problem for the
split-gate geometry has been studied numerically 1n Refs 60 and 61 A simple
analytical treatment 1s given in Ref 62 A modification of the split-gate
techmique 1s the grating-gate techmque, which may be used to define a 2DEG
with a periodic density modulation 62

The second widely used approach 1s the shallow-mesa depletion technique
(Fig 4c), introduced in Ref 63 This techmique relies on the fact that a 2DEG

53] P Kurtley, Z Schlesinger, T N Thess, F P Milliken, S L Wright, and L F Palmateer,
Phys Rev B 34, 5414 (1986)

541 Bliek, E Braun, G Hemn, V Kose, ] Niemeyer, G Weimann, and W Schlapp, Semicond
Sct Technol 1, 110 (1986)

55K K Choi, D C Tsui, and S C Palmateer, Phys Rev B 33, 8216 (1986)

56A D C Grassie, K M Hutchings, M Lakrimi, C T Foxon, and J J Harris, Phys Rev B 36,
4551 (1987)

57T Demel, D Heitmann, P Grambow, and K Ploog, App! Phys Lett 53,2176 (1988)

58T J Thornton, M Pepper, H Ahmed, D Andrews, and G J Davies, Phys Rev Lett 56,1198
(1986)

59H van Houten, B J van Wees, ] E Mooy, C W J Beenakker, ] G Willlamson, and C T
Foxon, Europhys Lett 5, 721 (1988)

%0S E Laux, D J Frank, and F Stern, Sur/ Sct 196, 101 (1988)

S1A Kumar, S E Laux, and F Stern, Appl Phys Lett 54, 1270 (1989)

52K Ismail, W Chu D A Antoniadis, and H 1 Smuth, Appl Phys Lett 52, 1071 (1988)

$3H van Houten, B J van Wees, M G J Heyman, and J P Andre, App! Phys Lett 49,1781
(1986)
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can be depleted by removal of only a thin layer of the AlGaAs, the required
thickness being a sensitive function of the parameters of the heterostructure
material, and of details of the lithographic process (which usually involves
electron beam lithography followed by dry etching) The shallow-mesa etch
technique has been perfected by two groups,’4 %% for the fabrication of
multiprobe electron waveguides and rings ©7~7° Submicron trenches’! are
still another way to define the channel For simple analytical estimates of
lateral depletion widths in the shallow-mesa geometry, see Ref 72

A clever variant of the spht-gate techmique was mtroduced by Ford et
al 73 7* A patterned layer of electron beam resist (an organic insulator) 1s used
as a gate dielectric, 1n such a way that the separation between the gate and the
2DEG 1s largest 1n those regions where a narrow conducting channel has to
remain after application of a negative gate voltage Asillustrated by the cross-
sectional view 1n Fig 4d, in this way one can define a ring structure, for
example, for use 1n an Aharonov—Bohm experiment A similar approach was
developed by Smith et al 7° Instead of an organic resist they use a shallow-
mesa pattern 1n the heterostructure as a gate dielectric of variable thickness
Initially, the latter technique was used for capacitive studies of one- and zero-
dimensional confinement 7> 7 More recently 1t was adopted for transport
measurements as well 77 Still another vanation of this approach was

%4R E Behringer P M Mankiewich and R E Howard J Vac Sci Technol BS, 326 (1987)

65A Scherer M L Roukes, H G Craighead, R M Ruthen, E D Beebe, and J P Harbison,
Appl Phys Lett 51, 2133 (1987)

66A Scherer and M L Roukes, Appl Phys Lett 55, 377 (1989)

57M L Roukes, A Scherer,S J Allen, Jr, H G Craighead, R M Ruthen, E D Beebe, and J
P Harbison, Phys Rev Lett 59, 3011 (1987)

%8G Timp A M Chang, P Mankiewich, R Behringer,J E Cunningham, T Y Chang, and R
E Howard, Phys Rev Lett 59, 732 (1987)

%G Timp, A M Chang, J E Cunnmingham, T Y Chang, P Mankiewich, R Behringer, and R
E Howard, Phys Rev Lett 58, 2814 (1987)

79A M Chang, G Timp, T Y Chang, J E Cunningham, P M Mankiewich, R E Behringer,
and R E Howard, Solid State Comm 67, 769 (1988)

7K Y Lee, T P Smith, III, C J B Ford, W Hansen, C M Knoedler, ] M Hong, and D P
Kern, Appl Phys Lett 55, 625 (1989)

2] H Davies and ] A Nixon, Phys Rev B 39, 3423 (1989), ] H Davies, in Ref 15

73C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, G J Davies, and D
Andrews, Superlattices and Microstructures 4, 541 (1988)

74C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, C T Foxon,J J Harrs,
and C Roberts, J Phys C 21, 1.325 (1988)

7ST P Smith III, H Arnot,J] M Hong, C M Knoedler, S E Laux,and H Schmud, Phys Rev
Lett 59, 2802 (1987)

76T P Smuth, III,J A Brum,J M Hong, C M Knoedler, H Arnot, and L Esaki, Phys Rev
Lett 61, 585 (1988)

77C J B Ford, S Washburn, M Buttiker, C M Knoedler,and ] M Hong, Phys Rev Lett 62,
2724 (1989)
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FIG. 5. Scanning electron micrographs of nanostructures in GaAs—AlGaAs heterostructures.
(a) Narrow channel (width 75 nm), fabricated by means of the confinement scheme of Fig. 4c. The
channel has side branches (at a 2-um separation) that serve as voltage probes. Taken from M. L.
Roukes et al., Phys. Rev. Lett. 59, 3011 (1987). (b) Double quantum point contact device, based on
the confinement scheme of Fig. 4b. The bar denotes a length of 1 um. Taken from H. van Houten
et al., Phys. Rev. B 39, 8556 (1989).

developed by Hansen et al.,”®"° primarily for the study of one-dimensional

subband structure using infrared spectroscopy. Instead of electron beam
lithography, they employ a photolithographic technique to define a pattern in
the insulator. An array with a very large number of narrow lines is obtained
by projecting the interference pattern of two laser beams onto light-sensitive
resist. This technique is known as holographic illumination (see Section 11b).

As two representative examples of state-of-the-art nanostructures, we
show in Fig. 5a a miniaturized Hall bar,®” fabricated by a shallow-mesa etch,
and in Fig. 5b a double-quantum-point contact device,®° fabricated by means
of the split-gate technique.

Other techniques have been used as well to fabricate narrow electron gas
channels. We mention selective-area ion implantation using focused ion
beams,®! masked ion beam exposure,®? strain-induced confinement,?? lateral

78W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, Ch. Sikorski, and K. Ploog, Phys. Rev. Lett.
58, 2586 (1987).

79F. Brinkop, W. Hansen, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 37, 6547 (1988).

80H. van Houten, C. W. J. Beenakker, J. G. Williamson, M. E. 1. Broekaart, P. H. M. van
Loosdrecht, B. J. van Wees, J. E. Mooij, C. T. Foxon, and J. J. Harris, Phys. Rev. B 39, 8556
(1989).

81T, Hiramoto, K. Hirakawa, Y. Iye, and T. Ikoma, Appl. Phys. Lett. 54, 2103 (1989).

82T, L. Cheeks, M. L. Roukes, A. Scherer, and H. G. Graighead, Appl. Phys. Lett. 53, 1964
(1988).

83K. Kash, J. M. Worlock, M. D. Sturge, P. Grabbe, J. P. Harbison, A. Scherer, and P. S. D. Lin,
Appl. Phys. Lett. 53, 782 (1988).
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p-n junctions,®* 85 gates in the plane of the 2DEG,®° and selective epitaxial
growth 87792 For more detailed and complete accounts of nanostructure
fabrication techniques, we refer to Refs 9 and 13-15

4 BASIC PROPERTIES
a Density of States in Two, One, and Zero Dimensions

The energy of conduction electrons 1n a single subband of an unbounded
2DEG, relative to the bottom of that subband, 1s given by

E(k) = h*k*/2m, (41)

as a function of momentum #k The effective mass m 1s considerably smaller
than the free electron mass m, (see Table I), as a result of interactions with the
lattice potential (The incorporation of this potential into an effective mass 1s
an approximation®® that 1s completely justified for the present purposes ) The
density of states p(E) = dn(E)/dE 1s the derivative of the number of electronic
states n(E) (per unut surface area) with energy smaller than E In k-space, these
states are contained within a circle of area A = 2rmE/h* [according to Eq
(4 1)], which contains a number g.g,4/(2n)* of distinct states The factors g,
and g, account for the spin degeneracy and valley degeneracy, respectively
(Table I) One thus finds that n(E) = gg,mE/2nh?, so the density of states
corresponding to a single subband 1n a 2DEG,

p(E) = g9, m/2mh?, (42

1s independent of the energy As illustrated in Fig 6a, a sequence of subbands
1s associated with the set of discrete levels in the potential well that confines
the 2DEG to the interface At zero temperature, all states are filled up to the
Fermu energy Ep (this remains a good approximation at finite temperature 1f
the thermal energy kyT<« Ey) Because of the constant density of states, the
electron (sheet) density ng 1s linearly related to Ex by n, = Erg.g,m/2nh* The
Fermi wave number ky = 2mEg/h%)'/? 1s thus related to the density by
ke = (4nng/g,g,)'/> The second subband starts to be populated when Ep
exceeds the energy of the second band bottom The stepwise increasing

84J Mewrav, M Heiblum, and F Stern, Appl Phys Lett 52, 1268 (1988)

85U Meirav M A Kastner, M Heiblum, and S J Wind, Phys Rev B 40, 5871 (1989)
86A D Wieck and K Ploog, Surf Sci 229, 252 (1990), Appl Phys Lett 56, 928 (1990)
87P M Petroff, A C Gossard, and W Wiegmann, Appl Phys Lett 45, 620 (1984)
88T Fukwi and H Saito Appl Phys Lett 50, 824 (1987)

89H Asai, S Yamada, and T Fukw App! Phys Lett 51, 1518 (1987)

90T Fukui, and H Saito, J Vac Sci Technol B6, 1373 (1988)

911 Motohisa, M Tanaka, and H Sakaki, Appl Phys Lett 55, 1214 (1989)

°2H Yamagucht and Y Horikoshy, Jpn J Appl Phys 28, L1456 (1989)
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F1G. 6. Density of states p(E) as a function of energy. (a) Quasi-2D density of states, with only
the lowest subband occupied (hatched). Inset: Confinement potential perpendicular to the plane
of the 2DEG. The discrete energy levels correspond to the bottoms of the first and second 2D
subbands. (b) Quasi-1D density of states, with four {D subbands occupied. Inset: Square-welt
lateral confinement potential with discrete energy levels indicating the 1D subband bottoms. (c)
Density of states for a 2DEG in a perpendicular magnetic field. The occupied 0D subbands or
Landau levels are shown in black. Impurity scattering may broaden the Landau levels, leading to
a nonzero density of states between the peaks.
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density of states shown in Fig. 6a is referred to as quasi-two-dimensional. As
the number of occupied subbands increases, the density of states eventually

approaches the \/E dependence characteristic for a three-dimensional
system. Note, however, that usually only a single subband is occupied.

If the 2DEG is confined laterally to a narrow channel, then Eq. (4.1) only
represents the kinetic energy from the free motion (with momentum #k)
parallel to the channel axis. Because of the lateral confinement, a single two-
dimensional (2D) subband is split itself into a series of one-dimensional (1D)
subbands, with band bottoms at E,,n = 1, 2, .. .. The total energy E,(k) of an
electron in the nth 1D subband (relative to the bottom of the 2D subband) is
given by

E,(k) = E, + h*k?/2m. 4.3)

Two frequently used potentials to model analytically the lateral confinement
are the square-well potential (of width W, illustrated in Fig. 6b) and the
parabolic potential well (described by V(x) = imw32x?). The confinement
levels are then given either by E, = (nnh)?/2mW? for the square well or by
E, = (n — $hw, for the parabolic well. When one considers electron trans-
port through a narrow channel, it is useful to distinguish between states with
positive and negative k, since these states move in opposite directions along
the channel. We denote by p," (E) the density of states with k > 0 per unit
channel length in the nth 1D subband. This quantity is given by

dE,(k)\ ! m L
. . 4Ex _ . (44
Pn ( ) 9s9v < n dk > 9s9v 27'Eh2 <2m(E - En) ( )

The density of states p, with k < 0 is identical to p,/. (This identity holds
because of time-reversal symmetry; In a magnetic field, p,/ # p, , in general.)
The total density of states p(E), drawn in Fig. 6b, is twice the result (4.4)
summed over all n for which E, < E. The density of states of a quasi-one-
dimensional electron gas with many occupied 1D subbands may be approxi-
mated by the 2D result (4.2).

If a magnetic field B is applied perpendicular to an unbounded 2DEG, the
energy spectrum of the electrons becomes fully discrete, since free trans-
lational motion in the plane of the 2DEG is impeded by the Lorentz force.
Quantization of the circular cyclotron motion leads to energy levels at®*

E,=(n — Hho,, 4.5)

with w, = eB/m the cyclotron frequency. The quantum number n =1, 2, ...
labels the Landau levels. The number of states is the same in each Landau
level and equal to one state (for each spin and valley) per flux quantum h/e

?3L. D. Landau and E. M. Lifshitz, “Quantum Mechanics.” Pergamon, Oxford, 1977.



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 19

through the sample. To the extent that broadening of the Landau levels by
disorder can be neglected, the density of states (per unit area) can be
approximated by

B =
WE) = 9.9, % 3. OE~E,), 46)

as illustrated in Fig. 6¢c. The spin degeneracy contained in Eq. (4.6) is resolved
in strong magnetic fields as a result of the Zeeman splitting gugB of the
Landau levels (i, = efi/2m, denotes the Bohr magneton; the Landé g-factor is
a complicated function of the magnetic field in these systems).2® Again, if a
large number of Landau levels is occupied (i.e., at weak magnetic fields), one
recovers approximately the 2D resuit (4.2). The foregoing considerations are
for an unbounded 2DEG. A magnetic field perpendicular to a narrow 2DEG
channel causes the density of states to evolve gradually from the 1D form of
Fig. 6b to the effectively 0D form of Fig. 6¢c. This transition is discussed in
Section 10.

b. Drude Conductivity, Einstein Relation, and Landauer Formula

In the presence of an electric field E in the plane of the 2DEG, an electron
acquires a drift velocity v = —eE At/m in the time At since the last impurity
collision. The average of At is the scattering time t, so the average drift
velocity vy, 1S given by

Varitt = — U B, U = et/m. 4.7

The electron mobility p, together with the sheet density n, determine the
conductivity ¢ in the relation —env,,, = oE. The result is the familiar Drude
conductivity,”* which can be written in several equivalent forms:

enzt e kgl

8

0 = €engl, = T = g9y 7 7 (48)

In the last equality we have used the identity n, = g.g, kZ/4n (see Section 4a)
and have defined the mean free path [ = vpt. The dimensionless quantity kgl
is much greater than unity in metallic systems (see Table I for typical values in
a 2DEG), so the conductivity is large compared with the quantum unit
e’/h ~ (26kQ)~ 1.

From the preceding discussion it is obvious that the current induced by
the applied electric field is carried by all conduction electrons, since each
electron acquires the same average drift velocity. Nonetheless, to determine
the conductivity it is sufficient to consider the response of electrons near the

94N. W. Ashcroft and N. D. Mermin, “Solid State Physics.” Holt, Rinehart and Winston, New
York, 1976.
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Fermi level to the electric field. The reason is that the states that are more
than a few times the thermal energy kT below Eg are all filled so that in
response to a weak electric field only the distribution of electrons among
states at energies close to Ep is changed from the equilibrium Fermi—Dirac
distribution

F(E - Ey) = <1 + exp Ek”TEF>_1. (4.9)

The Einstein relation®#
o = e2p(Ep)D (4.10)

is one relation between the conductivity and Fermi level properties (in this
case the density of states p(E) and the diffusion constant D, both evaluated at
Ep). The Landauer formula* [Eq. (4.21)] is another such relation (in terms of
the transmission probability at the Fermi level rather than in terms of the
diffusion constant).

The Einstein relation (4.10) for an electron gas at zero temperature follows
on requiring that the sum of the drift current density — oE/e and the diffusion
current density — DVn, vanishes in thermodynamic equilibrium, character-
ized by a spatially constant electrochemical potential u:

—oE/e — DVn, = 0, when Vyu = 0. 4.11)

The electrochemical potential is the sum of the electrostatic potential energy
—eV (which determines the energy of the bottom of the conduction band)
and the chemical potential Ep (being the Fermi energy relative to the
conduction band bottom). Since (at zero temperature) dEg/dng = 1/p(Eg), one
has

Vu = eE + p(Ep)”Vn,. 4.12)

The combination of Egs. (4.11) and (4.12) yields the Einstein relation (4.10)
between ¢ and D. To verify that Eq. (4.10) is consistent with the earlier
expression (4.8) for the Drude conductivity, one can use the result (see below)
for the 2D diffusion constant:

D = 4vit = Lvgl, (4.13)

in combination with Eq. (4.2) for the 2D density of states.

At a finite temperature T, a chemical potential (or Fermi energy) gradient
VEg induces a diffusion current that is smeared out over an energy range of
order kz T around Er. The energy interval between E and E + dE contributes
to the diffusion current density j an amount dj given by

diaws = ~DV{AEV(E — Ee)dE} = —dEDp(E) 70 VEr, (419
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where the diffusion constant D is to be evaluated at energy E. The total
diffusion current density follows on integration over E:

j= —VEe? r dEo(E 0L, (4.15)
0 dEg

with o(E, 0) the conductivity (4.10) at temperature zero for a Fermi energy
equal to E. The requirement of vanishing current for a spatially constant
electrochemical potential implies that the conductivity o(Eg, T) at temper-
ature T and Fermi energy Ej satisfies o(Ey, T)e  2VE + j = 0. Therefore, the
finite-temperature conductivity is given simply by the energy average of the
zero-temperature result

J, e

0(Eg, T) = dEo(E,0)—. (4.16)
0 dEr

As T— 0, df/dEg — 0(E — Eg), so indeed only E = E; contributes to the
energy average. Result (4.16) contains exclusively the effects of a finite
temperature that are due to the thermal smearing of the Fermi-Dirac
distribution. A possible temperature dependence of the scattering processes is
not taken into account.

We now want to discuss one convenient way to calculate the diffusion
constant (and hence obtain the conductivity). Consider the diffusion current
density j, due to a small constant density gradient, n(x) = n, + cx. We write

Jje= lim <v.(t = On(x(t = —A)) = lim c<v,(0)x(—Ap))>

At 0 At— 0

At
= lim —cf dt (v, (O (—1)D, 4.17)
At— 4]

where t is time and the brackets {---)> denote an isotropic angular average
over the Fermi surface. The time interval At — oo, so the velocity of the
electron at time O is uncorrelated with its velocity at the earlier time — At.
This allows us to neglect at x(— At) the small deviations from an isotropic
velocity distribution induced by the density gradient [which could not have
been neglected at x(0)]. Since only the time difference matters in the velocity
correlation function, one has {v,(0)v,(—1)> = v (t)v,(0)>. We thus obtain for
the diffusion constant D = —j /c the familiar linear response formula®’

D= f * 4t <o, (0)0,(0)). 4.18)
0

Since, in the semiclassical relaxation time approximation, each scattering
event is assumed to destroy all correlations in the velocity, and since a

95R. Kubo, M. Toda, and N. Hashitsume, “Statistical Physics I11.” Springer, Berhin, 1985.
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fraction exp(—t/t) of the electrons has not been scattered in a time ¢, one has
(in 2D)

(000> = (v,(0)*)e™""" = Jvge™ " (4.19)

Substituting this correlation function for the integrand in Eq. (4.18), one
recovers on integration the diffusion constant (4.13).

The Drude conductivity (4.8) is a semiclassical result, in the sense that
while the quantum mechanical Fermi—Dirac statistic is taken into account,
the dynamics of the electrons at the Fermi level is assumed to be classical. In
Section Il we will discuss corrections to this result that follow from
correlations in the diffusion process due to quantum interference. Whereas
for classical diffusion correlations disappear on the time scale of the
scattering time 7 [as expressed by the correlation function (4.19)], in quantum
diffusion correlations persist up to times of the order of the phase coherence
time. The latter time 7, is associated with inelastic scattering and at low
temperatures can become much greater than the time t associated with elastic
scattering.

In an experiment one measures a conductance rather than a conductivity.
The conductivity ¢ relates the local current density to the electric field,
J = oE, while the conductance G relates the total current to the voltage drop,
I = GV. For a large homogeneous conductor the difference between the two
is not essential, since Ohm’s law tells us that

G = (W/L)o (4.20)

for a 2DEG of width W and length L in the current direction. (Note that G
and ¢ have the same units in two dimensions.) If for the moment we disregard
the effects of phase coherence, then the simple scaling (4.20) holds provided
both W and L are much larger than the mean free path [ This is the diffusive
transport regime, illustrated in Fig. 7a. When the dimensions of the sample
are reduced below the mean free path, one enters the ballistic transport
regime, shown in Fig. 7c. One can further distinguish an intermediate quasi-
ballistic regime, characterized by W << L (see Fig. 7b). In ballistic
transport only the conductance plays a role, not the conductivity. The
Landauer formula

G = (e*/W)T @.21)

plays a central role in the study of ballistic transport because it expresses the
conductance in terms of a Fermi level property of the sample (the trans-
mission probability T, see Section 12). Equation (4.21) can therefore be
applied to situations where the conductivity does not exist as a local quantity,
as we will discuss in Sections IIT and IV.

If phase coherence is taken into account, then the minimal length scale
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Fi1G 7. Electron trajectories charactenstic for the diffusive (I < W, L), quast-ballistic
(W<l<L), and ballistic (W,L <) transport regimes, for the case of specular boundary
scattering Boundary scattering and internal impurity scattering (astertsks) are of equal
importance 1 the quasi-balhistic regime A nonzero resistance in the balhstic regime results from
backscattering at the connection between the narrow channel and the wide 2DEG regions
Taken from H van Houten et al, mn “Physics and Technology of Submicron Structures™ (H
Heinrich, G Bauer, and F Kuchar, eds) Springer, Berhin, 1988

required to characterize the conductivity becomes larger. Instead of the
(elastic) mean free path I = vgt, the phase coherence length [, = (Dt,)'/?
becomes this characteristic length scale (up to a numerical coefficient
I, equals the average distance that an electron diffuses in the time t,). Ohm’s
law can now only be applied to add the conductances of parts of the sample
with dimensions greater than [,. Since at low temperatures [, can become
quite large (cf. Table I), it becomes possible that (for a small conductor) phase
coherence extends over a large part of the sample. Then only the conductance
(not the conductivity) plays a role, even if the transport is fully in the diffusive
regime. We will encounter such situations repeatedly in Section II.

c. Magnetotransport

In a magnetic field B perpendicular to the 2DEG, the current is no longer
in the direction of the electric field due to the Lorentz force. Consequently,



24 C. W.J. BEENAKKER AND H. VAN HOUTEN

the conductivity is no longer a scalar but a tensor o, related via the Einstein
relation ¢ = e2p(Ep)D to the diffusion tensor

D= r dt V(W) (4.22)
[4]

Equation (4.22) follows from a straightforward generalization of the argu-
ment leading to the scalar relation (4.18) [but now the ordering of v(¢) and ¥(0)
matters]. Between scattering events the electrons at the Fermi level execute
circular orbits, with cyclotron frequency w, = eB/m and cyclotron radius
l.yet = mug/eB. Taking the 2DEG in the x — y plane, and the magnetic field in
the positive z-direction, one can wrile in complex number notation

B(f) = v,(t) + iv,(t) = veexp(ig + iw,t). (4.23)
The diffusion tensor is obtained from
. 2n d¢ @ ~ i D )
D +iD,, = J ° f Cdtitueos e = 21+ 09, (424)

where D is the zero-field diffusion constant (4.13). One easily verifies that
D,, = D,,and D,, = —D,,. From the Einstein relation one then obtains the
conductivity tensor

o 1 —wsa
= € 4.25
°T17 (w.T)? <a)cr 1 >’ (4.25)
with ¢ the zero-field conductivity (4.8). The resistivity tensor p = ¢~ ! has the
form
= L o (4.26)
p=r —-wx 1) '

with p = 67! = m/ne?r the zero-field resistivity.
The off-diagonal element p,, = Ry is the classical Hall resistance of a
2DEG:

B 1 hho,

= . 4.27
n.e 99y 82 EF ( )

Ry =

Note that in a 2D channel geometry there is no distinction between the Hall
resistivity and the Hall resistance, since the ratio of the Hall voltage
Vu = WE, across the channel to the current ] = Wj, along the channel does
not depend on its length and width (provided transport remains in the
diffusive regime). The diagonal element p,, is referred to as the longitudinal
resistivity. Equation (4.26) tells us that classically the magnetoresistivity is
zero (i.e., P (B) — p,«(0) = 0). This counterintuitive result can be understood
by considering that the force from the Hall voltage cancels the average
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tudinal resistivity p . (normalized to the zero-field resistivity p) and of the Hall resistance
Ry = p,, (normalized to h/2e®) The plot 1s for the case of a single valley with twofold spin
degeneracy Deviations from the semuclassical result (4 26) occur n strong magnetic fields, in the
form of Shubnikov—-De Haas oscillations 1n p,, and quantized plateaus [Eq (4 30)] 1n Py

Lorentz force on the electrons A general conclusion that one can draw from
Eqs (425) and (426) 1s that the classical effects of a magnetic field are
mmportant only if w,t 2 1 In such fields an electron can complete several
cyclotron orbits before being scattered out of orbit In a high-mobility 2DEG
this criterion 1s met at rather weak magnetic fields (note that w1 = u.B, and
see Table 1)

In the foregoing application of the Einstein relation we have used the zero-
field density of states Moreover, we have assumed that the scattering time 1s
B-independent Both assumptions are justified 1n weak magnetic fields, for
which Er/hw, > 1, but not 1n stronger fields (cf Table I) As illustrated in Fig
8, deviations from the semiclassical result (4 26) appear as the magnetic field 1s
mncreased These deviations take the form of an oscillatory magnetoresistivity
(the Shubnikov—De Haas effect) and plateaux in the Hall resistance (the
quantum Hall effect) The origin of these two phenomena is the formation of
Landau levels by a magnetic field, discussed 1in Section 4a, that leads to the B-
dependent density of states (4 6) The main effect 1s on the scattering rate 7~ 1,
which 1n a simple (Born) approxmmation®® 1s proportional to p(Eg)

! = (n/hp(Er)eu’ (428)

96A A Abrikosov, “Fundamentals of the Theory of Metals ” North-Holland, Amsterdam, 1988
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Here ¢, is the areal density of impurities, and the impurity potential is
modeled by a 2D delta function of strength u. The diagonal element of the
resistivity tensor (4.26) is p,. = (mfe*n)t ™! oc p(Ep). Oscillations in the
density of states at the Fermi level due to the Landau level quantization are
therefore observable as an oscillatory magnetoresistivity. One expects the
resistivity to be minimal when the Fermi level lies between two Landau levels,
where the density of states is smallest. In view of Eq. {4.6), this occurs when
the Landau level filling factor v = (n,/g.g,)h/eB) equals an integer N = 1,2,
... (assuming spin-degenerate Landau levels). The resulting Shubnikov—De
Haas oscillations are periodic in 1/B, with spacing A(1/B) given by

1 e g9y
Al= )= .
(5) -2 429

providing a means to determine the electron density from a magnetoresis-
tance measurement. This brief explanation of the Shubnikov—De Haas effect
needs refinement,?® but is basically correct. The quantum Hall effect,® being
the occurrence of plateaux in Ry versus B at precisely

1 h1

Ry=— "+
" gg, 2N

N=12,..., (4.30)
is a more subtle effect®” to which we cannot do justice in a few lines (see
Section 18). The quantization of the Hall resistance is related on a funda-
mental level to the quantization in zero magnetic field of the resistance of a
ballistic point contact.®”7 We will present a unified description of both these
effects in Sections 12 and 13.

. Diffusive and Quasi-Ballistic Transport
5. CrLassICAL S1ZE EFFECTS

In metals, the dependence of the resistivity on the size of the sample has
been the subject of study for almost a century.®® Because of the small Fermi
wave length in a metal, these are classical size effects. Comprehensive reviews
of this field have been given by Chambers,”® Brindli and Olsen,'°® Sond-
heimer,'®! and, recently, Pippard.'®? In semiconductor nanostructures both

97R E Prange and S M Guirvin, eds, The Quantum Hall Effect ” Springer, New York, 1987

981, Stone, Phys Rev 6, 1 (1898).

99R G Chambers, 1n “The Physics of Metals,” Vol 1(J M Ziman, ed ) Cambridge Umiversity
Press, Cambnidge, 1969

190G Brandh and J L Olsen, Mater Sci Eng 4, 61 (1969)

10'g H Sondheimer, Adv Phys 1, 1 (1952)

10274 B Pippard, “Magnetoresistance in Metals.” Cambridge University Press, Cambridge,
1989
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classical and quantum size effects appear, and an understanding of the former
1s necessary to distinguish them from the latter Classical size effects 1n a
2DEG are of intrinsic interest as well Furst of all, a 2DEG 1s an 1deal model
system to study known size effects without the complications of nonspherical
Fermu surfaces and polycrystallinity, characteristic for metals Furthermore,
it 1s possible 1n a 2DEG to study the case of nearly complete specular
boundary scattering, whereas in a metal diffuse scattering dominates The
much smaller cyclotron radius in a 2DEG, compared with a metal at the
same magnetic field value, allows one to enter the regume where the cyclotron
radius 1s comparable to the range of the scattering potential The resulting
modifications of known effects in the quasi-ballistic transport regime are the
subject of this section A variety of new classical size effects, not known from
metals, appear in the ballistic regime, when the resistance 1s measured on a
length scale below the mean free path These are discussed 1n Section 16, and
require a reconsideration of what 1s meant by a resistance on such a short
length scale

In the present section we assume that the channel length L (or, more
generally, the separation between the voltage probes) 1s much larger than the
mean free path [ for impurity scattering so that the motion remains diffusive
along the channel Size effects in the resistivity occur when the motion across
the channel becomes ballistic (1 e, when the channel width W< [) Daffuse
boundary scattering leads to an increase 1n the resistivity in a zero magnetic
field and to a nonmonotonic magnetoresistivity in a perpendicular magnetic
field, as discussed 1n the following two subsections The 2D channel geometry
1s essentially equivalent to the 3D geometry of a thin metal plate 1n a parallel
magnetic field, with the current flowing perpendicular to the field Size effects
m this geometry were originally studied by Fuchs!%® 1n a zero magnetic field
and by MacDonald!®* for a nonzero field The alternative configuration n
which the magnetic field 1s perpendicular to the thin plate, studied by
Sondheimmer,'° does not have a 2D analog We discuss 1n this section only
the classical size effects, and thus the discreteness of the 1D subbands and of
the Landau levels 1s 1gnored Quantum size effects in the quasi-ballistic
transport regime are treated in Section 10

a Boundary Scattering

In a zero magnetic field, scattering at the channel boundaries increases the
resistivity, unless the scattering 1s specular Specular scattering occurs if the
confiming potential V(x, y) does not depend on the coordinate y along the
channel axis In that case the electron motion along the channel 1s not

103K Fuchs, Proc Cambridge Philos Soc 34, 100 (1938)

104y K C MacDonald, Nature 163, 637 (1949), D K C MacDonald and K Sarginson, Proc
Roy Soc A 203, 223 (1950)

105E H Sondheimer, Nature 164, 920 (1949), Phys Rev 80, 401 (1950)
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influenced at all by the lateral confinement, so the resistivity p retains its 2D
bulk value p, = m/e*ns. More generally, specular scattering requires any
roughness of the boundaries to be on a length scale smaller than the Fermi
wavelength Ap. The confining potential created electrostatically by means of a
gate electrode is known to cause predominantly specular scattering (as has
been demonstrated by the electron focusing experiments®® discussed in
Section 14). This is a unique situation, not previously encountered in metals,
where as a result of the small Ap (on the order of the interatomic separation)
diffuse boundary scattering dominates.!°?

Diffuse scattering means that the velocity distribution at the boundary is
isotropic for velocity directions that point away from the boundary. Note
that this implies that an incident electron is reflected with a (normalized)
angular distribution P(x) = %cosa, since the reflection probability is pro-
portional to the flux normal to the boundary. Diffuse scattering increases the
resistivity above p, by providing an upper bound W to the effective mean free
path. In order of magnitude, p ~ (I/W)p, if | & W (a more precise expression
is derived later). In general, boundary scattering is neither fully specular nor
fully diffuse and, moreover, depends on the angle of incidence (grazing
incidence favors specular scattering since the momentum along the channel is
large and not easily reversed). The angular dependence is often ignored for
simplicity, and the boundary scattering is described, following Fuchs,!°* by a
single parameter p, such that an electron colliding with the boundary is
reflected specularly with probability p and diffusely with probability 1 — p.
This specularity parameter is then used as a fit parameter in comparison with
experiments. Soffer °® has developed a more accurate, and more complicated,
modeling in terms of an angle of incidence dependent specularity parameter.

In the extreme case of fully diffuse boundary scattering (p = 0), one is
justified in neglecting the dependence of the scattering probability on the
angle of incidence. We treat this case here in some detail to contrast it with
fully specular scattering, and because diffuse scattering can be of importance
in 2DEG channels defined by ion beam exposure rather than by gates.*°71°%
We calculate the resistivity from the diffusion constant by means of the
Einstein relation. Fuchs takes the alternative (but equivalent) approach of
calculating the resistivity from the linear response to an applied electric
field.*°? Impurity scattering is taken as isotropic and elastic and is described
by a scattering time ¢ such that an electron is scattered in a time interval dt
with probability dt/t, regardless of its position and velocity. This is the
commonly employed “scattering time” (or “relaxation time”) approximation.

1065 B, Soffer, J. Appl. Phys. 38, 1710 (1967).

97T J. Thornton, M. L. Roukes, A. Scherer, and B. P. van der Gaag, Phys. Rev. Lett. 63, 2128
(1989).

'°8K. Nakamura, D. C. Tsui, F. Nihey, H. Toyoshima, and T. Itoh, Appl. Phys. Leit. 56, 385
(1990).
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The channel geometry 1s defined by hard walls at x = + W/2 at which the
electrons are scattered diffusely The stationary electron distribution function
at the Fermi energy F(r, «) satisfies the Boltzmann equation

2n
V'£F=—1F+1J o, 5 1)
or T T Jo 2m

where r = (x, y) 1s the position and « 1s the angle that the velocity v = vg(cos a,
sino) makes with the x-axis The boundary condition corresponding to
diffuse scattering 1s that F 1s independent of the velocity direction for
velocities pointing away from the boundary In view of current conservation
this boundary condition can be written as

1 (=2 W =z 3n
Flr,o) == do F(r, o g fi =—, —<a<—,
(r, o) 2_[—1:/2 o F(r, a')cosa orx = 5 o 5
1 3n/2 w
=3 L/z do’ F(r, o) cos o', for x = —5 —-72£< o <g 52)

To determine the diffusion constant, we look for a solution of Eqs (5 1) and
(52) corresponding to a constant density gradient along the channel,
F(r,o) = —cy + f(x, a) Since there 1s no magnetic field, we anticipate that the
density will be umform across the channel width so that (3" fdo =0 The
Boltzmann equation (5 1) then simplifies to an ordnary differential equation
for f, which can be solved straightforwardly The solution that satisfies the
boundary conditions (5 2) 1s

F(r, ) = —cy+clsmoc[1—exp<——W— X >], (53)

2l|cos «f ~ Icosa
where we have written [ = v; T One easily vertfies that F has indeed a uniform
density along x The diffusion current

w2 2z

IY:UFJ‘ dxf do F sin o 54
w2 0

along the channel in response to the density gradient on/dy = —2nc

determines the diffusion constant D = —(I,/W) (dn/dy)”! The resistivity

p = Ep/ne®D then follows from the Einstemn relation (4 10), with the 2D

density of states n,/Ep The resulting expression 1s

41 1 -1
p =P0|:1 ——f dg (1 — &)1 —e‘W”‘)] ; (55)
1444 0

which can be easily evaluated numerically It 1s worth noting that the
above result 1°° for p/p, 1n a 2D channel geometry does not differ much
(less than 20%;) from the corresponding result'®3 1n a 3D thin film

109C W J Beenakker and H van Houten, Phys Rev B 38, 3232 (1988)
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For I/W « 1 one has

4 1
=poll1+—— 56
p p0< +37I W>a ( )

which differs from Eq (55) by less than 109, mn the range I/W < 10 For
I/W » 1 one has asymptotically

7 l 1 mup 1

P=2 POW W) ~ 2 neW (W) 67

In the absence of impurity scattering (1 e, 1n the limut [ — o0), Eq (5 7) predicts
a vanishing resistivity Diffuse boundary scattering 1s ineffective in establish-
ing a finite resistivity 1n this himit, because electrons with velocities nearly
parallel to the channel walls can propagate over large distances without
collisions and thereby short out the current As shown by Tesanovic et al ,*1°
a small but nonzero resistivity 1n the absence of impurity scattering 1s
recovered 1f one goes beyond the semiclassical approximation and includes
the effect of the quantum mechanical uncertainty in the transverse compo-
nent of the electron velocity

b Magneto Size Effects

In an unbounded 2DEG, the longitudinal resistivity 1s magnetic-field-
independent 1n the semiclassical approximation (see Section 4c) We will
discuss how a nonzero magnetoresistivity can arise classically as a result of
boundary scattering We consider the two extreme cases of specular and
diffuse boundary scattering, and describe the mmpurity scattering m the
scattering time approximation Shortcomings of this approximation are
discussed toward the end of this subsection

We consider first the case of specular boundary scattering In a zero
magnetic field 1t 1s obvious that specular scattering cannot affect the
resistivity, since the projection of the electron motion on the channel axis 1s
not changed by the presence of the channel boundaries If a magnetic field 1s
applied perpendicular to the 2DEG, the electron trajectories 1n a channel
cannot be mapped 1n this way on the trajectories mm an unbounded system In
fact, n an unbounded 2DEG 1n equihbrium the electrons perform closed
cyclotron orbits between scattering events, whereas a channel geometry
supports open orbits that skip along the boundaries One might suppose that
the presence of these skipping orbits propagating along the channel would
increase the diffusion constant and hence reduce the (longitudinal) resistivity
below the value p, of a bulk 2DEG That 1s not correct, at least in the
scattering time approximation, as we now demonstrate

1107 Tesanovic, M V Jaric, and S Maekawa, Phys Rev Lett 57, 2760 (1986)
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The stationary Boltzmann equation in a magnetic field B in the z-direction
(perpendicular to the 2DEG) 1s

0 0 1 1 (27 do
-— F e~ F=——F+— — F 58
Vo o dol T T L 2n ¥
Here, we have used the identity—em ™ (vxB):8/dv = w 8/0x (with
w, = eB/m the cyclotron frequency) to rewrite the term that accounts for the
Lorentz force The distribution function F(r, ) must satisfy the boundary
conditions for specular scattering,

E(r, o) = F(r, 1 — o), for x = +W/2 59)
One readily verifies that
F(r,a)= —c(y + wx) + ¢l sin a (510

1s a solution of Eqs (58) and (59) The corresponding diffusion current
I, = ncWuvgl and density gradient along the channel 0n/0y = —2nc are both
the same as in a zero magnetic field It follows that the diffusion constant
D =1,/2rncW and, hence, the longitudinal resistivity p = Eg/ne’D are B-
independent, that 1s, p = p, = m/n.e?t as 1 an unbounded 2DEG More
generally, one can show that in the scattering time approximation the
longitudinal resistivity 1s B-independent for any confining potential V(x, y)
that does not vary with the coordinate y along the channel axis (This
statement 1s proven by applying the result of Ref 111, of a B-independent p,,
for pertodic ¥(x), to a set of disjunct parallel channels (see Section 11b), the
case of a single channel then follows from Ohm’s law)

In the case of diffuse boundary scattering, the zero-field resistivity 1s
enhanced by approximately a factor 1 + I/2W [see Eq (56)] A sufficiently
strong magnetic field suppresses this enhancement, and reduces the resistivity
to 1ts bulk value p, The mechanism for this negative magnetoresistance 1s
illustrated 1 Fig 9b If the cyclotron diameter 2[ ., 1s smaller than the
channel width W, diffuse boundary scattering cannot reverse the direction of
motion along the channel, as 1t could for smaller magnetic fields The
diffusion current 1s therefore approximately the same as in the case of
specular scattering, in which case we have seen that the diffuston constant
and, hence, resistivity have their bulk values Figure 9 represents an example
of magnetic reduction of backscattering Recently, this phenomenon has been
understood to occur in an extreme form 1n the quantum Hall effect*!? and 1n
ballistic transport through quantum pomt contacts 1!® The effect was

111C W J Beenakker, Phys Rev Lett 62, 2020 (1989)

'12M Buttiker, Phys Rev B 38, 9375 (1988)

'13H van Houten C W J Beenakker, P H M van Loosdrecht, T J Thornton, H Ahmed, M
Pepper, C T Foxon, and J J Harns, Phys Rev B 37, 8534 (1988), and unpublished
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(a) W =05 eyl
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Fic 9 Illustration of the effect of a magnetic field on motion through a channel with diffuse
boundary scattering (a) Electrons which 1n a zero field move nearly parallel to the boundary can
reverse their motion 1n weak magnetic fields This increases the resistivity (b) Suppression of
backscattering at the boundaries in strong magnetic fields reduces the resistivity.

essentially known and understood by MacDonald*®* in 1949 in the course of
his magnetoresistivity experiments on sodium wires. The ultimate reduction
of the resistivity is preceded by an initial increase in weak magnetic fields, due
to the deflection toward the boundary of electrons with a velocity nearly
parallel to the channel axis (Fig. 9a). The resulting nonmonotonic B-
dependence of the resistivity is shown in Fig. 10. The plot for diffuse
scattering is based on a calculation by Ditlefsen and Lothe''* for a 3D thin-
film geometry. The case of a 2D channel has been studied by Pippard!®? in
the limit /W — oo, and he finds that the 2D and 3D geometries give very
similar results.

An experimental study of this effect in a 2DEG has been performed by
Thornton et al.'°” In Fig. 11 their magnetoresistance data are reproduced for
channels of different widths W, defined by low-energy ion beam exposure. It
was found that the resistance reaches a maximum when W =z 0.5, in
excellent agreement with the theoretical predictions.!'*1°% Thornton et al.
also investigated channels defined electrostatically by a split gate, for which
one expects predominantly specular boundary scattering.”® The foregoing
analysis would then predict an approximately B-independent resistance (Fig.
10), and indeed only a small resistance maximum was observed in weak
magnetic fields. At stronger fields, however, the resistance was found to
decrease substantially. Such a monotonically decreasing resistance in

H4p Dytlefsen and J Lothe, Pl Mag. 14, 759 (1966)
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FiG 10 Magnetc field dependence of the longitudinal resistivity of a channel for the two
cases of diffuse and specular boundary scattering, obtained from the Boltzmann equation tn the
scattering time approximation The plot for diffuse scattering 1s the result of Ref 114 for a 3D
thin film geometry with { = 10W (A 2D channel geometry 1s expected to give very similar
results 192)
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FiG 11 Experimental magnetic field dependence of the resistance of channels of different
widths, defined by 1on beam exposure in the 2DEG of a GaAs—AlGaAs heterostructure
(L= 12um, T=42XK) The nonmonotonic magnetic field dependence below 1T 1s a classical
size effect due to diffuse boundary scattering, as illustrated in Fig 9 The magnetoresistance
oscillations at higher fields result from the quantum mechanical Shubmkov-De Haas effect
Taken from T J Thornton et al, Phys Rev Lett 63,2128 (1989)
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F1G. 12. Electron trajectories in a channel with specular boundary scattering, to illustrate how
a magnetic field can suppress the backscattering by an isolated impurity close to a boundary.
This effect would lead to a negative magnetoresistivity if one would go beyond the scattering
time approximation.

channels with predominantly specular boundary scattering was first reported
by Choi et al.,>’ and studied for a narrower channel in Ref. 27 (see Section 9.b
for some of these experimental results). We surmise that a classical negative
magnetoresistance in the case of specular boundary scattering can result if the
cyclotron radius becomes smaller than some characteristic correlation length
in the distribution of impurities (and in the resulting potential landscape).
Correlations between the positions of impurities and the channel boundaries,
which are neglected in the scattering time approximation, will then play a
role. For an example, see Fig. 12, which shows how an isolated impurity near
the boundary can reverse the direction of electron motion in a zero magnetic
field but not in a sufficiently strong magnetic field. In metals, where the
cyclotron radius is much larger than in a 2DEG, an electron will effectively
experience a random impurity potential between subsequent boundary
collisions, so the scattering can well be described in terms of an average
relaxation time. The experiments in a 2DEG suggest that this approximation
breaks down at relatively weak magnetic fields.

6. WEAK LOCALIZATION

The temperature dependence of the Drude resistivity p = m/ne’t is
contained in that of the scattering time , since the electron density is constant
in a degenerate electron gas. As one lowers the temperature, inelastic
scattering processes (such as electron—phonon scattering) are suppressed,
leading to a decrease in the resistivity. The residual resistivity is due entirely
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F1G 13 Temperature dependence of the resistivity of a wide 2DEG 1 a GaAs—AlGaAs
heterostructure (circles) and of two narrow channels of lithographic width W, = 1.5um
(squares) and W, = 0S5um (triangles) The channel length L= 10um The resistivity 1s
estimated from the measured resistance R by multiplying by W,,/L, disregarding the difference
between the conducting and hithographic width 1n the narrow channels Taken from H. van
Houten et al, Appl Phys Lett. 49, 1781 (1986).

to elastic scattering (with stationary impurities or other crystalline defects)
and is temperature-independent in the semiclassical theory. Experimentally,
however, one finds that below a certain temperature the resistivity of the
2DEG starts to rise again. The increase is very small in broad samples, but
becomes quite pronounced in narrow channels. This is illustrated in Fig. 13,
where the temperature dependencies of the resistivities of wide and narrow
GaAs—AlGaAs heterostructures are compared.®?

The anomalous resistivity increase is due to long-range correlations in the
diffusive motion of an electron that are purely quantum mechanical. In the
semiclassical theory it is assumed that a few scattering events randomize the
electron velocity, so the velocity correlation function decays exponentially in
time with decay time t [see Eq. (4.19)]. As discussed in Section 4.c, this
assumption leads to the Drude formula for the resistivity. It is only in recent
years that one has come to appreciate that purely elastic scattering is not
effective in destroying correlations in the phase of the electron wave function.
Such correlations lead to quantum interference corrections to the Drude
result, which can explain the anomalous increase in the resistivity at low
temperatures.

A striking effect of quantum interference is to enhance the probability for
backscattering in a disordered system in the metallic regime. This effect has
been interpreted as a precursor of localization in strongly disordered systems
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and has thus become known as weak localization !> 17 In Section 6 a we
describe the theory for weak localization in a zero magnetic field The
application of a magnetic field perpendicular to the 2DEG suppresses weak
localization,*'® as discussed m Section 6b The resulting negative mag-
netoresistivity 1s the most convenient way to resolve experimentally the weak
localization correction **° The theory for a narrow channel 1n the quasi-
ballistic transport regime!®® *20 differs in an nteresting way from the theory
for the diffusive regime,'?! as a consequence of the flux cancellation effect 122
The diffusive and quasi-ballistic regimes are the subjects of Sections 6 b and
6 c, respectively

a Coherent Backscattering

The theory of weak localization was developed by Anderson et al 11® and
Gorkov et al ''7 This 1s a diagrammatic perturbation theory that does not
lend itself easily to a physical interpretation The interpretation of weak
localization as coherent backscattering was put forward by Bergmann'?? and
by Khmel'nitski and Larkin,'?# 125 and formed the basis of the path integral
theory of Chakravarty and Schmid 128 In this description, weak localization
1s understood by considering the interference of the probability amphitudes
for the classical trajectories (or “Feynman paths”) from one point to another,
as discussed later For reviews of the alternative diagrammatic approach, we
refer to Refs 127 and 128

115g Abrahams, P W Anderson, D C Licciardello, and T V Ramakrishnan, Phys Rev Lett
42, 673 (1979)

116p W Anderson, E Abrahams, and T V Ramakrishnan, Phys Rev Lett 43, 718 (1979)

17, P Gorkov, A I Larkin,and D E Khmel'mtsku, Pisma Zh Eksp Teor Fiz 30, 248 (1979)
[JETP Lett 30, 228 (1979)]

118g 1, Al'tshuler, D Khmelmtskn, A I Larkin, and P A Lee, Phys Rev B 22, 5142 (1980)

1194 Kawabata, J Phys Soc Japan 49, 628 (1980)

120y K Dugaev and D E Khmel'nitsku, Zh Eksp Teor Fiz 86, 1784 (1984) [Sov Phys JETP
59, 1038 (1984)]

1218 1, APtshuler and A G Aronov, Pisma Zh Eksp Teor Fiz 33,515 (1981) [JETP Lett 33,
499 (1981)]

122p G De Gennes and M Tinkham, Phys (N Y) 1, 107 (1964), see also P G De Gennes,
“Superconductivity of Metals and Alloys,” Chapter 8 Benjamin, New York, 1966

123G Bergmann, Phys Rep 107, 1 (1984), Phys Rev B 28, 2914 (1983)

12¢p [ Larkin and D E Khmel'mtsku, Usp Fiz Nauk 136, 536 (1982) [Sov Phys Usp 25, 185
(1982)

125D E Khmel'mitskn, Physica 126B, 235 (1984)

1265 Chakravarty and A Schmid, Phys Rep 140, 193 (1986)

127p A Lee and T V Ramakrishnan, Rev Mod Phys 57, 287 (1985)

1283 1 Al'tshuler, A G Aronov, D E Khmelnitski, and A I Larkin, in “Quantum Theory of
Sohds,” p 130 (I M Lifshitz, ed ) Advances in Science and Technology in the USSR, Physics
Sertes, MIR, Moskow
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FiG 14 Mechamism of coherent backscattering The
probability amphtudes 4, and 4, of two trajectortes from
r to r' have uncorrelated phases in general (a), but the
b amplitudes A* and 4 of two time-reversed returning
trajectories are equal (b). The constructive mterference of
A and A~ mcreases the probability for return to the
r=r pomnt of departure, which 1s the origin of the weak
localization effect The volume indicated 1n black 1s the
area Apvi-dt covered by a flux tube in a time mnterval dt,
which enters in Eq (6 2) for the conductivity correction

In a Feynman path description!?® of diffusion, the probability P(r,r’, t) for
motion from point r to point r’ in a time ¢ consists of the absolute value
squared of the sum of probability amplitudes 4,, one for each trajectory from
r to r’ of duration ¢

2
P(r,r', t) =

2 A

14 13

=Y |4 + ; A, A% (6.1)

The restriction to classical trajectories in the sum over Feynman paths is
allowed if the separation between scattering events is much larger than the
wavelength (i.e., if kgl > 1). The classical diffusion probability corresponds to
the first term on the right-hand side of Eq. (6.1), while the second term
accounts for quantum interference. In the diffusive transport regime there is a
very large number of different trajectories that contribute to the sum. One
might suppose that for this reason the interference term averages out, because
different trajectories have uncorrelated phases. This is correct if the beginning
and end points r and v’ are different (Fig. 14a), but not if the two coincide (Fig.
14b). In the latter case of “backscattered” trajectories, one can group the
contributions to the sum (6.1) in time-reversed pairs. Time-reversal inva-
riance guarantees that the probability amplitudes 4™ and A~ for clockwise
and counterclockwise propagation around the closed loop are identical:
A* = A~ = A. The coherent backscattering probability |[4* + 47| = 4]4)?
is then twice the classical result. The enhanced probability for return to the
point of departure reduces the diffusion constant and, hence, the conductiv-
ity. This is the essence of weak localization. As phrased by Chakravarty and
Schmid,!2° “1t is one of those unique cases where the superposition principle
of quantum mechanics leads to observable consequences at the macroscopic
level.”

2R P Feynman and A R Hibbs, “Quantum Mechanics and Path Integrals ” McGraw-Hill,
New York, 1965.
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The magnitude of the weak localization correction do,,. to the Drude
conductivity o is proportional to the probability for return to the point of
departure.!2° Since §a,,. is assumed to be a small correction, one can estimate
this probability from classical diffusion. Let C(f)dr denote the classical
probability that an electron returns after a time ¢ to within dr of its point of
departure. The weak localization correction is given by the time integral of
the return probability:26

L (6.2)

g m Jo

The correction is negative because the conductivity is reduced by coherent
backscattering. The factor #/m oc Azvp follows in the path integral formalism
from the area covered by a flux tube of width Ag and length v dt (see Fig. 14b).
The factor exp(—t/1,) is inserted “by hand’ to account for the loss of phase
coherence after a time 7, (as a result of inelastic scattering). The return
probability C(¢) in a 2D channel of width W is given for times ¢t > 7 in the
diffusive regime by

C(t) = (4nDp)" %,  if t « W2/D, (6.32)
C(t) = W™ YdrDy)" V13 if £ » W?/D. (6.3b)

The 1/t decay of the return probability (6.3a) assumes unbounded diffusion in

two dimensions. A crossover to a lower l/ﬁ decay (6.3b) occurs when the
root-mean-square displacement (2Df)!/? exceeds the channel width, so
diffusion occurs effectively in one dimension only. Because the time integral of
C(¢) itself diverges, the weak localization correction (6.2) is determined by the
behavior of the return probability on the phase coherence time t,, which
provides a long-time cutoff. One speaks of 2D or 1D weak localization,
depending on whether the return probability C(t,) on the time scale of 7, is
determined by 2D diffusion (6.3a) or by 1D diffusion (6.3b). In terms of the
phase coherence length I, = (Dt,)'/?, the criterion for the dimensionality is
that 2D weak localization occurs for I, « Wand 1D weak localization for
[, > W.On short time scales ¢ S 7, the motion is ballistic rather than diffusive,
and Eq. (6.3) does not apply. One expects the return probability to go to zero
smoothly as one enters the ballistic regime. This short-time cutoff can be
accounted for heuristically by the factor 1 — exp(—t/1), to exclude those
electrons that at time ¢ have not been scattered.!® The form of the short-time
cutoff becomes irrelevant for 7, > 7. (See Ref. 130 for a theoretical study of
weak localization in the regime of comparable 7, and 7.)

130 P Wittman and A Schmud, J Low Temp Phys 69, 131 (1987)
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The foregoing analysis gives the following expressions for the 2D and 1D
weak localization corrections:

2h o
5aloc = ——0 J dt (47EDI)_1(1 — e"t/t)e—t/r.j,
m

0
2

e T4 )
=99y 127 In <1 + —;), ifl, < W, (6.4a)

0

_ e Lo (1 (1 T if I, > W, (6.4b)
= —YgYv wh W T s i ¢>> y .

2h w
50_]00 = - g J‘ dt W_1(47CDt)_1/2(1 — e"t/t)e_t/t¢
m

where we have used the expression for the Drude conductivity ¢ = e2p(Ep)D
with the 2D density of states (4.2). The ratio of the weak localization
correction to the Drude conductivity da,,./0 is of order 1/kgl for 2D weak
localization and of order (I,/W)(1/kgl) for 1D weak localization. In the 2D
case, the correction is small (cf. the values of kgl given in Table I), but still
much larger than in a typical metal. The correction is greatly enhanced in the
1D case [, > W. This is evident in the experimental curves in Fig. 13, in which
the resistivity increase at low temperatures is clearly visible only in the
narrowest channel.

The weak localization correction to the conductance 8G,,, = (W/L)d0o, is
of order (e*/h)(W/L) in the 2D case and of order (e?/h)(4/L) in the 1D case. In
the latter case, the conductance correction does not scale with the channel
width W, contrary to what one would have classically. The conductance does
scale with the reciprocal of the channel length L, at least for L » [,. The factor
[,/L in 6G,,. in the 1D case can be viewed as a consequence of the classical
series addition of L/l channel sections. It will then be clear that the scaling
with L has to break down when L < [;, in which case the weak localization
correction saturates at its value for L =~ l,. The maximum conductance
correction in a narrow channel is thus of order e?/h, independent of the
properties of the sample. This “universality” is at the origin of the pheno-
menon of the universal conductance fluctuations discussed in Section 7.

b. Suppression of Weak Localization by a Magnetic Field

(1) Theory. The resistance enhancement due to weak localization can be
suppressed by the application of a weak magnetic field oriented per-
pendicular to the 2DEG. The suppression results from the fact that a
magnetic field breaks time-reversal invariance. We recall that in a zero
magnetic field, time-reversal invariance guarantees that trajectories that form
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a closed loop have equal probability amphitudes A* and A~ for clockwise
and counterclockwise propagation around the loop The resulting con-
structive interference enhances the backscattering probability, thereby lead-
ing to the weak localization effect In a weak magnetic field, however, a phase
difference ¢ develops between A" and A7, even if the curvature of the
trajectories by the Lorentz force can be totally neglected This Aharonov—
Bohm phase results from the fact that the canonical momentum p = mv — eA
of an electron 1n a magnetic field contains the vector potential A On
clockwise (+) and counterclockwise (—) propagation around a closed loop,
one thus acquires a phase difference

¢=h“56 p+'dl—h‘13€ p-dl
+

2eBS 2 @
620 20 C4n— 65)

2e
_— V . _ = —
hJ( xA)dS === o

The phase difference 1s twice the enclosed area S divided by the square of the
magnetic length [, = (h/eB)'/?, or, alternatively, 1t 1s 4n times the enclosed
flux @ 1n units of the elementary flux quantum @, = h/e

Many trajectories, with a wide distribution of loop areas, contribute to the
weak localization effect In a magnetic field the loops with a large area S 2 2,
no longer contribute, since on average the counterpropagating trajectories no
longer interfere constructively Since trajectories enclosing a large area
necessarily take a long time to complete, the effect of a magnetic field 1s
essentially to introduce a long-time cutoff in the ntegrals of Eqs (62) and
(6 4), which 1s the magnetic relaxation time 5 Recall that the long-time cutoff
in the absence of a magnetic field 1s the phase coherence time 7, The
magnetic field thus begins to have a significant effect on weak localization 1f
75 and 7, are comparable, which occurs at a characteristic field B, The weak
localization effect can be studied experimentally by measuring the negative
magnetoresistance peak associated with 1ts suppression by a magnetic field
The significance of such experiments relies on the possibility of directly
determining the phase coherence time 7, The experimental data are most
naturally analyzed 1n terms of the conductance The magnitude of the zero-
field conductance correction 6G,, (B = 0) follows directly from the saturation
value of the magnetoconductance, according to

G(B > B) — G(B =0) = —5G,(B = 0) (6 6)

Once §G,,.(B = 0) 1s known, one can deduce the phase coherence length I,
from Eq (6 4), since D and 7 are easily estimated from the classical part of the
conductance (which dominates at slightly elevated temperatures) The mag-
netoconductance contains, 1n addition, information on the channel width W,
which 1s a parameter difficult to determine otherwise, as will become clear n
the discussion of the experimental situation 1n subsection (2)
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The effectiveness of a magnetic field 1n suppressing weak localization (as
contained 1n the functional dependence of 75 on B, or 1n the expression for B,)
1s determined by the average flux enclosed by backscattered trajectories of a
given duration One can distingwish different regimes, depending on the
relative magnitude of the channel width W, the mean free path [ = v, the
magnetic length [, and the phase coherence length [, = (D74)!/? In Table 11
the expressions for t; and B, are summarized, as obtamed by various
authors 102 118 121 131 1y the following, we present a simple physical interpre-
tation that explains these results, except for the numerical prefactors We will
not discuss the effects of spin-orbit scattering!3! or of superconducting
fluctuations,!*? since these may be neglected 1n the systems considered 1n this
review In this subsection we only discuss the dirty metal regime [ « W The
pure metal regime ! >»> W, in which boundary scattering plays an important
role, will be discussed 1n Section 6 ¢

If [, « W the two-dimensional weak localization correction to the con-
ductivity applies, given by Eq (6 4a) for a zero magnetic field The typical area
S enclosed by a backscattered trajectory on a time scale 5 1s then of the order
S ~ Dty (assuming diffusive motion on this time scale) The corresponding
phase shuft 1s ¢ ~ Dtp/lZ, 1n view of Eq (6 5) The criteria ¢ ~ 1 and 75 ~ 7,
thus mmply

ta~2/D, B, ~ hleDr, = hfel’ 67)

TABLE II MAGNETIC RELAXATION TIME 73 AND CHARACTERISTIC FIELD B, FOR THE SUPPRESSION
OF 2D aND 1D WEAK LOCALIZATION ®

PURE METAL® (W « )

DIRTY METAL® (I < W)
1D Strong Field

2D (l,«W) 1D (W«l,) 1D WEak FIELD (I2> W) (Wi»E»W?)
2 31 C,l4 C, 21
g — 2
2D Ww?2D Wivg W,
A1 B 312 o1 < c, )1/2 hoC,l
B, - i - -
e 23 e Wi, e W \Wuogr,, e Wy,

‘All results assume a channel length L > I, a channel width W > A, as well as 7, » 1

*From Refs 118, 131, and 121 The diffusion constant D = 1vgl If W « ly, a transition to 2D
weak localization occurs when [, S W

°From Ref 109 The constants are given by C, =95 and C, = 24/5 for specular boundary
scattering (C, = 4z and C, = 3 for a channel with diffuse boundary scattering) For pure metals,
the case [, < W 1s outside the diffusive transport regime for weak localization

131 Hikami, A 1 Larkin, and Y Nagaoka, Prog Theor Phys 63, 707 (1980)
1324 1 Larkin, Pis’'ma Zh Eksp Teor Fiz 31, 239 (1980) [JETP Lett 31, 219 (1980)]
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The full expression for the magnetoconductance due to weak localization
118 131
18

%4 e? 1 T 1 T T

OGiB) = 0GRAO0) = - 99y Tz | W5+ 52 )~ ¥ 5+ 52 )+ In ()},
Ioc(B) Gloc( ) L 9s9v 4leh |: <2 + 2‘E¢> B 4 <2 + 2T> +In <T

(6 8)

where W(x) 1s the digamma function and 1z = [2/2D The digamma function
has the asymptotic approximation ¥(x) ~ In(x) — 1/x for large x, thus, in a
zero magnetic field result (6 4a) 1s recovered (assuming also 7, > 1) In the
case of 2D weak localization the characteristic field B, 1s usually very weak
For example, if [, = 1 um, then B, ~ 1mT The suppression of the weak
localization effect 1s complete when <75<51t, which occurs for
B 2 hfeDt ~ h/el* These fields are still much weaker than classically strong
fields for which w.t Z 1 {as can be verified by noting that when B = #/el?, one
has w.t = 1/kgl « 1) The neglect of the curvature of electron trajectories 1n
the theory of weak localization 1s thus entirely justified 1in the 2D case The
safety margin 1s narrower 1n the 1D case, however, since the characteristic
fields can become sigmficantly enhanced

The one-dimensional case W « [, 1n a magnetic field has first been treated
by Al'tshuler and Aronov!?! in the dirty metal regime Thus refers to a narrow
channel with [ « W so that the wall-to-wall motion 1s diffusive Since the
phase coherence length exceeds the channel width, the backscattered trajec-
tories on a time scale 75 have a typical enclosed area S ~ W(D15)Y/? (see Fig
15) Consequently, the condition S ~ [2 for a umit phase shift imples

15~ I4/DW?, B, ~ hjeWl, (6 9)

The difference with the 2D case 1s that the enclosed flux on a given time scale
1s reduced, due to the lateral compression of the backscattered trajectories
This leads to an enhancement by a factor [,/W of the characteristic field scale

A

oW i,

< lp > v

< >

Fig 15 Typical closed electron trajectory contributing to 1D weak localization (I, > W) n
the dirty metal regime (I « W) The asterisks denote elastic scattering events Taken from H van
Houten et al, Acta Electromica 28, 27 (1988)



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 43

B,, compared with Eq (67) The full expression for the weak localization
correction if Iy, [, » W > [1s'?!

3GL>(B G (LI 610
loc( )_ _gsgv7Z<DT¢+D—TB> > ( )
with 7 = 314 /W?2D For an elementary derivation of this result, see Ref 109
Atl, ~ W a crossover from 1D to 2D weak localization occurs [1¢e, from Eq
(610) to Eq (68)] The reason for this crossover 1s that the lateral
confinement becomes irrelevant for the weak localization when [, S W,
because the trajectories of duration 7p then have a typical extension
(D1p)'? £ W, according to Eq (69) Thus crossover from 1D to 2D restricts
the available field range that can be used to study the magnetoconductance
associated with 1D weak localization

The magnetic relaxation time t in the dirty metal regime 1s found to be
mnversely proportional to the diffusion constant D, 1n 2D as well as in 1D The
reason for this dependence 1s clear faster diffusion implies that less time 1s
needed to complete a loop of area [ It 1s remarkable that in the pure metal
regime such a proportionality no longer holds This 1s a consequence of the
flux cancellation effect discussed 1n Section 6 ¢

(2) Experiments in the Dirty Metal Regime. Magnetoresistance experiments
have been widely used to study the weak localization correction to the
conductivity of wide 2D electron gases 1 S128 30 1337135 3514 GaAs 23 136 137
Here we will discuss the experimental magnetoresistance studies of weak
locahization 1 narrow channels in S1 MOSFETs34 38 40138 and GaAs-—
AlGaAs heterostructures 24 2% 38 As an 1llustrative example, we reproduce 1n
Fig 16 a set of experimental results for 6R/R = [R(0) — R(B)]/R(0) obtained
by Chot et al 2° 1n a wide and 1n a narrow GaAs—AlGaAs heterostructure
The quantity SR 1s positive, so the resistance decreases on applying a
magnetic field The 2D results are similar to those obtained earlier by
Paalanen et o 137 The qualitative difference 1n field scale for the suppression
of 2D (top) and 1D (bottom) weak localization 1s nicely illustrated by the data
i Fig 16 The magnetoresistance peak 1s narrower 1n the 2D case, consistent
with the enhancement in 1D of the characteristic field B, for the suppression
of weak localization, which we discussed 1n Section 6 b(1) The solid curves 1n

133y Kawaguchi and S Kaway, J Phys Soc Jpn 48, 699 (1980)

134R G Wheeler, Phys Rev B 24, 4645 (1981)

135M J Uren, R A Davis, M Kaveh, and M Pepper, J Phys C 14, L395 (1981)

136D A Poole, M Pepper, and R W Glew, J Phys C 14, 1995 (1981)

137M A Paalanen, D C Tsui, and J] C M Hwang, Phys Rev Lett 51, 2226 (1983)

138D M Pooke R Mottahedeh, M Pepper and A Grundlach, Surf Scr 196 59 (1988), D M
Pooke N Paquin M Pepper and A Grundlach J Phys Condens Matter 1 3289 (1989)
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FiG. 16. A comparison between the magnetoresistance AR/R = [R(0) — R(B)]/R(0) due to 2D
weak localization in a wide channel (upper panel) and due to 1D weak localization in a narrow
channel (lower panel), at various temperatures. The solid curves are fits based on Egs. (6.8) and
(6.10). Taken from K. K. Choi et al.,, Phys. Rev. B 36, 7751 (1987).

Fig. 16 were obtained from the 2D theoretical expression (6.8) and the 1D
dirty metal result (6.10), treating W and [, as adjustable parameters. A
noteworthy finding of Choi et al.? is that the effective channel width W is
considerably reduced below the lithographic width W;;, in narrow channels
defined by a deep-etched mesa (as in Fig. 4a). Differences W — Wj,,,, of about
0.8 um were found.?® Significantly smaller differences are obtained?”:3 if a
shallow-etched mesa is used for the lateral confinement, as in Fig. 4c. A split-
gate device (as in Fig. 4b) of variable width has been used by Zheng et al.?* to



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 45

study weak localization in GaAs—AlGaAs heterostructure channels. Magne-
toresistance experiments in a very narrow split-gate device (fabricated using
electron beam lithography) were reported by Thornton et al.>® and analyzed
in terms of the dirty metal theory. Unfortunately, in their experiment the
mean free path of 450 nm exceeded the width inferred from a fit to Eq. (6.10)
by an order of magnitude, so an analysis in terms of the pure metal theory
would have been required.

Early magnetoresistance experiments on narrow Si accumulation layers
were performed by Dean and Pepper,>* in which they observed evidence for a
crossover from the 2D to the 1D weak localization regime. A comparison of
weak localization in wide and narrow Si inversion layers was reported by
Wheeler et al.*® The conducting width of the narrow channel was taken to be
equal to the lithographic width of the gate (about 400 nm), while the mean
free path was estimated to be about 100nm. This experiment on a low-
mobility Si channel thus meets the requirement ! « W for the dirty metal
regime. The 1D weak localization condition [, > W was only marginally
satisfied, however. Licini et al.*® reported a negative magnetoresistance peak
in 270-nm-wide Si inversion layers, which was well described by the 2D
theory at a temperature of 2.2 K, where I, = 120 nm. Deviations from the 2D
form were found at lower temperatures, but the 1D regime was never fully
entered. A more recent study of 1D weak localization in a narrow Si
accumulation layer has been performed by Pooke et al.'*® at low temper-
atures, and the margins are somewhat larger in their case.

We note a difficulty inherent to experiments on 1D weak localization in
semiconductor channels in the dirty metal regime. For 1D weak localization
it is required that the phase coherence length [, is much larger than the
channel width. If the mean free path is short, then the experiment is in the
dirty metal regime [ « W, but the localization will be only marginally one-
dimensional since the phase coherence length I, = (Dt,)"/? = (vplt,/2)'/* will
be short as well (except for the lowest experimental temperatures). If the mean
free path is long, then the 1D criterion [, > W is easily satisfied, but the
requirement / «< W will now be hard to meet so that the experiment will tend
to be in the pure metal regime. A quantitative comparison with the theory
(which would allow a reliable determination of I;) is hampered because the
asymptotic regimes studied theoretically are not accessible experimentally
and because the channel width is not known a priori. Nanostructures are thus
not the best candidates for a quantitative study of the phase coherence length,
which is better studied in 2D systems. An altogether different complication is
that quantum corrections to the conductivity in semiconductor nanostruc-
tures can be remarkably large (up to 1009 at sufficiently low temper-
atures27-*#), which puts them beyond the range of validity of the perturbation
theory.
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DB

FiG6 17 Illustration of the flux cancellation effect for a closed trajectory of one electron m a
narrow channel with diffuse boundary scattering The trajectory 1s composed of two loops of
equal area but opposite orientation, so 1t encloses zero flux Taken from C W J Beenakker and
H van Houten, Phys Rev B 38, 3232 (1988)

¢ Boundary Scattering and Flux Cancellation

(1) Theory. In the previous subsection we noticed that the pure metal
regime, where [ > W, 1s characteristic for 1D weak localization m semicon-
ductor nanostructures This regime was first theoretically considered by
Dugaev and Khmel'mtski,'2° for the geometry of a thin metal film 1n a
parallel magnetic field and for diffuse boundary scattering The geometry of a
narrow 2DEG channel 1in a perpendicular magnetic field, with either diffuse
or specular boundary scattering, was treated by the present authors 1°° Note
that the nature of the boundary scattering did not play a role 1n the dirty
metal regime of Section 6 b, since there the channel walls only serve to impose
a geometrical restriction on the lateral diffusion *?' The flux cancellation
effect 1s characteristic of the pure metal regime, where the electrons move
ballistically from one wall to the other Thus effect (which also plays a role in
the superconductivity of thin films 1n a parallel magnetic field!??) leads to a
further enhancement of the characteristic field scale B, Flux cancellation
results from the fact that typically backscattered trajectories for I > W self-
mtersect (cf Fig 17) and are thus composed of smaller loops that are
traversed in opposite directions Zero net flux 1s enclosed by closed trajec-
tories mvolving only wall collisions (as indicated by the shaded areas in Fig
17, which are equal but of opposite orientation), so impurity collisions are
required for phase relaxation in a magnetic field This 1s 1 contrast to the
dirty metal regime considered before, where impurity scattering hinders
phase relaxation by reducing the diffusion constant The resulting nonmono-
tonous dependence of phase relaxation on impurity scattering in the dirty
and pure metal regimes 1s illustrated m Fig 18, where the calculated!®®
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Fi1G 18 Phase relaxation time 7 tn a channel with specular boundary scattering, as a function
of the elastic mean free path | The plot has been obtained by a numerical simulation of the phase
relaxation process for a magnetic field such that [, = 10W The dashed lines are analytic
formulas valid 1n the three asymptotic regimes (see Table II) Taken from C W J Beenakker and

H van Houten Phys Rev B 38, 3232 (1988)

magnetic relaxation time 7y 1s plotted as a function of I/W for a fixed ratio
[/ W

Before continuing our discussion of the flux cancellation effect, we give a
more precise definition of the phase relaxation time 75 The effect of a
magnetic field on weak localization 1s accounted for formally by inserting the

term
() =10y = e, Wy, Iy, 611

in the integrand of Eq (6 2) The term (6 11)1s the conditional average over all
closed trajectories having duration ¢ of the phase factor €', with ¢ the phase
difference defined 1n Eq (6 5) It can be shown'?? that in the case of 1D weak
localization (and for [, » W), this term 1s given by an exponential decay
factor exp(—t/ty), which defines the magnetic relaxation time 75 In this
regime the weak localization correction to the conductivity in the presence of
a magnetic field 1s then simply given by Eq (6 4b), after the substitution

T (612)

Explicitly, one obtains

5G...(B) — (N U I I U TS O
welB) = =005 7\ | be, ¥ Doy Dt, ' Dty Dt

(613)
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One can see from Fig. 18 and Table II that in the pure metal regime [ > W,
a weak and strong field regime can be distinguished, depending on the ratio
WI/IZ. This ratio corresponds to the maximum phase change on a closed
trajectory of linear extension / (measured along the channel). In the weak field
regime (WI/I2 « 1) many impurity collisions are required before a closed
electron loop encloses sufficient flux for complete phase relaxation. In this
regime a further increase of the mean free path does not decrease the phase
relaxation time (in contrast to the dirty metal regime), because as a
consequence of the flux cancellation effect, faster diffusion along the channel
does not lead to a larger enclosed flux. On comparing the result in Table II
for B, in the weak field regime with that for the dirty metal regime, one sees an
enhancement of the characteristic field by a factor (I/W)!/2. The strong field
regime is reached if WI/I2 » 1, while still [ > W, Under these conditions, a
single impurity collision can lead to a closed trajectory that encloses sufficient
flux for phase relaxation. The phase relaxation rate /75 is now proportional
to the impurity scattering rate 1/t and, thus, to 1/l The relaxation time 15
accordingly increases linearly with [ in this regime (see Fig. 18). For
comparison with experiments in the pure metal regime, an analytic formula
that interpolates between the weak and strong field regimes is useful. The
following formula agrees well with numerical calculations:°°

Tp = T 4 gong (6.14)

Here t3°** and 757" are the expressions for 7, in the asymptotic weak and
strong field regimes, as given in Table II.

So far, we have assumed that the transport is diffusive on time scales
corresponding to 7, This will be a good approximation only if 7, > 7.
Coherent diffusion breaks down if 7, and ¢ are of comparable magnitude (as
may be the case in high-mobility channels). The modification of weak
localization as one enters the ballistic transport regime has been investigated
by Wittmann and Schmid.*3° It would be of interest to see to what extent the
ad hoc short-time cutoff introduced in our Eq. (6.4), which is responsible for
the second bracketed term in Eq. (6.13), is satisfactory.

(2) Experiments in the Pure Metal Regime. Because of the high mobility
required, the pure metal regime has been explored using GaAs—AlGaAs
heterostructures only. The first experiments on weak localization in the pure
metal regime were done by Thornton et al.,*® in a narrow split-gate device,
although the data were analyzed in terms of the theory for the dirty metal
regime. An experimental study specifically aimed at weak localization in the
pure metal regime was reported in Refs. 26 and 27. In a narrow channel
defined by the shallow-mesa etch technique of Fig. 4¢ (with a conducting
width estimated at 0.12 um), a pronounced negative magnetoresistance effect
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Fic 19 Magnetoconductance due to 1D weak localization i the pure metal regime
(W= 120nm, L= 350nm) The solid curves are one-parameter fits to Eq (6 13) Only the field
range l,, > W 1s shown m accordance with the condition of coherent diffusion imposed by the
theory The phase coherence length I, obtained from the data at various temperatures 1s
tabulated 1n the inset Taken from H van Houten ¢t al Swrf Sci 196, 144 (1988)

was found, similar to that observed by Thornton et al 3® A good agreement of
the experimental results with the theory'?® for weak localization in the pure
metal regime was obtamed (see Fig 19), assuming specular boundary
scattering (diffuse boundary scattering could not describe the data) The
width deduced from the analysis was consistent with independent estimates
from other magnetoresistance effects Further measurements 1n this regime
were reported by Chang et al 7° 13° and, more recently, by Hiramoto et al ®!
These experiments were also well described by the theory of Ref 109

7 CONDUCTANCE FLUCTUATIONS

Classically, sample-to-sample fluctuations in the conductance are neg-
ligible in the diffusive (or quasi-ballistic) transport regime In a narrow-
channel geometry, for example, the root-mean-square 6G.,,, of the classical
fluctuations m the conductance 1s smaller than the average conductance {G)
by a factor (//L)!/2, under the assumption that the channel can be subdivided
into L/l » 1 independently fluctuating segments As we have discussed in the

1394 M Chang, G Timp, R E Howard, R E Behringer, P M Mankiewich,J E Cunningham,
T Y Chang, and B Chelluri, Superlattices and Microstructures, 4, 515 (1988)
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previous section, however, quantum mechanical correlations persist over a
phase coherence length [, that can be much larger than the elastic mean free
path ! Quantum mterference effects lead to sigmficant sample-to-sample
fluctuations 1n the conductance if the size of the sample 1s not very much
larger than I, The Al'tshuler—Lee—Stone theory of Umwersal Conductance
Fluctuations'*° **! finds that 6G ~ e*/h at T= 0, when phase coherence is
mamtained over the entire sample Since (G>oc L !, 1t follows that
0G/{G) oc L ncreases with increasing channel length, that s, there 1s a total
absence of self-averaging

Experimentally, the large sample-to-sample conductance fluctuations
predicted theoretically are difficult to study in a direct way, because of
problems in the preparation of samples that differ in impurity configuration
only (to allow an ensemble average) The most convenient way to study the
effect 1s via the fluctuations in the conductance of a single sample as a
function of magnetic field, because a small change 1n field has a similar effect
on the interference pattern as a change 1in impurity configuration Sections 7 ¢
and 7d deal with theoretical and experimental studies of magnetoconduc-
tance fluctuations in narrow 2DEG channels, mainly 1n the quasi-ballistic
regime characteristic for semiconductor nanostructures In Sections 7 a and
7 b we discuss the surprising universality of the conductance fluctuations at
zero temperature and the finite-temperature modifications

a Zero-Temperature Conductance Fluctuations

The most surprising feature of the conductance fluctuations 1s that their
magnitude at zero temperature 1s of order e?/h, regardless of the size of the
sample and the degree of disorder,**° 14! provided at least that L > [, so that
transport through the sample 1s diffusive (or possibly quasi-ballistic) Lee and
Stone'*! comed the term Umwersal Conductance Fluctuations (UCF) for this
effect In this subsection we give a simplified explanation of this universality
due to Lee 142

Consider first the classical Drude conductance (4 8) for a single spin
direction (and a single valley)

_Kej@_eznl N, NEkFW

= == — (71)
L h 2 h2L n

The number N equals the number of transverse modes, or one-dimensional
subbands, that are occupied at the Ferm: energy 1in a conductor of width W
We have written the conductance in this way to make contact with the

1408 [, Al'tshuler, Pisma Zh Eksp Teor Fiz 41,530 (1985) [JETP Lett 41, 648 (1985)]
'“1p A Lee and A D Stone, Phys Rev Lett 55, 1622 (1985)
142p A Lee, Physica 140A, 169 (1986)
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Fi16 20 Idealized conductor connecting source (S) and drain (D) reservoirs and containing a
disordered region (crosshatched) The incoming quantum channels (or transverse waveguide
modes) are labeled by «, the transmutted and backscattered channels by

Landauer approach* to conduction, which relates the conductance to the
transmission probabilities of modes at the Fermui energy (A detailed
discussion of this approach is given the context of quantum ballistic transport
in Section 12 b) The picture to have n mind 1s shown in Fig 20 Current 1s
passed from a source reservorr S to a drain reservoir D, through a disordered
region (hatched) in which only elastic scattering takes place The two
reservolrs are 1n thermal equilibrium and are assumed to be fully effective in
randomizing the phase via inelastic scattering, so there 1s no phase coherence
between the N modes incident on the disordered region The modes 1n this
context are called quantum channels If L > I, each channel has on average the
same transmission probability, given by nl/2L according to Eqgs (4 21) and
(7 1) We are interested 1n the fluctuations around this average The resulting
fluctuations m G then follow from the multichannel Landauer

formulal 143 144
e N
G= " ﬂZ ) It.51, (72)

where t;, denotes the quantum mechanical transmission probability
amplitude from the incident channel o to the outgoing channel § (cf Fig 20)
The ensemble averaged transmission probability {|z,4*> does not depend on
o or 8, so the correspondence between Eqs (7 1) and (7 2) requires

topl*> = wl/2NL (73)

The magnitude of the conductance fluctuations 1s characterized by its
variance Var(G) = {(G — {G»)*> As discussed by Lee, a difficulty arises in a
direct evaluation of Var(G) from Eq (72), because the correlation in the
transmission probabilities Itm,;l2 for different pairs of incident and outgoing
channels a, f may not be neglected '*> The reason 1s presumably that
transmission through the disordered region mvolves a large number of
impurity collisions, so a sequence of scattering events will 1n general be

143D S Fisher and P A Lee, Phys Rev B 23, 6851 (1981)
144A D Stone, 1n Ref 14
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shared by different channels. On the same grounds, it is reasonable to assume
that the reflection probabilities |r,4)* for different pairs af of incident and
reflected channels are uncorrelated, since the reflection back into the source
reservoir would seem to be dominated by only a few scattering events.'*?
(The formal diagrammatic analysis of Refs. 140 and 141 is required here for a
convincing argument.) The reflection and transmission probabilities are
related by current conservation

N

N
Z ltaﬂlz =N — /}Zé |ra[3|29 (74)

a,p=1 a 1

so the variance of the conductance equals

Var(G) = <%> Var <Z ]raﬂ|2> = (%)2 N2 Var(r,/2), (7.5)

assuming uncorrelated reflection probabilities. A large number M of scatter-
ing sequences through the disordered region contributes with amplitude
A@) (i=1,2, ..., M) to the reflection probability amplitude r,;. (The dif-
ferent scattering sequences can be seen as independent Feynman paths
in a path integral formulation of the problem.!*?) To calculate
Var(lr,gl?) = (Jrgl*> — <Ir,pl?>?, one may then write (neglecting correlations
in A(i) for different i)

rogl*> = };zl CA*DAG)AXRAD))
>

Jd=1

{<IA(i)I2><IA(k)l2>5l,5kz + <|A(i)|2><!A(j)I2>51151k}

=

=2<Iraﬂ|2>2, (76)

where we nave neglected terms smaller by a factor 1/M (assuming M > 1).
One thus finds that the variance of the reflection probability is equal to the
square of its average:

Var(lrygl?) = lrqgl®>. (7.7)

The average reflection probability ([rm,;]2 > does not depend on « and . Thus,
from Egs. (7.3) and (7.4) it follows that

{Irapl?> = N™H(1 — order(/L)). (7.8)

Combining Egs. (7.5), (7.7), and (7.8), one obtains the result that the zero-
temperature conductance has a variance (e?/h)?, independent of [ or L (in the
diffusive limit [ « L). We have discussed this argument of Lee in some detail,
because no other simple argument known to us gives physical insight in this
remarkable result.
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The numerical prefactors follow from the diagrammatic analy-
sig 140 141 145146 The result of Lee and Stone!*! for the root-mean-square
magnitude of the conductance fluctuations at T= 0 can be written in the
form

2

3G = [Var(G)]'? = % p=iC % (79)
Here C 1s a constant that depends on the shape of the sample Typically, C 1s
of order unity, for example, C ~# 073 in a narrow channel with L>» W
(However, 1n the opposite imit W > L of a wide and short channel, C 1s of
order (W/L)Y?) The parameter f = 1 1n a zero magnetic field when time-
reversal symmetry holds, f = 2 when time-reversal symmetry 1s broken by a
magnetic field The factor g,g, assumes complete spin and valley degeneracy
If the magnetic field 1s sufficiently strong that the two spin directions give
statistically independent contributions to the conductance, then the variances
add so that the factor g, m 6G 1s to be replaced by a factor g}/> We will return
to this point 1n Section 7d

b Nonzero Temperatures

At nonzero temperatures, the magnitude of the conductance fluctuations 1s
reduced below 6G ~ e%/h One reason 1s the effect of a fimte phase coherence
length [, = (D1,)"/ 2 another 1s the effect of thermal averaging, as expressed by
the thermal length [y = (hD/kzT)!"? The effect of a finite temperature,
contamed m [, and I, 1s to partially restore self-averaging, albeit that the
suppression of the fluctuation with sample size 1s much weaker than would be
the case classically The theory has been presented clearly and m detail by
Lee, Stone, and Fukuyama '3 We limit the present discussion to the 1D
regime W « I, « L, charactenistic for narrow 2DEG channels

The effects of thermal averaging may be neglected if I, « I (see below)
The channel may then be thought to be subdivided 1n uncorrelated segments
of length [, The conductance fluctuation of each segment individually will be
of order e?/h, as 1t 1s at zero temperature The root-mean-square conductance
fluctuation of the entire channel 1s easily estimated The segments are in
series, so their resistances add according to Ohm’s law We denote the
resistance of a channel segment of length I, by R, The variance of R, 1s
Var(R,) & (R >*Var(R ) ~ (R, >*(e*/h)> The average resistance of the
whole channel (R} = (L/l,){R,) increases linearly with the number L/I, of
uncorrelated channel segments, just as 1ts variance Var(R)=

1%°P A Lee, A D Stone, and H Fukuyama, Phys Rev B 35, 1039 (1987)
1468 L Altshulerand D E Khmel'mtskn, Pisma Zh Eksp Teor Fiz 42,291 (1985) [JETP Lett
42 359 (1985)]
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(L/lVar(Ry) = (L/,)}{R;>*(e*/h)* (The root-mean-square resistance fluc-
tuation thus grows as (L/l,)'/?, the square root of the number of channel
segments 1n series ) Expressed in terms of a conductance, one thus has
Var(G) = <R> *Var(R) = (I,/L)**/h)*, or

62 l¢ 3/2
0G = constant X 7 <Z> s ifl, «Ip (7 10)
The constant prefactor 1s given in Table 111

We now turn to the second effect of the finite temperature, which 1s the
smearing of the fluctuations by the energy average within an mterval of order
ki T around the Ferrm energy Er Note that we did not have to consider this
thermal averaging in the context of the weak localization effect, since that 1s
a systematic, rather than a fluctuating, property of the sample Two nter-
fering Feynman paths, traversed with an energy difference SE, have to be con-
sidered as uncorrelated after a time ¢, if the acquired phase difference ¢,5E/h
1s of order umty In this time the electrons diffuse a distance
L, = (Dt;)'"* ~ (hD/SE)*'* One can now define a correlation energy E (L,),
as the energy difference for which the phase difference following diffusion over
a distance L, 1s unity

E.(L)) = hD/L3 (711)
The thermal length I; 1s defined such that E (l;) = kg7, which implies
Iy = (hD/kyT)*? (7 12)

TABLE III AsSyYMPTOTIC EXPRESSIONS FOR THE ROOT-MEAN-SQUARE
CONDUCTANCE FLUCTUATIONS IN A NARROW CHANNEL *

T>0

T=0

I, > L Iy <L, Iy ly«<ly«L
2 e? e? [1,\*? e? 1132

5Gx_ﬁ”2 C-—- C_<_¢> C_T¢
959y h h \L h L3?
8 \1/?

C 073 V12 <?>

*The results assume a narrow channel (W « L), with a 2D density of
states (W > Ag), which 1s i the 1D Iimit for the conductance fluctua-
tions (W « [,) The expressions for 6G are from Refs 140, 141, 145, and
146 The numerical prefactor C for T= 0 1s from Ref 141, for T >0
from Ref 147 If time-reversal symmetry apphes, then # = 1, but in the
presence of a magnetic field strong enough to suppress the cooperon
contributions then f§ = 2 If the spin degeneracy 1s lifted, g, 1s to be
1/2

replaced by g
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(Note that this definition of [, differs by a factor of (2n)!/2 from that in Ref.
145.) The thermal smearing of the conductance fluctuations is of importance
only if phase coherence extends beyond a length scale Iy (i.c., if [, > [y). In this
case the total energy interval kT around the Fermi level that is available for
transport is divided into subintervals of width E_(l,) = #/t4 in which phase
coherence is maintained. There is a number N = kg T/E.(l;) of such subinter-
vals, which we assume to be uncorrelated. The root-mean-square variation
3G of the conductance is then reduced by a factor N ™Y/ x I/l with respect
to the result (7.10) in the absence of energy averaging. (A word of caution: as
discussed in Ref. 145, the assumption of N uncorrelated energy intervals is
valid in the 1D case W « I, considered here, but not in higher dimensions.)
From the foregoing argument it follows that

2 lTll/Z
0G = constant x A L—;;Z—, if Iy > . (7.13)
The asymptotic expressions (7.10) and (7.13) were derived by Lee, Stone,
and Fukuyama'4> and by Al'tshuler and Khmel’nitskii'#® up to unspecified
constant prefactors. These constants have been evaluated in Ref. 147, and are

given in Table III. In that paper we also gave an interpolation formula

2 3/2 27]-1/2
. 9% pe1a e’ (1, 9 [l
0G === z /12 —(2 1+—|-= , 7.14
2 4 h <L> [ 2n (lT (7.14)
with f§ defined in the previous subsection. This formula is valid (within 10%,
accuracy) also in the intermediate regime when [, =~ I;, and is useful for
comparison with experiments, in which generally I, and I are not well

separated (cf. Table I).

¢. Magnetoconductance Fluctuations

Experimentally, one generally studies the conductance fluctuations result-
ing from a change in Fermi energy Eg or magnetic field B rather than from a
change in impurity configuration. A comparison with the theoretical en-
semble average becomes possible if one assumes that, insofar as the
conductance fluctuations are concerned, a sufficiently large change in E¢ or B
is equivalent to a complete change in impurity configuration (this “ergodic
hypothesis™ has been proven in Ref. 148). The reason for this equivalence is
that, on one hand, the conductance at Er + AEg and B + AB is uncorrelated
with that at Ep and B, provided either AEg or AB is larger than a correlation
energy AE, or correlation field AB,. On the other hand, the correlation
energies and fields are in general sufficiently small that the statistical
properties of the ensemble are not modified by the increment in Eg or B, so
one is essentially studying a new member of the same ensemble, without
changing the sample.
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This subsection deals with the calculation of the correlation field AB,. (The
correlation energy is discussed in Ref. 145 and will not be considered here.)
The magnetoconductance correlation function is defined as

F(AB) = {[3G(B) — <G(B)>][G(B + AB) — {G(B + AB)>1),
(7.15)

where the angle brackets {---)> denote, as before, an ensemble average. The
root-mean-square variation 8G considered in the previous two subsections is
equal to F(0)*/*. The correlation field AB, is defined as the half-width at half-
height F(AB,) = F(0)/2. The correlation function F(AB) is determined
theoretically!#!-145:146 by temporal and spatial integrals of two propagators:
the diffuson P4(r,x', t) and the cooperon P (r,x',t). As discussed by Chakrav-
arty and Schmid,'?® these propagators consist of the product of three terms:
(1) the classical probability to diffuse from r to r’ in a time ¢ (independent of B
in the field range w7 « 1 of interest here); (2) the relaxation factor exp(—t/7,),
which describes the loss of phase coherence due to inelastic scattering events;
(3) the average phase factor {exp(iA¢)>, which describes the loss of phase
coherence due to the magnetic field. The average <{---> is taken over all
classical trajectories that diffuse from r to r’ in a time ¢. The phase difference
A¢ is different for a diffuson or cooperon:

T

Ad(diffuson) = % J AA-dl, (7.162)

Ad(cooperon) = % f QA + AA) -4, (7.16b)

where the line integral is along a classical trajectory. The vector potential A
corresponds to the magnetic field B =V x A, and the vector potential
increment AA corresponds to the field increment AB in the correlation
function F(AB) (according to AB = V x AA). An explanation of the different
magnetic field dependencies of the diffuson and cooperon in terms of
Feynman paths is given shortly.

In Ref. 109 we have proven that in a narrow channel (W « [,) the average
phase factor {exp(iA¢)> does not depend on initial and final coordinates r
and r’, provided that one works in the Landau gauge and that ¢ > . Thisis a
very useful property, since it allows one to transpose the results for
{exp(i Ag)> obtained for r =r’ in the context of weak localization to the
present problem of the conductance fluctuations, where r can be different
from r'. We recall that for weak localization the phase difference A¢ is that of
the cooperon, with the vector potential increment AA = 0 [cf. Eq. (6.5)]. The
average phase factor then decays exponentially as {exp(i A¢)> = exp(—t/tp)
[cf. Eq. (6.11)], with the relaxation time 7, given as a function of magnetic
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field B 1n Table II We conclude that the same exponential decay holds for the
average cooperon and diffuson phase factors after substitution of
B - B + AB/2 and B — AB/2, respectively, in the expressions for 1,

{e" ) (diffuson) = exp (—t/T,p2), (717a)

{e'**)(cooperon) = exp(—t/Tp.+ aps2) (7 17b)

The cooperon 1s suppressed when T, 45/, S 7,5, Which occurs on the same
field scale as the suppression of weak localization (determined by 75 < 7,)
The suppression of the cooperon can be seen as a consequence of the
breaking of the time-reversal invariance by the magnetic field, similar to the
suppression of weak localization In a zero field the cooperons and the
diffusons contribute equally to the variance of the conductance, therefore,
when the cooperon 1s suppressed, Var(G) 1s reduced by a factor of 2 (The
parameter f in Table III thus changes from 1 to 2 when B increases beyond
B_ ) In general, the magnetoconductance fluctuations are studied for B > B,
(1e, for fields beyond the weak localization peak) Then only the diffuson
contributes to the conductance fluctuations, since the relaxation time of the
diffuson 1s determined by the field inciement AB 1n the correlation function
F(AB), not by the magnetic field itself Thus 1s the critical difference with weak
localization The conductance fluctuations are not suppressed by a weak
magnetic field 14! 146 The different behavior of cooperons and diffusons can
be understood 1n terms of Feynman paths The correlation function F(AB)
contams the product of four Feynman path amplhtudes A(:, B), A*(j, B),
A(k, B + AB), and A*(l, B + AB) along various paths 1, J, k, [ from r to ¢
Consider the diffuson term for which : = [ and j = k The phase of this term
A(1, BYA*(J, B)A(j, B+ AB)A*(1,, B + AB) 15

—E§A-dl+5§(A+AA)-dl=EA®, (718)
h h h

where the line integral 1s taken along the closed loop formed by the two paths
randj (cf Fig 21a) The phase 1s thus given by the flux increment A® = SAB
through this loop and does not contain the flux ® = SB itself The fact that
the magnetic relaxation time of the diffuson depends only on AB and not on B
1s a consequence of the cancellation contained 1n Eq (7 18) For the cooperon,
the relevant phase 1s that of the product of Feynman path amplitudes
A_(1, B)A*(j, B)A.(j, B + AB)A* (1, B + AB), where the — sign refers to a
trajectory from r’ to r and the + sign to a trajectory fromr tor’ (see Fig 21b)
This phase 1s given by

3€A-dl+%f}€(A+AA)-d1—e(2<1>+Aq>) (719)

¢ €
h T h
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FiG 21 Tllustration of the different flux sensitivity of the interference terms of diffuson type
(a) and of cooperon type (b). Both contribute to the conductance fluctuations in a zero magnetic
field, but the cooperons are suppressed by a weak magnetic field, as discussed 1n the text.

In contrast to the diffuson, the cooperon is sensitive to the flux @ through the
loop and can therefore be suppressed by a weak magnetic field.

In the following, we assume that B > B, so that only the diffuson
contributes to the magnetoconductance fluctuations. The combined effects of
magnetic field and inelastic scattering lead to a relaxation rate

Tt = Tp ' + Tagz (7.20)

which describes the exponential decay of the average phase factor
("> = exp(—1t/to;). Equation (7.20) contains the whole effect of the
magnetic field on the diffuson. Without having to do any diagrammatic
analysis, we therefore conclude!*” that the correlation function F(AB) can be
obtained from the variance F(0) = Var G = (5G)? (given in Table III) by
simply replacing 1, by the effective relaxation time 7. defined in Eq. (7.20).
The quantity 7,5, corresponds to the magnetic relaxation time 7, obtained
for weak localization (see Table II) after substitution of B —» AB/2. For easy
reference, we give the results for the dirty and clean metal regimes
explicitly:109-147

A | .
TAB/Z = 12<m> D—VVZ‘, if l < VV, (721)

A\ h ) .
TaBi2 = 4C1 <m> W + 2C2 <m> UF_VV—Z, if [ >» VV, (722)

147C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988).
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where C, =9.5 and C, = 24/5 for a channel with specular boundary
scattering (C, = 4n and C, = 3 for a channel with diffuse boundary scatter-
ing). These results are valid under the condition W2 AB « #/e, which follows
from the requirement 7., > 7 that the electronic motion on the effective phase
coherence time scale 7., be diffusive rather than ballistic, as well as from the
requirement (Dt.¢)'/? > W for one-dimensionality.

With results (7.20)—(7.22), the equation F(AB,) = F(0)/2, which defines the
correlation field AB_, reduces to an algebraic equation that can be solved
straightforwardly. In the dirty metal regime one finds'43

ho1

AB, = 2rC e W, (7.23)
where the prefactor C decreases from**7 0.95 for I, » Iy to 0.42 for [, « Iy
Note the similarity with the result (6.9) for weak localization. Just as in weak
localization, one finds that the correlation field in the pure metal regime is
significantly enhanced above Eq. (7.23) due to the flux cancellation effect
discussed in Section 6.c. The enhancement factor increases from (I/W)'/? to
I/W as 1, decreases from above to below the length I*?W =1/, The relevant
expression is given in Ref. 147. As an illustration, the dimensionless
correlation flux AB, Wige/hin the pure and dirty metal regimes is plotted as a
function of /,/l in Fig. 22 for I} « 1.

In the following discussion of the experimental situation in semiconductor
nanostructures, it is important to keep in mind that the Al'tshuler—Lee—
Stone theory of conductance fluctuations was formulated for an application

8
T Quasi-
6 ballistic
&
4
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Difusive ______ |
O I | - 1 L
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FiG 22. Plot of the dimensionless correlation flux ®, = AB.l,We/h for the magnetoconduc-
tance fluctuations as a function of /I n the regime /1 « I, The solid curve 1s for the case I = SW;
the dashed line 1s for [ « W Taken from C W. J. Beenakker and H van Houten, Phys Rev B 37,
6544 (1988)
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to metals. This has justified the neglect of several possible complications,
which may be important in a 2DEG. One of these is the classical curvature of
the electron trajectories, which affects the conductance when [, S mn(W, ).
A related complication is the Landau level quantization, which in a narrow
channel becomes important when [, S W, Furthermore, when W~ Ag the
lateral confinement will at low fields induce the formation of 1D subbands.
No quantization effects are taken into account 1n the theory of conductance
fluctuations discussed before. Finally, the present theory is valid only in the
regime of coherent diffusion (t,, 7. * 7). In high-mobility samples 7, and ©
may be comparable, however, as discussed 1n Section 7.d. It would be of
interest to study the conductance fluctuations in this regime theoretically.

In the following discussion of experimental studies of conductance
fluctuations, we will have occasion to discuss briefly one further development.
This 1s the modification of the theory'4°7!5% to account for the differences
between two- and four-terminal measurements of the conductance fluctua-
tions, which becomes important when the voltage probes are separated by
less than the phase coherence length.!33:1%6

d. Experiments

The experimental observation of conductance fluctuations in semicon-
ductors has preceded the theoretical understanding of this phenomenon.
Weak 1rregular conductance fluctuations in wide S1 inversion layers were
reported 1n 1965 by Howard and Fang.'®” More pronounced fluctuations
were found by Fowler et al. in narrow Si accumulation layers in the strongly
localized regime.?? Kwasnick et al. made similar observations in narrow Si
inversion layers in the metallic conduction regime.*® These fluctuations in the
conductance as a function of gate voltage or magnetic field have been
tentatively explained by various mechanisms.!®® One of the explanations
suggested 15 based on resonant tunneling,'>® another on variable range
hopping.'®® At the 1984 conference on “Electronic Properties of Two-

1488 I Al'tshuler, V E Kravtsov, and I V Lerner, Pisma Zh Eksp Teor Fiz 43, 342 (1986)
[JETP Lett 43, 441 (1986)]

149M Buttiker, Phys Rev B 35,4123 (1987)

1308 Maekawa, Y Isawa, and H Ebisawa, J Phys Soc Jpn 56, 25 (1987)

'SIH U Baranger, A D Stone, and D P DiVincenzo, Phys Rev B 37, 6521 (1988)

1525 Hershfield and V Ambegaokar, Phys Rev B 38, 7909 (1988)

153C L Kane, P A Lee, and D P DiVincenzo, Phys Rev B 38, 2995 (1988)

134D P DiVincenzo and C L Kane, Phys Rev B 38, 3006 (1988)

135A D Benoit,C P Umbach, R B Laibowitz,and R A Webb, Phys Rev Lett 58,2343 (1987)

156y J Skocpol, P M Mankiewich, R E Howard, L D Jackel, D M Tennant, and A D
Stone, Phys Rev Lett 58, 2347 (1987)

157W E Howard and F F Fang, Solid State Electronics 8, 82 (1965)

'58A Hartsten, R A Webb, A B Fowler, and J J Wainer, Surf Sci 142, 1 (1984)

159M Ya Azbel, Phys Reo B 28, 4106 (1983)

160p A Lee, Phys Rev Lett 53,2042 (1984)
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Fi1G 23 Negative magnetoresistance and aperiodic magnetoresistance fluctuations i a
narrow St inversion layer channel for several values of the gate voltage ¥;; Note that the vertical
offset and scale 1s different for each V; Taken from J C Licini et al, Phys Rev Lett 55,2987
(1985)

Dimensional Systems” Wheeler et al '®' and Skocpol et al '®? reported

pronounced structure as a function of gate voltage in the low-temperature
conductance of narrow Si mversion layers, observed 1n the course of their
search for a quantum size effect

After the publication m 1985 of the Altshuler—Lee~Stone
theory!#? 141 163 of universal conductance fluctuations, a consensus has
rapidly developed that this theory properly accounts for the conductance
fluctuations 1n the metallic regime, up to factor of two uncertainties in the
quantitative description 46 144 164 Following this theoretical work, Licin1 et
al %0 attributed the magnetoresistance oscillations that they observed in
narrow S1 inversion layers to quantum interference mn a disordered con-
ductor Their low-temperature measurements, which we reproduce in Fig 23,

telR G Wheeler, K K Choi, and R Wisnieff, Surf Sct 142, 19 (1984)

162y J Skocpol, L D Jackel, R E Howard, H G Craighead, L A Fetter, P M Mankiewich,
P Grabbe, and D M Tennant, Surf Sci 142, 14 (1984)

183A D Stone, Phys Rev Lett 54, 2692 (1985)

164R A Webb, S Washburn, H J Haucke, A D Benoit, C P Umbach, and F P Mulliken,
Ref 14
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show a large negative magnetoresistance peak due to weak localization at
low magnetic fields, in addition to aperiodic fluctuations that persist to high
fields Such a clear weak localization peak 1s not found in shorter samples,
where the conductance fluctuations are larger The reason 1s that the
magnitude of the conductance fluctuations AG 1s proportional to (I,/L)*?
[for [, « Iy, cf Eq (710)], while the weak localization conductance cor-
rection scales with [, /L [as discussed below Eq (6 4)] Weak localization thus
predominates 1n long channels (L » ;) where the fluctuations are relatively
unmmportant

The most extensive quantitative study of the umiversality of the con-
ductance fluctuations 1 narrow S1 mversion layers (over a wide range of
channel widths, lengths, gate voltages, and temperatures) was made by
Skocpol et al *° 45 156 In the following, we review some of these experimental
results We will not discuss the similarly extensive investigations by Webb et
al 133184165 o small metallic samples, which have played an equally
important role 1n the development of this subject To analyze their experi-
ments, Skocpol et al estimated [, from weak localization experiments (with
an estimated uncertainty of about a factor of 2) They then plotted the root-
mean-square variation 6G of the conductance as a function of L/, with L the
separation of the voltage probes 1n the channel Their results are shown 1
Fig 24 The points for L > [, convincingly exhibit for a large variety of data
sets the (L/l,) 3% scaling law predicted by the theory described in Section 7 ¢
(for I, < Iy, which 1s usually the case in St inversion layers)

For L < I, the experimental data of Fig 24 show a crossover to a (L/ll,,)‘2
scaling law (dashed line), accompanied by an mcrease of the magnitude of the
conductance fluctuations beyond the value 6G = e?/h predicted by the
Al'tshuler—Lee—Stone theory for a conductor of length L <, A sumilar
observation was made by Benoit et al 13> on metallic samples The disagree-
ment 15 explamed?>® 156 by considering that the experimental geometry
differs from that assumed in the theory discussed 1n Section 7 ¢ Use 1s made
of a long channel with voltage probes at different spacings The experimental
L 1s the spacing of two voltage probes, and not the length of a channel
connecting two phase-randomizing reservoirs, as envisaged theoretically The
difference 1s 1rrelevant if L > [, If the probe separation L 1s less than the
phase coherence length [, however, the measurement still probes a channel
segment of length [, rather than L In this sense the measurement 1s
nonlocal 133 13¢ The key to the L™ 2 dependence of G found experimentally 1s
that the voltages on the probes fluctuate independently, implying that the

165R A Webb, S Washburn, C P Umbach, and R B Laibowitz, in “Localization, Interaction,
and Transport Phenomena,” p 121 (B Kramer, G Bergmann, and Y Bruynseraede, eds)
Springer, New York, 1984
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Fic 24 Root-mean-square amplitude dg of the conductance fluctuations (in units of e?/h) as a
function of the ratio of the distance between the voltage probes L to the estimated phase
coherence length I, for a set of S1 mnversion layer channels under widely varying experimental
conditions The solid and dashed lLines demonstrate the (L/l,) ">/ and (L/I,)~ % scaling of 8¢ 1n the
regimes L > I, and L < I, respectively Taken from W J Skocpol, Physica Scripta T19, 95 (1987).

resistance fluctuations 6R are independent of L in this regime so that
3G ~ R™26R oc L™2. This explanation is consistent with the anomalously
small correlation field B, found for L < [,.*%'*® One might have expected
that the result B, ~ h/eWl, for L > I, should be replaced by the larger value
B, ~ h/eWLif L is reduced below [,. The smaller value found experimentally
1s due to the fact that the flux through parts of the channel adjacent to the
segment between the voltage probes, as well as the probes themselves, has to
be taken into account. These qualitative arguments!>*13¢ are supported by
detailed theoretical investigations.!*°~134 The important message of these
theories and experiments is that the transport in a small conductor is phase
coherent over large length scales and that phase randomization (due to
inelastic collisions) occurs mainly as a result of the voltage probes. The
Landauer-Biittiker formalism*® {which we will discuss in Section 12) is
naturally suited to study such problems theoretically. In that formalism,
current and voltage contacts are modeled by phase-randomizing reservoirs
attached to the conductor. We refer to a paper by Biittiker'*® for an
instructive discussion of conductance fluctuations in a multiprobe conductor
in terms of interfering Feynman paths.

Conductance fluctuations have also been observed in narrow-channel
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GaAs—AlGaAs heterostructures 16 167 These systems are well 1n the pure
metal regime (W< 1), but unfortunately they are only marginally in the
regime of coherent diffusion (characterized by t, > 1) This hampers a
quantitative comparnson with the theoretical results'#” for the pure metal
regime discussed 1n Section 7¢ (A phenomenological treatment of con-
ductance fluctuations in the case that 74, ~ 7 1s given 1 Refs 168 and 169)
The data of Ref 167 are consistent with an enhancement of the correlation
field due to the flux cancellation effect, but are not conclusive 47 We note
that the flux cancellation effect can also explamn the correlation field
enhancement noticed 1n a computer simulation by Stone 63

In the analysis of the aforementioned experiments on magnetoconduc-
tance fluctuations, a twofold spin degeneracy has been assumed The variance
(6G)? 1s reduced by a factor of 2 if the spin degeneracy 1s lifted by a strong
magnetic field B > B,, The Zeeman energy gugB should be sufficiently large
than the spmm-up and spin-down electrons give statistically independent
contributions to the conductance The degeneracy factor g2 in (6G)* (intro-
duced m Section 7a) should then be replaced by a factor g,, since the
varlances of statistically independent quantities add Since g, = 2, one
obtains a factor-of-2 reduction 1n (6G)> Note that this reduction comes on
top of the factor-of-2 reduction m (6G)? due to the breaking of time-reversal
symmetry, which occurs at weak magnetic fields B, Stone has calculated!’®
that the field B, 1n a narrow channel (I, > W) s given by the criterion of umit
phase change gupBt,/h 1 a coherence time, resulting in the estimate
B, ~ h/gugt, Surprisingly, the thermal energy kpT 1s irrelevant for B, in
the 1D case [, > W (but not 1n lmgher dimensions'’?)

For the narrow-channel experiment of Ref 167 just discussed, one finds
(using the estimates 7, ~ 7ps and g = 0 4) a crossover field B, of about 2T,
well above the field range used for the data analysis *47 Most importantly, no
magnetoconductance fluctuations are observed 1f the magnetic field 1s applied
parallel to the 2DEG (see Section 9), demonstrating that the Zeeman splitting
has no effect on the conductance 1n this field regime More recently, Debray et
al '! performed an experimental study of the reduction by a perpendicular
magnetic field of the conductance fluctuations as a function of Ferrm1 energy

66T J Thornton, M Pepper, H Ahmed, G J Davies, and D Andrews, Phys Rev B 36, 4514
(1987)

167H van Houten, B J van Wees, ] E Mooy, G Roos, and K -F Berggren, Superlattices and
Microstructures 3, 497 (1987)

168R P Taylor, M L Leadbeater, G P Wittington, P C Main, L Eaves, S P Beaumont, I
Mclntyre S Thoms, and C D W Wilkinson, Surf Sci 196, 52 (1988)

19T Fukui and H Saito, Jpn J Appl Phys 27 L1320 (1988)

170A D Stone, Phys Rev B 39, 10736 (1989)

17'P Debray, J-L Pichard, J Vicente, and P N Tung, Phys Rev Lett 63, 2264 (1989)
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(varied by means of a gate) The estumated value of 7, 1s larger than that of
Ref 167 by more than an order of magmitude Consequently, a very small
B., *007T 1s estimated 1n this experiment The channel 1s relatively wide
(2 um hthographic width), so the field B, for time-reversal symmetry breaking
1s even smaller (B, =~ 7x 10™*T) A total factor-of-4 reduction 1n (6G)* was
found, as expected The values of the observed crossover fields B, and B,,
also agree reasonably well with the theoretical prediction Unfortunately, the
magnetoconductance in a parallel magnetic field was not investigated by
these authors, which would have provided a definitive test for the effect of
Zeeman splitting on the conductance above B,, We note that related
experimental!’? 173 and theoretical'’ 75 work has been done on the
reduction of temporal conductance fluctuations by a magnetic field

The Al'tshuler—Lee—Stone theory of conductance fluctuations ceases
to be apphicable when the dimensions of the sample approach the mean
free path In this ballistic regime observations of large aperiodic, as well
as quasi-periodic, magnetoconductance fluctuations have been repor-
ted 68 69 139 168 176=179 Qyuantum interference effects in this regime are
determined not by impurity scattering but by scattering off geometrical
features of the device, as will be discussed 1in Section 111

8 AnHARONOV—-BoHM EFFECT

Magnetoconductance fluctuations in a channel geometry 1 the diffusive
regime are aperiodic, since the mterfering Feynman paths enclose a cont-
muous range of magnetic flux values A ring geometry, in contrast, encloses a
well-defined flux ® and thus imposes a fundamental periodicity

G(®) = G(D + n(h/e)), n=1273, , @81

on the conductance as a function of perpendicular magnetic field B (or flux
® = BS through a ring of area S) Equation (8 1) expresses the fact that a flux
mcrement of an mteger number of flux quanta changes by an integer multrple
of 27 the phase difference between Feynman paths along the two arms of the
ring The periodicity (8 1) would be an exact consequence of gauge invariance
if the magnetic field were nonzero only in the interior of the ring, as 1n the

172N O Birge, B Golding, and W H Haemmerle, Phys Rev Lett 62, 195 (1989)

1730 Mailly, M Sanquer, J-L Pichard, and P Pari, Europhys Lett 8, 471 (1989)

1745 Feng, P A Lee,and A D Stone, Phys Rev Lett 56, 1960 (1986), erratum 56, 2772 (1986)

1758 L Al'tshuler and B Z Spivak, Pisma Zh Eksp Teor Fiz 42,363 (1985) [JETP Lett 42,
447 (1985)]

1764 M Chang, K Owusu-Sekyere, and T Y Chang, Solid State Comm 67, 1027 (1988)

177A' M Chang, G Timp,J E Cunningham, P M Mankiewich, R E Behringer, R E Howard,
and H U Baranger, Phys Rev B 37, 2745 (1988)

1787 A Simmons, D C Tsui, and G Weimann, Surf Sci 196, 81 (1988)

1799 Yamada, H Asai, Y Fukal, and T Fukw, Phys Rev B (to be published)
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F1G 25 Illustration of the Aharonov-Bohm effect in a ring geometry Interfering trajectories
responstble for the magnetoresistance oscillations with h/e periodicity 1n the enclosed flux @ are
shown (a) (b) The pair of ime-reversed trajectories lead to oscillations with h/2e periodicity

original thought experiment of Aharonov and Bohm.'®° In the present

experiments, however, the magnetic field penetrates the arms of the ring as

well as its interior so that deviations from Eq. (8.1) can occur. Since in many

situations such deviations are small, at least in a limited field range, one still

refers to the magnetoconductance oscillations as an Aharonov—Bohm effect.
The fundamental periodicity

k1

=< 8.2)

AB
is caused by interference between trajectories that make one half-revolution
around the ring, as in Fig. 25a. The first harmonic

h1

—5= 8.3)

AB

results from interference after one revolution. A fundamental distinction
between these two periodicities is that the phase of the h/e oscillations (8.2) is
sample-specific, whereas the h/2e oscillations (8.3) contain a contribution .
from time-reversed trajectories (as in Fig. 25b) that has a minimum con-
ductance at B = 0, and thus has a sample-independent phase. Consequently,
in a geometry with many rings in series (or in parallel) the h/e oscillations
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average out, but the h/2e oscillations remain. The h/2e oscillations can be
thought of as a periodic modulation of the weak localization effect due to
coherent backscattering.

The first observation of the Aharonov—Bohm effect in the solid state was
made by Sharvin and Sharvin!®! in a long metal cylinder. Since this 1s
effectively a many-ring geometry, only the h/2e oscillations were observed, in
agreement with a theoretical prediction by Al'tshuler, Aronov, and
Spivak,*®? which motivated the experiment. (We refer to Ref. 125 for a simple
estimate of the order of magnitude of the h/2e oscillations 1n the dirty metal
regime.) The effect was studied extensively by several groups.*837185 The h/e
oscillations were first observed in single metal rings by Webb et al.!®¢ and
studied theoretically by several authors,!-144187:188 The self-averaging of the
h/e oscillations has been demonstrated explicitly in experiments with a
varying number of rings in series.!®® Many more experiments have been
performed on one- and two-dimensional arrays and networks, as reviewed n
Refs. 190 and 191.

In this connection, we mention that the development of the theory of
aperiodic conductance fluctuations (discussed in Section 7) has been much
stimulated by their observation in metal rings by Webb et al.,' %5 in the course
of thewr search for the Aharonov—Bohm effect. The reason that aperiodic
fluctuations are observed in rings (in addition to periodic oscillations) is that
the magnetic field penetrates the width of the arms of the ring and is not
confined to 1ts interior. By fabricating rings with a large ratio of radius r to
width W, researchers have proven it is possible to separate'?® the magnetic
field scales of the periodic and aperiodic oscillations (which are given by a
field interval of order h/er® and h/eWl,, respectively). The penetration of the
magnetic field in the arms of the ring also leads to a broadening of the peak in

180y Aharonov and D Bohm, Phys Rev 115, 485 (1959)

81D Yu Sharvin and Yu V Sharvin, Pisma Zh Teor Fiz 34,285 (1981) [JETP Lett 34,272
(1981)

828 L Al'tshuler, A G Aronov, and B Z Spivak, Pisma Zh Teor Fiz 33, 101 (1981) [JETP
Lett 33, 94 (1981)]

1838 1. Al'tshuler, A G Aronov, B Z Spivak, D Yu Sharvin, and Yu V Sharvin, Pisma Zh
Eksp Teor Fiz 35,476 (1982) [JETP Lett 35, 588 (1982)]

'84yu V Sharvin, Physica B 126, 288 (1984)

185M Guys, C van Haesendonck, and Y Bruynseraede, Phys Rev Lett 52, 2069 (1984), Phys
Rev B 30, 2964 (1984)

'86R A Webb, S Washburn, C P Umbach, and R B Laibowitz, Phys Rev Lett 54, 2696
(1985)

187y Gefen, Y Imry,and M Ya Azbel, Surf Sci 142, 203 (1984), Phys Rev Lett 52,129 (1984)

188M Buttiker, Y Imry, R Landauer, and S Pinhas, Phys Rev B 31, 6207 (1985)

189 p Umbach, C Van Haesendonck, R B Laibowitz, S Washburn, and R A Webb, Phys
Rev Lett 56, 386 (1986)

1905 Washburn and R A Webb, Adv Phys 35, 375 (1986)

191A G Aronov and Yu V Sharvin, Rev Mod Phys 59, 755 (1987)



68 C W J BEENAKKER AND H VAN HOUTEN

the Fourier transform at the e/h and 2e/h periodicities, associated with a
distribution of enclosed flux 12 The width of the Fourier peak can be used as
a rough estimate for the width of the arms of the ring In addition, the
nonzero field 1n the arms of the ring also leads to a damping of the amplitude
of the ensemble-averaged h/2e oscillations when the flux through the arms 1s
sufficiently large to suppress weak localization %!

Two excellent reviews of the Aharonov—Bohm effect in metal rings and
cylinders exist 19 121 In the following we discuss the experiments 1n semicon-
ductor nanostructures i the weak-field regime w.t < 1, where the effect of
the Lorentz force on the trajectories can be neglected The strong-field regime
w.7 > 1 (which 1s not easily accessible 1in the usual polycrystalline metal
rings) 1s only briefly mentioned, it 1s discussed more extensively in Section 21
To our knowledge, no observation of Aharonov—-Bohm magnetoresistance
oscillations 1n S1inversion layers has been reported The first observation of
the Aharonov—Bohm effect in a 2DEG ring was published by Timp et al ,°°
who employed high-mobility GaAs—AlGaAs heterostructure material
Simular results were obtained independently by Ford et al 7® and Ishibashi et
al 123 More detailed studies soon followed 74 132 176 194 195 A characteristic
feature of these experiments 1s the large amplitude of the h/e oscillations (up
to 109 of the average resistance), much higher than in metal rings (where the
effect 1s at best!®2 196 197 of order 0 1%) A similar difference in magnitude 1s
found for the aperiodic magnetoresistance fluctuations 1 metals and semi-
conductor nanostructures The reason 1s simply that the amplitude G of the
periodic or aperiodic conductance oscillations has a maximum value of order
e?/h, so the maximum relative resistance oscillation SR/R ~ RSG ~ Re*/h 1s
proportional to the average resistance R, which 1s typically much smaller 1n
metal rings

In most studies only the h/e fundamental periodicity 1s observed, although
Ford et al 7* 7% found a weak h/2e harmonic 1n the Fourier transform of the
magnetoresistance data of a very narrow ring It 1s not quite clear whether
this harmonic 1s due to the Al'tshuler—Aronov—Spivak mechanism mnvolving
the constructive mnterference of two time-reversed trajectories'®? or to the
random interference of two non-time-reversed Feynman paths winding
around the entire ring ! 44 187 The relative weakness of the h/2e effect m
single 2DEG rings 1s also typical for most experiments on single metal rings

192R A Webb, A Hartstein, J J Wainer, and A B Fowler, Phys Rev Lett 54, 1577 (1985)

193K Ishibashi Y Takagaki, K Gamo, S Namba, S Ishida, K Murase, Y Aoyagy, and M
Kawabe, Solid State Comm 64, 573 (1987)

194A M Chang,G Timp, T Y Chang, J E Cunningham, B Chelluri, P M Mankiewich, R E
Behringer, and R E Howard, Surf Sct 196, 46 (1988)

195C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, D C Peacock, D A
Ritchie, J E F Frost,and G A C Jones, Appl Phys Lett 54,21 (1989)

196C P Umbach, S Washburn, R B Laibowitz, and R A Webb, Phys Rev B 30, 4048 (1984)

97V Chandrasekhar, M J Rooks, S Wind, and D E Prober, Phys Rev Lett 55,1610 (1985)
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(although the opposite was found to be true 1n the case of aluminum rings by
Chandrasekhar et al,'®7 for reasons which are not understood) This 1s 1
contrast to the case of arrays or cylinders, where, as we mentioned, the i/2e
oscillations are predominant—the h/e effect being “ensemble-averaged” to
zero because of 1ts sample-specific phase In view of the fact that the
experiments on 2DEG rings explore the borderline between diffusive and
ballistic transport, they are rather difficult to analyze quantitatively A
theoretical study of the Aharonov—Bohm effect in the purely ballistic
transport regime was performed by Datta and Bandyopadhyay,'®® in
relation to an experimental observation of the effect in a double-quantum-
well device 1°° A related study was published by Barker 2°°

The Aharonov—Bohm oscillations in the magnetoresistance of a small ring
mn a high-mobility 2DEG are quite impressive As an illustration, we
reproduce 1n Fig 26 the results obtained by Timp et al 2°! Low-frequency
modulations were filtered out, so that the rapid oscillations are superimposed
on a constant background The amplitude of the h/e oscillations diminishes
with increasing magnetic field until eventually the Aharonov—Bohm effect 1s
completely suppressed The reduction in amplitude 1s accompanied by a
reduction 1n frequency A similar observation was made by Ford et al ’* In
metals, 1n contrast, the Aharonov—Bohm oscillations persist to the highest
experimental fields, with constant frequency The different behavior in a
2DEG 15 a consequence of the effect of the Lorentz force on the electrons in
the ring, which 1s of importance when the cyclotron diameter 2/ ., becomes
smaller than the width W of the arm of the ring, provided (W < ) (note that
Iy = hkg/eB 15 much smaller 1in a 2DEG than 1n a metal, at the same
magnetic field value) We will return to these effects in Section 21

An electrostatic potential V affects the phase of the electron wave function
through the term (e/h) [ V dt m much the same way as a vector potential
does 18° If the two arms of the ring have a potential difference ¥, and an
electron traverses an arm 1n a time ¢, then the acquired phase shift would lead
to oscillations 1n the resistance with periodicity AV = h/et The electrostatic
Aharonov—Bohm effect has a periodicity that depends on the transit time ¢,
and 1s not a geometrical property of the ring, as it 1s for the magnetic effect A
distribution of transit times could easily average out the oscillations Note
that the potential difference effectuates the phase difference by changing the
wavelength of the electrons (via a change in their kinetic energy), which also
distinguishes the electrostatic from the magnetic effect (where a phase shaft 1s

1985 Datta and S Bandyopadhyay, Phys Rev Lett 58, 717 (1987)

199§ Datta, M R Melloch, S Bandyopadhyah, R Noren, M Vazinn, M Miller, and R
Reifenberger, Phys Rev Lett 55, 2344 (1985)

200] R Barker, in Ref 15

201G Timp A M Chang, P DeVegvar, R E Howard, R Behringer,] E Cunningham, and P
Mankiewich Sutf S 196 68 (1988)
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Fi1G 26 Experimental magnetoresistance of a ring of 2 um diameter, defined in the 2DEG of a
high-mobility GaAs—AlGaAs heterostructure (T = 270 mK) The different traces are consecutive
parts of a magnetoresistance measurement from 0 to 1 4 T, digitally filtered to suppress a slowly
varying background The oscillations are seen to persist for fields where w.z > 1, but their
amplitude 1s reduced substantially for magnetic fields where 21, « W (The field value where
21,0 = 2r, = W s indicated) Taken from G Tump et al, Surf Sci1 196, 68 (1988)
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induced by the vector potential without a change in wavelength) An
experimental search for the electrostatic Aharonov—Bohm effect in a small
metal ring was performed by Washburn et al >° An electric field was applied
in the plane of the ring by small capacitive electrodes They were able to shaft
the phase of the magnetoresistance oscillations by varying the field, but the
effect was not sufficiently strong to allow the observation of purely electrosta-
tic oscillations Unfortunately, this experiment could not discriminate be-
tween the effect of the electric field penetrating in the arms of the ring (which
could induce a phase shift by changing the trajectories) and that of the elec-
trostatic potential Experiments have been reported by De Vegvar et al 2°3
on the mamipulation of the phase of the electrons by means of the voltage on a
gate electrode positioned across one of the arms of a heterostructure ring In
this system a change in gate voltage has a large effect on the resistance of the
ring, primarily because 1t strongly affects the local density of the electron gas
No clear periodic signal, indicative of an electrostatic Aharonov—Bohm
effect, could be resolved As discussed in Ref 203, this 1s not too surprising, in
view of the fact that in that device 1D subband depopulation 1n the region
under the gate occurs on the same gate voltage scale as the expected
Aharonov Bohm effect The observation of an electrostatic Aharonov—
Bohm effect thus remains an experimental challenge A successful experiment
would appear to require a ring in which only a single 1D subband 1s occupied,
to ensure a unique transit time 198 200

9 ELECTRON-ELECTRON INTERACTIONS
a Theory

In addition to the weak locahization correction to the conductivity
discussed 1n Section 6, which arises from a single-electron quantum 1nter-
ference effect, the Coulomb interaction of the conduction electrons gives also
rise to a quantum correction 2°# 295 In two dimensions the latter correction
has a loganthmic temperature dependence, just as for weak localization [see
Eq (64)] A perpendicular magnetic field can be used to distinguish the two
quantum corrections, which have a different field dependence 118 204210
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This field of research has been reviewed in detail by Altshuler and
Aronov,2!! by Fukuyama,?'? and by Lee and Ramakrishnan,!2” with an
emphasis on the theory A broader review of electronic correlation effects in
2D systems has been given by Isithara in this series 2! In the present
subsection we summarize the relevant theory, as a preparation for the
following subsection on expermmental studies in semiconductor nanostruc-
tures We do not discuss the diagrammatic perturbation theory, since 1t 1s
highly technical and does not lend itself to a discussion at the same level as for
the other subjects dealt with 1n this review

An attempt at an intuitive interpretation of the Feynman diagrams was
made by Bergmann *!4 It 1s argued that one important class of diagrams may
be interpreted as diffraction of one electron by the oscillations mn the
electrostatic potential generated by the other electrons The Coulomb
interaction between the electrons thus introduces a purely quantum mechan-
1cal correlation between their motion, which 1s observable 1n the conductiv-
ity The diffraction of one electron wave by the interference pattern generated
by another electron wave will only be of importance if their wavelength
difference, and thus their energy difference, 1s small At a finite temperature T,
the characteristic energy difference 1s kT The time t; = A/kg T enters as a
long-time cutoff 1 the theory of electron—electron interactions in a disor-
dered conductor, mn the usual case'?”?!'! ¢ $1, (Fukuyama®!? also
discusses the opposite lmit 7¢ > 7, ) Accordingly, the magmtude of the
thermal length I} = (Dtp)!? compared with the width W determines the
dimensional crossover from 2D to 1D [for l; <l, =(D74)"?] In the
expression for the conductivity correction associated with electron—electron
interactions, the long-time cutoff t; enters logarithmically in 2D and as a
square root in 1D These expressions thus have the same form as for weak
localization, but with the phase coherence time 7, replaced by 7y The ongin
of this difference 1s that a finite temperature does not introduce a long-time
cutoff for the single-electron quantum mterference effect responsible for weak
localization, but merely induces an energy average of the corresponding
conductivity correction

In terms of effective mteraction parameters g,p and g, p, the conductivity

211B L Altshulerand A G Aronov, in “Electron-Electron Interactions m Disordered Systems,”
p 1 (A L Efros and M Pollak, eds) North-Holland, Amsterdam, 1985

212H Fukuyama, m “Electron-Electron Interactions i Disordered Systems,” p 155(A L Efros
and M Pollak, eds) North-Holland, Amsterdam, 1985

23A Isthara, Solid State Physics, Vol 42, p 271 (H Ehrenreich and D Turnbull, eds)
Academic Press, New York, 1989

214G Bergmann, Phys Rev B 35, 4205 (1987)
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corrections due to electron—electron interactions can be written as (assuming
T K Ty K Ty)

2

e Tr

00, = — —2—7t2—hg2Dln7, for Iy « W, (9.1a)
e? Ir

60, = for W« I « L. (9.1b)

T3 90

Under typical experimental conditions,>® the constants g, and g,p are
positive and of order unity. Theoretically, these effective interaction para-
meters depend in a complicated way on the ratio of screening length to Fermi
wavelength and can have either sign. We do not give the formulas here, but
refer to the reviews by Al'tshuler and Aronov?!! and Fukuyama.?!? In 2D
the interaction correction o, shares a logarithmic temperature dependence
with the weak localization correction oy, and both corrections are of the
same order of magnitude. In 1D the temperature dependences of the two
effects are different (unless 7, oc T~ '/?). Moreover, in the 1D case 60, < 60},
if Iy «< 1.

A weak magnetic field fully suppresses weak localization, but has only a
small effect on the quantum correction from electron—electron interactions.
The conductance correction 3G, contains contributions of diffuson type and
of cooperon type. The diffusons (which give the largest contributions to 6G.,)
are affected by a magnetic field only via the Zeeman energy, which removes
the spin degeneracy when gugB < kgT In the systems of interest here, spin
splitting can usually be ignored below 1T, so the diffusons are insensitive to a
weak magnetic field. Since the spin degeneracy is removed regardless of the
orientation of the magnetic field, the B-dependence of the diffuson is
isotropic. The smaller cooperon contributions exhibit a similar sensitivity as
weak localization to a weak perpendicular magnetic field, the characteristic
field being determined by /% ~ I% in 2D and by 2 ~ Wi; in 1D (in the dirty
metal regime W > [, so flux cancellation does not play a significant role). The
magnetic length I, = (h/eB,)'/* contains only the component B, of the field
perpendicular to the 2DEG, since the magnetic field affects the cooperon via
the phase shift induced by the enclosed flux. The anisotropy and the small
characteristic field are two ways to distinguish experimentally the cooperon
contribution from that of the diffuson. It is much more difficult to distinguish
the cooperon contribution to 6G,, from the weak localization correction,
since both effects have the same anisotropy, while their characteristic fields
are comparable (I; and I, not being widely separated in the systems
considered here). This complication is made somewhat less problematic by
the fact that the cooperon contribution to 4G, is often considerably smaller
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than 6G,,., in which case it can be ignored. In 1D the reduction factor®>2!! is

of order [1 + Aln(Eg/kgT)] ™ *(Ix/l,), with A a numerical coefficient of order
unity.

There is one additional aspect to the magnetoresistance due to electron—
electron interactions that is of little experimental relevance in metals but
becomes important in semiconductors in the classically strong-field regime
where w.t > 1 (this regime is not easily accessible in metal nanostructures
because of the typically short scattering time). In such strong fields only the
diffuson contributions to the conductivity corrections survive. According to
Houghton et al.>*® and Girvin et al.,>' the diffuson does not modify the off-
diagonal elements of the conductivity tensor, but only the diagonal elements

5O-xy = 5ny =0, (Saxx = (50'”, = 6aec’ (92)

where dg,, is approximately field-independent (provided spin splitting does
not play a role). In a channel geometry one measures the longitudinal
resistivity p,., which is related to the conductivity tensor elements by

g

0
Pxx = = = pgx + pgx ( O(-)ee - 2p2x6666> + Order(éaec)z‘ (93)

Jxxayy + o-.iy XX

Here p2. = p and ¢%, = o[l + (w,7)?] ! are the classical results (4.25) and
(4.26). In obtaining this result the effects of Landau level quantization on the
conductivity have been disregarded (see, however, Ref. 55). The longitudinal
resistivity thus becomes magnetic-field-dependent:

Pxx = P (1 + [(wc‘[)z - l]éaec/a)' (94)

To the extent that the B-dependence of do,, can be neglected, Eq. (9.4) gives a
parabolic negative magnetoresistance, with a temperature dependence that is
that of the negative conductivity correction do,,. This effect can easily be
studied up to w.t = 10, which would imply an enhancement by a factor of
100 of the resistivity correction in zero magnetic field. (The Hall resistivity p,,
also contains corrections from dg,,, but without the enhancement factor.) In
2D it is this enhancement that allows the small effect of electron—electron
interactions to be observable experimentally (in as far as the effect is due to
diffuson-type contributions).

Experimentally, the parabolic negative magnetoresistance associated with
electron—electron interactions was first identified by Paalanen et al.'3” in
high-mobility GaAs—AlGaAs heterostructure channels. A more detailed
study was made by Choi et al.>” In that paper, as well as in Ref.113, it was
found that the parabolic magnetoresistance was less pronounced in narrow

215A Houghton, J R. Senna, and S. C Ying, Phys. Rev. B 25, 2196 (1982).
2163, M. Girvin, M. Jonson, and P. A. Lee, Phys. Rev. B 26, 1651 (1982).
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channels than in wider ones. Choi et al. attributed this suppression to
specular boundary scattering. It should be noted, however, that specular
boundary scattering has no effect at all on the classical conductivity tensor ¢°
(in the scattering time approximation; cf. Section 5.b). Since the parabolic
magnetoresistance results from the (w,7)? term in 1/62, [see Eq. (9.4)], one
would expect that specular boundary scattering does not suppress the
parabolic magnetoresistance (assuming that the result do,, = dg,, = 0 still
holds in the pure metal regime [ > W). Diffuse boundary scattering does
affect 6%, but only for relatively weak fields such that 21, = W (see Section
5); hence, diffuse boundary scattering seems equally inadequate in explaining
the observations. In the absence of a theory for electron—electron interaction
effects in the pure metal regime, this issue remains unsettled.

b. Narrow-Channel Experiments

Wheeler et al.*® were the first to use magnetoresistance experiments as a
tool to distinguish weak localization from electron—electron interaction
effects in narrow Si MOSFETs. As in most subsequent studies, the negative
magnetoresistance was entirely attributed to the suppression of weak
localization; the cooperon-type contributions from electron—electron inter-
actions were ignored. After subtraction of the weak localization correction,
the remaining temperature dependence was found to differ from the simple
T~ !/% dependence predicted by the theory for W < Iy < I, [Eq. (9.1b)]. This
was attributed in Ref. 38 to temperature-dependent screening at the relatively
high temperatures of the experiment. Pooke et al.'®*® found a nice T~ /2
dependence in similar experiments at lower temperatures in narrow Si
accumulation layers and in GaAs—AlGaAs heterostructures.

The most detailed study by far of the 2D to 1D crossover of the electron—
electron interaction effect in narrow channels was made by Choi et al.’ in a
GaAs—AlGaAs heterostructure. In Fig. 27 we reproduce some of their
experimental traces for channel widths from 156 to 1.1 um and a channel
length of about 300 um. The weak localization peak in the magnetoresistance
is not resolved in this experiment, presumably because the channels are not in
the 1D regime for this effect (the 2D weak localization peak would be small
and would have a width of 10~ T). The negative magnetoresistance that they
found below 0.1-0.2 T in the narrowest channels is temperature-independent
between 1 and 4 K and was therefore identified by Choi et al.>” as a classical
size effect. The classical negative magnetoresistance extends over a field range
for which 2i_,, & W. This effect has been discussed in Section 5 in terms of
reduction of backscattering by a magnetic field. The electron—electron
interaction effect is observed as a (temperature-dependent) parabolic negative
magnetoresistance above 0.1 T for the widest channel and above 0.3 T for the
narrowest one. From the magnitude of the parabolic negative magnetoresis-
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Fi16 27 Negative magnetoresistance in wide and narrow GaAs—AlGaAs channels at 4 2 and
16K The temperature-independent negative magnetoresistance at low fields 1s a classical size
effect The temperature-dependent parabolic magnetoresistance at higher fields 1s a quantum
interference effect associated with electron—electron interactions Shubnikov-De Haas oscilla-
ttons are visible for fields greater than about 0 3T Taken from K K Cho1 et al, Phys Rev B 33,
8216 (1986)

tance, Choi et al.>® could find and analyze the crossover from 2D to 1D
interaction effects. In addition, they investigated the cross over to 0D by
performing experiments on short channels. As seen in Fig. 27, Shubnikov—De
Haas oscillations are superimposed on the parabolic negative magnetoresis-
tance at low temperatures and strong magnetic fields. It is noteworthy that
stronger fields are required in narrower channels to observe the Shubnikov~
De Haas oscillations, an effect discussed in terms of specular boundary
scattering by Choi et al. The Shubnikov—De Haas oscillations in narrow
channels are discussed further in Section 10.b.

In Refs. 63, 167, and 27 the work by Choi et al.5® was extended to even
narrower channels, well into the 1D pure metal regime. The results for a
conducting channel width of 0.12 um are shown in Fig. 28. The 1D weak
localization peak in the magnetoresistance is quite large for this narrow
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FiG 28 Magnetoresistance at various temperatures of a GaAs—AlGaAs channel
(W=012um, L= 10y) defined by a shallow-mesa etch technque The central negative
magnetoresistance peak between —01 and +0.1T at low temperatures 1s due to 1D weak
localization 1n the quasi-ballistic regime Conductance fluctuations are seen at larger fields The
negative magnetoresistance that persists to high temperatures 1s a classical size effect as in Fig
27 The temperature dependence of the resistance at B = 0 1s due to a combination of weak
locahzation and electron—electron interaction effects (see Fig 30) Taken from H van Houten et
al, Appl Phys Lett 49, 1781 (1986)
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channel (even at the rather high temperatures shown) and clearly visible
below 0.1 T. The classical size effect due to reduction of backscattering now
leads to a negative magnetoresistance on a larger field scale of about 1T, in
agreement with the criterion 2l ~ W. This is best seen at temperatures
above 20K, where the quantum mechanical effects are absent. The
temperature-dependent parabolic negative magnetoresistance is no longer
clearly distinguishable in the narrow channel of Fig. 28, in contrast to wider
channels.?”*® The suppression of this effect in narrow channels is not yet
understood (see Section 9.a). Superimposed on the smooth classical mag-
netoresistance, one sees large aperiodic fluctuations on a field scale of the
same magnitude as the width of the weak localization peak, in qualitative
agreement with the theory of universal conductance fluctuations in the pure
metal regime'*” (see Section 7.d). Finally, Shubnikov—De Haas oscillations
are beginning to be resolved around 1.2 T, but they are periodic in 1/B at
stronger magnetic fields only (not shown). As discussed in Section 10, this
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FiG 29 Angular dependence of the magnetoresistance of Fig 28, at 4 K, proving that it has a
purely orbital onigin Taken from H van Houten et al Superlattices and Microstructures 3, 497

(1987)

anomaly 1n the Shubmikov—De Haas effect 1s a manifestation of a quantum
size effect 167 217 218 Thyg one figure thus summarizes the wealth of classical
and quantum magnetoresistance phenomena in the quasi-ballistic transport
regime

Essentially similar results were obtained by Taylor et al 2!® In the field
range of these experiments,2” 33 63 167 219 the magnetoresistance 1s exclusive-
ly caused by the enclosed flux and the Lorentz force (so called orbital effects)
The Zeeman energy does not play a role This 1s demonstrated mn Fig 29,

217K -F Berggren, T J Thornton, D J Newson,and M Pepper, Phys Rev Lett 57,1769 (1986)

218K _F Berggren, G Roos, and H van Houten, Phys Rev B 37, 10118 (1988)

215R P Taylor, P C Main, L Eaves, S P Beaumont, [ MclIntyre, S Thoms, and C D W
Wilkinson, J Phys Condens Matter 1, 10413 (1989)
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F1G 30 Zero-field conductance (circles) and conductance corrected for the weak localization
effect (squares) for the channel of Fig 28 as a function of T '/ to demonstrate the T ™'/
dependence on the temperature of the electron—electron interaction effect expected from Eq
(9 1b) The sohid and dashed lines are guides to the eye The extrapolated value at high
temperatures 1s the classical part of the conductance Taken from H van Houten et al, Acta
Electromca 28, 27 (1988)

where the magnetoresistance (obtained on the same sample as that used 1n
Fig 28)1s shown to vanish when B 1s i the plane of the 2DEG (stmular results
were obtamned mn Ref 168) In wide 2DEG channels a negative mag-
netoresistance has been found by Lin et al 1n a parallel magnetic field 2> This
effect has been studied 1n detail by Mensz and Wheeler,>2? who attributed 1t
to a residual orbital effect associated with deviations of the 2DEG from a
perfectly flat plane Fal’ko?2! has calculated the effect of a magnetic field
parallel to the 2DEG on weak localization, and has found a negative
magnetoresistance, but only if the scattering potential does not have
reflection symmetry in the plane of the 2DEG

In Fig 30 the temperature dependence of the zero-field conductance?” 1s
plotted as a function of T~ !/2, together with the conductance after sub-

220p M Mensz, R G Wheeler, C T Foxon, and J J Harris, Appl Phys Lett 50, 603 (1987), P
M Mensz and R G Wheeler, Phys Rev B 35, 2844 (1987)
221V Falko J Phys Condens Matter 2 3797 (1990)
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traction of the weak localization correction The straight line through the
latter data points demonstrates that the remaining temperature dependence
may, indeed, be attributed to the electron—electron interactions A similar
T2 dependence was found by Thornton et al®® in a narrow GaAs-
AlGaAs channe] defined using the split-gate method The slope of the straight
line 1n Fig 30 gives g;p & 1 51 Eq (9 1b), which 1s close to the value found
by Chor et al *° It should be noted, however, that this experiment 1s already 1n
the regime where the quantum corrections are by no means small, so the
perturbation theory 1s of questionable validity For this reason, and also 1n
view of other problems (such as the difficulty 1n determinming the effective
channel width, the presence of channel width variations, and a frequently
observed saturation of the weak localization correction at low temperatures
due to loss of phase coherence associated with external noise or radio-
frequency interference), a quantitative analysis of the parameters obtained
from the weak localization and electron—electron corrections in narrow
channels (z, and g,p) 1s not fully warranted Indeed, most of the narrow-
channel studies available today have not been optimized for the purpose of a
detailled quantitative analysis Instead, they were primarily intended for a
phenomenological exploration, and as such we feel that they have been quite
successful

10 QuUANTUM SIZE EFFECTS

Quantum size effects on the resistivity result from modifications of the 2D
density of states in a 2DEG channel of width comparable to the Ferm
wavelength The electrostatic lateral confinement n such a narrow channel
leads to the formation of 1D subbands in the conduction band of the 2DEG
(see Section 4a) The number N =~ kzW/n of occupied 1D subbands is
reduced by decreasing the Fermi energy or the channel width This de-
population of individual subbands can be detected via the resistivity An
alternative method to depopulate the subbands 1s by means of a magnetic
field perpendicular to the 2DEG The magnetic field B has a neghgible effect
on the density of states at the Fermui level if the cyclotron diameter 21, » W
(1e, for B « B,,, = 2hkg/eW) If B> B.,,, the electrostatic confinement can
be neglected for the density of states, which 1s then described by Landau levels
[Eq (46)] The number of occupied Landau levels N = Eg/hw, = kgloya/2
decreases linearly with B for B » B,,,, In the intermediate field range where B
and B,,, are comparable, the electrostatic confinement and the magnetic field
together determine the density of states The corresponding magnetoelectric
subbands are depopulated more slowly by a magnetic field than are the
Landau levels, which results in an increased spacing of the Shubnikov—De
Haas oscillations 1n the magnetoresistivity (cf Section 4 d)

In the following subsection we give a more quantitative description of
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magnetoelectric subbands. Experiments on the electric and magnetic de-
population of subbands in a narrow channel are reviewed in Section 9.b. We
only consider here the case of a long channel (L > [) in the quasi-ballistic
regime. Quantum size effects in the fully ballistic regime (L <) are the
subject of Section III.

a. Magnetoelectric Subbands

Consider first the case of an unbounded 2DEG in a perpendicular
magnetic field B = V x A. The Hamiltonian for motion in the plane of the
2DEG is given by

_(p + eA)?

H
2m

(10.1)
for a single spin component. In the Landau gauge A = (0, Bx, 0), with B in the
z-direction, this may be written as

py | mw?

=P
m T T2

(x — xo)%, (10.2)

with w, = eB/m and x, = —p,/eB. The y-momentum operator p, = —ihd/dy
can be replaced by its eigenvalue #k,, since p, and # commute. The effect of
the magnetic field is then represented by a harmonic oscillator potential in
the x-direction, with center x, = —#hk,/eB depending on the momentum in
the y-direction. The energy eigenvalues E, = (n — Hhw,n=1,2,3,..., do
not depend on k, and are therefore highly degenerate. States with the same
quantum number n are referred to collectively as Landau levels.’® The
number of Landau levels below energy E is given by

N = Int[1/2 + E/hw,], (10.3)

where Int denotes truncation to an integer.
A narrow channel in the y-direction is defined by an electrostatic confining
potential V(x). The case of a parabolic confinement is easily solved ana-
lytically.36-218:222.223 A(dding a term V(x) = imw3x? to the hamiltonian

(10.2), one finds, after a rearrangement of terms,
p:  mo? h2k?

Ho= (X — %)+ s 10.4
om 2 O+ oM (10.4)
with @ = (0? + wd)V?, X, = xow. /o, and M = mw?/w3. The first two terms
describe the motion in the x-direction in a harmonic potential with effective
frequency @ = wq, and the third term describes free motion in the y-direction

*22L Smrcka, H Havlova, and A Ishara, J Phys. C 19, L457 (1986)
223K -F Berggren, and D J Newson, Semicond. Sci Technol. 1, 327 (1986)
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with an effective mass M = m This last term removes the degeneracy of the
Landau levels, which become 1D subbands with energy

E, (k) = (n — Dho + h*k*)2M (105)

The subband bottoms have energy E, = (n — $)hw, and the number of
subbands occupied at energy E 1s N = Int[3 + E/hw] The quasi-1D density
of states 1s obtained from Eq (44) on substituting m for M For the
comparison with experiments 1t 1s useful to define an effective width for the
parabolic potential One can take the width W,,, to be the separation between
the equipotentials at the Fermu energy

Wop = 2Rk fman, (10 6)

(An alternative, which differs only in the numerical prefactor, 1s to take
Wae = 1yp/n, with ng = g,g, ki /4n the 2D sheet density and n,, the number
of electrons per umt length in the narrow channel 2'®) The number of
occupted magnetoelectric subbands at energy Ep in a parabolic confining

potential may then be written as
N =Int[§ + ke W,,, [1 + (Wpor/20eye)?17 1121, (107)

where I, = hikg/eB 1s the cyclotron radius at the Fermi energy For easy
reference, we also give the result for the number of occupied subbands at the
Fermi energy 1n a square-well confinement potential of width W

2 Eg wow w2 w
N =~ Int| — 1 - > f lc ol = o
n [n h(,()c <arcsm Zlcycl + 2lcy01 [ <21cy01> :| H leyal 2

N 1 Eg w
N ~ Int [5 + h—a)c]’ fla< > (10 8b)
(This result 1s derived m Section 12 a 1n a semiclassical approximation The
accuracy 1s + 1) One easily verifies that, for B « B,,,, = 2hkg/eW, Eq (10 8)
yields N = kp W/n The parabolic confining potential gives N = kpW,,./4 1n
the weak-field limit In the strong-field limit B » B,,,, both potentials give
the result N = Eg/hw, = kel.,,/2 expected for pure Landau levels In Fig 31
we compare the depopulation of Landau levels in an unbounded 2DEG with
its charactenistic 1/B dependence of N (dashed curve), with the slower
depopulation of magnetoelectric subbands 1n a narrow channel The dash—
dotted curve 1s for a parabolic confiming potential, the solid curve for a
square-well potential These results are calculated from Eqgs (10 7) and (10 8),
with kW, /n = keW/n = 10 A B-independent Fermi energy was assumed 1n
Fig 31 so that the density nyp, oscillates around 1ts zero-field value (For a
long channel, 1t 1s more appropriate to assume that n;p, 1s B-independent, to
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20 F1G. 31 Magnetic field dependence of the
number N of occupied subbands in a narrow

15 = LN 10 channel for a parabolic confining potential

" according to Eq. (10.7) (dot—dashed curve),

N 10— and for a square-well confining potential ac-

r — cording to Eq. (10.8) (full curve). The dashed
= curve gives the magnetic depopulation of

5 L

Tt Landau levels in a wide 2DEG, which has a

0 1/B dependence. The calculations are done for

0 1 2 3 a fixed Fermu energy and for channel width
2 W= VVpar = loﬂ/kr

preserve charge neutrality, in which case Ey oscillates. This case is studied in
Ref. 218.) Qualitatively, the two confining potentials give similar results. The
numerical differences reflect the uncertainty in assigning an effective width to
the parabolic potential. Self-consistent solutions of the Poisson and Schrod-
inger equations*2:69-61:72:224 for channels defined by a split gate have shown
that a parabolic potential with a flat bottom section is a more realistic model.
The subband depopulation for this potential has been studied in a semiclass-
ical approximation in Ref. 223. A disadvantage of this more realistic model is
that an additional parameter is needed for its specification (the width of the
flat section). For this practical reason, the use of either a parabolic or a
square-well potential has been preferred in the analysis of most experiments.

b. Experiments on Electric and Magnetic Depopulation of Subbands

The observation of 1D subband effects unobscured by thermal smearing
requires low temperatures, such that 4k;T « AE, with AE the energy
difference between subband bottoms near the Fermi level (4ky T being the
width of the energy averaging function df /dEg; see Section 4.b; For a square
well AE =~ 2E/N, and for parabolic confinement AE ~ Er/N). Moreover,
the formation of subbands requires the effective mean free path (limited by
impurity scattering and diffuse boundary scattering) to be much larger than
W (cf. also Ref. 218). The requirement on the temperature is not difficult to
meet, AE/4kpT being on the order of 50K for a typical GaAs—AlGaAs
channel of width W= 100nm, and the regime [ > W is also well accessible.
These simple considerations seem to suggest that 1D subband effects should
be rather easily observed in semiconductor nanostructures. This conclusion is
misleading, however, and in reality manifestations of 1D subband structure
have been elusive, at least in the quasi-ballistic regime W < [ < L. The main
reason for this is the appearance of large conductance fluctuations that mask
the subband structure if the channel is not short compared with the mean free
path.

2247, A. Brum and G. Bastard, Superlattices and Microstructures 4, 443 (1988).
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Calculations??57227 of the average conductivity of an ensemble of narrow
channels do 1n fact show oscillations from the electric depopulation of
subbands [resulting from the modulation of the density of states at the Ferm
level, which determines the scattering time, see Eq (4 28)] The oscillations
are not as large as the Shubnikov—De Haas oscillations from the magnetic
depopulation of Landau levels or magnetoelectric subbands One reason for
this difference 1s that the peaks 1n the density of states become narrower,
relative to their separation, on applying a magnetic field (The quantum limit
of a single occupied 1D subband has been studied 1n Refs 42 and 228-230)

In an individual channel, aperiodic conductance fluctuations due to
quantum mterference (see Section 7) are the dominant cause of structure i
the low-temperature conductance as a function of gate voltage (which
corresponds to a variation of the Fermu energy), as was found 1n experiments
on narrow S11nversion layers 45 161 162 Warren et al “* were able to suppress
these fluctuations by performing measurements on an array of narrow
channels 1n a S1 inversion layer In Fig 32 we reproduce their results The
structure due to the electric depopulation of 1D subbands 1s very weak 1n the
current—versus—gate—voltage plot, but a convincingly regular oscillation 1s
seen 1f the derivative of the current with respect to the gate voltage 1s taken
(this quantity 1s called the transconductance) Warren et al pointed out that
the observation of a quantum size effect in an array of 250 channels indicates
a rather remarkable uniformity of the width and density of the individual
channels

More recently a similar experimental study was performed by Ismail et
al 231 on 100 paraliel channels defined 1n the 2DEG of a GaAs—AlGaAs
heterostructure The effects were found to be much more pronounced than n
the earlier experiment on S1 inversion layer channels, presumably because of
the much larger mean free path (estimated at 1 pm), which was not much
shorter than the sample length (5 um) Quantum size effects in the quantum
ballistic transport regime (in particular, the conductance quantization of a
quantum point contact) are discussed extensively in Section 13

In a wide 2DEG the mimima of the Shubnmkov—De Haas oscillations 1n the
magnetoresistance are periodic in 1/B, with a pertodicity A(1/B) determined
by the sheet density n, according to Eq (429) In a narrow channel one

225M J Kearney and P N Butcher, J Phys C 20, 47 (1987)

2268 Das Sarma and X C Xie, Phys Rev B 35, 9875 (1987)

227p Vasilopoulos and F M Peeters, Phys Rev B 40, 10079 (1989)

228Y Sakaki, Jap J Appl Phys 19, L735 (1980)

229G Fishman, Phys Rev B 36, 7448 (1987)

2307 Leeand M O Vassell,J Phys C17,2525(1984),J Lee and H N Spector,J Appl Phys 57
366 (1985)

23K Ismail, D A Antoniadis, and H T Smuth, App! Phys Lett 54, 1130 (1989)
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Fi¢ 32 (a) Dependence on the gate voltage of the current I through 250 parallel narrow S
mversion layer channels at 1 2K, showing the electric depopulation of subbands (b) The effect 1s
seen more clearly in the transconductance dI/dV; Note the absence of universal conductance
fluctuations, which have been averaged out by the large number of channels Taken from A C
Warren et al, IEEE Electron Device Lett EDL-7, 413 (1986)
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observes an increase in A(1/B) for weak magnetic fields because the
electrostatic confinement modifies the density of states, as discussed 1n
Section 10a Such a deviation is of interest as a manifestation of mag-
netoelectric subbands, but also because 1t can be used to estimate the effective
channel width using the criterton W & 2l for the crossover field'¢” B,
(the electron density 1n the channel, and hence [, may be estimated from
the strong-field periodicity) The phenomenon has been studied in many
publlcatlons 36 56 577479 167 217 218 223 232 233

As an 1llustration, we reproduce m Fig 33a an experimental mag-
netoresistance trace'®’ 2!® obtamed for a narrow (W a 140nm) GaAs—
AlGaAs channel, defined using a shallow-mesa etch 3 The arrows mdicate
the magnetoresistance mumima thought to be associated with magnetic
depopulation The assignment becomes ambiguous 1n weak magnetic fields,
because of the presence of aperiodic conductance fluctuations Nevertheless,
the deviation from a straight line in the N versus B~! plot in Fig 33b 1s
sufficiently large to be reasonably convincing Also shown in Fig 33b 1s the
result of a fit to a theoretical N(B) function (assuming a parabolic confining
potential and a B-independent electron density) The parameter values found
from this fit for the width and electron density are reasonable and agree with
independent estimates 27

We have limited ourselves to a discussion of transport studies, but wish to
point out that 1D subbands have been studied succesfully by capacitance’>
measurements and by infrared’® spectroscopy As mentioned earlier, the
formation of 1D subbands also requires a reformulation of the theories of
weak localization and conductance fluctuations 1n the presence of boundary
scattering Weak localization 1n the case of a small number of occupied
subbands has been studied by Tesanovic et al '°23% (in a zero magnetic
field)

We will not discuss the subject of quantum size effects further 1n this part
of our review, since 1t has found more striking mamfestations 1n the ballistic
transport regime (the subject of Section III), where conductance fluctuations
do not play a role The most prominent example 1s the conductance
quantization of a point contact

11 PEerIODIC POTENTIAL
a Lateral Superlattices
In a crystal, the pertodic potential of the lattice opens energy gaps of zero

density of electronic states An electron with energy in a gap 1s Bragg-

232M Laknimi, A D C Grassie, K M Hutchings, J J Harrs, and C T Foxon, Semicond Sct
Technol 4, 313 (1989)

2331 J Alsmeter, Ch Sikorski, and U Merkt, Phys Rev B 37, 4314 (1988)

2347 Tesanovic, J Phys C 20, L829 (1987)
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FiG 33 (a) Magnetoresistance at 24K of a narrow GaAs-AlGaAs channel (as in Fig 28)
The arrows indicate magnetic field values assigned to the depopulation of magnetoelectric
subbands (b) Subband index n = N — 1 versus inverse magnetic field (crosses) The dashed hne
mterpolates between theoretical points for a parabolic confining potential (circles) The
electrostatic confinement causes deviations from a linear dependence of n on B™! Taken from
K -F Berggren et al, Phys Rev B 37, 10118 (1988)

reflected and hence cannot propagate through the crystal Esaki and Tsu?33
proposed 1n 1970 that an artificial energy gap might be created by the
epitaxial growth of alternating layers of different semiconductors In such a
superlattice a periodic potential of spacing a 1s superimposed on the crystal
lattice potential Typically, a ~ 10nm 1s chosen to be much larger than the
crystal lattice spacing (0 S nm), leading to the formation of a large number of
narrow bands within the conduction band (minibands), separated by small
energy gaps (minigaps) Qualitatively new transport properties may then be
expected For example, the presence of minigaps may be revealed under

2351, Esakiand R Tsu, IBM J Res Dev 14, 61 (1970)
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strong applied voltages by a negative differential resistance—a phenomenon
predicted by Esaki and Tsu in their original proposal and observed
subsequently by Esaki and Chang 236 237 In contrast to a 3D crystal lattice, a
superlattice formed by alternating layers 1s 1D As a consequence of the free
motion 1 the plane of the layers, the density of states 1s not zero 1n the
minigaps, and electrons may scatter between two overlapping minibands Of
interest mn the present context 1s the possibility of defiming lateral super-
lattices?38 232 by a periodic potential 1n the plane of a 2D electron gas True
munigaps of zero density of states may form 1n such a system if the potential
varies periodically in two directions Lateral superlattice effects may be
studied 1n the linear-response regime of small applied voltages (to which we
limit the discussion here) by varying Egp or the strength of the periodic
potential by means of a gate voltage The conductivity 1s expected to vanish if
Er 1s 1 a true minigap (so that electrons are Bragg-reflected) Cal-
culations?4? 24! show pronounced minima also 1n the case of a 1D periodic
potential

The conditions required to observe the mimibands 1n a lateral superlattice
are similar to those discussed mn Section 10 for the observation of 1D
subbands 1n a narrow channel The mean free path should be larger than the
lattice constant a, and 4k, T should be less than the width of a minigap near
the Ferm: level For a weak periodic potential®* the nth mimgap 1s
approximately AE, ~ 2V,, with V, the amplitude of the Fourier component of
the potential at wave number k, = 2nn/a The gap 1s centered at energy
E, ~ (hk,/2)*/2m ¥ we consider, for example, a 1D sinusoidal potential
V(x,y) = Vysm(2ny/a), then the first energy gap AE, =~ V, occurs at
E, ~ (hn/a)*/2m (Higher-order mimigaps are much smaller ) Bragg reflection
occurs when E; = E (1e, for a lattice periodicity a =~ A¢/2) Such a short-
period modulation 1s not easy to achieve lithographically, however (typically
Ar = 40nm), and the experiments on lateral superlattices discussed later are
not 1 this regime

Warren et al ?*? have observed a weak but regular structure in the
conductance of a 1D lateral superlattice with a = 02 um defined 1n a S1
inversion layer (using the dual-gate arrangement of Fig 2c) Ismail et al 62
used a grating-shaped gate on top of a GaAs—AlGaAs heterostructure to

236], Esaki and L L Chang, Phys Rev Lett 33, 495 (1974)

2371, Esaki, Rev Mod Phys 46, 237 (1974)

238Y Sakaki, K Wagatsuma, J Hamasaki, and S Saito, Thin Solid Films 36, 497 (1976)

239R T Bate, Bull A4m Phys Soc 22, 407 (1977)

240M J Kelly, J Phys C 18, 6341 (1985), Surf Sci 170, 49 (1986)

24'P F Bagwell and T P Orlando, Phys Rev B 40, 3735 (1989)

2427 C Warren, D A Antoniadis, H 1 Smith, and J Melngailis, I[EEE Electron Device Letts,
EDL-6, 294 (1985)
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F1G. 34. Grating gate (in black) on top of a GaAs—AlGaAs heterostructure, used to define a
2DEG with a periodic density modulation. Taken from K. Ismail et al., Appl. Phys. Lett. 52, 1071
(1988).

define a lateral superlattice. A schematic cross section of their device is shown
in Fig. 34. The period of the grating is 0.2 um. One effect of the gate voltage is
to change the overall carrier concentration, leading to a large but essentially
smooth conductance variation (at 4.2K). This variation proved to be
essentially the same as that found for a continuous gate. As in the experiment
by Warren et al., the transconductance as a function of the voltage on the
grating revealed a regular oscillation. As an example, we reproduce the
results of Ismail et al. (for various source—drain voltages) in Fig. 35. No such
structure was found for control devices with a continuous, rather than a
grating, gate. The observed structure is attributed to Bragg reflection in Ref.
62. A 2D lateral superlattice was defined by Bernstein and Ferry,?*? using a
grid-shaped gate, but the transport properties in the linear response regime
were not studied in detail. Smith et al.*** have used the split-gate technique to
define a 2D array of 4000 dots in a high-mobility GaAs—AlGaAs hetero-
structure (@ = 0.5 um, ] = 10 um). When the 2DEG under the dots is depleted,

243G. Bernstein and D. K. Ferry, J. Vac. Sci. Technol. B 5, 964 (1987).
244C. G. Smith, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko, D. C. Peacock, J. E. F. Frost,
D. A. Rutchie, and G. A. C. Jones, J. Phys. Condens. Matter 2, 3405 (1990).



90 C W J BEENAKKER AND H VAN HOUTEN

1 | J 1
0o -10 0 10 20 30 40 50 80
VG (mV)

F16 35 Transconductance g,, = 0I/0Vy, of the device of Fig 34 measured as a function of
gate voltage for various values of the source—drain voltage The oscillations, seen 1n particular at
low source—drain voltages, are attributed to Bragg reflection 1n a periodic potential Taken from
K Ismail et al, Appl Phys Lett 5a, 1071 (1988)

a grid of conducting channels 1s formed In this experiment the amplitude of
the periodic potential exceeds Er Structure in the conductance is found
related to the depopulation of 1D subbands in the channels, as well as to
standing waves between the dots The analysis 1s thus considerably more
complicated than 1t would be for a weak periodic potential It becomes
difficult to distinguish between the effects due to quantum interference within
a single unit cell of the periodic potential and the effects due to the formation
of minibands requiring phase coherence over several unit cells Devices with a
2D pertodic potential with a period comparable to the Fermi wavelength and
much shorter than the mean free path will be required for the realization of
true mimiband effects It appears that the fabrication of such devices will have
to await further developments in the art of making nanostructures Epitaxy
on tilted surfaces with a staircase surface structure 1s being investigated for
this purpose 87 88 169 179 245 246 Nnepitaxial growth on S1 surfaces shightly
tilted from (100) 1s known to lead to mimiband formation 1n the nversion
layer 2° 247 A final interesting possibility 1s to use doping quantum wires, as
proposed 1n Ref 248

As mentioned, 1t 1s rather difficult to discriminate experimentally between
true mimiband effects and quantum nterference effects occurring within one

2457 M Games, P M Petroff, H Kroemer, R J Simes, R S Geels,and J H English, J Vac Sct
Technol B 6 1378 (1988)

246H Sakaki, Jap J Appl Phys 28, L314 (1989)

247T Cole, A A Lakhani, and P J Stiles, Phys Rev Lett 38, 722 (1977)

248G E W Bauer and A A van Gorkum, in Ref 16
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unit cell The reason 1s that both phenomena give rise to structure in the
conductance as a function of gate voltage with essentially the same periodic-
ity Thas difficulty may be circumvented by studying lateral superlattices with
a small number of unit cells The mimiband for a finite superlattice with P unit
cells consists of a group of P discrete states, which merge into a continuous
miniband 1n the limit P — oo The discrete states give rise to closely spaced
resonances 1n the transmission probability through the superlattice as a
function of energy, and may thus be observed as a series of P peaks n the
conductance as a function of gate voltage, separated by broad minima due to
the mimgaps Such an observation would demonstrate phase coherence over
the entire length L = Pa of the finite superlattice and would constitute
conclusive evidence of a minitband The conductance of a fimite 1D super-
lattice 1n a narrow 2DEG channel 1n the ballistic transport regime has been
investigated theoretically by Ulloa et al 24° Similar physics may be studied 1n
the quantum Hall effect regime, where the experimental requirements are
considerably relaxed A successful experiment of this type was recently
performed by Kouwenhoven et al 23 (see Section 22)

Weak-field magnetotransport in a 2D periodic potential (a grid) has been
studied by Ferry et al 25! 252 and by Smuth et al *** Both groups reported
oscillatory structure 1n the magnetoconductance, suggestive of an
Aharonov-Bohm effect with periodicity AB = h/eS, where S 1s the area of a
unit cell of the “lattice” In strong magnetic fields no such oscillations are
found A similar suppression of the Aharonov—Bohm effect 1n strong fields 1s
found 1n single rings, as discussed 1n detail in Section 21 a Magnetotransport
m a 1D periodic potential 1s the subject of the next subsection

b Guiding-Center-Drift Resonance

The influence of a magnetic field on transport through layered super-
lattices?>? has been studied mainly 1n the regime where the (first) energy gap
AE ~ 100meV exceeds the Landau level spacing Aw, {1 7meV/T 1n GaAs)
The magnetic field does not easily induce transitions between different
minibands 1n this regime Magnetotransport through lateral superlattices 1s
often 1n the opposite regime hw, > AE, because of the relatively large
periodicity (a ~ 300nm) and small amplitude (V, ~ 1 meV) of the periodic
potential The magnetic field now changes qualitatively the structure of the

2495 E Ulloa, E Castano, and G Kirczenow, Phys Rev B 41, 12350 (1990)

2501, P Kouwenhoven, F W J Hekking, B J van Wees, C ] P M Harmans, C E Timmering,
and C T Foxon, Phys Rev Lett 65, 361 (1990)

231D K Ferry, in Ref 14

252p A Puechner, ] Ma, R Mezenner, W -P Liu, A M Kriman, G N Maracas, G Bernstein,
and D K Ferry, Surf Sci 27, 137 (1987)

253] C Maan, Festkorperprobleme 27, 137 (1987)
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Fi16 36 (a) A brief illumination of a GaAs—AlGaAs heterostructure with an interference
pattern due to two laser beams (black arrows) leads to a persistent periodic variation in the
concentration of 10mzed donors 1n the AlGaAs, thereby imposing a weak periodic potential on
the 2DEG The resulting spatial variation of the electron density in the 2DEG 1s indicated
schematically (b) Experimental arrangement used to produce a modulated 2DEG by means of
the “holographic illumination” of (a) The sample layout shown allows measurements of the
resistivity parallel and perpendicular to the equipotentials Taken from D Weiss et al, 1n “High
Magnetic Fields in Semiconductor Physics 11” (G Landwehr, ed ) Springer, Berlin, 1989

energy bands, which becomes richly complex in the case of a 2D periodic
potential.23* Much of this structure, however, is not easily observed, and the
expermments discussed in this subsection involve mostly the classical effect of
a weak periodic potential on motion in a magnetic field.

Weiss et al.2>5-256 used an ingenious technique to impose a weak periodic
potential on a 2DEG in a GaAs—AlGaAs heterostructure. They exploit the
well-known persistent 1onization of donors in AlGaAs after brief illumination
at low temperatures. For the illumination, two interfering laser beams are
used, which generate an interference pattern with a period depending on the
wavelength and on the angle of incidence of the two beams. This technique,
known as holographic illununation, is 1llustrated in Fig. 37. The interference
pattern selectively ionmizes S1 donors in the AlGaAs, leading to a weak

234D R Hofstadter, Phys Rev B 14, 2239 (1976)

255D Werss, K von Khitzing, K Ploog, and G Weimann, Europhys Lett 8, 179 (1989), also 1n
“High Magnetic Fields 1n Semiconductor Physics 11”7 (G Landwehr, ed) Springer, Berhn,
1989

236D Weiss, C Zhang, R R Gerhardts, K von Khtzing, and G Weimann, Phys Rev B 39,
13020 (1989)
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Fi16 37 Sohd curves Magnetic field dependence of the resistivity p, for current flowing
perpendicular to a potential grating The experimental curve 1s the measurement of Weiss et
al ,255 the theoretical curve follows from the guiding-center-drift resonance Note the phase shaft
of the oscillations, indicated by the arrows at integer 2l../a The potential grating has
penodicity a = 382nm and 1s modeled by a sinusoidal potential with root-mean-square
amplitude of ¢ = 15% of the Fermu energy, The mean free path m the 2DEG 1s 12 um, much
larger than @ The dash—dotted curve 1s the experimental resistivity p for current flowing
parallel to the potential grating, as measured by Weiss et al Taken from C W J Beenakker,
Phys Rev Lett 62, 2020 (1989)

periodic modulation V(y) of the bottom of the conduction band in the 2DEG,
which persists at low temperatures if the sample is kept in the dark. The
sample layout, also shown 1 Fig. 36, allows independent measurements of
the resistivity p,(=p,), perpendicular to, and p,(=p;) parallel to the
grating. In Fig. 37 we show experimental results of Weiss et al.?*® for the
magnetoresistivity of a 1D lateral superlattice (¢ = 382nm). In a zero
magnetic field, the resistivity tensor p is approximately isotropic: p, and p,
are indistinguishable experimentally (see Fig. 37). This indicates that the
amplitude of V(y) is much smaller than the Fermi energy Eg = 11 meV. On
application of a small magnetic field B (0.4 T) perpendicular to the 2DEG,
a large oscillation periodic in 1/B develops in the resistivity p, for current
flowing perpendicular to the potential grating. The resistivity is now strongly
anisotropic, showing only weak oscillations in p| (current parallel to the
potential grating). In appearance, the oscillations resemble the Shubnikov—
De Haas oscillations at higher fields, but their different periodicity and much
weaker temperature dependence point to a different origin.

The effect was not anticipated theoretically, but now a fairly complete and
consistent  theoretical picture has emerged from several ana-
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lyses 111 227 257259 The strong oscillations 1n p, result from a resonance!!!

between the periodic cyclotron orbit motion and the oscillating E x B drift of
the orbit center induced by the electric field E = —VV Such guiding-center-
drift resonances are known from plasma physics,2%® and the experiment by
Weiss et al appears to be the first observation of this phenomenon m the
solid state Magnetic quantization 1s not essential for these strong oscilla-
tions, but plays a role i the transition to the Shubmikov—-De Haas
oscillations at higher fields and 1n the weak oscillations 1 p 227 2%% A
simplified physical picture of the guiding-center-dnft resonance can be
obtained as follows 11

The guiding center (X, Y) of an electron at position (x, y) having velocity
{(vy,v,) 18 given by X = x — v, /o, Y=y + v/, The time denvative of the
guiding center 18 X = E(y)/B, Y= 0, so 1ts motion 1s parallel to the x-axis
This 1s the E x B drift In the case of a strong magnetic field and a slowly
varying potential (I, « a), one may approximate E(y) ~ E(Y) to close the
equations for X and Y This so-called adiabatic approximation cannot be
made 1n the weak-field regime (I, R a) of interest here We consider the case
of a weak potential, such that eV, /Er = ¢ « 1, with V. the root mean
square of V{(y) The guiding center dnift in the x-direction 1s then simply
superimposed on the unperturbed cyclotron motion Its time average vg,,q 1S
obtained by integrating the electric field along the orbit

barrd¥) = (21B) ™! f 49 (Y + Lyqsin @) (11

For I, > a the field oscillates rapidly, so only the drift acquired close to the
two extremal pomts Y-+ [ does not average out It follows that vy 1s
large or small depending on whether E(Y + [, and E(Y — [) have the
same sign or opposite sign (see Fig 38) For a smusoidal potential
V(iy) = ﬁ Vi SIN(27y/a), one easily calculates by averaging over Y that, for
I,y » a, the mean square drift 1s

Ly 2nlye
W) = (50)? <7> cos ( Lol _ }) (12)

The guiding center drift by itself leads, for I, « [, to 1D diffusion with
diffusion coefficient 6D given by

o= f " Ohede Tt = TR (113)
0

257R R Gerhardts, D Weiss, and K von Klitzing, Phys Rev Lett 62, 1173 (1989)

258R W Winkler, J P Kotthaus, and K Ploog, Phys Rev Lett 62, 1177 (1989)

259P Vasilopoulos and F M Peeters, Phys Rev Lett 63,2120 (1989), R R Gerhardts and C
Zhang, Phys Rev Lett 64, 1473 (1990)
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F16 38 (a) Potential grating with a cyclotron orbit superimposed When the electron 1s close
to the two extremal pomts Y+ [, the guiding center at ¥ acquires an E x B drift 1n the
direction of the arrows (The dnft along nonextremal parts of the orbit averages out,
approximately ) A resonance occurs 1If the drift at one extremal point reinforces the drift at the
other, as shown (b) Numerically calculated trajectories for a sinusordal potential (¢ = 0015) The
horizontal hnes are equipotentials at integer y/a On resonance (2l /a = 625) the guiding
center drift 1s maximal, off resonance (2/,,.,/a = 5 75) the drift 1s neglgible Taken from C W J
Beenakker, Phys Rev Lett 62, 2020 (1989)

The term 6D is an additional contribution to the xx-element of the un-
perturbed diffusion tensor D°, given by DY, = D, =D,, D2 = —D?, =
— Dy, with Dy = 410E[1 + (w7)*] ™! (cf. Section 4.c). At this point we
assume that for /., « I the contribution éD from the guiding center drift 1s
the dominant effect of the potential grating on the diffusion tensor D. A
justification of this assumption requires a more systematic analysis of the

transport problem, which is given in Ref. 111. Once D is known, the resistivity
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tensor p follows from the Einstein relation p = D~ 1/e?p(Eg), with p(Eg) the
2D density of states (cf Section 4b) Because of the large off-diagonal
components of D° an additional contribution 6D to D2, modifies pre-
dommnantly p,, = p, To leading order in ¢, one finds that

2 l
Pu _ 14 2¢2 <—l—> cos? <2nﬂi’ _r (11 4)
Do aleyer a 4

with p, = m/n.e?t the unperturbed resistivity A rigorous solution!!! of the
Boltzmann equation (for a B-independent scattering time) confirms this
simple result in the regime a « [, « ! and 1s shown 1n Fig 37 to be 1n quite
good agreement with the experimental data of Weiss et al 23> Similar
theoretical results have been obtained by Gerhardts et al 2°7 and by Winkler
et al *°8 (using an equivalent quantum mechanical formulation, see below)

As 1llustrated by the arrows 1n Fig 37, the maxima 1n p, are not at integer
21,.1/a, but shifted somewhat toward lower magnetic fields This phase shift 1s
a consequence of the finite extension of the segment of the orbit around the
extremal pomnts Y + [, which contributes to the guiding center drift
vann(Y) Equation (11 4) implies that p, 1n a smusoidal potential grating has
minima and maxima at approximately

2l<:ycl/a(m1nlma) =N — %’

2l 1/a(maxima) = n + 4 — order(1/n), (115)

with n an integer We emphasize that the phase shift 1s not universal, but
depends on the functional form of V(y) The fact that the experimental phase
shift in Fig 37 agrees so well with the theory indicates that the actual
potential grating in the experiment of Weiss et al 1s well modeled by a
sinusoidal potential The maxima in p,/po have amplitude *(1%/al,,.;), which
for a large mean free path / can be of order unity, even 1f ¢ « 1 The gmding-
center-dnift resonance thus explains the surprising experimental finding that a
pertodic modulation of the Fermi velocity of order 10”2 can double the
resistivity

At low magnetic fields the experimental oscillations are damped more
rapidly than the theory would predict, and, moreover, an unexplamned
positive magnetoresistance 1s observed around zero field in p, (but notin p)
Part of this disagreement may be due to nonuniformities in the potential
grating, which become especially important at low fields when the cyclotron
orbit overlaps many modulation periods At high magnetic fields B2 04T
the experimental data show the onset of Shubnikov—De Haas oscillations,
which are a consequence of oscillations 1n the scattering time = due to Landau
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level quantization (cf Section 4 ¢) Thus effect 1s neglected in the semiclassical
analysis, which assumes a constant scattering time

The quantum mechanical B-dependence of 7 also leads to weak-field
oscillations 1n p, with the same periodicity as the oscillations i p; discussed
earlier, but of much smaller amplitude and shifted 1n phase (see F1g 37, where
a maximum 1in the experimental ¢ around 0 3 T lines up with a mimmum 1n
p.1) These small antiphase oscillations 1 p ;| were explained by Vasilopoulos
and Peeters?2” and by Gerhardts and Zhang?>° as resulting from oscillations
in 7t due to the oscillatory Landau bandwidth The Landau levels
E, = (n — Yhw, broaden nto a band of finite width 1n a pertodic potential 26!
This Landau band 1s described by a dispersion law E,(k), where the wave
number k 1s related to the classical orbit center (X, Y) by k = YeB/h (cf the
similar relation 1n Section 12) The classical guiding-center-drift resonance
can also be explained 1n these quantum mechanical terms, 1f one so desires, by
noticing that the bandwidth of the Landau levels 1s proportional to the root-
mean-square average of vg.. = dE,(k)/Adk A maximal bandwidth thus
corresponds to a maximal guiding center dnift and, hence, to a maximal p, A
maximum 1n the bandwidth also implies a minimum 1 the density of states at
the Fermi level and, hence, a maximum in t [Eq (428)] A maximal
bandwidth thus corresponds to a minimal p, whereas the B-dependence of T
can safely by neglected for the oscillations 1n p; (which are dominated by the
classical guiding-center-drift resonance)

In a 2D periodic potential (a grid), the guiding center drift dominates the
magnetoresistivity in both diagonal components of the resistivity tensor
Classically, the effect of a weak periodic potential ¥(x,y) on p,, and p,,
decouples if V(x,y) 1s separable mnto V(x,y) =f(x) + g(y}) For the 2D
sinusoidal potential V(x, y) oc sin(2nx/a) + sin(2ny/b), one finds that the effect
of the grd 1s simply a superposition of the effects for two perpendicular
gratings of periods a and b (No such decoupling occurs quantum mechani-
cally 2°%) Expertments by Alves et al 2°2 and by Weiss et al 253 confirm this
expectation, except for a disagreement in the phase of the oscillations As
noted, however, the phase 1s not universal but depends on the form of the
periodic potential, which need not be sinusoidal

Because of the predominance of the classical guiding-center-drift re-
sonance in a weak periodic potential, magnetotransport experiments are not
well suited to study miniband structure in the density of states Magnetocapa-

260G Knorr, F R Hansen,J P Lynov, H L Pecseli, and J J Rasmussen, Physica Scripta 38,
829 (1988)

2617V Chaplik, Solid State Comm , 53, 539 (1985)

262E S Alves, P H Beton, M Heniny, L Eaves, P C Main, O H Hughes, G A Toombs, S P
Beaumont, and C D W Wilkinson, J Phys Condens Matter 1, 8257 (1989)

263D Weiss K von Khtzing, G Ploog, and G Wemmann, Surf Sct (to be published)
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citance measurements?>® 264 265 are 4 more direct means of investigation, but
somewhat outside the scope of this review

Itl. Ballistic Transport
12 CONDUCTION AS A TRANSMISSION PROBLEM

In the ballistic transport regime, it 1s the scattering of electrons at the
sample boundaries which limits the current, rather than impurity scattering
The canonical example of a ballistic conductor 1s the point contact 1llustrated
mn Fi1g 7c The current I through the narrow constriction 1n response to a
voltage difference ¥V between the wide regions to the left and right 1s finite
even 1n the absence of impurities, because electrons are scattered back at the
entrance of the constriction The contact conductance G = I/V 1s proportional
to the constriction width but independent of 1ts length One cannot therefore
describe the contact conductance 1n terms of a local conductivity, as one can
do 1n the diffusive transport regime Consequently, the Einstein relation (4 10)
between the conductivity and the diffusion constant at the Fermu level, of
which we made use repeatedly in Section I, 1s not applicable 1n that form to
determine the contact conductance The Landauer formula 1s an alternative
relation between the conductance and a Fermu level property of the sample,
without the restriction to diffusive transport We discuss this formulation of
conduction 1n Section 12 2 The Landauer formula expresses the conductance
in terms of transmission probabilities of propagating modes at the Fermu
level (also referred to as quantum channels 1n this context) Some elementary
properties of the modes are summarized 1n Section 12 a

a Electron Waveguide

We consider a conducting channel in a 2DEG (an “electron waveguide”),
defined by a lateral confining potential ¥(x), in the presence of a per-
pendicular magnetic field B (in the z-direction) In the Landau gauge
A = (0, Bx, 0) the hamiltomian has the form

2 + eBx)?
o P (Pt eBX)

o 5+ V) (12 1)

for a single spin component (cf Section 10a) Because the canomnical
momentum p, along the channel commutes with 3, one can diagonalize p,
and # simultancously For each eigenvalue #k of p,, the hamiltonian (12 1)

264K Ismail T P Smuith III, W T Massehnk, and H 1 Smuth, Appl Phys Lett 55,2766 (1989)
265W Hansen, T P Smith, II, K Y Lee,J A Brum, C M Knoedler, ] M Hong, and D P
Kern, Phys Rev Lett 62,2168 (1989)
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has a discrete spectrum of energy eigenvalues E,(k),n = 1,2, , correspond-
ing to eigenfunctions of the form

In, k> =¥, ((x)e™ (122)

In waveguide terminology, the index n labels the modes, and the dependence
of the energy (or “frequency”) E, (k) on the wave number k 1s the dispersion
relation of the nth mode A propagating mode at the Fermu level has cutoff
frequency E,(0) below Ep The wave function (122) 1s the product of a
transverse amphtude profile ¥, ,(x) and a longttudinal plane wave e** The
average velocity v,(k) along the channel in state |n, k) 1s the expectation value
of the y-component of the velocity operator p + eA

poted, o _dE, (k)
m

Ky = M k= S (123)
¥y

v,(k) = (n, k|

For a zero magnetic field, the dispersion relation E,(k) has the simple form
(4 3) The group velocity v,(k) 1s then simply equal to the velocity hk/m
obtained from the canonical momentum This equality no longer holds in the
presence of a magnetic field, because the canonical momentum contains an
extra contribution from the vector potential The dispersion relation 1n a
nonzero magnetic field was derived in Section 10 a for a parabolic confining
potential V(x) = 4mwix? From Eq (10 5) one calculates a group velocity
hk/M that 1s smaller than #ik/m by a factor of 1 + (w./wg)?

Insight into the nature of the wave functions 1n a magnetic field can be
obtained from the correspondence with classical trajectories These are most
easily visualized 1n a square-well confining potential, as we now discuss
(following Ref 266) The position (x, y) of an electron on the circle with center
coordiates (X, Y) can be expressed in terms of 1ts velocity v by

x =X +v,/o., y=Y—v, /0, (124)

with @, = eB/m the cyclotron frequency The cyclotron radius 1s (2mE)'/?/eB,
with E = impv? the energy of the electron Both the energy E and the
separation X of the orbit center from the center of the channel are constants
of the motion The coordinate Y of the orbit center parallel to the channel
walls changes on each specular reflection One can classify a trajectory as a
cyclotron orbit, skippmng orbit, or traversing trajectory, depending on
whether the trajectory collides with zero, one, or both channel walls In (X, E)
space these three types of trajectories are separated by the two parabolas
(X £ W/2)? = 2mE(eB) ? (Fig 39) The quantum mechanical dispersion
relation E, (k) can be drawn mto this classical “phase diagram” because of the
correspondence k = — XeB/h This correspondence exists because both k and
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(eBW)*/8m

-W/2 0 +W/2

X —

FiG 39 Energy-orbit center phase space The two parabolas divide the space into four
regions, which correspond to different types of classical trajectories i a magnetic field (clockwise
from left skipping orbits on one edge, traversing trajectories, skipping orbits on the other edge,
and cyclotron orbits) The shaded region 1s forbidden The region at the upper center contains
traversing trajectories moving in both directions, but only one region 1s shown for clarity Taken
from C W J Beenakker et al, Superlattices and Microstructures 5, 127 (1989)

X are constants of the motion and it follows from the fact that the component
hk along the channel of the canonical momentum p = mv — eA equals

hk = mv, — eA, = mv, — eBx = —eBX (12.5)

i the Landau gauge.

In Fig. 40 we show E,(k) both in weak and in strong magnetic fields,
calculated®®® for typical parameter values from the Bohr—Sommerfeld
quantization rule discussed here. The regions in phase space occupied by
classical skipping orbits are shaded. The unshaded regions contain cyclotron
orbits (at small E) and traversing trajectories (at larger E) (cf. Fig. 39). The
cyclotron orbits correspond quantum mechanically to states in Landau levels.
These are the flat portions of the dispersion relation at energies
E, = (n — Dhw,. The group velocity (12.3) is zero 1n a Landau level, as one
would expect from the correspondence with a circular orbit. The traversing
trajectories correspond to states in magnetoelectric subbands, which interact

266C W J Beenakker, H van Houten, and B J van Wees, Superlattices and Microstructures 5,
127 (1989)
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FiG 40 Dusperston relation E,(k), calculated for parameters (a) W= 100nm, B=1T, (b)
W =200nm, B = 15T The horizontal line at 17 meV indicates the Fermi energy The shaded
area 1s the region of classical skipping orbits and 1s bounded by the two parabolas shown 1n Fig
39 (with the correspondence k = — XeB/h) Note that in (a) edge states coexist at the Fermu level
with states interacting with both boundaries (B < B.,,, = 2hkg/eB), while 1n (b) all states at the
Fermu level interact with one boundary only (B > B,,,) Taken from C W J Beenakker et al,
Superlattices and Microstructures 5, 127 (1989)
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with both the opposite channel boundaries and have a nonzero group
velocity The skipping orbits correspond to edge states, which interact with a
single boundary only The two sets of edge states (one for each boundary) are
disjunct 1n (k, E) space Edge states at opposite boundaries move 1n opposite
directions, as 1s evident from the correspondence with skipping orbits or by
mspection of the slope of E, (k) in the two shaded regions in Fig 40

If the Fermu level lies between two Landau levels, the states at the Fermu
level consist only of edge states if B > B,,,,, as n Fig 40b The “critical” field
B_,.. = 2hkg/eW 1s obtained from the classical correspondence by requiring
that the channel width W should be larger than the cyclotron diameter
2hkg/eB at the Fermi level This s the same characteristic field that played a
role 1n the discussion of magneto size effects in Sections 5 and 10 At fields
B < B, as in Fig 40a, edge states coexist at the Fermu level with
magnetoelectric subbands In still lower fields B < By, all states at the
Fermu level interact with both edges The criterion for this 1s that W should be
smaller than the transverse wavelength?%” 1 = (h/2kpeB)!® of the edge
states, so the threshold field B,,,.. ~ #/eks W Contrary to mitial expecta-
tions,?®8 this lower characteristic field does not appear to play a decisive role
1n magneto size effects

A quick way to arrive at the dispersion relation E,(k), which 1s sufficiently
accurate for our purposes, 1s to apply the Bohr—Sommerfeld quantization
rule®® 269 to the classical motion in the x-direction

%ﬁ;pxdx+y=2nn, n=12, (12 6)
The 1ntegral 1s over one period of the motion The phase shift y 1s the sum of
the phase shifts acquired at the two turming points of the projection of the
motion on the x-axis The phase shift upon reflection at the boundary 1s 7, to
ensure that incident and reflected waves cancel (we consider an infinite
barrier potential at which the wave function vanishes) The other turming
points (at which v, varies smoothly) have a phase shift of —n/2 23 Conseq-
uently, for a traversing trajectory y =7 + n =0 (mod2n), for a skipping
orbit y =7 — n/2 = =/2, and for a cyclotron orbit y = —n/2 —n/2 ==
(mod 2n) In the Landau gauge one has p, = mv, = eB(Y — y), so Eq (126)

takes the form
h Y
B®(Y— = (n-=L
fﬁ(y y)dx e<” 27r> (127)

267R E Prange and T-W Nee, Phys Rev 168 779 (1968)

268C W ] Beenakker and H van Houten, Phys Rev Lett 60, 2406 (1988)

2694 M Kosevich and I M Lifshitz, Zh Eksp Teor Fiz 29,743 (1955) [Sov Phys JETP 2,646
(1956)], M S Khatkin, Adv Phys 18, 1 (1969)
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F1G. 41 Classical trajectories 1n a magnetic field The

flux through the shaded area 1s quantized according to

b the Bohr—Sommerfeld quantization rule (12.7) The

! shaded area 1n (b) 1s bounded by the channel walls and

the circle formed by the continuation (dashed) of one
circular arc of the traversing trajectory

This quantization condition has the appealing geometrical interpretation
that n — y/2n flux quanta h/e are contained in the area bounded by the
channel walls and a circle of cyclotron radius (2mE)*/?/eB centered at X (cf.
Fig. 41). It is now straightforward to find for each integer n and coordinate X
the energy E that satisfies this condition. The dispersion relation E,(k) then
follows on identifying k = — XeB/h, as shown in Fig. 40.

The total number N of propagating modes at energy E is determined by
the maximum flux @, contained in an area bounded by the channel walls
and a circle of radius (2mE)'/?/eB, according to N = Int[e®, /h + y/27].
Note that a maximal enclosed flux is obtained by centering the circle on the
channel axis. Some simple geometry then leads to the result®® (10.8), which is
plotted together with that for a parabolic confinement in Fig. 31. Equation
(10.8) has a discontinuity at magnetic fields for which the cyclotron diameter
equals the channel width, due to the jump in the phase shift y as one goes
from a cyclotron orbit to a traversing trajectory. This jump is an artifact of
the present semiclassical approximation in which the extension of the wave
function beyond the classical orbit is ignored. Since the discontinuity in N is
at most =+ 1, it is unimportant in many applications. More accurate formulas
for the phase shift y, which smooth out the discontinuity, have been derived in
Ref. 270. If necessary, one can also use more complicated but exact solutions
of the Schrodinger equation, which are known.26”

b. Landauer Formula

Imagine two wide electron gas reservoirs having a slight difference én in
electron density, which are brought into contact by means of a narrow
channel, as in Fig. 42a. A diffusion current J will flow in the channel, carried
by electrons with energies between the Fermi energies Ex and Ex + du in the
low- and high-density regions. For small én, one can write for the Fermi
energy difference (or chemical potential difference) oy = dn/p(Ey), with p(Ep)
the density of states at Ep in the reservoir (cf. Section 4.1). The diffusion

Z79R Vawter, Phys Rev 174, 749 (1968), A. Isihara and K. Ebina, J Phys C 21, L1079 (1988)
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constant (or “diffusance™* D 1s defined by J = Don and 1s related to the
conductance G by

G = e*p(Ep)D (12 8)

Equation (12 8) generalizes the Einstein relation (4 10) and 1s derived 1n a
completely analogous way [by requiring that the sum of drift current GV/e
and diffusion current Dén be zero when the sum of the electrostatic potential
difference eV and chemical potential difference dn/p(Eg) vanishes]

Since the diffusion current (at low temperatures) 1s carried by electrons
within a narrow range du above Eg, the diffusance can be expressed in terms
of Ferm level properties of the channel (see below) The Enstein relation
(12 8) then yields the required Fermi level expression of the conductance This
by no means implies that the dnft current induced by an electrostatic
potential difference 1s carried entirely by electrons at the Fermi energy To the
contrary, all electrons (regardless of their energy) acquire a nonzero dnift
velocity 1n an electric field This point has been the cause of some confusion 1n
the hterature on the quantum Hall effect, so we will return to 1t 1 Section
18 ¢ In the following we will refer to electrons at the Fermu energy as
“current-carrying electrons” and show that “the current in the channel 1s
shared equally among the modes at the Fermi level ” These and simuilar
statements should be mterpreted as referring to the diffusion problem, where
the current 1s induced by density differences without an electric field We
make no attempt here to evaluate the distribution of current 1n response to an
electric field 1n a system of uniform density That 1s a difficult problem, for
which one has to determine the electric field distribution self-consistently
from Poisson’s and Boltzmann’s equations Such a calculation for a quantum
point contact has been performed 1in Refs 271 and 272 Fortunately, there 1s
no need to know the actual current distribution to determine the con-
ductance, mn view of the Einstein relation (12 8) The distribution of current
(and electric field) 1s of importance only beyond the regime of a linear relation
between current and voltage We will not venture beyond this linear response
regime

To calculate the diffusance, we first consider the case of an 1deal electron
waveguide between the two reservoirs By “ideal” 1t 1s meant that within the
waveguide the states with group velocity pointing to the right are occupied
up to Ep + dpu, while states with group velocity to the left are occupied up to
E and empty above that energy (¢f Fig 42b) This requires that an electron
near the Fermi energy that 1s mjected into the waveguide by the reservorr at
Er + du propagates into the other reservoir without being reflected (The

2711 B Levinson, Zh Eksp Teor Fiz 95, 2175 (1989) [Sov Phys JETP 68, 1257 (1989)]
272M C Payne, J Phys Condens Matter 1, 4931 (1989), 4939 (1989)
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F1G. 42 (a) Narrow channel connecting two wide electron gas regions, having a chemical
potential difference du. (b) Schematic dispersion relation in the narrow channel. Left-moving
states (k > 0) are filled up to chemical potential E, right-moving states up to Eg + du (solid
dots). Higher-lying states are unoccupied (open dots).

physical requirements for this to happen will be discussed in Section 13.) The
amount of diffusion current per energy interval carried by the right-moving
states (with k < 0) in a mode n is the product of density of states p, and group
velocity v,. Using Egs. (4.4) and (12.3), we find the total current J, carried by
that mode to be

Er+ou dE,()\ ! dE,(k
J, =f g <2n n( )) n(k) _ 959y 5 (12.9)

e dk nak  h

independent of mode index and Fermi energy. The current in the channel is
shared equally among the N modes at the Fermi level because of the
cancellation of group velocity and density states. We will return to this
equipartition rule in Section 13, because it is at the origin of the quantiza-
tion®7 of the conductance of a point contact.

Scattering within the narrow channel may reflect part of the injected
current back into the left reservoir. If a fraction T, of J,, is transmitted to the
reservoir at the right, then the total diffusion current in the channel becomes
J=2/houy n-1 T, (Unless stated otherwise, the formulas in the remainder
of this review refer to the case g, = 2, g, = 1 of twofold spin degeneracy and a
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single valley, appropriate for most of the experiments ) Using 6u = on/p(EF),
J = Dén, and the Einstein relation (12 8), one obtains the result

2e% X
G="-% T, (12 10a)
h n—1
which can also be written 1n the form
2 2 N 2 2
G= % S Jtl® = % Tr ttf, (12 10b)
nm=1

where T, = Y N_ | |t,.,|> 1s expressed 1n terms of the matrix t of transmission
probability amplitudes from mode n to mode m This relation between
conductance and transmission probabilities at the Fermi energy 1s referred to
as the Landauer formula because of Landauer’s pioneering 1957 paper *
Derivations of Eq (12 10) based on the Kubo formula of linear response
theory have been given by several authors, both for zero 143273274 and
nonzero?7% 276 magnetic fields The identification of G as a contact con-
ductance 1s due to Imry! In earlier work Eq (1210) was considered
suspect?”7 279 because 1t gives a fimte conductance for an 1deal (ballistic)
conductor, and alternative expressions were proposed!88 280 282 that were
considered to be more realistic (In one dimension these alternative formulas
reduce to the original Landauer formula* G = (e*/h)T(1 — T)™ !, which gives
mfinite conductance for unit transmission since the contact conductance e?/h
1s 1gnored ') For historical accounts of this controversy, from two different
points of view, we refer the interested reader to papers by Landauer?®3 and
by Stone and Szafer 2’* We have briefly mentioned this now-settled con-
troversy, because 1t sheds some light onto why the quantization of the contact
conductance had not been predicted theoretically prior to 1ts experimental
discovery in 1987

Equation (12 10) refers to a two-terminal resistance measurement, in which
the same two contacts (modeled by reservorrs in Fig 42a) are used to drive a
current through the system and to measure the voltage drop More generally,
one can consider a multireservoir conductor as in Fig 43 to model, for

273E N Economou and C M Soukoulis, Phys Rev Lett 46, 618 (1981)
274A D Stone and A Szafer, IBM J Res Dev 32, 384 (1988)

275 Kucera and P Streda J Phys C 21, 4357 (1988)

276 U Baranger and A D Stone, Phys Rev B 40, 8169 (1989)

277D J Thouless, Phys Rev Lett 47,972 (1981)

278R Landauer, Phys Lett A 85,91 (1981)

27°E N Engquist and P W Anderson, Phys Rev B 24, 1151 (1981)
280p W Anderson, D J Thouless, E Abrahams, and D S Fisher, Phys Rev B 22,3519 (1980)
281D C Langreth and E Abrahams, Phys Rev B 24, 2978 (1981)

282M Ya Azbel, J Phys C 14, 1225 (1981)

283R Landauer, J Phys Condens Matter 1, 8099 (1989), also n Ref 15
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F1G. 43. Generalization of the geometry of Fig. 42a to a multireservoir conductor.
example, four-terminal resistance measurements in which the current source
and drain are distinct from the voltage probes. The generalization of the

Landauer formula (12.10) to multiterminal resistances is due to Biittiker.? Let
T, be the total transmission probability from reservoir « to f:

Top= 3 Y lgumal? (12.11)
ah WS oy e ’

Here N, is the number of propagating modes in the channel (or “lead”)
connected to reservoir « (which in general may be different from the number
Nyinlead f), and t, ., is the transmission probability amplitude from mode
n in lead « to mode m in lead f. The leads are modeled by ideal electron
waveguides, in the sense discussed before, so that the reservoir « at chemical
potential u, above Eg injects into lead a a (charge) current (2e/h)N,u,. A
fraction T,_,/N, of that current is transmitted to reservoir 8, and a fraction
T,../N, = R,/N,is reflected back into reservoir o, before reaching one of the
other reservoirs. The net current I, in lead o is thus given by’

h

e Ia = (Na - Ra)iu'a - Z Tﬂ—*auuﬂ- (1212)

2e BE#a)
The chemical potentials of the reservoirs are related to the currents in the
leads via a matrix of transmission and reflection coefficients. The sums of
columns or rows of this matrix vanish:

N,—R,— Y T,,;=0, (12.13)
BB#a)

N,—R,— Y Tp.,=0. (12.14)
BB*w)

Equation (12.13) follows from current conservation, and Eq. (12.14) follows

from the requirement that an increase of all the chemical potentials by the

same amount should have no effect on the net currents in the leads.
Equation (12.12) can be applied to a measurement of the four-terminal
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resistance R,; ,; = V/I, 1 which a current I flows from contact o to f and a
voltage difference V 1s measured between contacts y and d Setting
I,=1=—1I;, and I, =0 for « # &, f, one can solve the set of linear
equations (12 12) to determine the chemical potential difference p, — s
(Only the differences 1n chemical potentials can be obtained from the n
equations (12 12), which are not independent 1 view of Eq (12 14) By fixing
one chemical potential at zero, one reduces the number of equations ton — 1
independent ones ) The four-terminal resistance R,z ,5 = (1, — y;)/el 1s then
obtained as a rational function of the transmission and reflection proba-
bilities We will refer to this procedure as the Landauer— Buttiker formalism It
provides a umfied description of the whole varnety of electrical transport
experiments discussed in this review
The transmission probabilities have the symmetry

t/}a nm(B) = taﬂ mn(_B) = a—'ﬂ(B) = ’Tﬂ—'a(_B) (12 15)

Equation (12 15) follows by combining the unitarity of the scattering matrix
tt =t ! required by current conservation, with the symmetry
t*(—B) =t !(B), requred by time-reversal imvarance (* and t denote
complex and Hermitian conjugation, respectively) As shown by But-
tiker,® 284 the symmetry (12 15) of the coefficients in Eq (12 12) implies a
reciprocity relation for the four-terminal resistance

Raﬂ yé(B) = Ryé aﬁ(—B) (12 16)

The resistance 1s unchanged if current and voltage leads are interchanged
with simultaneous reversal of the magnetic field direction A special case of
Eq (12 16) 1s that the two-terminal resistance R, .5 1S even in B In the
diffusive transport regime, the reciprocity relation for the resistance follows
from the Onsager—Casmmir relation?®® p(B) = p"(—pf) for the resistivity
tensor {T denotes the transpose) Equation (12 16) holds also 1n cases that the
concept of a local resistivity breaks down One experimental demon-
stration®? of the validity of the reciprocity relation m the quantum ballistic
transport regime will be discussed 1n Section 14 Other demonstrations have
been given in Refs 286-289 We emphasize that strict reciprocity holds only

284\ Buttiker, IBM J Res Dev 32, 317 (1988)

285H B G Castmir, Rev Mod Phys 17,343 (1945), Philips Res Rep 1, 185 (1946), L Onsager,
Phys Rev 38, 2265 (1931, see also S R de Groot and P Mazur, ‘Non-Equilibrium
Thermodynamics ” Dover, New York, 1984

286A D Benoit, S Washburn, C P Umbach, R B Laibowitz, and R A Webb, Phys Rev Lett
57, 1765 (1986)

287H H Sample, W J Bruno, S B Sample, and E K Sichel, J App! Phys 61, 1079 (1987)

2881, L Soethout, H van Kempen, J T P W van Maarseveen, P A Schroeder, and P
Wyder, J Phys F 17,1129 (1987)

289G Tmmp, H U Baranger, P deVegvar,J E Cunningham, R E Howard, R Behringer, and P
M Mankiewich, Phys Rev Lett 60, 2081 (1988)
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m the limear response limit of infinitesimally small currents and voltages
Dewviations from Eq (12 16) can occur experimentally®°® due to nonlineartties
from quantum nterference,'#® 2°! which 1n the case of a long phase
coherence time 7, persist down to very small voltages V R h/et, Magnetic
impurities can be another source of deviations from reciprocity if the applied
magnetic field 1s not sufficiently strong to reverse the magnetic moments on
field reversal The large + B asymmetry of the two-terminal resistance of a
point contact reported in Ref 292 has remained unexplained (see Section 21)

The scattering matrix t 1n Eq (12 15) describes elastic scattering only
Inelastic scattering is assumed to take place exclusively in the reservotrs That
1s a reasonable approximation at temperatures that are sufficiently low that
the size of the conductor is smaller than the inelastic scattering length (or the
phase coherence length if quantum interference effects play a role) Reservoirs
thus play a dual role in the Landauer—Buttiker formalism On the one hand,
a reservoir 1s a model for a current or voltage contact, on the other hand, a
reservorr brings melastic scattering into the system The reciprocity relation
(12 16) 1s unaffected by adding reservoirs to the system and 1s not restricted to
elastic scattermg *8* More realistic methods to mclude 1nelastic scattering mn
a distributed way throughout the system have been proposed, but are not yet
implemented 1n an actual calculation 293 294

13 QUANTUM POINT CONTACTS

Many of the principal phenomena 1n ballistic transport are exhibited 1n
the cleanest and most extreme way by quantum point contacts These are
short and narrow constrictions 1n a 2DEG, with a width of the order of the
Fermi wavelength ® 7 5° The conductance of quantum pont contacts is
quantized 1n units of 2¢?/h This quantization 1s reminiscent of the quantiza-
tion of the Hall conductance, but 1s measured 1n the absence of a magnetic
field The zero-field conductance quantization and the smooth transition to
the quantum Hall effect on applying a magnetic field are essentially
consequences of the equipartition of current among an integer number of
propagating modes 1n the constriction, each mode carrying a current of 2¢?/h
times the applied voltage V Deviations from precise quantization result from
nonunit transmission probability of propagating modes and from nonzero
transmission probabihty of evanescent (nonpropagating) modes Experiment

290p G N de Vegvar, G Timp, P M Mankiewich, ] E Cunningham, R Behringer, and R E
Howard, Phys Rev B 38 4326 (1988)

291A 1 Larkin and D E Khmel'mtskn, Zh Eksp Teor Fiz 91,1815(1986) [Sov Phys JETP 64,
1075 (1986)]

292p H M van Loosdrecht, C W J Beenakker, H van Houten, ] G Wilkamson, B J van
Wees, ] E Mooy, C T Foxon, and J J Harris, Phys Rev B 38, 10162 (1988)

293§ Datta, Phys Rev B 40, 5830 (1989)

2948 Feng Phys Lett A 143, 400 (1990)
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and theory in a zero magnetic field are reviewed in Section 13.a. The effect of a
magnetic field is the subject of Section 13.b, which deals with depopulation of
subbands and suppression of backscattering by a magnetic field, two
phenomena that form the basis for an understanding of magnetotransport in
semiconductor nanostructures.

a. Conductance Quantization

(1) Experiments. The study of electron transport through point contacts in
metals has a long history, which goes back to Maxwell’s investigations2°> of
the resistance of an orifice in the diffusive transport regime. Ballistic transport
was first studied by Sharvin,?°® who proposed and subsequently realized2®’
the injection and detection of a beam of electrons in a metal by means of point
contacts much smaller than the mean free path. With the possible exception
of the scanning tunneling microscope, which can be seen as a point contact on
an atomic scale,??8 7393 these studies in metals are essentially restricted to the
classical ballistic transport regime because of the extremely small Fermi
wavelength (A & 0.5 nm). Point contacts in a 2DEG cannot be fabricated by
simply pressing two wedge- or needle-shaped pieces of material together (as
in bulk semiconductors®®* or metals3°®), since the electron gas is confined at
the GaAs—AlGaAs interface in the interior of the heterostructure. Instead,
they are defined electrostatically?#%8 by means of a split gate on top of the
heterostructure (a schematical cross-sectional view was given in Fig. 4b, while
the micrograph Fig. 5b shows a top view of the split gate of a double-point
contact device; see also the inset in Fig. 44). In this way one can define short
and narrow constrictions in the 2DEG, of variable width 0 < W < 250 nm
comparable to the Fermi wavelength A &~ 40nm and much shorter than the
mean free path | ~ 10 um.

Van Wees et al.® and Wharam et al.” independently discovered a sequence
of steps 1n the conductance of such a point contact as its width was varied by
means of the voltage on the split gate (see Fig. 44). The steps are near integer
multiples of 2e?/h ~ (13kQ)~!, after correction for a gate-voltage-
independent series resistance from the wide 2DEG regions. An elementary
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FIG. 44. Point contact conductance as a function of gate voltage at 0.6 K, demonstrating the
conductance quantization in units of 2e?/h. The data are obtained from the two-terminal
resistance after subtraction of a background resistance. The constriction width increases with
increasing voltage on the gate (see inset). Taken from B. J. van Wees et al., Phys. Rev. Lett. 60, 848
(1988).

explanation of this effect relies on the fact that each 1D subband in the
constriction contributes 2e?/h to the conductance because of the cancellation
of the group velocity and the 1D density of states discussed in Section 12.
Since the number N of occupied subbands is necessarily an integer, it follows
from this simple argument that the conductance G is quantized,

G = (2¢*/h)N, (13.1)

as observed experimentally. A more complete explanation requires an explicit
treatment of the mode coupling at the entrance and exit of the constriction, as
discussed later.

The zero-field conductance quantization of a quantum point contact is not
as accurate as the Hall conductance quantization in strong magnetic fields.
The deviations from exact quantization are typically®7-3°¢ 1%, while in the
quantum Hall effect one obtains routinely®” an accuracy of 1 part in 107. It is
unlikely that a similar accuracy will be achieved in the case of the zero-field
quantization, one reason being the additive contribution to the point contact
resistance of a background resistance whose magnitude cannot be deter-
mined precisely. The largest part of this background resistance originates in
the ohmic contacts®®” and can thus be eliminated in a four-terminal
measurement of the contact resistance. The position of the additional voltage

306G. Timp, R. Behringer, S. Sampere, J. E. Cunningham, and R. E. Howard, in Ref. 15; see also
G. Timp in Ref. 9.
307H. van Houten, C. W. J. Beenakker, and B. J. van Wees, in Ref. 9.
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probes on the wide 2DEG regions has to be more than an inelastic scattering
length away from the point contact so that a local equilibrium 1s established
A residual background resistance®®” of the order of the resistance p of a
square 1s therefore unavoidable In the experiments of Refs 6 and 7 one has
p =~ 20Q, but lower values are possible for higher-mobility material It would
be of interest to investigate experimentally whether resistance plateaux
quantized to such an accuracy are achievable It should be noted, however,
that the degree of flatness of the plateaux and the sharpness of the steps in
the present experiments vary among devices of identical design, indicating
that the detailed shape of the electrostatic potential defiming the constriction
1s important There are many uncontrolled factors affecting this shape, such
as small changes 1n the gate geometry, variations in the pinning of the Fermi
level at the free GaAs surface or at the interface with the gate metal, doping
mmhomogeneities 1n the heterostructure material, and trapping of charge in
deep levels 1n AlGaAs

On increasing the temperature, one finds experimentally that the plateaux
acquire a finite slope until they are no longer resolved 3°® This 1s a
consequence of the thermal smearing of the Fermi—Dirac distribution (4 9) If
at T =0 the conductance G(Ey, T) has a step function dependence on the
Fermu energy Ep, at fimite temperatures 1t has the form3°°

G(Ey, T) = Lw G(E, 0) % dE = 32—2 21 F(E, — Ep) (132)

Here E, denotes the energy of the bottom of the nth subband [cf Eq (4 3)]
The width of the thermal smearing function df/dEg 1s about 4kyT, so the
conductance steps should disappear for T2 AE/4ky ~ 4K (here AE 1s the
subband splitting at the Fermi level) This 1s confirmed both by expen-
ment®°® and by numerical calculations (see below)

Interestingly, 1t was found experimentally®’ that in general a fimite
temperature yielded the most pronounced and flat plateaux as a function of
gate voltage in the zero-field conductance If the temperature 1s increased
beyond this optimum (which 1s about 0 5 K), the plateaux disappear because
of the thermal averaging discussed earlier Below this temperature, an
oscillatory structure may be superimposed on the conductance plateaux This
phenomenon depends on the precise shape of the constriction, as discussed
later A small but fimite voltage drop across the constiiction has an effect that
1s qualitatively similar to that of a fimite temperature 3°° This 1s indeed borne
out by experiment 3°® (Experiments on conduction through quantum point

3088 J van Wees, L P Kouwenhoven, E M M Willems, C J P M Harmans, J E Mooy, H
van Houten, C W J Beenakker, ] G Willamson and C T Foxon, submitted to Phys
Rev B

309p F Bagwell and T P Orlando, Phys Rev B 40, 1456 (1989)
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Fi1G 45 (a) Classical ballistic transport through a point contact induced by a concentration
difference n, or electrochemical potential difference eV, between source (s) and drain (d). (b) The
net current through a quantum point contact 1s carried by the shaded region in k-space. In a
narrow channel the allowed states lie on the horizontal lines, which correspond to quantized
values for k, = + nn/W, and continuous values for k, The formation of these 1D subbands gives
rise to a quantized conductance. Taken from H van Houten et al , in “Physics and Technology of
Submicron Structures” (H Heinrich, G Bauer, and F Kuchar, eds) Springer, Berlin, 1988, in
“Nanostructure Physics and Fabrication” (M Reed and W P. Kirk, eds) Academic, New York,
1989

contacts at larger applied voltages in the nonlinear transport regime have
been reviewed in Ref. 307).

Theoretically, one would expect the conductance quantization to be
preserved in longer channels than those used in the original experiments®:’
(in which typically L ~ W ~ 100 nm). Experiments on channels longer than
about 1 ym did not show the quantization,3°¢-307:310 however, although their
length was well below the transport mean free path in the bulk (about 10 um).
The lack of clear plateaux in long constrictions is presumably due to
enhanced backscattering inside the constriction, either because of impurity
scattering (which may be enhanced®°%-319 duye to the reduced screening in a
quasi-one-dimensional electron gas’?) or because of boundary scattering at
channel wall irregularities. As mentioned in Section 5, Thornton et al.l®’
have found evidence for a small (5%;) fraction of diffuse, rather than specular,
reflections at boundaries defined electrostatically by a gate. In a 200-nm-wide
constriction this leads to an effective mean free path of about
200 nm/0.05 =~ 4 ym, comparable to the constriction length of devices that do
not exhibit the conductance quantization.!!3-397

(2) Theory. It is instructive to first consider classical 2D point contacts in
some detail.*!*!! The ballistic electron flow through a point contact is
illustrated in Fig. 45a in real space, and in Fig. 45b in k-space, for a small

319G Timp, in Ref 10
311 yan Houten and C W J Beenakker, in Ref 15
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excess electron density én at one side of the point contact. At low temper-
atures this excess charge moves with the Fermi velocity vg. The flux normally
incident on the point contact is dnvp{cos ¢p6(cos ¢)>, where 6(x) is the unit
step function and the symbol { > denotes an isotropic angular average (the
angle ¢ is defined in Fig. 45a). In the ballistic limit / > W the incident flux is
fully transmitted, so the total diffusion current J through the point contact is
given by

/2

d 1
J = Wénvy f cos ¢ d _1 Wogdn. (13.3)
2w

—n/2
The diffusance D = J/é6n = (1/m)Wuvyg; therefore, the conductance G =
e*p(Eg)D becomes (using the 2D density of states (4.2) with the appropriate
degeneracy factors g, =2, g, = 1)

20 ke W

, in 2D. (13.4)
h =

G

Eq. (13.4) is the 2D analogue® of Sharvin’s well-known expression®°® for the
point contact conductance in three dimensions,

2e% kS )
G= P in 3D, (13.5)
where now § is the area of the point contact. The number of propagating
modes for a square-well lateral confining potential is N = Int[kz W/n] in 2D,
so Eq. (13.4) is indeed the classical limit of the quantized conductance (13.1).

Quantum mechanically, the current through the point contact is equiparti-
tioned among the 1D subbands, or transverse modes, in the constriction. The
equipartitioning of current, which is the basic mechanism for the conductance
quantization, is illustrated in Fig. 45b for a square-well lateral confining
potential of width W. The 1D subbands then correspond to the pairs of
horizontal lines at k, = +nn/W, withn=1,2,..., N and N = Int[kz W/x].
The group velocity v, = hk,/m is proportional to cos ¢ and thus decreases
with increasing n. However, the decrease in v, is compensated by an increase
in the 1D density of states. Since p, is proportional to the length of the
horizontal lines within the dashed area in Fig. 45b, p, is proportional to
1/cos ¢ so that the product v,p, does not depend on the subband index. We
emphasize that, although the classical formula (13.4) holds only for a square-
well lateral confining potential, the quantization (13.1) is a general result for
any shape of the confining potential. The reason is simply that the
fundamental cancellation of the group velocity v, = dE, (k)/hdk and the 1D
density of states p;} = (ndE,(k)/dk)~! holds regardless of the form of the
dispersion relation E, (k). For the same reason, Eq. (13.1) is equally applicable
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n the presence of a magnetic field, when magnetic edge channels at the Fermu
level take over the role of 1D subbands Equation (13 1) thus mmplies a
continuous transition from the zero-field quantization to the quantum Hall
effect, as we will discuss 1n Section 13 b

To analyze dewviations from Eq (131) 1t 1s necessary to solve the
Schrodinger equation for the wave functions in the narrow point contact and
the adjacent wide regions and to match the wave functions and their
derivatives at the entrance and exit of the constriction The resulting
transmission coefficients determine the conductance via the Landauer for-
mula (12 10) This mode coupling problem has been solved numerically for
point contacts of a variety of shapes®!?2732! and analytically n special
geometries >22732* When considering the mode coupling at the entrance and
exit of the constriction, one must distinguish gradual (adiabatic) from abrupt
transitions from wide to narrow regions

The case of an adiabatic constriction has been studied by Glazman et
al ,*2° by Yacoby and Imry>2% and by Payne 272 If the constriction width
W(x) changes sufficiently gradually, the transport through the constriction 1s
adiabatic (1 ¢, without intersubband scattering) The transmission coefficients
then vanish, |t,,,|> = 0, unless n = m < N,,,,, with N, the smallest number of
occupied subbands 1n the constriction The conductance quantization (13 1)
now follows immediately from the Landauer formula (12 10) The criterion
for adiabatic transport 1s32% dW/dx < 1/N(x), with N(x) = kp W(x)/x the local
number of subbands As the constriction widens, N(x) increases and adiabat-
icity 1s preserved only if W(x) imncreases more and more slowly In practice,
adiabaticity breaks down at a width W, ., which 1s at most a factor of 2 larger
than the mimimum width W, (cf the colimated beam experiment of Ref

min
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327, discussed in Section 15) This does not affect the conductance of the
constriction, however, 1if the breakdown of adiabaticity results in a mixing of
the subbands without causing reflection back through the constriction If
such 1s the case, the total transmission probability through the constriction
remains the same as in the hypothetical case of fully adiabatic transport As
pointed out by Yacoby and Imry,32° a relatively small adiabatic increase in
width from W, to W, 1s sufficient to ensure a drastic suppression of
reflections at W, , The reason 1s that the subbands with the largest reflection
probability are close to cutofT, that 1s, they have subband index close to N,
the number of subbands occupied at W,,,, Because the transport 1s adiabatic
from W, to W, ., only the N, subbands with the smallest n arrive at W,
and these subbands have a small reflection probability In the language of
waveguide transmassion, one has impedance-matched the constriction to the
wide 2DEG regions 328 The filtering of subbands by a gradually widening
constriction has an interesting effect on the angular distribution of the
electrons njected 1nto the wide 2DEG This horn collimation effect®2® 1s
discussed n Section 15

An adiabatic constriction improves the accuracy of the conductance
quantization, but 1s not required to observe the effect Calculations3!? 324
show that well-defined conductance plateaux persist for abrupt constrictions,
especially if they are neither very short nor very long The optimum length for
the observation of the plateaux 1s given by*'® L, = 0 4(WAig)'/? In shorter
constrictions the plateaux acquire a finite slope, although they do not
disappear completely even at zero length For L > L, the calculations
exhibit regular oscillations that depress the conductance periodically below
its quantized value The oscillations are damped and have usually vanished
before the next plateau 1s reached As a representative illustration, we
reproduce in Fig 46 a set of numerical results for the conductance as a
function of width (at fixed Ferru wave vector), obtained by Szafer and
Stone 3!° Note that a finite temperature improves the flatness of the plateaux,
as observed experimentally The existence of an optimum length can be
understood as follows

Because of the abrupt widening of the constriction, there 1s a significant
probability for reflection at the exit of the constriction, in contrast to the
adiabatic case considered earlier The conductance as a function of width, or
Fermi energy, 1s therefore not a simple step function On the nth conductance
plateau backscattering occurs predominantly for the ath subband, since 1t
15 closest to cutoff Resonant transmussion of this subband occurs if

327L W Molenkamp, A A M Staring, C W J Beenakker, R Eppenga, C E Timmernng,J G
Williamson, C J P M Harmans, and C T Foxon, Phys Rev B 41, 1274 (1990)

328R Landauer, Z Phys B 68, 217 (1987)

32C W J Beenakker and H van Houten, Phys Rev B 39, 10445 (1989)
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Fic 46 Transmission resonances exhibited by theoretical results for the conductance of a
quantum point contact of abrupt (rectangular) shape A smearing of the resonances occurs at
nonzero temperatures (T, = 002 Ex/kg = 2 8 K) The dashed curve 1s an exact numerical result,
the full curves are approximate Taken from A Szafer and A D Stone, Phys Rev Lett 62, 300
(1989)

the constriction length L 1s approximately an integer multiple of half
the longitudinal wavelength 1, = h[2m(Ex — E,)]~ /2, leading to oscillations
on the conductance plateaux These transmission resonances are
damped, because the reflection probability decreases with decreasing 4, The
shortest wvalue of 1, on the Nth conductance plateau 1s
h2m(Ey. | — Ey)] Y* = (WAR)!2 (for a square-well lateral confining potent-
1al) The transmission resonances are thus suppressed if L < (Wip)'/2
Transmission through evanescent modes (1¢, subbands above Ep) 1s pre-
domunant for the (N + 1)th subband, since 1t has the largest decay length
Ayiy = h[2m(Ey,; — Ef)] Y* The observation of that plateau requires
that the constriction length exceeds this decay length at the population
threshold of the Nth mode, or L 2 h[2m(Ey,, — Ey)] % =~ (Wig)''? The
optimum length®'? L, ~ 04(WJg)'? thus separates a short constriction
regime, 1n which transmission via evanescent modes cannot be 1ignored, from
a long constriction regime, 1n which transmission resonances obscure the
plateaux

Oscillatory structure was resolved 1n low-temperature experiments on the
conductance quantization of one quantum point contact by van Wees et
al 3°® but was not clearly seen in other devices A difficulty in the
mterpretation of these and other experiments 1s that oscillations can also be
caused by quantum interference processes involving impurity scattering near
the constriction Another experimental observation of oscillatory structure
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v, (V)

FiG 47 Resistance as a function of gate voltage for an elongated quantum point contact
(L =08 um) at'temperatures of 0 2, 0 4, and 0 8 K, showing transmission resonances Subsequent
curves from the bottom are offset by 1 kQ Taken from R J Brown et al, Solid State Electron 32,
1179 (1989)

was reported by Hirayama et al *3° for short (100-nm) quantum point
contacts of fixed width (defined by means of focused 10n beam lithography)
To observe the plateaux, they slowly varied the electron density by weakly
tlluminating the sample The oscillations were quite reproducible, also after
thermal cycling of the sample, but again they were found 1in some of the
devices only (this was attributed to variations in the abruptness of the
constrictions®3° 331) Brown et al 33? have studied the conductance of spht-
gate constrictions of lengths L ~ 03, 08, and 1um, and they observed
pronounced oscillations instead of the flat conductance plateaux found for
shorter quantum point contacts The observed oscillatory structure (repro-
duced 1in Fig 47) 1s quite regular, and 1t correlates with the sequence of

330Y Hirayama, T Saku, and Y Horikoshi, Phys Rev B 39, 5535 (1989)

33'Y Hirayama, T Saku, and Y Hortkosh, Jap J Appl Phys 28, L701 (1989)

332R J Brown, M T Kelly, R Newbury, M Pepper, B Miller, H Ahmed, D G Hasko, D C
Peacock, D A Ritchie,] E F Frost,and G A C Jones, Solid State Electron 32,1179 (1989)
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plateaux that 1s recovered at higher temperatures (around 0 8 K) The effect
was seen 1n all of the devices studied 1n Ref 332 Measurements by Timp et
al *°¢ on rather similar 09-um-long constrictions did not show periodic
oscillations, however Brown et al conclude that their oscillations are due to
transmission resonances associated with reflections at entrance and exit of
the constriction Detailed comparison with theory 1s difficult because the
transmission resonances depend sensitively on the shape of the lateral
confining potential and on the presence of a potential barrier in the
constriction (see Section 13b) A calculation that comes close to the
observation of Brown et al has been published by Martin-Moreno and
Smuth 333

b Depopulation of Subbands and Suppression of Backscattering by a
Magnetic Field

The effect of a magnetic field (perpendicular to the 2DEG) on the
quantized conductance of a point contact 1s shown 1n Fig 48, as measured by
van Wees et al *3* First of all, Fig 48 demonstrates that the conductance
quantization 1s conserved in the presence of a magnetic field and shows a
smooth transition from zero-field quantization to quantum Hall effect The
most noticeable effect of the magnetic field 1s to reduce the number of
plateaux 1 a given gate voltage mterval This provides a demonstration of
depopulation of magnetoelectric subbands, which 1s more direct than that
provided by the experiments discussed m Section 10 In addition, one
observes that the flatness of the plateaux improves n the presence of the field
This 1s due to the reduction of the reflection probabihity at the point contact,
which 1s revealed most clearly i a somewhat different (four-terminal)
measurement configuration These two effects of a magnetic field will be
discussed separately We will return to the magnetic suppression of back-
scattering in Section 18 1n connection with the edge channel theory!*? of the
quantum Hall effect

(1) Depopulation of Subbands. Because the equipartitioning of current
among the 1D subbands holds regardless of the nature of the subbands
mvolved, one can conclude that in the presence of a magnetic field B the
conductance remains quantized according to G = (2¢?/h)N (1ignoring spin
splitting of the subbands, for simplicity) Explicit calculations33® confirm this
expectation The number of occupied subbands N as a function of B has been

3331, Martin-Moreno and C G Smuth, J Phys Condens Matter 1, 5421 (1989)

334B J van Wees, L P Kouwenhoven, H van Houten, C W J Beenakker, ] E Mooy, C T
Foxon, and J J Harns, Phys Rev B 38, 3625 (1988)

335M Buttiker Phys Rev B 41 7906 (1990), L I Glazman and A V Khaetskn, J Phys
Condens Matter 1,5005 (1989) Y Avishatand Y B Band, Phys Rev B 40,3429 (1989), K B
Efetov, J Phys Condens Matter 1, 5535 (1989)
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Fic. 48. Point contact conductance (corrected for a background resistance) as a function of
gate voltage for several magnetic field values, illustrating the transition from zero-field
quantization to quantum Hall effect. The curves have been offset for clarity. The inset shows the
device geometry. Taken from B. J. van Wees et al., Phys. Rev. B. 38, 3625 (1988).

studied in Sections 10 and 12 and is given by Egs. (10.7) and (10.8) for a
parabolic and a square-well potential, respectively. In the high-magnetic-field
regime W R 2l ., the number N = Ep/hw, is just the number of occupied
Landau levels. The conductance quantization is then a manifestation of the
quantum Hall effect.® (The fact that G is not a Hall conductance but a two-
terminal conductance is not an essential distinction for this effect; see Section
18.) At lower magnetic fields, the conductance quantization provides a direct
and extremely straightforward method to measure via N = G(2e%/h)”! the
depopulation of magnetoelectric subbands in the constriction.

Figure 49 shows N versus B~ ! for various gate voltages, as it follows from
the experiment of Fig. 48. Also shown are the theoretical curves for a square-
well confining potential, with the potential barrier in the constriction taken
into account by replacing Er by Ex — E_ in Eq. (10.8). The B-dependence of
Ey. has been ignored in the calculation. The barrier height E_ is obtained from
the high-field conductance plateaux [where N ~ (Ex — E))/hw.], and the
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FiG 49 Number of occupied subbands as a function of reciprocal magnetic field for several
values of the gate voltage Data points have been obtained directly from the quantized
conductance (Fig 48), solid curves are calculated for a square-well confining potential of width W
and well bottom E, as tabulated 1n the inset Taken from B J van Wees et al, Phys Rev B 38,
3625 (1988)

constriction width W then follows from the zero-field conductance (where
N =~ [2m(E, — E_)/h*]"*W/n) The good agreement found over the entire
field range confirms the expectation that the quantized conductance 1s
exclusively determined by the number of occupied subbands, rrespective of
their electric or magnetic origin The analysis 1n Fig 49 1s for a square-well
confining potential 33* For the narrowest constrictions a parabolic potential
should be more appropriate,®! which has been used to analyze the data of
Fig 48 in Refs 336 and 308 Wharam et al3*7 have analyzed therr
depopulation data using the intermediate model of a parabolic potential
with a flattened bottom (cf also Ref 336) Because of the uncertainties mn the

336 F Weisz and K -F Berggren, Phys Rev B 40, 1325 (1989)
33D A Wharam, U Ekenberg, M Pepper, D G Hasko, H Ahmed,J E F Frost, D A Ritchue,
D C Peacock, and G A C Jones, Phys Rev B 39, 6283 (1989)
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actual shape of the potential, the parameter values tabulated in Fig. 49 should
be considered as rough estimates only.

In strong magnetic fields the spin degeneracy of the energy levels is
removed, and additional plateaux appear’*** at odd multiples of e?/h.
Wharam et al.” have demonstrated this effect in a particularly clear fashion,
using a magnetic field parallel (rather than perpendicular) to the 2DEG.
Rather strong magnetic fields turned out to be required to fully lift the spin
degeneracy in this experiment (about 10T).

(2) Suppression of Backscattering. Only a small fraction of the electrons
injected by the current source into the 2DEG is transmitted through the
point contact. The remaining electrons are scattered back into the source
contact. This is the origin of the nonzero resistance of a ballistic point
contact. In this subsection we shall discuss how a relatively weak magnetic
field leads to a suppression of the geometrical backscattering caused by the
finite width of the point contact, while the amount of backscattering caused
by the potential barrier in the point contact remains essentially unaffected.

The reduction of backscattering by a magnetic field is observed as a
negative magnetoresistance [i.e., R(B)— R(0)<0] in a four-terminal measure-
ment of the longitudinal point contact resistance R, . The voltage probes in
this experiment'!? are positioned on wide 2DEG regions, well away from the
constriction (see the inset in Fig. 50). This allows the establishment of local
equilibrium near the voltage probes, at least in weak magnetic fields (cf.
Sections 18 and 19), so that the measured four-terminal resistance does not
depend on the properties of the probes. The experimental results for R, in this
geometry are plotted in Fig. 50. The negative magnetoresistance is
temperature-independent (between 50 mK and 4 K) and is observed in weak
magnetic fields once the narrow constriction is defined (for V, £ —0.3 V). At
stronger magnetic fields (B > 0.4 T), a crossover is observed to a positive
magnetoresistance. The zero-field resistance, the magnitude of the negative
magnetoresistance, the slope of the positive magnetoresistance, as well as the
crossover field, all increase with increasing negative gate voltage.

The magnetic field dependence of the four-terminal resistance shown in
Fig. 50 is qualitatively different from that of the two-terminal resistance
R, = G~ ! considered in the previous subsection. In fact, R,, is approximate-
ly B-independent in weak magnetic fields (below the crossover fields of Fig.
50). The reason is that R,, is given by [cf. Eq. (13.1)]

B o1
=—— 13.6
2t 282 min ( )
with N, the number of occupied subbands in the constriction (at the point
where it has its minimum width and electron gas density). In weak magnetic

fields such that 2l . > W, the number of occupied subbands remains
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Fi6 50 Four-terminal longitudinal magnetoresistance R, of a constriction for a series of gate
voltages The negative magnetoresistance 1s temperature independent between 50mK and 4K
Solhd lines are according to Eqs (137) and (10 8), with the constriction width as adjustable
parameter The mset shows schematically the device geometry, with the two voltage probes used
to measure Ry, Taken from H van Houten et al, Phys Rev B 37, 8534 (1988)

approximately constant [cf Fig 31 or Eq (108)], so R,, 1s only weakly
dependent on B m this field regime For stronger fields Eq (13 6) describes a
positive magnetoresistance, because N, decreases due to the magnetic
depopulation of subbands discussed earlier (A similar positive magnetoresis-
tance 1s found 1n a Hall bar with a cross gate, see Ref 338 ) Why then does one
find a negatie magnetoresistance m the four-terminal measurements of Fig
507 Qualitatively, the answer 1s shown 1n Fi1g 51, for a constriction without a
potential barrier In a magnetic field the left- and right-moving electrons are
spatially separated by the Lorentz force at opposite sides of the constriction
Quantum mechanically the skipping orbits i Fig 51 correspond to magnetic
edge states (cf Fig 41) Backscattering thus requires scattering across the
width of the constriction, which becomes increasingly improbable as leyer
becomes smaller and smaller compared with the width (compare Figs 51a, b)
For this reason a magnetic field suppresses the geometrical constriction
resistance 1 the ballistic regime, but not the resistance associated with the
constriction 1n energy space, which 1s due to the potential barrier

These effects were analyzed theoretically in Ref 113, with the simple result

h/ 1 1
RL=Z;2~<N——N > 137)

wide

338 Hirai, S Komiyama, S Sasa and T Fuyu, Solid State Comm 72, 1033 (1989)
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Fi6 51 Illustration of the reduction of backscattering by a magnetic field, which 1s
responsible for the negative magnetoresistance of Fig 50 Shown are trajectories approaching a
constriction without a potential barrter 1n a weak (a) and strong (b) magnetic field Taken from
H van Houten ef al 1n ‘Nanostructured Systems (M A Reed ed) Academic New York

Here N4, 1s the number of occupied Landau levels m the wide 2DEG
regions The simplest (but incomplete) argument leading to Eq (13 7) 1s that
the additivity of voltages on reservoirs (ohmic contacts) implies that the two-
terminal resistance R,, = (h/2¢*)N,,} should equal the sum of the Hall

min

resistance Ry = (h/2¢*)N L. and the longitudinal resistance R, This argu-
ment 1s mmcomplete because 1t assumes that the Hall resistance 1n the wide
regions 1s not affected by the presence of the constriction This 1s correct in
general only 1f inclastic scattering has equilibrated the edge states transmitted
through the constriction before they reach a voltage probe Deviations from
Eq (137) can occur in the absence of local equilibrium near the voltage
probes, depending on the properties of the probes themselves We discuss this
m Section 19, followmng a derivation of Eq (137) from the Landauer—
Buttiker formalism 12

At small magnetic fields N, 18 approximately constant, while
Ny4e ® Ep/ho, decreases hinearly with B Equation (13 7) thus predicts a
negatwe magnetoresistance If the electron density in the wide and narrow
regions 1s equal (1 e, the barrier height E, = 0), then the resistance R vanishes
for fields B > B,,,, = 2hkr/eW This follows from Eq (13 7), because 1n this
case N, and N, 4. are identical If the electron density in the constriction 18
less than 1ts value 1n the wide region, then Eq (13 7) predicts a crossover at
B.,,. to a strong-field regime of positive magnetoresistance described by

h h h
Rom (e e g g
2 \Ex — E, Eg

crit

(13 8)

crit
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The experimental results are well described by the sohid curves following
from Eq (13 7) (with N, given by the square-well result (10 8), and with an
added constant background resistance} The constriction mn the present
experiment 1s relatively long (L &~ 3 4 um), and wide (W ranging from 02 to
10um) so that 1t does not exhibit quantized two-terminal conductance
plateaux in the absence of a magnetic field For this reason the discreteness of
N...» was 1ignored 1n the theoretical curves in Fig 50 We emphasize, however,
that Eq (13 7) 1s equally applicable to the quantized case, as observed by
several groups®®7 3397342 (see Section 19)

The negative magnetoresistance (13 7) due to the suppression of the
contact resistance is an additive contribution to the magnetoresistance of a
long and narrow channel in the quasi-ballistic regume (if the voltage probes
are positioned on two wide 2DEG regions, connected by the channel) For a
channel of length L and a mean free path [ the zero-field contact resistance 1s a
fraction ~[/L of the Drude resistance and may thus be ignored for L » [ The
strong-field positive magnetoresistance (13 8) resulting from a different
electron density n the channel may still be important, however The effect of
the contact resistance may be suppressed to a large extent by using narrow
voltage probes attached to the channel itself rather than to wide 2DEG
regions As we will see in Section 16, such a solution no longer works 1n the
ballistic transport regime, because of the additional scattering induced?®® by
the voltage probes

14 CoHERENT ELECTRON FOCUSING

A magnetic field may be used to focus the electrons mjected by a point
contact onto a second pomnt contact Electron focusing i metals was
originally concerved by Sharvin?®® as a method to investigate the shape of the
Fermi surface It has become a powerful tool in the study of surface
scattering,*? and the electron—phonon interaction,?** as reviewed 1n Refs
305, 345, and 346 The experiment 1s the analogue in the solid state of
magnetic focusing of electrons m vacuum Required 1s a large mean free path
for the carriers at the Fermui surface, to ensure ballistic motion as 1n vacuum
The mean free path should be much larger than the separation L of the two

339G Washburn, A B Fowler, H Schmid, and D Kern, Phys Rev Lett 61, 2801 (1988)

340R J Haug, A H MacDonald, P Streda, and K von Klitzing, Phys Rev Lett 61,2797 (1988)

341R J Haug, J Kucera, P Streda, and K von Klitzing, Phys Rev B 39, 10892 (1989)

342B R Snell, P H Beton, P C Main, A Neves,J] R Owers-Bradley, L Eaves, M Hemm, O H
Hughes, S P Beaumont, and C D W Wilkinson, J Phys Condens Matter 1, 7499 (1989)

343V S Tsoi, Pisma Zh Eksp Teor Fiz 19, 114 (1974) [JETP Lett 19, 70 (1974)), Zh Eksp
Teor Fiz 68, 1849 (1975) [Sov Phys JETP 41, 927 (1975)]

3%4P C van Son, H van Kempen, and P Wyder, Phys Rev Lett 58, 1567 (1987)

3451 K Yanson, Zh Eksp Teor Fiz 66, 1035 (1974) [Sov Phys JETP 39, 506 (1974)]

3#6A M Duf, A G M Jansen, and P Wyder, J Phys Condens Matter 1, 3157 (1989)
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point contacts Moreover, L should be much larger than the point contact
width W, to achieve optimal resolution In metals, electron focusing 1s
essentially a classical phenomenon because the Fermu wavelength
Ap ~ 05nm 1s much smaller than both W ~ 1um and L ~ 100um The
rat10s Ar/L and Ag/W are much larger in a 2DEG than 1n a metal, typically by
factors of 10* and 102, respectively Coherent electron focusing®® 80347 s
possible 1n a 2DEG because of this relatively large value of the Fermi
wavelength, and turns out to be strikingly different from classical electron
focusing 1in metals

Electron focusing can be seen as a transmission experiment i electron
optics (cf Ref 3 for a discussion from this pomt of view) An alternative point
of view (emphasized in Refs 80 and 348)1s that coherent electron focusing is a
prototype of a nonlocal resistance measurement in the quantum ballistic
transport regime, such as studied extensively i narrow-channel geome-
tries *'° Longitudinal resistances that are negative (not + B symmetric) and
dependent on the properties of the current and voltage contacts as well as on
their separation, pertodic and aperiodic magnetoresistance oscillations,
absence of local equilibrium are all characteristic features of this transport
regime that appear 1 a most extreme and bare form 1n the electron focusing
geometry One reason for the simplification offered by this geometry 1s that
the current and voltage contacts, being point contacts, are not nearly as
mvasive as the wide leads 1n a Hall bar geometry Another reason 1s that the
electrons interact with only one boundary (instead of two in a narrow
channel)

The outline of this section 1s as follows In Section 14 a the experimental
results on coherent electron focusing®® 8¢ are presented A theoretical
description®® 347 1s given 1n Section 14 b, 1n terms of mode nterference n the
waveguide formed by the magnetic field at the 2DEG boundary Apart from
the intrinsic interest of electron focusing in a 2DEG, the expertment can also
be seen as a method to study electron scattering, as in metals Two such
applications'®® 349 are discussed 1n Section 14 ¢ We restrict ourselves in this
section to focusing by a magnetic field Electrostatic focusing®>° 1s discussed
m Section 15b

a Experiments

The geometry of the expermment®® in a 2DEG 1s the transverse focusing
g y P

347 W J Beenakker, H van Houten, and B J van Wees, Europhys Lett 7, 359 (1988)

348C W J Beenakker, H van Houten, and B J van Wees, Festkorperprobleme 29, 299 (1989)

3491 Spector, H L Stormer, K W Baldwin, L N Pfeiffer and K W West, Surf Sc1 228, 283
(1990)

350y Sivan, M Herblum, and C P Umbach, and H Shtrikman, Phys Rev B 41,7937 (1990),
Spector, H L Stormer, K W Baldwin, L N Pfeiffer and K W West, Appl Phys Lett 56,

1290 (1990)
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Fic 52. Illustration of classical electron focusing by a magnetic field. Top' Skipping orbits
along the 2DEG boundary The trajectories are drawn up to the third specular reflection.
Bottom Plot of the caustics, which are the collection of focal points of the trajectories. Taken
from H van Houten et al, Phys Rev B 39, 8556 (1989)

geometry of Tsoi**? and consists of two point contacts on the same boundary
in a perpendicular magnetic field. (In metals one can also use the geometry of
Sharvin?°® with opposite point contacts in a longitudinal field. This is not
possible in two dimensions.) Two point contacts and the intermediate 2DEG
boundary are created electrostatically by means of the two split gates shown
i Fig. 5b. Figure 52 illustrates electron focusing in two dimensions as it
follows from the classical mechanics of electrons at the Fermi level. The
injector (i) injects a divergent beam of electrons ballistically into the 2DEG.
Electrons are detected if they reach the adjacent collector (c), after one or
more specular reflections at the boundary connecting i and c. (These are the
skipping orbits discussed i Section 12.a.) The focusing action of the magnetic
field is evident in Fig. 52 (top) from the black lines of high density of
trajectories. These lines are known in optics as caustics and they are plotted
separately in Fig. 52 (bottom). The caustics intersect the 2DEG boundary at
multiples of the cyclotron diameter from the injector. As the magnetic field is
increased, a series of these focal points shifts past the collector. The electron
flux incident on the collector thus reaches a maximum whenever its
separation L from the injector is an integer multiple of 2/, = 2kkg/eB. This
occurs when B = pBiyoue, P = 1,2,..., with

Bryews = 2ftky/eL. (14.1)

For a given injected current I, the voltage V, on the collector is proportional
to the incident flux. The classical picture thus predicts a series of equidistant
peaks in the collector voltage as a function of magnetic field.
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FiG. 53. Bottom: Experimental electron focusing spectrum (T'= S0mK, L= 3.0 um) in the
generalized Hall resistance configuration depicted in the inset. The two traces a and b are
measured with interchanged current and voltage leads, and demonstrate the injector—collector
reciprocity as well as the reproducibility of the fine structure. Top: Calculated classical focusing
spectrum corresponding to the experimental trace a (50-nm-wide point contacts were assumed).
The dashed line is the extrapolation of the classical Hall resistance seen in reverse fields. Taken
from H. van Houten et al., Phys. Rev. B 39, 8556 (1989).

In Fig. 53 (top) we show such a classical focusing spectrum, calculated for
parameters corresponding to the experiment discussed later (L = 3.0 um,
kg = 1.5% 108 m™"). The spectrum consists of equidistant focusing peaks of
approximately equal magnitude superimposed on the Hall resistance (dashed
line). The pth peak is due to electrons injected perpendicularly to the
boundary that have made p — 1 specular reflections between injector and
collector. Such a classical focusing spectrum is commonly observed in
metals, 37352 albeit with a decreasing height of subsequent peaks because of
partially diffuse scattering at the metal surface. Note that the peaks occur in
one field direction only. In reverse ficlds the focal points are at the wrong side
of the injector for detection, and the normal Hall resistance is obtained. The
experimental result for a 2DEG is shown in the bottom half of Fig. 53 (trace a;
trace b is discussed later). A series of five focusing peaks is evident at the
expected positions. The observation of multiple focusing peaks immediately

351p, A. M. Benistant, Ph.D. thesis, University of Nijmegen, The Netherlands, 1984; P. A. M.
Benistant, A. P. van Gelder, H. van Kempen, and P. Wyder, Phys. Rev. B 32, 3351 (1985).

352p A M. Benistant, G. F. A. van de Walle, H. van Kempen, and P. Wyder, Phys. Rev. B 33, 690
(1986).
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implies that the electrostatically defined 2DEG boundary scatters predomi-
nantly specularly. (This finding®® is supported by the magnetoresistance
experiments of Thornton et al.!®” in a narrow split-gate channel; cf. Section
5.} Figure 53 is obtained in a measuring configuration (inset) in which an
imaginary line connecting the voltage probes crosses that between the current
source and drain. This is the configuration for a generalized Hall resistance
measurement. If the crossing is avoided, one measures a longitudinal
resistance, which shows the focusing peaks without a superimposed Hall
slope. This longitudinal resistance periodically becomes negative. This is a
classical result®® of magnetic defocusing, which causes the probability density
near the point contact vollage probe to be reduced with respect to the
spatially averaged probability density that determines the voltage on the
wide voltage probe (cf. the regions of reduced density between lines of focus in
Fig. 52).

On the experimental focusing peaks a fine structure is resolved at low
temperatures (below 1K). The fine structure is well reproducible but
sample-dependent. A nice demonstration of the reproducibility of the fine
structure is obtained upon interchanging current and voltage leads, so that
the injector becomes the collector, and vice versa. The resulting focusing
spectrum shown in Fig. 53 (trace b) is almost the precise mirror image of the
original one (trace a), although this particular device had a strong asymmetry
in the widths of injector and collector. The symmetry in the focusing spectra
1s an example of the general reciprocity relation (12.16). If one applies the
Biittiker equations (12.12) to the electron focusing geometry (as is done in
Section 19), one finds that the ratio of collector voltage V, to injector current
I; is given by

V. 20 T,
I

= 14.
h GG, (142)

where T, is the transmission probability from injector to collector, and G;
and G, are the conductances of the injector and collector point contact. Since
T._..(B) = T..,,(— B) and G(B) = G(—B), this expression for the focusing
spectrum is manifestly symmetric under interchange of injector and collector
with reversal of the magnetic field.

The fine structure on the focusing peaks in Fig. 53 is the first indication
that electron focusing in a 2DEG is qualitatively different from the corre-
sponding experiment in metals. At higher magnetic fields the resemblance to
the classical focusing spectrum is lost; see Fig. 54. A Fourier transform of the
spectrum for B > 0.8 T (inset in Fig. 54) shows that the large-amplitude high-
field oscillations have a dominant periodicity of 0.1 T, which is approximately
the same as the periodicity By, of the much smaller focusing peaks at low
magnetic fields (Bg,e,s in Fig. 54 differs from Fig. 53 because of a smaller
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Fi16 54 Experimental electron focusing spectrum over a larger field range and for very
narrow point contacts (estimated width 20-40nm, T= 50mK, L= 1 5um) The inset gives the
Fourter transform for B > 08 T The high-field oscillations have the same dominant periodicity

as the low-field focusing peaks, but with a much larger amplitude Taken from H van Houten et
al, Phys Rev B 39, 8556 (1989)

L = 15um) This dominant periodicity can be explained n terms of quantum
interference between the different skipping orbits from injector to collector or
m terms of interference of coherently excited edge channels, as we discuss 1n
the following subsection The experimental implication 1s that the injector
acts as a coherent point source with the coherence maintained over a distance
of several microns to the collector

b Theory

To explain the characteristic features of the coherent electron focusing
experiments we have described, we must go beyond the classical de-
scription 89 347 As discussed 1n Section 12, quantum ballistic transport along
the 2DEG boundary 1n a magnetic field takes place via magnetic edge states,
which form the propagating modes at the Fermi level Since the injector has a
width below Ag, 1t excites these modes coherently For kzL > 1 the mter-
ference of modes at the collector 1s dominated by their rapidly varying phase
factors exp(ik,L) The wave number k, corresponds classically to the
separation of the center of the cyclotron orbit from the 2DEG boundary [Eq
(12 '5)] Inthe Landau gauge A = (0, Bx, 0) (with the axis chosen as in Fig 52)
one has k, = kgpsina,, where « 1s the angle with the x-axis under which the
cyclotron orbut 1s reflected from the boundary The quantized values o, follow
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FiG 55 Phase k,L of the edge channels at the collector calculated from Eq (14 3) Note the
domarin of approximately linear n-dependence of the phase, responsible for the oscillations with
Bgoeus-periodicity Taken from H van Houten et al, Phys Rev B 39, 8556 (1989)

mn this semiclassical description from the Bohr—Sommerfeld quantization
rule (12 6) that the flux enclosed by the cyclotron orbit and the boundary
equals (n — $)h/e [ the phase shift y in Eq (12 6) equals 7/2 for an edge state at
an mnfinite barrier potential] Simple geometry shows that this requires that

i 1 27 1

e ism2 = =1,2 N 143

5 % S 20, = o <n 4>, n=12 , (14 3)
As plotted 1n Fig 55, the dependence on n of the phase k,L 1s close to

linear in a broad interval This also follows from expansion of Eq (14 3)
around o, = 0, which gives

N —2n\?
k,L =constant — 2znn + kpL x order < N n) (14 4)

focus
If B/By,.. 1s an integer, a fraction of order (1/kgL)'/? of the N edge states
interfere constructively at the collector Because of the 1/3 power, this 1s a
substantial fraction even for the large kpzL ~ 102 of the experiment The
resulting mode nterference oscillations with By,..-periodicity can become
much larger than the classical focusing peaks This has been shown 1n Refs
347 and 80, where the transmission probability T, . was calculated in the
WKB approxmmation with neglect of the finite width of the injector and
detector From Eq (14 2) the focusing spectrum 1s then obtained 1n the form

1 XN
VC N z ezk,,L

n—1

2

h
= , (14 5)

1
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FIG. 56. Focusing spectrum calculated from Eq. (14.5), for parameters corresponding to the
experimental Fig. 54. The inset shows the Fourier transform for B > 0.8 T. Infimitesimally small

point contact widths are assumed in the calculation. Taken from C. W. J. Beenakker et al.,
Festkdrperprobleme 29, 299 (1989).

which is plotted in Fig. 56 for parameter values corresponding to the
experimental Fig. 54. The inset shows the Fourier transform for B > 0.8 T.

There is no detailed one-to-one correspondence between the experimental
and theoretical spectra. No such correspondence was to be expected in view
of the sensitivity of the experimental spectrum to small variations in the
voltage on the gate defining the point contacts and the 2DEG boundary.
Those features of the experimental spectrum that are insensitive to the precise
measurement conditions are, however, well reproduced by the calculation:
We recognize in Fig. 56 the low-field focusing peaks and the large-amplitude
high-field oscillations with the same B, -periodicity. The high-field oscilla-
tions range from about 0 to 10kQ in both theory and experiment. The
maximum amplitude is not far below the theoretical upper bound of
h/2e? ~ 13kQ, which follows from Eq. (14.5) if we assume that all the modes
interfere constructively. This indicates that a maximal phase coherence is
realized in the experiment and implies that the experimental injector and
collector point contacts resemble the idealized point source/detector in the
calculation.

c. Scattering and Electron Focusing

Scattering events other than specular boundary scattering can be largely
ignored for the relatively small point contact separations L < 3 ym in the
experiments discussed earlier®®®° (any other inelastic or elastic scattering
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Fi6 57 Experimental electron focusing spectra (in the generalized longitudinal resistance
configuration) at 03K for five different injector—collector separations m a very high mobility
material The vertical scale varies among the curves Taken from J Spector et al Surf Sci 228,
283 (1990)

events would have been detected as a reduction of the oscillations with By, .-
pertodicity below the theoretical estimate) Spector et al **° have repeated the
experiments for larger L to study scattering processes in an ultrahigh
mobility®3? 3% 2DEG (g, = 55x 10°cm?/Vs) They used relatively wide
point contacts (about 1 um) so that electron focusing was 1n the classical
regime In Fig 57 we reproduce their experimental results for pomnt contact
separations up to 64 um The peaks 1n the focusing spectrum for a given L
have a roughly constant amplitude, indicating that scattering at the bound-
ary 1s mostly specular rather than diffusive—in agreement with the experi-
ments of Ref 59 Spector et al 3*° find that the amplitude of the focusing
peaks decreases exponentially with increasing L, due to scattering in the
electron gas (see F1g 58) The decay exp(— L/L,) with L, ~ 10 um mmplies an
effective mean free path (measured along the arc of the skipping orbuts) of
Lon/2 ~ 15um This 1s smaller than the transport mean free path derived
from the conductivity by about a factor of 2, which may point to a greater
sensitivity of electron focusing to forward scattering

Electron focusing by a magnetic field may also play a role in geometries
other than the double-point contact geometry of Fig 52 One example is
mentioned 1n the context of junction scattering in a cross geometry 1n Section
16 Another example 1s the experiment by Nakamura et al*°® on the
magnetoresistance of equally spaced narrow channels in parallel (see Fig 59)
3331 Pfeiffer, K W West, H L Stormer, and K W Baldwin, App! Phys Lett 55, 1888 (1989)

3%4C T Foxon,J J Harris D Hilton, J Hewett, and C Roberts, Semicond Sct Technol 4, 582
(1989), C T Foxon and J J Harris, Phulips J Res 41, 313 (1986)
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Fi1G 58 Exponential decay of the oscillation amplitude of the collector voltage (normalized
by the injector voltage) as a function of injector—collector separation d (denoted by Lin the text)
Taken from J Spector et al, Surf Sc 228, 283 (1990)

Resistance peaks occur in this expermment when electrons that are trans-
mitted through one of the channels are focused back through another
channel The resistance peaks occur at B = (1/m)Bg,.ys, Where By, 1S glven
by Eq (14 1) with L the spacing of adjacent channels The identification of the
various peaks i Fig 59 1s given 1n the inset Nakamura et al.'°® conclude
from the rapidly dimmishing height of consecutive focusing peaks (which
require an increasing number of specular reflections) that there 1s a large
probability of diffuse boundary scattering The reason for the difference with
the experiments discussed previously 1s that the boundary in the experiment
of Fig 59 1s defined by focused 10n beam hithography, rather than electrostat-
ically by means of a gate As discussed mn Section 5, the former technique may
mtroduce a considerable boundary roughness

Electron focusing has been used by Williamson et al 33° to study scattering
processes for “hot” electrons, with an energy in excess of the Fermui energy,
and for “cool” holes, or empty states in the conduction band below the Fermi
level (see Ref 307 for a review) An imteresting aspect of hot-electron focusing
1s that 1t allows a measurement of the local electrostatic potential drop across
a current-carrying quantum point contact,?%> something that 1s not possible
using conventional resistance measurements, where the sum of electrostatic

3%3] G Wilhamson, H van Houten, C W J Beenakker, M E I Broekaart,L I A Spendeler, B
J van Wees, and C T Foxon, Phys Rev B 41, 1207 (1990), Surf Sci 229, 303 (1990)
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F1G. 59. Magnetoresistance of N constrictions in parallel at 1.3 K. The arrows indicate the
oscillations due to electron focusing, according to the mechanisms illustrated in the inset. The
resistance scale is indicated by 10Q bars. Taken from K. Nakamura et al., Appl. Phys. Lett. 56,
385 (1990).

and chemical potentials is measured. The importance of such alternative
techniques to study electrical conduction has been stressed by Landauer.3%%

15. COLLIMATION

The subject of this section is the collimation of electrons injected by a
point contact®*?? and its effect on transport measurements in geometries

336R. Landauer, in “Analogies in Optics and Microelectronics” (W. van Haeringen and D.
Lenstra, eds.). Kluwer Academic, Dordrecht, 1990.
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involving two opposite point contacts 327 357 Collimation (1 ¢, the narrowing
of the angular mjection distributions) follows from the constraints on the
electron momentum 1mposed by the potential barrier in the point contact
(barrier collimation), and by the gradual widening of the point contact at 1ts
entrance and exit (horn collimation) We summarize the theory in Section 15 a
The effect was originally proposed32? to explain the remarkable observation
of Wharam et al 37 that the series resistance of two opposite point contacts 1s
considerably less than the sum of the two individual resistances (Section 15 ¢)
A direct experimental proof of collimation was provided by Molenkamp et
al *?7 who measured the deflection of the injected beam of electrons 1n a
magnetic field (Section 15 b) A related experiment by Sivan et al ,*°° aimed at
the demonstration of the focusing action of an electrostatic lens, 1s also
discussed 1n this subsection The collimation effect has an importance 1n
ballistic transport that goes beyond the point contact geometry It will be
shown 1 Section 16 that the phenomenon 1s at the origin of a variety of
magnetoresistance anomalies 1n narrow multiprobe conductors 3587360

a Theory

Since collimation follows from classical mechanics, a semiclassical theory
15 sufficient to describe the essential phenomena, as we now discuss (following
Refs 329 and 311) Semuiclassically, collimation results from the adiabatic
mvariance of the product of channel width W and absolute value of the
transverse momentum hk, (this product 1s proportional to the action for
motion transverse to the channel) ¢! Therefore, 1f the electrostatic potential
in the point contact region 1s sufficiently smooth, the quantity S = |k |W 15
approximately constant from point contact entrance to exit Note that S/z
corresponds to the quantum mechanical 1D subband index n The quantum
mechanical criterion for adiabatic transport was derived by Yacoby and
Imry?32¢ (see Section 13) As was discussed there, adiabatic transport breaks
down at the exit of the point contact, where 1t widens abruptly into a 2DEG
of essentially infinite width Collimation reduces the injection/acceptance cone
of the point contact from 1ts original value of # to a value of 2a,,,,, Thus effect
1s illustrated 1in Fig 60 Electrons incident at an angle |o| > a,,,, from normal
mcidence are reflected (The geometry of Fig 60b 1s known 1n optics as a
conical reflector 3%%) Vice versa, all electrons leave the constriction at an angle

357D A Wharam, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A
Ritchie, and G A C Jones, J Phys C 21, L887 (1988)

358 U Baranger and A D Stone, Phys Rev Lett 63, 414 (1989), also in Ref 16

359C W J Beenakker and H van Houten, Phys Rev Lett 63, 1857 (1989)

360C W J Beenakker and H van Houten, 1n Ref 17

3611, D Landau and E M Lifshitz, “Mechanics ” Pergamon, Oxford, 1976

362N S Kapany, in “Concepts of Classical Optics” (J Strong, ed ) Freeman, San Francisco,
1958
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FiG 60 Illustration of the collimation effect for an abrupt constriction (a) containing a
potential barrier of height E_ and for a horn-shaped constriction (b) that 1s flared from a width
W to W, The dash-dotted trajectories approaching at an angle « outside the imjection—

min

acceptance cone are reflected Taken from H van Houten and C W J Beenakker, 1n
Nanostructure Physics and Fabrication’ (M Reed and W P Kurk, eds) Academic, New York,
1989

lo] < o (1€, the mnjected electrons form a collimated beam of angular
opening 2¢,,.,)

To obtain an analytic expression for the collimation effect, we describe the
shape of the potential in the pomt contact region by three parameters W, ,
W« and E_ (see F1g 60) We consider the case that the point contact has 1ts
minimal width W, at the point where the barrier has 1ts maximal height E,
above the bottom of the conduction band in the broad regions At that point
the largest possible value of S 1s

Sl = (2n1/h2)1/2(EF - Ec)l/z Wmm

We assume that adiabatic transport (1e, S = constant) holds up to a point of
zero barrier height and maximal width W, The abrupt separation of
adiabatic and nonadiabatic regions 1s a simplification that can be, and has
been, tested by numerical calculations (see below) At the point contact exit,
the largest possible value of S 1s

SZ = (zm/hZ)l/Z(EF)UZ sin O‘maxw/;rnx

The mvariance of S implies that S; = §,, hence,

1 E vz W
Opax = Arcsin <7>, f= <E!; —FEC> Wmax (15 1)

min

The collimation factor f =1 1s the product of a term describing the
collimating effect of a barrier of height E_ (barrier collimation) and a term
describing collimation due to a gradual widening of the point contact width
from W,,, to W, . (horn collimation) In the adiabatic approximation, the
angular njection distribution P(x) 1s proportional to cosa with an abrupt
truncation at +a,,,, The cosine angular dependence follows from the cosine
distribution of the incident flux in combination with time-reversal symmetry
and 1s thus not affected by the reduction of the injection—acceptance cone
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We therefore conclude that in the adiabatic approximation P(a) (normalized
to unity) 1s given by

P(o) =31 cosa, if Jo| < arcsin(1/f),
=0, otherwise (152)

We defer to Section 15 b a comparison of the analytical result (15 2) with a
numerical calculation

Barrier collimation does not require adiabaticity For an abrupt barrier,
collimation simply results from transverse momentum conservation, as in
Fig 60a, leading directly to Eq (152) (The total external reflection at an
abrupt barrier for trajectories outside the collimation cone 1s similar to the
optical effect of total internal reflection at a boundary separating a region of
high refractive index from a region of small refractive index, see the end of
Section 15b) A related collimation effect resulting from transverse mom-
entum conservation occurs 1if electrons tunnel through a potential barrier
Since the tunneling probability through a high potential barrier 1s only
weakly dependent on energy, 1t follows that the strongest collimation 1s to be
expected 1If the barrier height equals the Fermi energy On lowering the
barrier below Ep ballistic transport over the barrier dominates, and the
collmation cone widens according to Eq (152) A quantum mechanical
calculation of barrier collimation may be found m Ref 363

The mjection distribution (15 2) can be used to obtain (1n the semiclassical
limit) the direct transmission probability Ty between two opposite 1dentical
pomnt contacts separated by a large distance L To this end, first note that
Ty/N 1s the fraction of the imected current that reaches the opposite point
contact (since the transmisston probability through the first point contact 1s
N, for N occupied subbands in the point contact) Electrons injected within a
cone of opening angle W, . /L centered at ¢ = O reach the opposite point
contact and are transmitted If this opening angle 1s much smaller than the
total opening angle 2u,, , of the beam, then the distribution function P(x) can
be approximated by P(0) within this cone This approximation requires
W, /L << 1/f, which 1s satisfied experimentally in devices with a sufficiently
large point contact separation We thus obtain T;/N = P(O)W,../L , which,
using Eq (15 2), can be written as3?°

Ty = f (Whax/2L)N (153)

This simple analytical formula can be used to describe the experiments on
transport through identical opposite point contacts in terms of one empircal
parameter f, as discussed 1n the following subsections

363H de Raedt, N Garcia, and J J Saenz, Phys Rev Lett 63,2260 (1989), N Garcia, J J Saenz,
and H de Raedt, J Phys Condens Matter 1, 9931 (1989)
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Fi16 61 Detection of a collimated electron beam over a distance of 4 um. In this four-terminal
measurement, two ohmic contacts to the 2DEG region between the point contacts are used: One
of these acts as a drain for the current I, through the injector, and the other 1s used as a zero-
reference for the voltage ¥, on the collector. The drawn curve 1s the experimental data at
T = 18K The black dots are the result of a semiclassical simulation, using a hard-wall potential
with contours as shown i the inset The dashed curve results from a simulation without
collimation (corresponding to rectangular corners in the potential contour). Taken from L. W
Molenkamp et al, Phys Rev. B 41, 1274 (1990)

b. Magnetic Deflection of a Collimated Electron Beam

A method®!"??° (o sensitively detect the collimated electron beam
injected by a point contact is to sweep the beam past a second opposite point
contact by means of a magnetic field. The geometry is shown in Fig. 61 (inset).
The current /, through the injecting point contact is drained to ground at one
or two (the difference is not essential) ends of the 2DEG channel separating
the point contacts. The opposite point contact, the collector, serves as a
voltage probe (with the voltage V, being measured relative to ground). In the
case that both ends of the 2DEG channel are grounded, the collector voltage
divided by the injected current is given by

%:é%, T; < N, (15.4)
with G = (2¢2/h)N the two-terminal conductance of the individual point
contact (both point contacts are assumed to be identical) and T the direct
transmission probability between the two point contacts calculated in
Section 15.4. Equation (15.4) can be obtained from the Landauer—Biittiker
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formalism (as done in Ref. 311) or simply by noting that the current I;Ty/N
incident on the collector has to be counterbalanced by an equal outgoing
current GV,. In the absence of a magnetic field, we obtain [using Equation
(15.3) for the direct transmission probability]

Ve

ho,
7 22

T

ZICFL ’

(15.5)

where kg is the Fermi wave vector in the region between the point contacts. In
an experimental situation L and kg are known, so the collimation factor f can
be directly determined from the collector voltage by means of Eq. (15.5).

The result (15.5) holds in the absence of a magnetic field. A small magnetic
field B will deflect the collimated electron beam past the collector. Simple
geometry leads to the criterion L/2l . = &y, fOr the cyclotron radius at
which Ty is reduced to zero by the Lorentz force (assuming that L >» W ).
One would thus expect to see in V,/I; a peak around zero field, of height given
by Eq. (15.5) and of width

AB = (4hky JeL)arcsin(1/f), (15.6)

according to Eq. (15.1).

In Fig. 61 this collimation peak is shown (solid curve), as measured by
Molenkamp et al.3?7 at T = 1.2K in a device with a L = 4.0-um separation
between injector and collector. In this measurement only one end of the
region between the point contacts was grounded—a measurement con-
figuration referred to in narrow Hall bar geometries as a bend resistance
measurement?89:364 (cf. Section 16). One can show, using the Landauer—
Biittiker formalism,® that the height of the collimation peak is still given by
Eq. (15.5) if one replaces®?” f2 by f2 — 1. The expression (15.6) for the width
is not modified. The experimental result in Fig. 61 shows a peak height of
~150Q (measured relative to the background resistance at large magnetic
fields). Using L = 4.0 um and the value ky = 1.1 x 103 m ™! obtained from
Hall resistance measurements in the channel between the point contacts, one
deduces a collimation factor f = 1.85. The corresponding opening angle of the
injection/acceptance cone is 2¢a,,,, ~ 65°. The calculated value of f would
imply a width AB =~ 0.04 T, which is not far from the measured full width at
half maximum of ~0.03T.

The experimental data in Fig. 61 are compared with the result®*?” from a
numerical simulation of classical trajectories of the electrons at the Fermi
level (following the method of Ref. 329). This semiclassical calculation was
performed in order to relax the assumption of adiabatic transport in the point

364Y. Takagaki, K. Gamo, S. Namba, S. Ishida, S. Takaoka, K. Murase, K. Ishibashi, and Y.
Aoyagi, Solid State Comm. 68, 1051 (1988); 71, 809 (1989).
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contact region, and of small T;/N, on which Egs. (15.3) and (15.5) are based.
The dashed curve is for point contacts defined by hardwall contours with
straight corners (no collimation); the dots are for the smooth hardwall
contours shown in the inset, which lead to collimation via the horn effect (cf.
Fig. 60b; the barrier collimation of Fig. 60a is presumably unimportant at the
small gate voltage used in the experiment and is not taken into account in the
numerical simulation). The angular injection distributions P(c) that follow
from these numerical simulations are compared in Fig. 62 (solid histogram)
with the result (15.2) from the adiabatic approximation for f = 1.85 (dotted
curve). The uncollimated distribution P(a) = (cosa)/2 is also shown for
comparison (dashed curve). Taken together, Figs. 61 and 62 unequivocally
demonstrate the importance of collimation for the transport properties, as
well as the adequateness of the adiabatic approximation as an estimator of
the collimation cone.

Once the point contact width becomes less than a wavelength, diffraction
inhibits collimation of the electron beam. In the limit kz W « 1, the injection
distribution becomes proportional to cos?a for all «, independent of the
shape of the potential in the point contact region.8%313 The coherent electron
focusing experiments®®-8° discussed in Sections 14.a and 14.b were performed
in this limit.

We conclude this subsection by briefly discussing an alternative way to
increase the transmission probability between two opposite point contacts,
which is focusing of the injected electron beam onto the collector. Magnetic
focusing, discussed in Section 14 for adjacent point contacts, cannot be used
for opposite point contacts in two dimensions (unlike in three dimensions,
where a magnetic field along the line connecting the point contacts will focus
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Cq Log Cs

F1G 63 Electrostatic focusing onto a collector (c2) of an injected
electron beam (at 1) by means of a concave lens corresponding to a

region of reduced electron density Focusing in such an arrange-
ment was detected experimentally 33°

the beam?®°®) A succesful demonstration of electrostatic focusing was recently
reported by Sivan et al and by Spector et al >>° The focusing 1s achieved by
means of a potential barrier of a concave shape, created as a region of reduced
density 1n the 2DEG by means of a gate between the injector and the collector
(see Fig 63) A focusing lens for electrons 18 concave because electrons
approaching a potential barrier are deflected 1n a direction perpendicular to
the normal Thus 1s an amusing difference with light, which 1s deflected toward
the normal on entering a more dense medium, so an optical focusing lens 1s
convex The different dispersion laws are the origin of this different behavior
of light and electrons 35°

¢ Series Resistance

The first experimental study of ballistic transport through two opposite
point contacts was carried out by Wharam et al ,>>7 who discovered that the
series resistance 1s considerably less than the sum of the two individual
resistances  Sugsequent experiments confirmed this result >3 36% The
theoretical explanation®2® of this observation 1s that collimation of the
electrons 1jected by a point contact enhances the direct transmission
probability through the opposite point contact, thereby significantly reduc-
ing the series resistance below 1ts ohmic value We will discuss the transport
and magnetotransport 1n this geometry We will not consider the alternative
geometry of two adjacent point contacts in parallel (studied in Refs 367-
369) In that geometry the collimation effect cannot enhance the coupling of
the two point contacts, so only small deviations from Ohm’s law are to be
expected

365Y Hirayama and T Saku, Solid State Comm 73, 113 (1990), Phys Rev B 41, 2927 (1990)

366p H Beton, B R Snell, P C Main, A Neves,] R Owers-Bradley, L Eaves, M Henini, O H
Hughes, S P Beaumont, and C D W Wilkinson, J Phys Condens Matter 1, 7505 (1989)

367E Castafio and G Kirczenow, Phys Rev B 41, 5055 (1990) Y Avishai, M Kaveh, S Shatz,
and Y B Band, J Phys Condens Matter 1, 6907 (1989)

368C G Smith, M Pepper, R Newbury, H Ahmed, D G Hasko, D C Peacock,J E F Frost,
D A Ritchie, G A C Jones, and G Hill, J Phys Condens Matter 1, 6763 (1989)

369Y Hirayama and T Saku, Jpn J Appl Phys (to be published)
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Fi16 64 Magnetic field dependence of the series conductance of two opposite point contacts
(measured as shown 1n the 1nset, the point contact separation 1s L= 1.0 um) for three different
values of the gate voltage (solid curves) at T=100mK For clarity, subsequent curves from
bottom to top are offset by 0.5 x 10~4Q ™1, with the lowest curve shown at 1ts actual value. The
dotted curves are calculated from Egs. (15.10) and (10.8), with the point contact width as
adjustable parameter Taken from A A M Staring et al, Phys Rev B. 41, 8461 (1990)

The expression for the two-terminal series resistance of two identical
opposite point contacts in terms of the direct transmission probability can be
obtained from the Landauer—Biittiker formalism,® as was done in Ref. 329,
We give here an equivalent, somewhat more intuitive derivation. Consider
the geometry shown in Fig. 64 (inset). A fraction Ty/N of the current GV
injected through the first point contact by the current source is directly
transmitted through the second point contact (and then drained to ground).
Here G = (2¢%/h)N is the conductance of the individual point contact, and V
is the source—drain voltage. The remaining fraction 1 — T;/N equilibrates in
the region between the point contacts, as a result of inelastic scattering (elastic
scattering is sufficient if phase coherence does not play a role). Since that
region cannot drain charge (the attached contacts are not connected to
ground), these electrons will eventually leave via one of the two point
contacts. For a symmetric structure we may assume that the fraction
(1 — T,/N) of the injected current GV is transmitted through the second
point contact after equilibration. The total source—drain current I is the sum
of the direct and indirect contributions:

I =41+ Ty/N)GV. (15.7)
The series conductance Gy, = I/V becomes

Gyernes = 3G(1 + Ty/N). (15.8)
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In the absence of direct transmission (Ty = 0), one recovers the ohmic
addition law for the resistance, as expected for the case of complete
mtervening equilibration (cf the related analysis by Buttiker of tunneling in
series barriers®7% 371) At the opposite extreme, if all transmission 1s
direct(T; = N), the series conductance 1s identical to that of the single point
contact Substituting (15 3) into Eq (15 8), we obtain the result®*?° for small
but nonzero direct transmission

Goeres = 2G(1 + [(Wpae/2L)) (159)

The quantized plateaus 1n the series resistance, observed experiment-
ally,3®7 are of course not obtained 1n the semiclassical calculation leading to
Eq (159) However, since the nonadditivity 1s essentially a semiclassical
collimation effect, the present analysis should give a reasonably rehiable
estimate of deviations from additivity for not too narrow point contacts For
a comparison with experiments we refer to Refs 307 and 329 A fully
quantum mechanical calculation of the series resistance has been carried out
numerically by Baranger (reported in Ref 306) for two closely spaced
constrictions

So far we have only considered the case of a zero magnetic field In a weak
magnetic field (21, > L) the situation 1s rather complicated As discussed 1n
detail m Ref 329, there are two competing effects in weak fields On the one
hand, the deflection of the electron beam by the Lorentz force reduces the
direct transmission probability, with the effect of decreasing the series
conductance On the other hand, the magnetic field enhances the indirect
transmission, with the opposite effect The result 1s an mnitial decrease 1n the
series conductance for small magnetic fields 1n the case of strong collimation
and an increase 1n the case of weak collimation This 1s expected to be a
relatively small effect compared with the effects at stronger fields that are
discussed below

In stronger fields (21, < L), the direct transmussion probability vanishes,
which greatly simplifies the situation If we assume that all transmission
between the opposite point contacts 1s with intervening equilibration, then

the result 1532?
2e% (2 1 -1
Gsencs = % <N - N > (15 10)

wide

Here N 1s the (B-dependent) number of occupied subbands i the point
contacts, and N, 4. 1s the number of occupied Landau levels 1n the 2DEG
between the point contacts The physical origin of the ssmple addition rule

370M Buttiker, Phys Rev B 33, 3020 (1986)
371M Buttiker, IBM J Res Dev 32, 63 (1988)
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(15.10) is additivity of the four-terminal longitudinal resistance (13.7). From
this additivity it follows that for » different point contacts in series, Eq. (15.10)
generalizes to

Lo b SR (15.11)
=1

Guenes 26 Nypge

series

h 1 1

is the four-terminal longitudinal resistance of point contact i. Equation
(15.10) predicts a nonmonotonic B-dependence for G.,,.. This can most
easily be seen by disregarding the discreteness of N and N,,,4.. We then have
N ~ Ep/ho,, while the magnetic field dependence of N (for a square-well
confining potential in the point contacts) is given by Eq. (10.8). The resulting
B-dependence of G, is shown in Fig. 64 (dotted curves). The nonmono-
tonic behavior is due to the delayed depopulation of subbands in the point
contacts compared with the broad 2DEG. While the number of occupied
Landau levels N4, in the region between the point contacts decreases
steadily with B for 2., < L, the number N of occupied subbands in the
point contacts remains approximately constant until 21 ... ~ W, with
Lo = loyer(1 — E./Eg)'? denoting the cyclotron radius in the point contact
region. In this field interval G, increases with B, according to Eq. (15.10).
For stronger fields, depopulation in the point contacts begins to dominate
Geres» leading finally to a decreasing conductance (as is the rule for single
point contacts; see Section 13.b). The peak in G, thus occurs at
2 n & W
The remarkable camelback shape of G, versus B predicted by Eq.
(15.10) has been observed experimentally by Staring et al.>’? The data are
shown in Fig. 64 (solid curves) for three values of the gate voltage V, at
T= 100mK. The measurement configuration is as shown in the inset, with a
point contact separation L = 1.0 um. The dotted curves in Fig. 64 are the
result of a one-parameter fit to the theoretical expression. It is seen that Eq.
(15.10) provides a good description of the overall magnetoresistance behavior
from low magnetic fields up to the quantum Hall effect regime. The
additional structure in the experimental curves has several different origins,
for which we refer to the paper by Staring et al.37? Similar structure in the
two-terminal resistance of a single point contact will be discussed in detail in
Section 21.

where

372A. A M. Staring, L. W. Molenkamp, C. W. J. Beenakker, L. P. Kcuwenhoven, and C. T.
Foxon, Phys. Rev. B. 41, 8461 (1990)
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We emphasize that Eq (15 10) 1s based on the assumption of compieic
equilibration of the current-carrying edge states in the region between the
point contacts In a quantizing magnetic field, local equilibrium 1s reached by
mter-Landau level scattering If the potential landscape (both in the point
contacts themselves and 1n the 2DEG region in between) varies by less than
the Landau level separation Aw, on the length scale of the magnetic length
(h/eB)''?, then inter-Landau level scattering 1s suppressed in the absence of
other scattering mechanisms (see Section 18) This means that the transport
from one pomnt contact to the other 1s adiabatic The series conductance 1s
then simply G = (2¢*/h)N for two 1dentical point contacts
[N = min(N,, N,) for two different point contacts 1n series] This expression
differs from Eq (15 10} if a barrier 1s present in the pomt contacts, since that
causes the number N of occupied Landau levels in the point contact to be less
than the number N, 4. of occupied levels mn the wide 2DEG [In a strong
magnetic field, N ~ (Er — E )/hw,, while N, 4. & Eg/hw, ] Adiabatic trans-
port 1n a magnetic field through two point contacts 1n series has been studied
experimentally by Kouwenhoven et al 37® and by Main et al 37#

16 JUNCTION SCATTERING

In the regime of diffusive transport, the Hall bar geometry (a straight
current-carrying channel with small side contacts for voltage drop measure-
ments) is very convenient, since it allows an independent determination of the
various components of the resistivity tensor A downscaled Hall bar was
therefore a natural first choice as a geometry to study ballistic transport in a
2DEGS7 68 74 139178 364 The resistances measured 1n  narrow-channel
geometries are mainly determined by scattering at the junctions with the side
probes 289 These scattering processes depend strongly on the junction shape
This 1s 1n contrast to the pomnt contact geometry, compare the very similar
results of van Wees et al © and Wharam et al 7 on the quantized conductance
of point contacts of a rather different design The strong dependence of the
low-field Hall resistance on the junction shape was demonstrated theoretical-
ly by Baranger and Stone>*® and experimentally by Ford et al 77 and Chang
et al *73 These results superseded many earher attempts (listed in Ref 360) to
explain the discovery by Roukes et al ®7 of the quenching of the Hall effect
without modeling the shape of the junction realistically Baranger and
Stone®>® argued that the rounded corners (present 1n a realistic situation) at
the junction between the main channel and the side branches lead to a

3731, P Kouwenhoven, B J van Wees, W Kool, C J P M Harmans, A A M Staring, and C
T Foxon, Phys Rev B 40, 8083 (1989)

374p C Mam, P H Beton, B R Snell, A J M Neves, J R Owers-Bradley, L Eaves, S P
Beaumont, and C D W Wilkinson, Phys Rev B 40, 10033 (1989)

375SA M Chang, T Y Chang, and H U Baranger, Phys Rev Lett 63, 996 (1989)
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suppression (quenching) of the Hall resistance at low magnetic fields as a
consequence of the horn collimation effect discussed 1 Section 15a A Hall
bar with straight corners, in contrast, does not show a generic suppression of
the Hall resistance,>7°7378 although quenching can occur for special para-
meter values if only a few subbands are occupied 1n the channel

The quenched Hall effect®” 77 375379 15 just one of a whole variety of
magnetoresistance anomalies observed 1n narrow Hall bars Other anomalies
are the last Hall plateau,’” %8 77139178 379 remimiscent of quantum Hall
plateaus, but occurring at much lower fields, the negative Hall resistance,”” as
if the carriers were holes rdather than electrons, the bend resis-
tance,28 306 364 380 4 Jongitudinal resistance associated with a current bend,
which 1s negative at small magnetic fields and zero at large fields, with an
overshoot 1o a positive value at mtermediate fields, and more

In Refs 359 and 360 we have shown that all these phenomena can be
qualitatively explained m terms of a few simple semiclassical mechanisms
(reviewed 1n Section 16a) The effects of quantum interference and of
quantization of the lateral motion n the narrow conductor are not essential
These magnetoresistance anomalies can thus be characterized as classical
magneto size effects in the ballistic regime In Section 5, we have discussed
classical size effects in the quasi-ballistic regime, where the mean free path 1s
larger than the channel width but smaller than the separation between the
voltage probes In that regime, the size effects found mm a 2DEG were known
from work on metal films and wires '°2 These earher investigations had not
anticipated the diversity of magnetoresistance anomalies due to junction
scattering in the ballistic regime That 1s not surprising, considering that the
theoretical formalism to describe a resistance measurement within a mean
free path had not been developed 1n that context Indeed, this Landauer—
Buttiker formalism {described in Section 12) found one of its earliest
applications2®® 1n the context of the quenching of the Hall effect, and the
success with which the experimental magnetoresistance anomalies can be
described by means of this formalism forms strong evidence for its vahdity

a Mechanisms

The variety of magnetoresistance anomalies mentioned can be understood
m terms of a few simple characteristics of the curved trajectories of electrons
1n a classical billiard 1n the presence of a perpendicular magnetic field 359 360

376D G Ravenhall, H W Wyld, and R L Schult, Phys Rev Lett 62,1780 (1989), R L Schuit,
H W Wyld, and D G Ravenhall, Phys Rev B 41, 12760 (1990)

377G Kurczenow, Phys Rev Lett 62, 2993 (1989), Phys Rev B 42, 5375 (1990)

378H Akera and T Ando, Surf Sci 229, 268 (1990)

379C J B Ford, T J Thornton, R Newbury, M Pepper, H Ahmed, D C Peacock, D A
Ritchie, J E F Frost,and G A C Jones, Phys Rev B 38, 8518 (1988)

380y Awvishai and Y B Band, Phys Rev Lett 62, 2527 (1989)
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¢4

Fig 65 Classical trajectories 1n an electron bilhiard, illustrating the collimation (a), scram-
bling (b), rebound (c), magnetic guiding (d) and electron focusing (e) effects. Taken from C. W. J.
Beenakker and H van Houten, in “Electronic Properties of Multilayers and Low-Dimensional
Semiconductor Structures” (J. M Chamberlain, L. Eaves, and J C. Portal, eds.). Plenum,
London 1990

At very small magnetic fields, collimation and scrambling are the key concepts.
The gradual widening of the channel on approaching the junction reduces the
injection—acceptance cone, which is the cone of angles with the channel axis
within which an electron is injected into the junction or within which an
electron can enter the channel coming from the junction. This is the horn
collimation effect32® discussed in Section 15.a (see Fig. 65a). If the injection—
acceptance cone is smaller than 90°, then the cones of two channels at right
angles do not overlap. That means that an electron approaching the side
probe coming from the main channel will be reflected (Fig. 65a) and will then
typically undergo multiple reflections in the junction region (Fig. 65b). The
trajectory is thus scrambled, whereby the probability for the electron to enter
the left or right side probe in a weak magnetic field is equalized. This
suppresses the Hall voltage. This “scrambling” mechanism for the quenching
of the Hall effect requires a weaker collimation than the “nozzle” mechanism
put forward by Baranger and Stone3*® (we return to both these mechanisms
in Section 16.c). Scrambling is not effective in the geometry shown in Fig. 65c, -
in which a large portion of the boundary in the junction is oriented at
approximately 45° with the channel axis. An electron reflected from a side
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probe at this boundary has a large probability of entering the opposite side
probe This 1s the “rebound” mechamsm for a negative Hall resistance
proposed by Ford et al 77

At somewhat larger magnetic fields, guiding takes over As illustrated in
Fig 65d, the electron 1s guided by the magnetic field along equipotentials
around the corner Guiding 1s fully effective when the cyclotron radius [
becomes smaller than the mimimal radiwus of curvature r,,, of the corner—
that 1s, for magnetic fields greater than the guiding field B, = #ikg/er,,, Inthe
regime B R B, the junction cannot scatter the electron back nto the channel
from which it came The absence of backscattering in this case 1s an entirely
classical, weak-field phenomenon (c¢f Section 13 b) Because of the absence of
backscattering, the longitudinal resistance vanishes, and the Hall resistance
Ry, becomes equal to the contact resistance of the channel, just as in the
quantum Hall effect, but without quantization of R,; The contact resistance
Rooniner = (B/2¢*Nn/kx W) 1s approximately independent of the magnetic field
for fields such that the cyclotron diameter 2l 1s greater than the channel
width W, that 1s, for fields below B,,, = 2hke/eW (see Sections 12 and 13)
This explains the occurrence of the “last plateau” m Ry for B, $ B < B, as a
classical effect At the low-field end of the plateau, the Hall resistance 1s
sensitive to geometrical resonances that increase the fraction of electrons
guided around the corner into the side probe Figure 65e¢ illustrates the
occurrence of one such a geometrical resonance as a result of the magnetic
focusing of electrons into the side probe, at magnetic fields such that the
separation of the two perpendicular channels 1s an iteger multiple of the
cyclotron diameter This 1s 1n direct analogy with electron focusing 1n a
double-point contact geometry (see Section 14) and leads to periodic
oscillations superimposed on the Hall plateau Another geometrical re-
sonance with similar effect 1s discussed m Ref 360

These mechanisms for oscillations 1n the resistance depend on a com-
mensurability between the cyclotron radius and a characteristic dimension of
the junction, but do not mvolve the wavelength of the electrons as an
independent length scale This distinguishes these geometrical resonances
conceptually from the quantum resonances due to bound states i the
junction considered in Refs 376, 377, and 380-382

b Magnetoresistance Anomalies

In this subsection we compare, following Ref 360, the semiclassical theory
with representative experiments on laterally confined two-dimensional

381G Kirczenow, Solid State Comm 71, 469 (1989)
382F M Peeters, in Ref 16, Phys Rev Lett 61, 589 (1988), Superlattices and Microstructures 6,
217 (1989)
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FIG. 66. Hall resistance as measured (solid
curve) by Simmons et al.!”®, and as calculated
dashed curve) for the hard-wall geometry in
the inset (W = 0.8 um and Ep = 14meV). The
dotted line is Ry, in a bulk 2DEG. Taken from
C. W. J. Beenakker and H. van Houten in
“Electronic Properties of Multilayers and
L — Low-Dimensional  Semiconductor  Struc-
04 02 00 0z 04 tures,” (J. M. Chamberlain, L. Eaves, and J. C.

13 (l) Portal, eds.). Plenum, London, 1990.

02

00

Ry (k0)

electron gases in high-mobility GaAs—AlGaAs heterostructures. The cal-
culations are based on a simulation of the classical trajectories of a large
number (typically 10%) of electrons with the Fermi energy, to determine the
classical transmission probabilities. The resistances then follow from the
Biittiker formula (12.12). We refer to Refs. 359 and 360 for details on the
method of calculation. We first discuss the Hall resistance Ry,.

Figure 66 shows the precursor of the classical Hall plateau (the “last
plateau”) in a relatively wide Hall cross. The experimental data (solid curve) is
from a paper by Simmons et al.!’® The semiclassical calculation (dashed
curve) is for a square-well confining potential of channel width W= 0.8 um
(as estimated in the experimental paper) and with the relatively sharp corners
shown in the inset. The Fermi energy used in the calculation is Ep = 14 meV,
which corresponds (via n, = Epm/nh?) to a sheet density in the channel of
n, = 3.9 x 10'5m ™2, somewhat below the value of 4.9 x 10*3 m ™2 of the bulk
material in the experiment. Good agreement between theory and experiment
is seen in Fig. 66. Near zero magnetic field, the Hall resistance in this
geometry is close to the linear result Ry = B/en, for a bulk 2DEG (dotted
line). The corners are sufficiently smooth to generate a Hall plateau via the
guiding mechanism discussed in Section 16.a. The horn collimation effect,
however, is not sufficiently large to suppress Ry at small B. Indeed, the
injection—acceptance cone for this junction is considerably wider (about
115°) than the maximal angular opening of 90° required for quenching of the
Hall effect via the scrambling mechanism described in Section 16.a.

The low-field Hall resistance changes drastically if the channel width
becomes smaller, relative to the radius of curvature of the corners. Figure 67a
shows experimental data by Ford et al.”” The solid and dotted curves are for
the geometries shown respectively in the upper left and lower right insets of
Fig. 67a. Note that these insets indicate the gates with which the Hall crosses
are defined electrostatically. The equipotentials in the 2DEG will be
smoother than the contours of the gates. The experiment shows a well-
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F1G. 67. Hall resistance as measured (a) by Ford et al.”” and as calculated (b). In (a) as well as
in (b), the solid curve corresponds to the geometry in the upper left inset, the dotted curve to the
geometry in the lower right inset. The insets in (a) indicate the shape of the gates, not the actual
confining potential. The insets in (b) show equipotentials of the confining potential at Ep (thick
contour) and O (thin contour). The potential rises parabolically from 0 to Eg, and vanishes in the
diamond-shaped region at the center of the junction, Taken from C. W. J. Beenakker and H. van
Houten, in “Electronic Properties of Multilayers and Low-Dimensional Semiconductor
Structures” (J. M. Chamberlain, L. Eaves, and J. C. Portal, eds.). Plenum, London, 1990.

developed Hall plateau with superimposed fine structure. At small positive
fields Ry is either quenched or negative, depending on the geometry. The
geometry is scen to affect also the width of the Hall plateau but not the height.
In Fig. 67b we give the results of the semiclassical theory for the two
geometries in the insets, which should be reasonable representations of the
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FiG. 68. Hall resistance Ry,; = R,;,4 (a) and bend resistance Ry = Ry, 45 (b), as measured
(solid curves) by Timp et al.3°® and as calculated (dashed curves) for the geometry in the inset
(consisting of a parabolic confining potential with the equipotentials at Ep and 0 shown
respectively as thick and thin contours; the parameters are W= (00 nm and Eg = 3.9 meV). The
dotted line in (a) is Ry, in a bulk 2DEG. Taken from C. W. J. Beenakker and H. van Houten, in

“Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures” (J. M.
Chamberlain, L. Eaves, and J. C. Portal, eds.). Plenum, London, 1990.

confining potential induced by the gates in the experiment. In the theoretical
plot the resistance and the magnetic field are given in units of
h = hk
ROE?W’ osj, (16.1)
where the channel width W for the parabolic confinement used is defined as
the separation of the equipotentials at the Fermi energy (W,,, in Section 10).
The experimental estimates W=x90nm, n ,~12x10°>m~? imply
Ro =52kQ, B, = 0.647T. With these parameters the calculated resistance
and field scales do not agree well with the experiment, which may be due in
part to the uncertainties in the modeling of the shape of the experimental
confining potential. The + B asymmetry in the experimental plot is un-
doubtedly due to asymmetries in the cross geometry [in the calculation the
geometry has fourfold symmetry, which leads automatically to
Ry(B) = —Ry(— B)]. Apart from these differences, there is agreement in all
the important features: the appearance of quenched and negative Hall
resistances, the independence of the height of the last Hall plateau on the
smoothness of the corners, and the shift of the onset of the last plateau to
lower fields for smoother corners. The oscillations on the last plateau in the
calculation (which, as we discussed in Section 16.a, are due to geometrical
resonances) are also quite similar to those in the experiment, indicating that
these are classical rather than quantum resonances.
We now turn to the bend resistance Ry. In Fig. 68 we show experimental
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data by Timp et al.?°® (solid curves) on Ry = R;,,3 and Ry= R ;,,

measured in the same Hall cross (defined by gates of a shape similar to that in
the lower right inset of Fig. 67a; see the inset of Fig. 68a for the numbering of
the channels). The dashed curves are calculated for a parabolic confining
potential in the channels (with the experimental values W= 100nm,
Er =39meV) and with corners as shown in the inset of Fig. 68a. The
calculated quenching of the Hall resistance and the onset of the last plateau
are in good agreement with the experiment, and also the observed overshoot
of the bend resistance around 0.2 T as well as the width of the negative peak in
Ry around zero field are well described by the calculation. The calculated
height of the negative peak, however, is too small by more than a factor of 2.
We consider this disagreement to be significant in view of the quantitative
agreement with the other features in both Ry and Ry;. The negative peak in Ry
is due to the fact that the collimation effect couples the current source 1 more
strongly to voltage probe 3 than to voltage probe 4, so Ryoc V, — V5 is
negative for small magnetic fields (at larger fields the Lorentz force destroys
collimation by bending the trajectories, so Ry shoots up to a positive value
until guiding takes over and brings Ry down to zero by eliminating
backscattering at the junction). The discrepancy in Fig. 68b thus seems to
indicate that the semiclassical calculation underestimates the collimation
effect in this geometry. The positive overshoot of R seen in Fig. 68b is found
only for rounded corners. This explains the near absence of the effect in the
calculation of Kirczenow®®! for a junction with straight corners.

For a discussion of the temperature dependence of the magnetoresistance
anomalies, we refer to Ref. 360. Here it suffices to note that the experiments
discussed were carried out at temperatures around 1 K, for which we expect
the zero-temperature semiclassical calculation to be appropriate. At lower
temperatures the effects of quantum mechanical phase coherence that have
been neglected will become more important.!®> At higher temperatures the
thermal average smears out the magnetoresistance anomalies and eventually
inelastic scattering causes a transition to the diffusive transport regime in
which the resistances have their normal B-dependence.

c. Electron Waveguide versus Electron Billiard

The overall agreement between the experiments and the semiclassical
calculations is remarkable in view of the fact that the channel width in the
narrowest structures considered is comparable to the Fermi wavelength.
When the first experiments on these “electron waveguides” appeared, it was
expected that the presence of only a small number of occupied transverse
waveguide modes would fundamentally alter the nature of electron trans-
port.®® The results of Refs. 359 and 356 show instead that the modal structure
plays only a minor role and that the magnetoresistance anomalies observed
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are characteristic for the classical ballistic transport regime The reason that a
phenomenon such as the quenching of the Hall effect has been observed only
i Hall crosses with narrow channels 1s simply that the radius of curvature of
the corners at the junction 1s too small compared with the channel width 1n
wider structures This 1s not an essential limitation, and the various
magnetoresistance anomalies discussed here should be observable 1n macro-
scopic Hall bars with artificially smoothed corners, provided of course that
the dimensions of the junction remain well below the mean free path Ballistic
transport 1s essential, but a small number of occupied modes 1s not
Although we believe that the characteristic features of the magnetoresis-
tance anomalies are now understood, several interesting points of disagree-
ment between theory and experiment remain that merit further investigation
One of these 1s the discrepancy in the magnitude of the negative bend
resistance at zero magnetic field noted before The disappearance of a region
of quenched Hall resistance at low electron density 1s another unexpected
observation by Chang et al 7> and Roukes et al *®* The semiclassical theory
predicts a umversal behavior (for a given geometry) if the resistance and
magnetic field are scaled by R, and B, defined in Eq (16 1) For a square-well
confining potential the channel width W 1s the same at each energy, and since
B, oc ke one would expect the field region of quenched Hall resistance to vary

with the electron density as \/;l: For a more realistic smooth confining
potential, W depends on Eg and thus on n, as well, in a way that 1s difficult to
estimate reliably In any case, the experiments point to a systematic
disappearance of the quench at the lowest densities, which 1s not accounted
for by the present theory (and has been attributed by Chang et al*"° to
enhanced diffraction at low electron density as a result of the increase in the
Fermi wavelength) For a detailed investigation of departures from classical
scaling, we refer to a paper by Roukes et al *3* As a third point, we mention
the curious density dependence of the quenching observed 1n approximately
straight junctions by Roukes et al ,*®3 who find a low-field suppression of Ry
that occurs only at or near certain specific values of the electron density The
semiclassical model applied to a straight Hall cross (either defined by a
square well or by a parabolic confining potential) gives a low-field slope of Ry
close to 1ts bulk 2D value The fully quantum mechanical calculations for a
straight junction®’¢ *®! do give quenching at special parameter values, but
not for the many-mode channels in this cxperiment (in which quenching
occurs with as many as 10 modes occupied, whereas 1n the calculations a
straight cross with more than 3 occupied modes in the channel does not show

a quench)

*3M L Roukes, T J Thornton, A Scherer,] A Simmons, B P van der Gaag, and E D Beebe,
m Ref 16
*4M L Roukes, A Scherer, and B P van der Gaag, Phys Rev Lett 64, 1154 (1990)
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In addition to the points of disagreement discussed, there are fine details 1n
the measured magnetoresistances, expecially at the lowest temperatures
(below 100 mK), which are not obtained m the semiclassical approximation
The quantum mechamcal calculations>8 376 377 381 ghow a great deal of fine
structure due to interference of the waves scattered by the junction The fine
structure 1n most experiments is not quite as pronounced as i the
calculations presumably partly as a result of a loss of phase coherence after
many multiple scatterings in the junction The limited degree of phase
coherence in the experiments and the smoothing effect of a finite temperature
help to make the semiclassical model work so well even for the narrowest
channels We draw attention to the fact that classical chaotic scattering can
also be a source of irregular resistance fluctuations (see Ref 360)

Some of the most pronounced features in the quantum mechanical
calculations are due to transmission resonances that result from the presence
of bound states 1n the junction 376377 380-382 T Section 16a we have
discussed a different mechanmism for transmission resonances that has a
classical, rather than a quantum mechanical, origin As mentioned 1n Section
16 b, the oscillations on the last Hall plateau observed experimentally are
quite well accounted for by these geometrical resonances One way to
distinguish experimentally between these resonance mechanisms 1s by means
of the temperature dependence, which should be much weaker for the
classical than for the quantum effect One would thus conclude that the
fluctuations in Fig 67a, measured by Ford et al 77 at 4 2K, have a classical
origin, while the fine structure that Ford et al3®% observe only at mK
temperatures (see below) 1s intrinsically quantum mechanical

The differences between the semiclassical and the quantum mechanical
models may best be illustrated by considering once again the quenching of
the Hall effect, which has the most subtle explanation and 1s the most
sensitive to the geometry among the magnetoresistance anomalies observed
in the ballistic regime The classical scrambling of the trajectories after
multiple reflections suppresses the asymmetry between the transmission
probabilities ¢, and t, to enter the left or right voltage probe, and without this
transmission asymmetry there can be no Hall voltage We emphasize that this
scrambling mechanism 1s consistent with the original findings of Baranger and
Stone3’® that quenching requires collimation The point 1s that the collimat-
1on effect leads to nonoverlapping mjection—acceptance cones of two per-
pendricular channels, which ensures that electrons cannot enter the voltage
probe from the current source directly, but rather only after multiple
reflections (cf Section 16 a) In this way a rather weak collimation to within
an 1njection—acceptance cone of about 90° angular opening 1s sufficient to

385C J B Ford, S Washburn, M Buttiker, C M Knoedler, and J] M Hong, Surf Sci 229, 298
(1990)
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induce a suppression of the Hall resistance via the scrambling mechanism

Collimation can also suppress Ry directly by strongly reducing ¢; and ¢,
relative to t, (the probability for transmission straight through the junction)
This nozzle mechamsm, introduced by Baranger and Stone,3*8 requires a
strong collimation of the mnjected beam 1n order to affect Ry; appreciably In
the geometries considered here, we find that quenching of Ry 1s due
predominantly to scrambling and not to the nozzle mechanism (t; and ¢, each
remain more than 30% of t.), but data by Baranger and Stone*>® show that
both mechanisms can play an important role

There 1s a third proposed mechanism for the quenching of the Hall
effect,>® 377 which 1s the reduction of the transmussion asymmetry due to a
bound state in the junction The bound state mechanmism 1s purely quantum
mechanical and does not require collimation (in contrast to the classical
scrainbling and nozzle mechamisms) Numerical calculations have shown that
1t 1s only effective m straight Hall crosses with very narrow channels (not
more than three modes occupied), and even then for special values of the
Fermui energy only Although this mechanism cannot account for the
experiments performed thus far, it may become of importance 1n future work
A resonant suppression of the Hall resistance may also occur in strong
magnetic fields, in the regime where the Hall resistance in wide Hall crosses
would be quantized Such an effect 1s intimately related to the high-field
Aharonov—-Bohm magnetoresistance oscillations i a singly connected
geometry (see Section 21) Ford et al 38> have observed oscillations superim-
posed on quantized Hall plateaux at low temperatures 1n very narrow crosses
of two different shapes (see Fig 69) The strong temperature dependence
mdicates that these oscillations are resonances due to the formation of bound
states 1n the cross 306 385 386

17 TUNNELING

In this section we review recent experiments on tunneling through
potential barriers in a two-dimensional electron gas Subsection 17.a deals
with resonant tunneling through a bound state in the region between two
barriers Resonant tunneling has previously been studied extensively in
layered semiconductor heterostructures for transport perpendicular to the
layers *877389 For example, a thin AlGaAs layer embedded between two
GaAs layers forms a potential barrier, whose height and width can be tailored

386M Buttiker, in Ref 9

387R Tsu and L Esaki, App! Phys Lett 22, 562 (1973)

388, L Chang, L Esaki, and R Tsu, App! Phys Lett 24, 593 (1974)

389E S Alves, L Eaves, M Henimi, O H Hughes, M L Leadbeater, F W Sheard, and G A
Toombs, Electron Lett 24, 1190 (1988)
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F1G. 69. Measured Hall resistance in an abrupt (a) and in a widened (b) cross as a function of B
in the strong field regime. Large fluctuations are resolved at the low temperature of 22 mK. The
dotted curves indicate the reproducibility of the measurement. Taken from C. J. B. Ford et al.,
Surf. Sci. 229, 298 (1990).

with great precision by means of advanced growth techniques (such as
molecular beam epitaxy). Because of the free motion in the plane of the layers,
one can only realize bound states with respect to one direction. Tunneling
resonances are consequently smeared out over a broad energy range. A
2DEG offers the possibility of confinement in all directions and thus of a
sharp resonance. A gate allows one to define potential barriers of adjustable
height in the 2DEG. In contrast, the heterostructure layers form fixed
potential barriers, so one needs to study a current—voltage characteristic to
tune the system through a resonance (observable as a peak in the I-V curve).
The gate-induced barriers in a 2DEG offer a useful additional degree of
freedom, allowing a study of resonant tunneling in the linear response regime
of small applied voltages (to which we limit the discussion in this review). A
drawback of these barriers is that their shape cannot be precisely controlled,
or modeled, so that a description of the tunneling process will of necessity be
qualitative.

Subsection 17.b deals with the effects of Coulomb repulsion on tunneling
in a 2DEG. The electrostatic effects of charge buildup in the 1D potential well
formed by heterostructure layers have received considerable attention in
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recent years >#° 3°% Because of the large capacitance of the potential well in
this case (resulting from the large surface area of the layers) these are
macroscopic effects, involving a large number of electrons The 3D potential
well in a 2DEG nanostructure, in contrast, can have a very small capacitance
and may contain a few electrons only The tunneling of a single electron mnto
the well will then have a considerable effect on the electrostatic potential
difference with the surrounding 2DEG For a small applied voltage this effect
of the Coulomb repulsion can completely suppress the tunneling current In
metals this “Coulomb blockade” of tunneling has been studied extensive-
ly *°1 In those systems a semiclassical description suffices The large Fermi
wavelength 1n a 2DEG should allow the study of quantum mechanical effects
on the Coulomb blockade or, more generally, of the interplay between
electron—electron teractions and resonant tunneling 318 392 393

a Resonant Tunneling

The simplest geometry in which one might expect to observe transmission
resonances 1s formed by a single potential barrier across a 2DEG channel
Such a geometry was studied by Washburn et al*°* in a GaAs—AlGaAs
heterostructure contamning a 2-um-wide channel with a 45-nm-long gate on
top of the heterostructure At low temperatures (around 20 mK) an wrregular
set of peaks was found m the conductance as a function of gate voltage in the
region close to the depletion threshold The amplitude of the peaks was on
the order of e*/h The ongin of the effect could not be pinned down The
authors examine the possibility that transmission resonances associated with
a square potential barrier are responsible for the oscillations in the con-
ductance, but also note that the actual barrier 1s more likely to be smooth on
the scale of the wavelength For such a smooth barrier the transmission
probability as a function of energy does not show oscillations It seems most
likely that the effect 1s disorder-related Davies and Nixon®?® have suggested
that some of the structure observed in this experiment could be due to
potential fluctuations in the region under the gate These fluctuations can be
rather pronounced close to the depletion threshold, due to the lack of
screening 1n the low-density electron gas A quantum mechanical calculation
of transmission through such a fluctuating barrier has not been performed
As discussed below, conductance peaks of order e%/h occur 1n the case of

390A Zaslavsky, V J Goldman, D C Tsut and J E Cunningham, Appl Phys Lett 53, 1408
1988

39‘%( K)leharev, IBM J Res Dev 32, 144 (1988)

392K Ngand P A Lee, Phys Rev Lett 61, 1768 (1988)

3931 1 Glazman and K A Matveev, Pis’ma Zh Eksp Teor Fiz 48,403 (1988) [JETP Lett 48,
445 (1988)]

3943 Washburn, A B Fowler, H Schmid, and D Kern, Phys Rev B 38, 1554 (1988)

3955 H Davies, Semicond Sci Technol 3, 995 (1988) See also Ref 72
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resonant tunnehng via localized states in the barrer (associated with
impurities), a mechanism that might well play a role in the experiment of
Washburn et al 34

In pursutt of resonant tunneling in a 2DEG, Chou et al 3°® have fabricated
double-barrier devices involving two closely spaced short gates across a wide
GaAs—AIlGaAs heterostructure Both the spacing and the length of the gates
were 100 nm They observed a peak in the transconductance (the derivative of
the channel current with respect to the gate voltage), which was attributed to
resonant tunneling through a quasi-bound state in the 2D potential well
between the barriers Palevski et al *°7 have also mvestigated transport
through two closely spaced potential barriers 1n a double-gate structure, but
they did not find evidence for transmission resonances

A 3D potential well has truly bound states and 1s expected to show
the strongest transmission resonances Transport through such a cavity or
“quantum  box” has been studied theoretically by several
authors 318 333 382398 Byperiments have been performed by Smuth et
al 39°74%! Their device 1s based on a quantum point contact, but contains two
potential barriers that separate the constriction from the wide 2DEG regions
(see the mset of F1ig 70) As the negative gate voltage 1s increased, a potential
well 1s formed between the two barriers, resulting i confinement in all
directions The tunneling regime corresponds to a resistance R that 1s greater
than h/2e? It1s also possible to study the ballistic regime R < h/2¢? when the
height of the potential barriers is less than the Fermi energy In this regime
the transmission resonances are similar to the resonances 1n long quantum
point contacts {these are determined by an mterplay of tunneling through
evanescent modes and reflection at the entrance and exit of the point contact,
cf Section 13) Results of Smuth et al 3°° 49! for the resistance as a function of
gate voltage at 330mK are reproduced in Fig 70 In the tunneling regime
(R > h/2e?) giant resistance oscillations are observed A regular series of
smaller resistance peaks 1s found in the ballistic regime (R < h/2e?) Martin-
Moreno and Smith33? have modeled the electrostatic potential in the device
of Refs 399-401 and have performed a quantum mechanical calculation of

3963 Y Chou,D R Allee, R F W Pease, and J S Harris, Jr, Appl Phys Lett 55, 176 (1989)

397A Palevski, M Heiblum, C P Umbach, C M Knoedler, A N Broers,and R H Koch, Phys
Rev Lett 62, 1776 (1989)

398y Awvishai and Y B Band, Phys Rev B 41, 3253 (1990)

399C G Smuth, M Pepper, H Ahmed,J E Frost, D G Hasko, D C Peacock, D A Ritchie,
and G A C Jones, Superlattices and Microstructures 5, 599 (1989)

400C G Smith, M Pepper, H Ahmed,J E F Frost, D G Hasko, D C Peacock, D A Ritchie,
and G A C Jones, J Phys C 21, L893 (1988)

401C G Smith, M Pepper, H Ahmed,J E F Frost, D G Hasko, D A Ritchie,and G A C
Jones, Surf Sci 228, 387 (1990)
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FiG. 70. Resistance versus gate voltage of a cavity (defined by gates on top of a GaAs—AlGaAs
heterostructure; see inset), showing plateaulike features (for R < h/2¢?) and tunneling resonances
(for R X h/2¢?). The left- and right-hand curves refer to the adjacent resistance scales. Taken
from C. E. Smith et al., Surf. Sci. 228, 387 (1990).

the resistance. Very reasonable agreement with the experimental data in the
ballistic regime was obtained. The tunneling regime was not compared in
detail with the experimental data. The results were found to depend rather
critically on the assumed chape of the potential, in particular on the rounding
of the tops of the potential barriers. Martin-Moreno and Smith also
investigated the effects of asymmetries in the device structure on the tunneling
resonances and found in particular that small differences in the two barrier
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heights (of order 10%) lead to a sharp suppression of the resonances, a finding
that sheds light on the fact that they were observed in certain devices only
Experimentally, the effect of a magnetic field on the oscillations 1n the
resistance versus gate voltage was also investigated 3°°7491 A strong sup-
pression of the peaks was found 1n relatively weak magnetic fields (of about
037

Tunneling through a cavity, as 1n the experiment by Smith et a 18
formally equivalent to tunneling through an impurity state (see, ¢ g, Refs 402
and 403) The dramatic subthreshold structure found 1n the conductance of
quast-one-dimensional MOSFETs has been interpreted 1n terms of resonant
tunneling through a series of localized states 2 3737 Kopley et al *°* have
observed large conductance peaks in a MOSFET with a split gate (see Fig
71) Below the 200-nm-wide slot 1n the gate, the inversion layer 1s interrupted
by a potential barrier Pronounced conductance peaks were seen at 0 5K as
the gate voltage was varied 1n the region close to threshold (see Fig 72) No
clear correlation was found between the channel width and the peak spacing
or amplitude The peaks were attributed to resonant transmission through
single localized states associated with bound states 1n the S1 band gap 1n the
noninverted region under the gate

The theory of resonant tunneling of noninteracting electrons through
localized states between two-dimensional reservoirs was developed by Xue
and Lee*° (see also Refs 159 and 406) If the resonances are well separated in
energy, a single localized state will give the dominant contribution to the
transmission probability The maximum conductance on resonance 1s then
e*/h (for one spin direction), regardless of the number of channels N in the
reservorrs %5 4°¢ This maximum (which may be interpreted as a contact
resistance, similar to that of a quantum point contact) 1s attained if the
localized state has identical leak rates I'y /A and T'y /A to the left and right
reservoirs Provided these leak rates are small (cf Section 21) the conductance
G as a function of Fermi energy Ep 1s a Lorentzian centered around the
resonance energy E,

I 399 401
>

e? I Tr
G(Eg) =— 171
D = B — B + T+ TP 4y
This 1s the Breit—Wigner formula of nuclear physics °® For an asymmetri-
cally placed impurity the peak height 1s reduced below e?/k (by up to a factor
AT /T, f T » Tg)

402 J Bending and M R Beasley, Phys Rev Lett 55, 324 (1985)

403A B Fowler, G L Timp,J J Wainer, and R A Webb, Phys Rev Lett 57, 138 (1986)

404T E Kopley, P L McEuen and R G Wheeler, Phys Rev Lett 61, 1654 (1988), sec also T E
Kopley, Ph D thesis, Yale University, 1989

405W Xue and P A Lee Phys Rev B 38, 3913 (1988)

406y Kalmeyer and R B Laughlin, Phys Rev B 35, 9805 (1987)
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The amphitudes of the peaks observed by Kopley et al #°* were found to be
in agreement with this prediction, while the line shape of an 1solated peak
could be well described by a Lorentzian (see mset of Fig 72) (Most of the
peaks overlapped, hampering a line-shape analysis) In addition, they studied
the effect of a strong magnetic field on the conductance peaks and found that
the amplitudes of most peaks were substantially suppressed This was
interpreted as a reduction of the leak rates because of a reduced overlap
between the wave functions on the mmpurity and the reservoirs The
amplitude of one particular peak was found to be unaffected by the field,
indicative of a symmetrically placed impurity 1n the barrier (I'y = I'y), while
the width of that peak was reduced, in agreement with Eq (17 1) This study
therefore exhibits many characteristic features of resonant tunneling through
a single localized state

Transmission resonances due to an impurity in a quantum point contact

15F7—————
= = /\\i’i/
> By \
L 10ry 4
S Fi6 72 Osallations i the conductance as a
g 0970 Ve teone) M B 05 function of gate voltage at 0 5K are attributed to
K 05k | resonant tunneling through localized states in the
< potential barrier A second trace 1s shown for a
g 6T magnetic field of 6 T (with a horizontal offset of
—004V) The inset 1s a close up of the largest
00 — peak at 6 T, together with a Lorentzian fit Taken
68 75 82 fromT E Kopley ef al Phys Rev Lett 61, 1654
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Fi6 73 Conductance as a function of gate voltage for a quantum point contact at 0 55K The
mset 1s a close-up of the low-conductance regime, showing peaks attributed to transmission
resonances assoclated with impurity states in the constriction Taken from P L McEuen et al,
Surf Scr 229, 312 (1990)

or narrow channel have been studied theoretically in Refs 241, 407, and 408
In an expermment 1t may be difficult to distinguish these resonances from
those associated with reflection at the entrance and exit of the quantum point
contact (discussed in Section 13) A conductance peak associated with
resonant tunneling through an impurity state in a quantum point contact was
reported by McEuen et al *°° The expermmental results are shown in Fig 73
The resonant tunneling peak is observed near the onset of the first
conductance plateau, where G < 2e/h A second peak seen in Fig 73 was
conjectured to be a signature of resonant scattering, in analog with similar
processes known 1n atomic physics +!°

We want to conclude this subsection on transmission resonances by
discussing an experiment by Smith et al#°! 41! on what 1s essentially a
Fabry—Perot mterferometer The device consists of a pomnt contact with
external reflectors in front of its entrance and exit The reflectors are potential
barriers erected by means of two additional gate electrodes (see Fig 74a) By

407C S Chu and R S Sorbello, Phys Rev B 40, 5941 (1989)

408 Masek, P Lipavsky, and B Kramer, J Phys Condens Matter 1, 6395 (1989)

409p 1, McEuen, B W Alphenaar, R G Wheeler, and R N Sacks, Surf Scr 229, 312 (1990)

419G J Schulz, Rev Mod Phys 45, 378 (1973)

“11C G Smuth, M Pepper,J E Frost, D G Hasko, D C Peacock, D A Ritchie,and G A C
Jones, J Phys Condens Matter 1, 9035 (1989)
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FIG. 74. (a) Schematic diagram of a constriction with two adjustable external reflectors
defined by gates on top of a GaAs—AlGaAs heterostructure. (b) Plot of the constriction
resistance as a function of gate voltage with the external reflector gates (Y1, Y2) grounded. Inset:
Fabry—Perot-type transmission resonances due to a variation of the gate voltage on the

reflectors (Y1, Y2) (bottom panel), and Fourier power spectrum (top panel). Taken from C. G.
Smith et al., Surf. Sci. 228, 387 (1990).

varying the gate voltage on the external reflectors of this device, Smith et al.
could tune the effective cavity length without changing the width of the
narrow section. This experiment is therefore more controlled than the
quantum dot experiment3°274°! discussed earlier. The resulting periodic
transmission resonances are reproduced in Fig. 74b. A new oscillation
appears each time the separation between the reflectors increases by Ag/2. A
numerical calculation for a similar geometry was performed by Avishai et
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al *12 The significance of this experiment 1s that 1t 1s the first clear realization
of an electrostatically tuned electron interferometer Such a device has
potential transistor applications Other attempts to fabricate an electrostatic
interferometer have been less succesful The electrostatic Aharonov—Bohm
effect in a ring was discussed 1n Section 8 The solid-state analogue of the
microwave stub tuner {proposed by Sols et al*!3 and by Datta*!%) was
studied experimentally by Miller et al*'> The 1dea 1s to modify the
transmussion through a narrow channel by changing the length of a side
branch (by means of a gate across the side branch) Miller et al have
fabricated such a T-shaped conductor and found some evidence for the
desired effect Much of the structure was due, however, to disorder-related
conductance fluctuations The electrostatic Aharonov—Bohm effect had
stmilar problems Transport mn a long and narrow channel 1s stmply not fully
ballistic, because of partially diffuse boundary scattering and impurity
scattering The device studied by Smith et al worked because 1t made use of a
very short constriction {a quantum point contact), while the modulation of
the interferometer length was done externally in the wide 2DEG, where the
effects of disorder are much less severe (in high-mobility material)

b Coulomb Blockade

In this subsection we would like to speculate on the effects of electron—
electron iteractions on tunneling through impurities 1n narrow semicon-
ductor channels, i relation to a recent paper 1n which Scott-Thomas et al #1©
announced the discovery of conductance oscillations periodic 1n the density
of a narrow St inversion layer The device features a continuous gate on top of
a split gate, as illustrated schematically in Fig 75 In the experiment, the
voltage on the upper gate 1s varied while the split-gate voltage 1s kept
constant Figure 76 shows the conductance as a function of gate voltage at
04K, as well as a set of Fourier power spectra obtained for devices of
different length A striking pattern of rapid periodic oscillations 1s seen No
correlation 1s found between the periodicity of the oscillations and the
channel length, 1n contrast to the transmisston resonances in ballistic
constrictions discussed 1 Sections 13 and 17 a The oscillations die out as the
channel conductance increases toward e?/h ~4x107°Q~! The conduc-
tance peaks are relatively insensitive to a change 1n temperature, while the
mimma depend exponentially on temperature as exp(— E,/kgT), with an
activation energy E, =~ 50ueV Pronounced nonlinearities occur i the

412Y Avishai, M Kaveh, and Y B Band, preprint

413F Sols, M Macucci, U Ravioh, and K Hess, Appl Phys Lett 54, 350 (1989)

4143 Datta Superlattices and Microstructures 6, 83 (1989)

415D S Miller, R K Lake, S Datta, M S Lundstrom, and R Reifenberger, in Ref 15

416 H F Scott-Thomas, S B Field, M A Kastner, H I Smith, and D A Antomadss, Phys
Rev Leit 62, 583 (1989)
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FiG 75 Schematic cross sectional (a) and top (b) view of a double-gate St MOSFET device
The lower split gate 1s at a negative voltage, confining the mversion layer (due to the positive
voltage on the upper gate) to a narrow channel Taken from J H F Scott-Thomas et al, Phys

Rev Lett 62, 583 (1989)
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F1G 76 Top panel Pertodic oscillations i the conductance versus gate voltage at 04K for a
10-um-long mversion channel Next three panels Fourier power spectra of this curve and of data
obtamed for 2- and 1-um-long channels Bottom panel Fourier spectrum for the 1-um-long
device in a magnetic field of 6 T Taken fromJ H F Scott-Thomas et al, Phys Rev Lett 62, 583
(1989)

current as a function of source—drain voltage An interpretation n terms of
pinned charge density waves was suggested,*'® based on a model due to
Larkin and Lee*'” and Lee and Rice *!® In such a model, one expects the
conductance to be thermally activated, because of the pinning of the charge
density wave by impurities in the one-dimensional channel The activation

4“17A 1 Larkin and P A Lee, Phys Rev B 17, 1596 (1978)
418p A Lee and T M Rice, Phys Rev B 19, 3970 (1979)
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FiG 77 Schematic representation of the bottom of

%MGate the conduction band E; and Fermi energy Eg in the
2el device of Fig 76 along the channel The band bending
C, Cy Eo at the connections of the narrow channel to the wide

x

source S and drain D regions arises from the higher
threshold for the electrostatic creation of a narrow
mversion layer by a gate (shaded part) Tunnel

S
R RN barriers assoclated with two scattering centers are
J— EC\' shown The maximum Fermn energy difference sus
tamable by the Coulomb blockade, AEg = +eA
(where A =¢/2C with C=C, + C,) 1s indicated

Taken from H van Houten and C W J Beenakker
Phys Rev Lett 63, 1893 (1989)

energy 1s determined by the most strongly pinned segment 1n the channel, and
periodic oscillations 1 the conductance as a function of gate voltage
correspond to the condition that an mteger number of electrons 1s contained
between the two mmpurities dehmiting that specific segment The same
interpretation has been given to a similar effect observed 1n a narrow channel
in a GaAs—AlGaAs heterostructure by Meirav et al ®°

We have proposed*!® an alternative single-electron explanation of the
remarkable effect discovered by Scott-Thomas et al,*'® based upon the
concept of the Coulomb blockade of tunneling mentioned at the beginning of
this section Likharev3®! and Mullen et al #2° have studied theoretically the
possibility of removing the Coulomb blockade by capacitive charging (by
means of a gate electrode) of the region between two tunnel barriers They
found that the conductance of this system exhibits periodic peaks as a
function of gate voltage, due to the modulation of the net charge (mod ¢) on
the interbarrier region Following the theoretical papers,®°! 42 the authors
in Ref 419 proposed that the current through the channel in the experiment
of Scott-Thomas et al **¢ 1s limited by tunneling through potential barriers
constituted by two domnant scattering centers that delimit a segment of the
channel (see Fig 77) Because the number of electrons localized in the region
between the two barriers 1s necessarily an integer, a charge imbalance, and
hence an electrostatic potential difference, arises between this region and the
adjacent regions connected to wide electron gas reservoirs As the gate
voltage 1s varied, the resulting Fermu level difference AE. oscillates 1n a
sawtooth pattern between +eA, where A = ¢/2C and C = C, + C, 1s the
effective capacitance of the region between the two barriers The single-
electron charging energy e?/2C maintains the Fermu level difference until
AEg = +eA (this 1s the Coulomb blockade) When AE. = +eA, the energy

4194 van Houten and C W J Beenakker, Phys Rev Lett 63, 1893 (1989)
420K Mullen, E Ben-Jacob, R C Jaclevic, and Z Schuss, Phys Rev B 37,98 (1988), M Amman,
K Mullen, and E Ben-Jacob, J Appl Phys 65, 339 (1989)
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required for the transfer of a siagle electron to (or from) the region between
the two barriers vanishes so that the Coulomb blockade 1s removed The
conductance then shows a maximum at low temperatures T and source—
dramn voltages V (kzT/e, V S A) We note that in the case of very different
tunneling rates through the two barriers, one would expect steps 1n the
current as a function of source—drain voltage, which are not observed 1n the
experiments 8% 4'® For two similar barriers this “Coulomb staircase” is
suppressed 42° The oscillation of the Ferm: energy as the gate voltage 1s
varied thus leads to a sequence of conductance peaks The periodicity of the
oscillations corresponds to the addition of a single electron to the region
between the two scattering centers forming the tunnel barriers, so the
oscillations are periodic 1n the density, as in the experiment This single-
electron tunneling mechanism also explains the observed activation of the
conductance mimima and the nsensitivity to a magnetic field 8% #'® The
capacitance associated with the region between the scattering centers 1s hard
to ascertain The experimental value of the activation energy E, = 50 ueV
would mply C = e?2E, ~ 10"**F Kastner et al*** argue that the
capacitance in the device 1s smaller than this amount by an order of
magnitude (the mcrease 1n the effective capacitance due to the presence of the
gate electrodes 1s taken into account in their estimate) In addition, they point
to a discrepancy between the value for the Coulomb blockade inferred from
the nonlinear conductance and that from the thermal activation energy The
temperature dependence of the oscillatory conductance was found to be
qualitatively different in the experiment by Meirav et al®° At elevated
temperatures an exponential T-dependence was found, but at low temper-
atures the data suggest a much weaker T-dependence It 1s clear that more
experimental and theoretical work 1s needed to arrive at a definitive
mterpretation of this intriguing phenomenon

It would be of interest to study the effects of the Coulomb blockade of
tunneling in a more controlled fashion in a structure with two adjustable
potential barriers Such an experiment was proposed by Glazman and
Shekter,*?2 who studied theoretically a system similar to the cavity of the
experiments by Smith et al 3°° 4°! (discussed in Section 17a) A difficulty
with this type of device 1s, as pointed out in Ref 422, that a variation in gate
voltage affects the barrier height (and thus their transparency) as well as the
charge mn the cavity This 1s expected to lead to an exponential damping of the
oscillations due to the Coulomb blockade 39! #2° A characterstic feature of
these oscillations 1s their insensitivity to an applied magnetic field, which can
serve to distinguish the effect from oscillations due to resonant tunneling

42!M A Kastner, S B Field, U Merrav, ] H F Scott-Thomas, D A Antomadis, and M 1

Smith, Phys Rev Lett 63, 1894 (1989)
4221, 1 Glazman and R T Shekhter, J Phys Condens Matter 1, 5811 (1989)
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(Section 17a) The field dependence of the peaks observed by Smith et
al 39 #°! 1n the tunneling regime was not reported, so the question of
whether or not the Coulomb oscillations are observed in their experiment
remains unanswered In our opimion, substantial progress could be made
with the development of thin tunnel barriers of larger height, which would be
less sensitive to the application of an external gate voltage If our interpre-
tation of the experiments by Scott-Thomas et al “*® and Meirav et al ®° 1s
correct, such tunneling barriers might be formed by the mcorporation of
negatively charged impurities (e g, 1onized acceptors) in a narrow electron
gas channel This speculation 1s based on the fact that such acceptor
mmpurities are present 1n the St inversion layers of the experiment of Scott-
Thomas et al,*'® as well as 1n the p-n junctions employed for lateral
confinement by Merrav et al ®°

As we were completing this review, we learned of several experiments that
demonstrate the Coulomb blockade n split-gate confined GaAs—AlGaAs
heterostructures 4237425 These experiments should open the way for the
controlled study of the effects of Coulomb interactions on tunnehng in
semiconductor nanostructures

\

IV. Adiabatic Transport
18 EDGE CHANNELS AND THE QUANTUM HALL EFFECT

In this section we give an overview of the characteristics of adiabatic
transport via edge channels 1n the regime of the quantum Hall effect as a
background to the following sections We restrict ourselves here to the integer
quantum Hall effect, where the edge channels can be described by single-
electron states Recent developments on adiabatic transport 1n the regime of
the fractional quantum Hall effect (which 1s fundamentally a many-body
effect) will be considered 1in Section 20

a Introduction

Both the quantum Hall effect (QHE) and the quantized conductance of a
ballistic point contact are described by the same relation, G = Ne?/h,
between the conductance G and the number N of propagating modes at the
Fermi level (counting both spin directions separately) The smooth transition
from zero-field quantization to QHE that follows from this relation 1s evident
from Fig 48 The nature of the modes 1s very different, however, in weak and
strong magnetic fields As we discussed in Section 12 a, the propagating

423R J Brown, M Pepper, H Ahmed, D G Hasko, R A Ritchie,J E F Frost, D C Peacock,
and G A C Jones, J Phys Condens Matter, 2, 2105 (1990)

4241, P Kouwenhoven, private communication, R Haug, private communication

425 Metrav, M A Kastner, and S J Wind, Phys Rev Lett 65, 771 (1990)
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modes 1n a strong magnetic field consist of edge states, which interact with
one of the sample edges only Edge states with the same mode index are
referred to collectively as an edge channel Edge channels at opposite edges
propagate i opposite directions In a weak magnetic field, in contrast, the
modes consist of magnetoelectric subbands that interact with both edges In
that case there 1s no spatial separation of modes propagating in opposite
directions

The different spatial extension of edge channels and magnetoelectric
subbands leads to an entirely different sensitivity to scattering processes in
weak and strong magnetic fields Firstly, the zero-field conductance
quantization 1s destroyed by a small amount of elastic scattering (due to
umpurities or roughness of the channel boundaries, cf Refs 313, 316, 317, 407,
and 408), while the QHE 1s robust to scatterng®’ This difference 1s a
consequence of the suppression of backscattering by a magnetic field discussed
n Section 13 b, which 1tself follows from the spatial separation at opposite
edges of edge channels moving 1 opposite directions Second, the spatial
separation of edge channels at the same edge 1n the case of a smooth confining
potential opens up the possibility of adiabatic transport (1e, the full
suppression of interedge channel scattering) In weak magnetic fields,
adiabaticity 1s of importance within a point contact, but not on longer length
scales (cf Sections 13 a and 15a) In a wide 2DEG region, scattering among
the modes 1n weak fields establishes local equilibrium on a length scale given
by the inelastic scattering length (which in a high-mobility GaAs—AlGaAs
heterostructure 1s presumably not much longer than the elastic scattering
length [~10um) The situation 1s strikingly different 1n a strong magnetic
field, where the selective population and detection of edge channels observed
by van Wees et al #?° has demonstrated the persistence of adiabaticity outside
the point contact

In the absence of interedge channel scattering the various edge channels at
the same boundary can be occupted up to different energies and consequently
carry different amounts of current The electron gas at the edge of the sample
1s then not 1n local equilibrium Over some long distance (which 1s not yet
known precisely) adiabaticity breaks down, leading to a partial equilibration
of the edge channels However, as demonstrated by Komiyama et al 427 and
by others,3®7 4287430 [ocal equilibrium 1s not fully established even on

426B J van Wees, E M M Willems, C ] P M Harmans, C W J Beenakker, H van Houten, J
G Williamson, C T Foxon, and J J Harris, Phys Rev Lett 62, 1181 (1989)

427§ Komuiyama, H Hirai, S Sasa, and S Hiyamizu, Phys Rev B 40, 12566 (1989)

4288 | van Wees, E M M Willems, L. P Kouwenhoven, C J P M Harmans, J] G
Wilhamson, C T Foxon, and J J Harrns, Phys Rev B 39, 8066 (1989)

4298 W Alphenaar, P L McEuen, R G Wheeler, and R N Sacks, Phys Rev Lett 64, 677
(1990)

430R J Haug and K von Klitzing, Europhys Lett 10, 489 (1989)
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macroscopic length scales exceeding 025mm Since local equilibrium 1s a
prerequisite for the use of a local resistivity tensor, these findings imply a
nonlocality of the transport that had not been anticipated in theories of the
QHE (which are commonly expressed in terms of a local resistivity) °7

A theory of the QHE that 1s able to explain anomalies resulting from the
absence of local equilibrium has to take into account the properties of the
current and voltage contacts used to measure the Hall resistance That 1s not
necessary If local equilibrium 1s established at the voltage contacts, for the
fundamental reason that two systems in equilibrium that are in contact have
identical electrochemical potentials In the Landauer—Buttiker formalism
described 1n Section 12 b, the contacts are modeled by electron gas reservorrs
and the resistances are expressed 1n terms of transmission probabilities of
propagating modes at the Fermi level from one reservoir to the other This
formalism 15 not restricted to zero or weak magnetic fields, but can equally
well be applied to the QHE, where edge channels form the modes In this way
Buttiker could show!!? that the nomdeality of the coupling of the reservoirs
to the conductor affects the accuracy of the QHE 1n the absence of local
equilibrium An ideal contact in the QHE 1s one that establishes an
equilibrium population among the outgoing edge channels by distributing
the injected current equally among these propagating modes (this 1s the
equipartitioning of current discussed for an 1deal electron waveguide n
Section 12b) A quantum point contact that selectively populates certain
edge channels*2¢ can thus be seen as an extreme example of a nonideal, or
disordered, contact

b Edge Channels in a Disordered Conductor

After this general introduction, let us now discuss 1n some detail how edge
channels are formed at the boundary of a 2DEG 1n a strong magnetic field In
Section 12 a we discussed the edge states 1n the case of a narrow channel
without disorder, relevant for the point contact geometry Edge states were
seen to origmate from Landau levels, which in the bulk lie below the Fermu
level but rise 1n energy on approaching the sample boundary (cf Fig 40b)
The point of intersection of the nth Landau level (n = 1,2, ) with the Ferm:
level forms the site of edge states belonging to the nth edge channel The
number N of edge channels at Eg 1s equal to the number of bulk Landau
levels below E, This description can casily be generalized to the case of a
slowly varying potential energy landscape V{x, y) 1n the 2DEG, in which case
a semiclassical analysis can be applied 3! The energy Ey of an electron at the
Fermi level in a strong magnetic field contains a part (n — $)hw, due to the

431R Kubo, S J Miyake, and N Hashitsume, “Solid State Physics,” Vol 17 (F Seitz and D
Turnbull, eds) Academic Press, New York, 1965 M Tsukada, J Phys Soc Jap, 41, 1466
(1976)
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quantized cyclotron motion and a part +3gupB (depending on the spin
direction) from spin sphtting The remainder 1s the energy Eg due to the
electrostatic potential

Eg=Ep—(n— %)ha)c * %Q#BB (181)

The cyclotron orbit center R 1s guided along equipotentials of ¥ at the
guiding center energy E; As derived in Section 11 b, the drift velocity vy, ¢ of
the orbit center (known as the guiding center drift or E x B drift) 1s given by

1
Varrn(R) = —= VV(R) xB, (182)

which indeed 1s parallel to the equipotentials An important distinction with
the weak-field case of Section 11b 1s that the spatial extension of the
cyclotron orbit can now be neglected, so V 1s evaluated at the position of the
orbit center in Eq (18 2) [compared with Eq (11 1)] The guiding center drift
contributes a kinetic energy 3mv3 , to the energy of the electron, which 1s
small for large B and smooth V (More precsely, imvl . « hw, if
|VV| « ho,/l,, with [ the magnetic length defined as I, = (h/eB)"/?) This
kinetic energy term has therefore not been included in Eq (18 1)

The simplicity of the guiding center dnift along equipotentials has been
originally used in the percolation theory*3*? 43# of the QHE, soon after its
experimental discovery ® In this theory the existence of edge states 1s ignored,
so the Hall resistance 1s not expressed in terms of equilibrium properties of
the 2DEG (in contrast to the edge channel formulation that will be discussed)
The physical requirements on the smoothness of the disorder potential have
recetved considerable attention*3® 436 in the context of the percolation
theory and, more recently,*>” #*° 1n the context of adiabatic transport 1n
edge channels Strong potential variations should occur on a spatial scale
that 1s large compared with the magnetic length [, (I, corresponds to the
cyclotron radws i the QHE, [, = [,(2n — 1)"/? ~ [, if the Landau level
index n = 1) More rapid potential fluctuations may be present provided their
amplitude 1s much less than hw, (the energy separation of Landau levels)

432R F Kazarmov and S Luryi, Phys Rev B 25, 7626 (1982), S Luryt and R F Kazarmnov,
Phys Rev B 27, 1386 (1983), S Luryi, in “High Magnetic Fields in Semiconductor Physics”
(G Landwehr, ed) Springer, Berlin, 1987

433§ V Iordansky, Solid State Comm 43, 1 (1982)

4348 A Trugman, Phys Rev B 27, 7539 (1983)

43R Joynt and R E Prange, Phys Rev B 29, 3303 (1984)

436R E Prange, in Ref 97

437L 1 Glazman and M Jonson, J Phys Condens Matter 1, 5547 (1989)

4381, 1 Glazman and M Jonson, Phys Rev B 41, 10686 (1990)

43°T Martin and S Feng, Phys Rev Lett 64, 1971 (1990)
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Fic 78 Formation of edge channels in a disordered potential, from various viewpoints
discussed 1n the text

In Fig 78 we have 1illustrated the formation of edge channels 1n a smooth
potential energy landscape from various viewpoints The wave functions of
states at the Fermi level are extended along equipotentials at the guiding
center energy (18 1), as shown in Fig 78a (for Landau level indexn=1,2,3
and a single spin direction) One can distinguish between extended states near
the sample boundaries and localized states encircling potential maxima and
minima 1n the bulk The extended states at the Fermi level form the edge
channels The edge channel with the smallest index n 1s closest to the sample
boundary, because it has the largest E5 [Eq (18 1)] Thus 1s seen more clearly
in the cross-sectional plot of V{x, y) in Fig 78b (along the line connecting the
two arrows 1 Fig 78a) The location of the states at the Ferm level 1s
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FiG 79 Measurement configuration for the two-terminal resistance R,,, the four-terminal
Hall resistance Ry, and the longitudinal resistance R, The edge channels at the Fermu level are
indicated, arrows point 1n the direction of motion of edge channels filled by the source contact at
chemical potential E¢ + du The current 1s equipartitioned among the edge channels at the upper
edge, corresponding to the case of local equilibrium

indicated by dots and crosses (depending on the direction of motion) The
value of Eg for each n 1s indicated by the dashed line If the peaks and dips of
the potential 1n the bulk have amplitudes below Aw, /2, then only states with
highest Landau level index can exist in the bulk at the Fermi level This 1s
obvious from Fig 78c, which shows the total energy of a state
Eg + (n — Hhw, along the same cross section as Fig 78b If one identifies
k = —xeB/h, this plot can be compared with Fig 40b of the dispersion
relation E, (k) for a disorder-free electron waveguide in strong magnetic field

A description of the QHE based on extended edge states and localized
bulk states, as in Fig 78, was first put forward by Halperin**® and further
developed by several authors 4! 44* In these papers a local equilibrium 1s
assumed at each edge In the presence of a chemical potential difference du
between the edges, ecach edge channel carries a current (e/h)dp and thus
contributes e2/h to the Hall conductance (cf the derivation of Landauer’s
formula 1 Section 12b) In this case of local equilibrium the two-terminal
resistance R,, of the Hall bar 1s the same as the four-terminal Hall resistance
Ry = R,, = h/e’N (see Fig 79) The longitudinal resistance vamshes, Ry, = 0

440p 1 Halperin, Phys Rev B 25, 2185 (1982)

441A H MacDonald and P Streda, Phys Rev B 29, 1616 (1984)

4425 M Apenko and Yu E Lozovik, J Phys C 18, 1197 (1985)

443p Streda, ] Kucera, and A H MacDonald, Phys Rev Lett 59, 1973 (1987)
44417 K Jam and S A Kivelson, Phys Rev B 37, 4276 (1988)
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The distinction between a longitudinal and Hall resistance 1s topological A
four-terminal resistance measurement gives R, if current and voltage
contacts alternate along the boundary of the conductor, and R, if that 1s not
the case There 18 no need to further characterize the contacts in the case of
local equilibrium at the edge

If the edges are not 1n local equilibrium, the measured resistance depends
on the properties of the contacts Consider, for example, a situation i which
the edge channels at the lower edge are 1n equilibrium at chemical potential
Eg, while the edge channels at the upper edge are not in local equilibrium
The current at the upper edge 1s then not equipartitioned among the N
modes Let f, be the fraction of the total current I that 1s carried by states
above Er in the nth edge channel at the upper edge, I, = f,I The voltage
contact at the lower edge measures a chemical potential E. regardless of its
properties The voltage contact at the upper edge, however, will measure a
chemical potential that depends on how 1t couples to each of the edge
channels The transmission probability 7T, 1s the fraction of I, that is
transmutted through the voltage probe to a reservoir at chemical potential
Eg + o The incoming current

N N
IL,= > TflI, with ) f, =1, (18 3)
n=1 n=1
has to be balanced by an outgoing current
e e N
I = 3uN —R) =7 ou Y, T, (18 4)
n=1

of equal magnitude, so that the voltage probe draws no net current (In Eq
(18 4) we have apphied Eq (12 14) to 1dentify the total transmission proba-
bility N — R of outgomng edge channels with the sum of transmission
probabilities T, of incoming edge channels) The requirement I,, = I,
determines i and hence the Hall resistance Ry = du/el

h N N -1
ra=5 (% ma)( 5 ) 189

The Hall resistance has 1ts regular quantized value Ry = h/e*N only 1if either
fu=1Nor T, =1forn=1,2, , N The first case corresponds to local
equilibrium (the current 1s equipartitioned among the modes), the second case
to an 1deal contact (all edge channels are fully transmitted) The Landauer—
Buttiker formalism discussed in Section 12b forms the basis on which
anomalies in the QHE due to the absence of local equilibrium in combination
with nonideal contacts can be treated theoretically 112

A nonequilibrium population of the edge channels 1s generally the result of
selectwe backscattering Because edge channels at opposite edges of the



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 177

sample move in opposite directions, backscattering requires scattering from
one edge to the other. Selective backscattering of edge channels with n = n, is
induced by a potential barrier across the sample,!*3-33%34%427 if its height is
between the guiding center energies of edge channel ny and ny — 1 (note that
the edge channel with a larger index n has a smaller value of Eg). The
anomalous Shubnikov-De Haas effect,*?® to be discussed in Section 19, has
demonstrated that selective backscattering can also occur naturally in the
absence of an imposed potential barrier. The edge channel with the highest
index n = N is selectively backscattered when the Fermi level approaches the
energy (N — Hhw, of the Nth bulk Landau level. The guiding center energy of
the Nth edge channel then approaches zero, and backscattering either by
tunneling or by thermally activated processes becomes effective, but for that
edge channel only, which remains almost completely decoupled from the
other N — 1 edge channels over distances as large as 250 um (although on
that length scale the edge channels with n < N — 1 have equilibrated to a
large extent).#2°

c. Current Distribution

The edge channel theory has been criticized on the grounds that experi-
ments measure a nonzero current in the bulk of a Hall bar.**® In this
subsection we want to point out that a measurement of the current
distribution cannot be used to prove or disprove the edge channel formula-
tion of the QHE.

The fact that the Hall resistance can be expressed in terms of the
transmission probabilities of edge states at the Fermi level does not imply that
these few states carry a macroscopic current, nor does it imply that the
current flows at the edges. A determination of the spatial current distribution
i(r), rather than just the total current I, requires consideration of all the states
below the Fermi level, which acquire a net drift velocity because of the Hall
field. As we discussed in Section 12.b, knowledge of i(r) is not necessary to
know the resistances in the regime of linear response, because the Einstein
relation allows one to obtain the resistance from the diffusion constant. Edge
channels tell you where the current flows if the electrochemical potential
difference du is entirely due to a density difference, relevant for the diffusion
problem. Edge channels have nothing to say about where the current flows if
Sp is mainly of electrostatic origin, relevant for the problem of electrical
conduction. The ratio éy/I is the same for both problems, but i(r) is not.

With this in mind, it remains an interesting problem to find out just how
the current is distributed in a Hall bar, or, alternatively, what is the
electrostatic potential profile. This problem has been treated theoretically in

445M. E. Cage, in Ref. 97.
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many papers 467435 In the case of a 3D conductor, a linearly varying
potential and uniform current density are produced by a surface charge As
noted by MacDonald et al ,**® the electrostatics 1s qualitatively different n
the 2D case because an edge charge d(x — W/2) produces a potential
proportional to Inlx — W/2|, which 1s weighted toward the edge, and hence a
concentration of current at the edge

Experiments aimed at measuring the electrostatic potential distribution
were origially carried out by attaching contacts to the interior of the Hall
bar and measuring the voltage differences between adjacent contacts #3646°
It was learned from these studies that relatively small inhomogeneities in the
density of the 2DEG have a large effect on these voltage differences in the
QHE regime The main difficulty in the interpretation of such experiments 1s
that the voltage difference measured between two contacts 1s the difference in
electrochemical potential, not the line integral of the electric field Buttiker*%!
has argued that the voltage measured at an interior contact can exhibit large
variations for a small increase 1 magnetic field without an appreciable
change 1n the current distribution Contactless measurements of the QHE
from the absorption of microwave radiation*®? are one alternative to interior
contacts, which might be used to determine the potential (or current)

distribution
Fontein et al *°® have used the birefringence of GaAs mduced by an

446A H MacDonald, T M Rice, and W F Brinkman, Phys Rev B 28, 3648 (1983)

4470 Hewnonen and P L Taylor, Phys Rev B 32, 633 (1985)

4480y | Thouless, J Phys C 18, 6211 (1985)

449V M Pudalov and S G Semenchinsku, Pis'ma Zh Eksp Teor Fiz 42, 188 (1985) [JETP
Lett 42,232 (1985)]
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43'Y Ono and T Ohtsuki, Z Phys B 68, 445 (1987), T Ohtsukiand Y Ono, J Phys Soc Jap
58, 2482 (1989)

452R Johnston and L Schweitzer, Z Phys B 70, 25 (1988)

453V Gudmundsson, R R Gerhardts, R Johnston, and L Schweitzer, Z Phys B 70,453 (1988)

454T Ando, J Phys Soc Jap 58, 3711 (1989)
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T M Klapwyk, Eur Phys Lett 12, 429 (1990)
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V, (mV)

x (mm)

Fi16 80 Electrostatic potential Vj; induced by passing a current through a Hall bar The
sample edges are at x = + 1 mm The data points are from the experiment of Fontein et al *63, at
two magnetic field values on the Ry = h/4e? quantized Hall plateau (triangles B = 5T, crosses
B = 525T) The sohd curve 1s calculated from Eq (18 9), assuming an impurity-free Hall bar
with four filled Landau levels The theory contains no adjustable parameters

electric field to perform a contactless measurement of the electrostatic
potential distribution 1n a Hall bar They measure the Hall potential profile
Viy(x) as a change 1n the local electrostatic potential if a current 1s passed
through the Hall bar The data pomnts shown in Fig 80 were taken at 1 5K
for two magnetic field values on the plateau of quantized Hall resistance at
1h/e? The potential vanes steeply at the edges (at x = + 1 mm n Fig 80) and
is approximately linear 1n the bulk The spatial resolution of the experiment
was 70 pm, limited by the laser beam used to measure the birefringence The
current distribution 1s not directly measured, but can be estimated from the
guiding center dnift (18 2) (this assumes a slowly varying potential) The
nonequilibrium current density i(x) along the Hall bar 1s then given by

_eng dVi(x)
T B dx

ux (18 6)
Fontemn et al thus estimate that under the conditions of their experiment two
thirds of the total mmposed current I = 5 A flows withm 70 um from the
edges while the remainder 1s uniformly distributed 1n the bulk

This expertmental data can be modeled*®* by means of an integral
equation derived by MacDonald et al **® for the self-consistent potential
profile 1n an 1deal impurity-free sample with N completely filled (spin-split)
Landau levels The electron charge density p.(x) in the 2DEG 1s given by
el?,

=—en | 1-
p() cns[ -

Vi (x)] (187)

C

464C W J Beenakker, unpublished
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This equation follows from the Schrédinger equation in a smoothly varying
electrostatic potential, so the factor between brackets is close to unity.
Substitution of the net charge density en, + p.(x) into the Poisson equation

gives*#o
+W/2
= —¢ j dx' In <— |x — x |> Vi(x). (18.8)

w2

The characteristic length & = NI2 /na* is defined in terms of the magnetic
length [, and the effective Bohr radius a* = ehi?*/me? (with ¢ the dielectric
constant).

The integral equation (18.8) was solved numerically by MacDonald et
al**® and analytically by means of the Wiener—Hopf technique by Thou-
less.*#® Here we describe a somewhat simpler approach,*%* which is suffi-
ciently accurate for the present purpose. For magnetic field strengths in the
QHE regime the length & is very small. For example, if N =4, [, = 11.5n0m
(for B=5T), a* = 10nm (for GaAs with ¢ = 13¢5 and m = 0.067m,), then
& = 17 nm. It is therefore meaningful to look for a solution of Eq. (18.8) in the
limit ¢ « W. The result is that ¥;;(x) = constant xIn|(x — W/2)/(x + W/2)| if
|x| < W/2 — &, with a linear extrapolation from [x] = W/2 — & to |x| = W/2.
One may verify that this is indeed the answer, by substituting the preceding
expression into Eq. (18.8) and performing one partial integration. The
arbitrary constant in the expression for Vj; may be eliminated in favor of the
total current I flowing through the Hall bar, by applying Eq. (18.6) to the case
of N filled spin-split Landau levels. This gives the final answer

x— W/2 . w
A flx| <= —¢ 9
x + W/2 il 2 ¢ (189)

~1
Valx) = %IR},(I +In %) In
with a linear extrapolation of ¥}, to +1IRy in the interval within & from the
edge. The Hall resistance is Ry = h/Ne?. The approximation (18.9) is
equivalent for small & to the analytical solution of Thouless, and is close to
the numerical solutions given by MacDonald et al., even for a relatively large
value &/W=0.1.

In Fig. 80 the result (18.9) has been plotted (solid curve) for the parameters
of the experiment by Fontein et al. (¢/W=085x107°for N=4, B=5T,
and W= 2mm). The agreement with experiment is quite satisfactory in view
of the fact that the theory contains no adjustable parameters. The theoretical
profile is steeper at the edges than in the experiment, which may be due to the
limited experimental resolution of 70 um. The total voltage drop between the
two edges in the calculation (hI/Ne? ~ 32mV for I = 5uA and N = 4) agrees
with the measured Hall voltage of ~30mV, but the optically determined
value of 40 mV is somewhat larger—for a reason that we do not understand.
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We have discussed this topic of the current distribution in the QHE in
some detail to convince the reader that the concentration of the potential
drop (and hence of the current) near the edges can be understood from the
electrostatics of edge charges, but cannot be used to test the validity of a
linear response formulation of the QHE in terms of edge states. Indeed, edge
states were completely neglected in the foregoing theoretical analysis, which
nonetheless captures the essential features of the experiment.

19. SELECTIVE POPULATION AND DETECTION OF EDGE CHANNELS

The absence of local equilibrium at the current or voltage contacts leads to
anomalies in the quantum Hall effect, unless the contacts are ideal (in the
sense that each edge channel at the Fermi level is transmitted through the
contact with probability 1). Ideal versus disordered contacts are dealt with in
Sections 19.a and 19.b. A quantum point contact can be seen as an extreme
example of a disordered contact, as discussed in Section 19.c. Anomalies in
the Shubnikov—De Haas effect due to the absence of local equilibrium are the
subject of Section 19.d.

a. Ideal Contacts

In a two-terminal measurement of the quantum Hall effect the contact
resistances of the current source and drain are measured in series with the
Hall resistance. For this reason precision measurements of the QHE are
usually performed in a four-terminal measurement configuration, in which
the voltage contacts do not carry a current.**> Contact resistances then do
not play a role, provided that local equilibrium is established near the voltage
contacts [or, by virtue of the reciprocity relation (12.16), near the current
contacts]. As we mentioned in Section 18, local equilibrium can be grossly
violated in the QHE. Accurate quantization then requires that either the
current or the voltage contacts are ideal, in the sense that the edge states at
the Fermi level have unit transmission probability through the contacts.!!?
In this subsection we return to the four-terminal measurements on a
quantum point contact considered in Section 13.b, but now in the QHE
regime where the earlier assumption of local equilibrium near the voltage
contacts is no longer applicable in general. We assume strong magnetic fields
so that the four-terminal longitudinal resistance R; of the quantum point
contact is determined by the potential barrier in the constriction (rather than
by its width).

Let us apply the Landauer—Biittiker formalism to the geometry of Fig. 81.
As in Section 13.b, the number of spin-degenerate edge channels in the wide
2DEG and in the constriction are denoted by N, and N, respectively.
An ideal contact to the wide 2DEG perfectly transmits N4, Channels,
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Hs Hd

Fic 81 Motion along equipotentials in the QHE regime, 1n a four-terminal geometry with a
saddle-shaped potential formed by a split gate (shaded) Ideal contacts are assumed The thin
lines indicate the location of the edge channels at the Fermu level, with the arrows pointing 1n the
direction of motton of edge channels that are populated by the contacts (crossed squares) Taken
from H van Houten et al, in “Nanostructured Systems” (M A Reed, ed ) Academic, New York

1991

whereas the constriction transmits only N, channels. The remaining
N yige — N channels are reflected back along the opposite 2DEG boundary
(cf. Fig. 81). We denote by y; and p, the chemical potentials of adjacent
voltage probes to the left and to the right of the constriction. The current
source 1s at g, and the drain at p,. Applying Eq. (12.12) to this case, using

I, = —1y= 1,1, =1, =0, one finds for the magnetic field direction indicated
in Fig. 81,

(h/ze)l = Nw1de#s - (Nw1dc - Nmm),ula (1913)

0= Nw:delul - Nw:dcﬂsy (191b)

0= ande:ur - Nmm:u'l- (1910)

We have used the freedom to choose the zero level of chemical potential by
fixing uy = 0, so we have three independent (rather than four dependent)
equations. The two-terminal resistance R,, = y/el following from Eq. (19.1)
18

h o1

2t T X3 A
2¢2 N’

(19.2)

unaffected by the presence of the additional voltage probes in Fig. 81. The
four-terminal longitudinal resistance R, = (y; — p,)/el is

h 1 1
RL = ? <N—'— - Nwme). (193)

min

In the reversed field direction the same result is obtained. Equation (19.3),
derived for ideal contacts without assuming local equilibrium near the
contacts, 1s 1dentical to Eq. (13.7), derived for the case of local equilibrium.
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F1G. 82. Perspective view of a six-terminal Hall bar containing a point contact, showing the
various two- and four-terminal resistances mentioned in the text. Taken from H. van Houten et
al., in “Nanostructured Systems” (M. A. Reed, ed.). Academic, New York 1991.

In a six-terminal measurement geometry (see Fig. 82), one can also
measure the Hall resistance in the wide regions, which is simply
Ry=R, — R or

h 1

HE SN (19.4)
which is unaffected by the presence of the constriction. This is a consequence
of our assumption of ideal voltage probes. One can also measure the two
four-terminal diagonal resistances R and Ry across the constriction in such
a way that the two voltage probes are on opposite edges of the 2DEG, on
either side of the constriction (see Fig. 82). Additivity of voltages on contacts
tells us that R3 = R, + R, (for the magnetic field direction of Fig, 82); thus,

h 1 h 2 1
R} = — ——; Ry=—5|———1} 19.5
° 262 Nmin, P 262 <Nwide Nmin) ( )

On field reversal, R} and Ry are interchanged. Thus, a four-terminal
resistance [R7 in Eq. (19.5)] can in principle be equal to the two-terminal
resistance [R,, in Eq. (19.2)]. The main difference between these two
quantities is that an additive contribution of the ohmic contact resistance
(and of a part of the diffusive background resistance in weak magnetic fields)
is eliminated in the four-terminal resistance measurement.

The fundamental reason that the assumption of local equilibrium made in
Section 13.b (appropriate for weak magnetic fields) and that of ideal contacts
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2e%/h)

CONDUCTANCE

GATE VOLTAGE (V)

Fi6 83 “Fractional’ quantization in the integer QHE of the four-terminal longitudinal
conductance R ! of a point contact in a magnetic field of 14T at T = 0 6 K The solid horizontal
lines 1ndicate the quantized plateaus predicted by Eq (19 3), with N, 4. = 5 and N,,,, = 1,2,3,4
The dashed lines give the location of the spin-split plateaux, which are not well resolved at this
magnetic field value Taken from L P Kouwenhoven, Master’s thests, Delft University of
Technology, 1988

made in this section (for strong fields) yield 1dentical answers 1s that an 1deal
contact attached to the wide 2DEG regions induces a local equilibrium by
equipartitioning the outgoing current among the edge channels (This 1s
llustrated in Fig 81, where the current entering the voltage probe to the right
of the constriction 1s carried by a single edge channel, while the equally large
current flowing out of that probe 1s equipartitioned over the two edge
channels available for transport in the wide region) In weaker magnetic
fields, when the cyclotron radius exceeds the width of the narrow 2DEG
region connecting the voltage probe to the Hall bar, not all edge channels 1
the wide 2DEG region are transmutted into the voltage probe (even if 1t does
not contain a potential barrier) This probe 1s then not effective 1n equiparti-
tioning the current That 1s the reason that the weak-field analysis in Section
13 b required the assumption of a local equilibrium 1n the wide 2DEG near
the contacts

We now discuss some experimental results, which confirm the behavior
predicted by Eq (19 3) in the QHE regime, to complement the weak-field
experiments discussed in Section 13 b Measurements on a quantum point
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contact by Kouwenhoven et al 3°7 6% 1n Fig 83 show the quantization of the
longitudinal conductance R; ! in fractions of 2e*/h (for unresolved spin
degeneracy) The magnetic field 1s kept fixed at 1 4 T (such that N, 4. = 5) and
the gate voltage 1s varied (such that N, ranges from 1 to 4) Conductance
plateaux close to 5/4, 10/3, 15/2, and 20 x (2¢2/h) (solhid horizontal lines) are
observed, m accord with Eq (193) Spin-spht plateaux (dashed hnes) are
barely resolved at this rather low magnetic field Similar data were reported
by Snell et al **? Observations of such a “fractional” quantization due to the
mteger QHE were made before on wide Hall bars with regions of different
electron density 1n series,*®¢ “¢7 but the theoretical explanation*® given at
that time was less straightforward than Eq (19 3)

In the high-field regime the point contact geometry of Fig 81 1s essentially
equivalent to a geometry 1n which a potential barrier 1s present across the
entire width of the Hall bar (created by means of a narrow continuous gate)
The latter geometry was studied by Haug et al 34° and by Washburn et al 33°
The geometries of both experiments®3° 340 are the same (see Figs 84 and 85),
but the results exhibit some interesting differences because of the different
drmensions of gate and channel Hauge et al 3*° used a sample of macro-
scopic dimensions, the channel width being 100 yum and the gate length 10
and 20 um Results are shown in Fig 84 As the gate voltage 1s varied, a
quantized plateau at h/2e? 1s seen 1 the longitudinal resistance at fixed
magnetic field, in agreement with Eq (19 3) (the plateau occurs for two spin-
spht Landau levels 1n the wide region and one spin-split level under the gate)
A qualitatively different aspect of the data in Fig 84, compared with Fig 83,
1s the presence of a resistance mimmimum Equation (19 3), in contrast, predicts
that R, varies monotonically with barrier height, and thus with gate voltage
A model for the effect has been proposed 1n a different paper by Haug et
al ,>*! based on a competition between backscattering and tunnehng through
localized states in the barrier region They find that edge states that are
totally reflected at a given barrier height may be partially transmitted if the
barrier height 1s further increased The importance of tunneling 1s consistent
with the increase of the amplitude of the dip as the gate length 1s reduced from
20 to 10 um A related theoretical study was performed by Zhu et al #¢°

4551 P Kouwenhoven, Master’s thesis, Delft Umversity of Technology, 1988

45K von Klitzing, G Ebert, N Klemnmichel, H Obloh, G Dorda, and G Weimann, “Proc
ICPS 17 (J D Chadiand W A Harnson, eds) Springer, New York, 1985

“6"D A Syphers,F F Fang,and P J Stiles, Surf Sci 142, 208 (1984), F F Fangand P J Stiles,
Phys Rev B 27,6487 (1983), F F Fangand P J Stiles, Phys Rev B 29, 3749 (1984) A B
Berkut, Yu V Dubrovskn, M S Nunuparov, M 1 Reznikov, and V I Tal'yanski, Pis’ma Zh
Teor Fiz 44,252 (1986) [JETP Lett 44, 324 (1986)]

“58D A Syphers and P J Stiles, Phys Rev B 32, 6620 (1985)

469y Zhu, J Shi, and S Feng, Phys Rev B 41, 8509 (1990)
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F1G 84 (a) Schematic view of a wide Hail bar containing a potential barrier unposed by a gate
electrode of length b, (b) Longitudinal resistance as a function of gate voltage in the QHE regime
(two spin-split Landau levels are occupied 1n the unperturbed electron gas regions) The plateau
shown 1s at R, = h/2¢®, 1n agreement with Eq (193) Results for b, = 10pym and 20 um are

compared A pronounced dip develops 1n the device with the shortest gate length Taken from R
J Haug et al, Phys Rev B 39, 10892 (1989)
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Fi1G 85 (a) Schematic view of a 2-um-wide channel containing a potential barrier imposed by a
0 l-um-long gate (b) Top diagonal resistance R;;,4, = R5 and longitudinal resistance
R,; 43 = Ry as a function of gate voltage 1n a strong magnetic field (B = 52T), showing a
quantized plateau in agreement with Eqs (19 5) and (19 3), respectively For comparison also the
two zero-field traces are shown, which are almost identical Bottom Difference R, — R, = Ry at
52T A normal quantum Hall plateau 1s found, with oscillatory structure superimposed 1n gate

voltage regions where R} and R, are not quantized Taken from S Washburn et al, Phys Rev
Lett 61, 2801 (1988)
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Washburn er al *3° studied the longitudmal resistance of a barrier defined
by a 0 1-um-long gate across a 2-um-wide channel The relevant dimensions
are thus nearly two orders of magnitude smaller than in the expermment of
Haug et al Again, the resistance 1s studied as a function of gate voltage at
fixed magnetic field The Ilongitudinal (R, = Ry, ;) and diagonal
(R = R,; 4,) resistances are shown 1n Fig 85, as well as their difference
[which according to Eqs (19 3) and (19 5) would equal the Hall resistance
Ry] In this small sample the quantized plateaux predicted by Eq (19 3) are
clearly seen, but the resistance dips of the large sample of Haug et al are not
We recall that resistance dips were not observed in the quantum point
contact experiment of Fig 83 exither The model of Haug et al 3*! would imply
that localized states do not form in barriers of small area Washburn et al
find weak resistance fluctuations 1n the gate voltage mtervals between
quantized plateaux These fluctuations are presumably due to some form of
quantum mterference, but have not been further 1dentified

Related experiments on the quantum Hall effect in a 2DEG with a
potential barrier have been performed by Hira: et al and by Komiyama et
al 4274707472 These studies have focused on the role of nomideal contacts 1n
the QHE, which 1s the subject of the next subsection

b Disordered Contacts

The validity of Egs (192)—(195) in the QHE regime breaks down for
nonideal contacts 1f local equilibrium near the contacts 1s not established The
treatment of Section 19 a for ideal contacts implies that the Hall voltage over
the wide 2DEG regions adjacent to the constriction 1s unaffected by the
presence of the constriction or potential barrier Experiments by Komiyama
et al **7 %72 have demonstrated that this 1s no longer true if one or more
contacts are disordered The analysis of their experiments s rather invol-
ved,*”? which 1s why we do not give a detailed discussion here Instead we
review a different experiment, 3 which shows a deviating Hall resistance in a
sample with a constriction and a single disordered contact This experiment
can be analyzed 1in a relatively simple way,*®” following the work of
Buttiker!'? and Komiyama et al 427 472

The sample geometry 1s that of Fig 82 In Fig 86 the four-terminal
longitudinal resistance R; and Hall resistance Ry are shown for both a small
voltage (—03V) and a large voltage (—25V) on the gate defining the
constriction The longitudinal resistance decreases in weak fields because of

479H Hirai, S Komiyama, S Hiyamuzu, and S Sasa 1n “Proc ICPS 19,” p 55 (W Zawadaski,
ed ) Institute of Physics, Polish Academy of Sciences, 1988

471§ Komiyama, H Hirai, S Sasa, and T Fuj, Solid State Comm 73, 91 (1990), H Hirai, S
Komiyama, S Sasa, and T Fuyn, J Phys Soc Jap 58, 4086 (1989)

472§ Komiyama and H Hirai, Phys Rev B 40, 7767 (1989)



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 189

7 L T T Vg'(v)
6L -25
-03
5
e 4
X
~ 3
o
2|
'l
o f N
%5 6 05 10 15 20 25

B(T)

FiG 86 Nonvamshing Shubnikov—De Haas mimma in the longitudinal resistance R, and
anomalous quantum Hall resistance Ry, measured 1n the point contact geometry of Fig 82 at
50mK These experimental results are extensions to higher fields of the weak-field traces shown
n Fig 50 The Hall resistance has been measured across the wide region, more than 100 um away
from the constriction, yet Ry 1s seen to increase 1f the gate voltage 1s raised from —03V to
—25V The magmtude at B =22T of the deviation in R, and of the Shubnikov-De Haas
mimmum m R, are indicated by arrows, which both for Ry and R, have a length of (h/2¢3)
% —$), n agreement with the analysis given in the text Taken from H van Houten er al , m
“Nanostructured Systems” (M A Reed, ed) Academic, New York, 1991

reduction of backscattering, as discussed in Section 13.b. At larger fields
Shubnikov-De Haas oscillations develop. The data for ¥, = —0.3 V exhibit
zero minima 1n the Shubnikov-De Haas oscillations in R; and the normal
quantum Hall resistance Ry = (h/2¢*)N,,}., determined by the number of
Landau levels occupied in the wide regions (N4, can be obtamned from the
quantum Hall effect measured in the absence of the constriction or from the
periodicity of the Shubnikov—De Haas oscillations).

At the higher gate voltage V, = —2.5V, nonvamishing minima in R, are
seen 1n Fig. 86 as a result of the formation of a potential barrier in the
constriction. At the mmima, Ry has the fractional quantization predicted by
Eq. (19.3). For example, the plateau in R, around 22T for V, = —2.5V is
observed to be at R; = 2.1kQ ~ (h/2e?) x (3 — 1), in agreement with the fact
that the two-terminal resistance yields N, = 2 and the number of Landau
levels in the wide regions N4, = 3. In spite of this agreement, and 1n
apparent conflict with Eq. (19.4), the Hall resistance Ry has increased over its
value for small gate voltages. Indeed, around 2.2T a Hall plateau at
Ry = 6.3kQ =~ (h/2e*) x5 15 found for V, = —2.5V, as if the number of
occupied Landau levels was given by N, = 2 rather than by N, 4, = 3. This
unexpected deviation was noted in Ref. 113, but was not understood at the
time. At higher magnetic fields (not shown in Fig. 86) the N = 1 platean is
reached, and the deviation in the Hall resistance vanishes.

As pomnted out in Ref. 307, the likely explanation of the data of Fig. 86 is
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Fic 87 Illustratron of the flow of edge channels along equipotentials in a sample with a
constriction (defined by the shaded gates) and a disordered voltage probe (a potential barrier in
the probe 1s indicated by the shaded bar) Taken from H van Houten et al , in “Nanostructured
Systems” (M A Reed, ed) Academic, New York

that one of the ohmic contacts used to measure the Hall voltage is disordered
in the sense of Biittiker'!? that not all edge channels have unit trans-
mussion probability into the voltage probe. The disordered contact can be
modeled by a potential barrier in the lead with a height not below that of the
barrier in the constriction, as illustrated in Fig. 87. A net current I flows
through the constriction, determined by its two-terminal resistance according
to I = (2e/h)N . 14, With u, the chemical potential of the source reservoir (the
chemical potential of the drain reservoir u, is taken as a zero reference).
Equation (12.12) applied to the two opposite Hall probes [, and I, in Fig. 87
takes the form (using I,, = I}, = 0, u, = (h/2€)I/N 1,5, and py = 0)

h 1

0 = andc:)ul; - 7—;—’11 Z N—— - 7;2—*11#129 (19'63’)
oI
0=Nypu, — Ty, 2% N [INNN T (19.6b)

where we have assumed that the disordered Hall probe [, transmits only
N, < N, edge channels because of the barrier in the lead. For the field
direction shown in Fig. 87 one has, under the assumption of no interedge
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channel scattering from constriction to probe [, T,.;, = Nyues
T..,=T,,,=0, and T, ., = max(0, N, — N,,) Equation (19 6) then

s

leads to a Hall resistance Ry = (y;, — yy,)/el given by

h 1

. S 197
™02 max(N,,, N, (197)

In the opposite field direction the normal Hall resistance Ry = (h/2¢®)N ;5. 15
recovered

The assumption of a single disordered probe, plus absence of interedge
channel scattering from constriction to probe, thus explains the observation
in Fig 86 of an anomalously high quantum Hall resistance for large gate
voltages, such that N, < N4 Indeed, the experimental Hall resistance for
V, = —25V has a plateau around 22T close to the value Ry = (h/2¢*)N}
(with N, = 2),1n agreement with Eq (19 7)if N;, < N, at this gate voltage
This observation demonstrates the absence of interedge channel scattering
over 100 um (the separation of constriction and probe), but only between the
highest-index channel (with index n = N4 = 3) and the two lower-index
channels Since the n = 1 and n = 2 edge channels are either both empty or
both filled (cf Fig 87, where these two edge channels lie closest to the sample
boundary), any scattering between n = 1 and 2 would have no measurable
effect on the resistances As discussed in Section 19 ¢, we know from the work
of Alphenaar et al “*° that (at least 1n the present samples) the edge channels
withn < N 1 do 1n fact equilibrate to a large extent on a length scale of
100 um

In the absence of a constriction, or at small gate voltages (where the
constriction 1s just defined), one has N, = N4, s0 that the normal Hall
effect 1s observed 1n both field directions This 1s the situation realized 1n the
experimental trace for V, = —03V n Fig 86 In very strong fields such that
Nom =N, =Ny =1 (still assuming nonresolved spin sphtting), the
normal result Ry = h/2e* would follow even if the contacts contain a
potential barrier, in agreement with the experiment (not shown in Fig 86)
This 1s a more general result, which holds also for a barrier that only partially
transmits the n = 1 edge channel 112 308 472 475

A similar analysis as the foregoing predicts that the longitudinal resistance
measured on the edge of the sample that contains 1deal contacts retains its
regular value (19 3) On the opposite sample edge the measurement would
mvolve the disordered contact, and one finds instead

h < 1 1 >
R =— — (19 8)
282 Nmm maX(N12> Nmm)
473y Sivan, Y Imry, and C Hartzstemn, Phys Rev B 39, 1242 (1989)

474U Sivan and Y Imry, Phys Rev Lett 61, 1001 (1988)
475M Butuiker, Phys Rev B 38, 12724 (1988)

wide —
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for the field direction shown n Fig 87, while Eq (19 3) 1s recovered for the
other field direction The observation in the experiment of Fig 86 for
V,= —25V of a regular longitudinal resistance [in agreement with Eq
(19 3)], along with an anomalous quantum Hall resistance 1s thus consistent
with this analysis

The experiments**¢ #2° discussed 1n the following subsection are topologi-
cally equivalent to the geometry of Fig 87, but mnvolve quantum pont
contacts rather than ohmic contacts This gives the possibility of populating
and detecting edge channels selectively, thereby enabling a study of the effects
of a nonequilibrium population of edge channels in a controlled manner

¢ Quantum Pownt Contacts

In Section 14 we have seen how a quantum point contact can inject a
coherent superposition of edge channels at the 2DEG boundary, in the
coherent electron focusing experiment °° In that section we restricted
ourselves to weak magnetic fields Here we discuss the experiment by van
Wees et al ,**° which shows how in the QHE regime the point contacts can be
operated 1n a different way as selective injectors (and detectors) of edge
channels We recall that electron focusing can be measured as a generalized
Hall resistance, in which case the pronounced peaked structure due to mode
mterference 1s superimposed on the weak-field Hall resistance (cf Fig 53) If
the weak-field electron-focusing experiments are extended to stronger magne-
tic fields, a transition 1s observed to the quantum Hall effect, provided the
myecting and detecting point contacts are not too strongly pinched off °® The
oscillations characteristic of mode interference disappear 1 ths field regime,
suggesting that the couphng of the edge channels (which form the propagat-
1ng modes from 1njector to collector) 1s suppressed, and adiabatic transport is
realized It 1s now no longer sufficient to model the point contacts by a point
source—detector of infinitesimal width (as was done 1n Section 14), but a
somewhat more detailed description of the electrostatic potential V(x,y)
defining the point contacts and the 2DEG boundary between them 1s
required Schematically, V(x, y)1s represented in Fig 88a Fringing fields from
the split gate create a potential barrier 1n the point contacts, so V has a saddle
form as shown The heights of the barriers E,, E, 1n the injector and collector
are separately adjustable by means of the voltages on the split gates and can
be determined from the two-terminal conductances of the individual point
contacts The point contact separation n the experiment of Ref 426 1s small
(1 5um), so one can assume fully adiabatic transport from injector to
collector 1n strong magnetic fields As discussed 1n Section 18, adiabatic
transport 1s along equipotentials at the guiding center energy E5 Note that
the edge channel with the smallest index n has the largest gmding center
energy [according to Eq (181)] In the absence of iteredge channel
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Fi1G. 88. (a) Schematic potential landscape, showing the 2DEG boundary and the saddle-
shaped injector and collector point contacts. In a strong magnetic field the edge channels are
extended along equipotentials at the guiding center energy, as indicated here for edge channels
with index n = 1,2 (the arrows point 1n the direction of motion). In this case a Hall conductance
of (2¢?/h)N with N = 1 would be measured by the point contacts, in spite of the presence of two
occupied spin-degenerate Landau levels in the bulk 2DEG. Taken from C. W. J. Beenakker et al.,
Festkorperprobleme 29, 299 (1989). (b) Three-terminal conductor in the electron focusing
geometry. Taken from H. van Houten et al., Phys. Rev. B. 39, 8556 (1989).
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scattering, edge channels can only be transmitted through a point contact if
Eg exceeds the potential barrier height (disregarding tunneling through the
barrier) The mnjector thus injects N, ~ (Er — E))/hw, edge channels mto the
2DEG, while the collector 1s capable of detecting N, =~ (Ep — EJ)/hw,
channels Along the boundary of the 2DEG, however, a larger number of
N4 = Ep/ho, edge channels, equal to the number of occupied bulk Landau
levels 1n the 2DEG, are available for transport at the Fermu level The
selective population and detection of Landau levels leads to deviations from
the normal Hall resistance

These considerations can be put on a theoretical basis by applying the
Landauer—Buttiker formalism discussed m Section 12 to the electron-
focusing geometry 8° We consider a three-termunal conductor as shown 1n
Fig 88b, with point contacts in two of the probes (injector 1 and collector ¢),
and a wide 1deal dramn contact d The collector acts as a voltage probe,
drawing no net current, so that I, = 0 and Iy = —1I, The zero of energy 1s
chosen such that y; = 0 One then finds from Eq (12 12) the two equations

0= (Nc - Rc)iuc - 7:-'c.u13 (19 93)
(h/ze)ll = (N1 - Rl)lul - Té—nl’l'c’ (19 9b)

and obtans for the ratio of collector voltage V, = p /e (measured relative to
the voltage of the current drain) to injected current I, the result

V. 2 T..

Yo_2e0 T 1
h G.G,~o (1910

I

1

Here 6 = (2¢*/h)?T,_.T..,,, and G, = (2¢2/h)(N, — R)), G, = (2¢*/h)(N. — R,)
denote the conductances of injector and collector point contact

For the magnetic field direction indicated in Fig 88, the term 6 1 Eq
(19 10) can be neglected since T,_,, = 0 [the resulting Eq (14 2) was used 1n
Section 14] An additional simplification 1s possible 1n the adiabatic transport
regime We consider the case that the barrier in one of the two point contacts
1s sufficiently higher than in the other, to ensure that electrons that are
transmitted over the highest barrier will have a negligible probabulity of being
reflected at the lowest barrier Then T, 1s dominated by the transmission
probability over the highest barrier, T, ~ min(N, — R,, N, — R,) Subst-
itution 1 Eq (19 10) gives the remarkable result*26 that the Hall conductance
Gy = 1,/V, measured 1n the electron focusing geometry can be expressed
entirely in terms of the contact conductances G, and G,

Gy =~ max(G,, G,) (1911)

Equation (1911) tells us that quantized values of Gy occur not at
(2€?/h)N 4. as one would expect from the N4, populated Landau levels in
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F1G. 89. Experimental correlation between the conductances G,, G, of injector and collector,
and the Hall conductance Gy = I,/V,, shown to demonstrate the validity of Eq. (19.11)
(T = 13K, point contact separation 1s 1.5 um) The magnetic field was kept fixed (top: B = 2.5T,
bottom B = 38T, corresponding to a number of occupied bulk Landau levels N = 3 and 2,
respectively) By increasing the gate voltage on one half of the sphit-gate defining the injector, G,
was varled at constant G,. Taken from B J van Wees et al, Phys. Rev Lett. 62, 1181 (1989).

the 2DEG but at the smaller value of (2¢*/h)max(N,, N,). As shown in Fig. 89
this is indeed observed experimentally.*?® Notice in particular how any
deviation from quantization in max(G,, G ) is faithfully reproduced in G,;, in
complete agreement with Eq. (19.11).

The experiment of Ref. 426 was repeated by Alphenaar et al.*?° for much
larger point contact separations (= 100 um), allowing a study of the length
scale for equilibration of edge channels at the 2DEG boundary. Even after
such a long distance, no complete equilibration of the edge channels was
found, as manifested by a dependence of the Hall resistance on the gate
voltage used to vary the number of edge channels transmitted through the
point contact voltage probe (see Fig. 90). As discussed in Section 18.b, a
dependence of the resistance on the properties of the contacts is only possible
in the absence of local equilibrium. In contrast to the experiment by van Wees
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F1G. 90. Results of an experiment similar to that of Fig. 89, but with a much larger separation
of 80 um between injector and collector. Shown are R, = G !, R, = G;*, and R; = G as a
function of the gate voltage on the collector. (T'= 0.45K, B = 2.8 T; the normal quantized Hall
resistance is 1(h/2e?).) Regimes I, II, and III are discussed in the text. Taken from B. W.
Alphenaar et al., Phys. Rev. Lett. 64, 677 (1990).

et al,**% and in disagreement with Eq. (19.11), the Hall resistance in Fig. 90
does not simply follow the smallest of the contact resistances of current and
voltage probe. This implies that the assumption of fully adiabatic transport
has broken down on a length scale of 100 um.

In the experiment a magnetic field was applied such that three edge
channels were available at the Fermi level. The contact resistance of the
injector was adjusted to R, = h/2e?, so current was injected in a single edge
channel (n = 1) only. The gate voltage defining the collector point contact
was varied. In Fig. 90 the contact resistances of injector (R;) and collector (R,)
are plotted as a function of this gate voltage, together with the Hall resistance
Ry;. At zero gate voltage the Hall resistance takes on its normal quantized
value [Ry = 3(h/2e%)]. On increasing the negative gate voltage three regions
of interest are traversed (labeled III to I in Fig. 90). In region III edge
channels 1 and 2 are completely transmitted through the collector, but the
n =3 channel is partially reflected. In agreement with Eq. (19.11), Ry
increases following R.. As region Il is entered, Ry, levels off while R continues
to increase up to the 3(h/2e?) quantized value. The fact that Ry stops slightly
short of this value proves that some scattering between then = 3andn = 1,2
channels has occurred. On increasing the gate voltage further, R, rises to
h/2e? in region I. However, Ry shows hardly any increase with respect to its
value in region II. This demonstrates that the n = 2 and n = 1 edge channels
have almost fully equilibrated. A quantitative analysis*?® shows that, in fact,
92% of the current originally injected into the n =1 edge channel is
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Fi6 91 Illustration of the spatial extension (shaded ellipsoids) of edge channels for four
different values of the Fermi energy The n = 3 edge channel can penetrate into the bulk by
hybridizing with the n = 3 bulk Landau level, coexisting at the Fermu level. This would explamn
the absence of equihbration between the n = 3 and n = 1,2 edge channels. The penetration depth
l,,c and the magnetic length are indicated. Taken from B W. Alphenaar et al., Phys Rev Lett. 64,
677 (1990)

redistributed equally over the n = 1 and n = 2 channels, whereas only 8% is
transferred to the n = 3 edge channel. The suppression of scattering between
the highest-index n = N edge channel and the group of edge channels with
n < N — 1 was found to exist only if the Fermi level lies in {or near) the Nth
bulk Landau level. As a qualitative explanation it was suggested*2®47 that
the Nth edge channel hybridizes with the Nth bulk Landau level when both
types of states coexist at the Fermi level. Such a coexistence does not occur
for n < N — 1 if the potential fluctuations are small compared with Aw® (cf.
Fig. 78). The spatial extension of the wave functions of the edge channels is
illustrated in Fig. 91 (shaded ellipsoids) for various values of the Fermi level
between the n =3 and n=4 bulk Landau levels. As the Fermi level
approaches the n = 3 bulk Landau level, the corresponding edge channel
penetrates into the bulk, so the overlap with the wave functions of lower-
mdex edge channels decreases. This would explain the decoupling of the
n =3 and n = 1, 2 edge channels.

These experiments thus point the way in which the transition from
microscopic to macroscopic behavior takes place in the QHE, while they also
demonstrate that quite large samples will be required before truly macro-
scopic behavior sets in.

d. Suppression of the Shubnikov—De Haas Oscillations

Shubnikov—-De Haas magnetoresistance oscillations were discussed in
Sections 4.c and 10. In weak magnetic fields, where a theoretical description

476] K Jam, unpublished
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FiG 92 Illustration of the mechanism for the suppression of Shubnikov—De Haas oscillations
due to selective detection of edge channels The black area denotes the spht-gate point contact in
the voltage probe, which 1s at a distance of 250 um from the drain reservoir Dashed arrows
indicate symbolically the selective backscattering 1n the highest-index edge channel, via states in
the highest bulk Landau lIevel that coexist at the Fermu level Taken from H van Houten et al, 1n
“Nanostructured Systems” (M A Reed, ed) Academic, New York 1991

in terms of a local resistivity tensor applies, a satisfactory agreement between
theory and experiment 1s obtained 2° As we now know, 1n strong magnetic
fields the concept of a local resistivity tensor may break down entirely
because of the absence of local equilibriumn A theory of the Shubnmikov-De
Haas effect then has to take into account explicitly the properties of the
contacts used for the measurement The resulting anomalies are considered in
this subsection

Van Wees et al **8 found that the amplitude of the high-field Shubnikov—
De Haas oscillations was suppressed if a quantum point contact was used as
a voltage probe To discuss this anomalous Shubnikov—De Haas effect, we
consider the three-terminal geometry of Fig 92, where a single voltage
contact 1s present on the boundary between source and drain contacts (An
alternative two-terminal measurement configuration is also possible, see Ref
428 ) The voltage probe p 1s formed by a quantum point contact, while source
s and drain d are normal ohmic contacts (Note that two special contacts were
required for the anomalous quantum Hall effect of Section 19c¢) One
straightforwardly finds from Eq (12 12) that the three-terminal resistance
R;, = (u, — pg)/el measured between point contact probe and drain 1s given
by

h To-,

R, =— 1912
* " 2e? (N, — R)N, —R)) — T, T, (12
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F1G. 93. Measurement of the anomalous Shubnikov—De Haas oscillations in the geometry of
Fig. 92. The plotted longitudinal resistance 1s the voltage drop between contacts p and d divided
by the current from s to d. At lmgh magnetic fields the oscillations are increasingly suppressed as
the point contact in the voltage probe 1s pinched off by increasing the negative gate voltage. The
number of occupied spin-split Landau levels 1n the bulk 1s indicated at several of the Shubnikov—
De Haas maxima Taken from B.J van Wees et al,, Phys. Rev. B. 39, 8066 (1989).

This three-terminal resistance corresponds to a generalized longitudinal
resistance if the magnetic field has the direction of Fig. 92. In the absence of
backscattering in the 2DEG, one has T, , = 0, so R;, vanishes, as it should
for a longitudinal resistance in a strong magnetic field.

Shubnikov—De Haas oscillations in the longitudinal resistance arise when
backscattering leads to T, , # 0. The resistance reaches a maximum when
the Fermi level lies in a bulk Landau level, corresponding to a maximum
probability for backscattering (which requires scattering from one edge to the
other across the bulk of the sample, as indicated by the dashed lines in Fig.
92). From the preceding discussion of the anomalous quantum Hall effect, we
know that the point contact voltage probe in a high magnetic field functions
as a selective detector of edge channels with index n less than some value
determined by the barrier height in the point contact. If backscattering itself
occurs selectively for the channel with the highest index n = N, and if the edge
channels with n < N —1 do not scatter to that edge channel, then a
suppression of the Shubnikov—De Haas oscillations is to be expected when
R, 1s measured with a point contact containing a sufficiently high potential
barrier. This was indeed observed experimentally,*?® as shown in Fig. 93. The
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Shubmkov—De Haas maximum at 5 2 T, for example, 1s found to disappear at
gate voltages such that the point contact conductance 1s equal to, or smaller
than 2e?/h, which means that the point contact only transmits two spin-spht
edge channels The number of occupied spin-split Landau levels in the bulk at
this magnetic field value 1s 3 This expertment thus demonstrates that the
Shubmkov—De Haas oscillations result from the highest-index edge channel
only, presumably because that edge channel can penetrate into the bulk via
states 1n the bulk Landau level with the same index that coexist at the Fermu
level (cf Section 19 ¢c) Moreover, 1t 1s found that this edge channel does not
scatter to the lower-index edge channels over the distance of 250 um from
probe p to drain d, consistent with the experiment of Alphenaar et al +*°

In Section 19a we discussed how an “ideal” contact at the 2DEG
boundary induces a local equibibbrium by equipartitioning the outgoing
current equally among the edge channels The anomalous Shubnikov—De
Haas effect provides a direct way to study this contact-induced equilibration
by means of a second point contact between the point contact voltage probe
p and the current drain d in Fig 92 This experiment was also carried out by
van Wees et al, as described in Ref 308 Once again, use was made of the
double-split-gate pomnt contact device (Fig 5b), in this case with a 1 5-um
separation between point contact p and the second point contact It 1s found
that the Shubnikov—-De Haas oscillations in R;, are suppressed only if the
second pont contact has a conductance of (2e2/h)(N 4. — 1) or smaller At
larger conductances the oscillations 1n R, return, because this pomnt contact
can now couple to the highest-index edge channel and distribute the
backscattered electrons over the lower-index edge channels The point
contact positioned between contacts p and d thus functions as a controllable
“edge channel mixer ”

The conclusions of the previous paragraph have interesting implications
for the Shubnikov—De Haas oscillations 1 the strong-field regime even 1f
measured with contacts that do not selectively detect certain edge channels
only 3°7 Consider again the geometry of Fig 92, in the low-gate voltage limit
where the point contact voltage probe transmuits all edge channels with unit
probability (Thus 1s the case of an “1deal” contact, ¢f Section 18 b) To simphfy
expression (19 12) for the three-terminal longitudinal resistance R;,, we use
the fact that the transmission and reflection probabilities T, ,, R, and R,
refer to the highest-index edge channel only (with index n = N), under the
assumptions of selective backscattering and absence of scattering to lower-
index edge channels discussed earlier As a consequence, T, ,, R, and R, are
each at most equal to 1, thus, up to corrections smaller by a factor N~ %, we
may put these terms equal to zero m the denominator on the right-hand side
of Eq (19 12) In the numerator, the transmission probability T,.., may be
replaced by the backscattering probability ¢, < 1, which 1s the probability
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that the highest-index edge channel injected by the source contact reaches the
point contact probe following scattering across the wide 2DEG (dashed lines
in Fig. 92). With these simplifications Eq. (19.12) takes the form (assuming
spin degeneracy)

b oty _
Ry = 27 F><(1 + order N71). (19.13)

Only if t,, « 1 may the backscattering probability be expected to scale
linearly with the separation of the two contacts p and d (between which the
voltage drop is measured). If t,,, is not small, then the upper limit ¢, < 1 leads

to the prediction of a maximum possible amplitude®°”
h 1
. =ZE-1\?X(1 + order N 1) (19.14)

of the Shubnikov—De Haas resistance oscillations in a given large magnetic
field, independently of the length of the segment over which the voltage drop
is measured, provided equilibration does not occur on this segment. Equili-
bration might result, for example, from the presence of additional contacts
between the voltage probes, as discussed before. One easily verifies that the
high-field Shubnikov—De Haas oscillations in Fig. 93 at ¥, = —0.6 V (when
the point contact is just defined, so that the potential barrier is small) lie well
below the upper limit (19.14). For example, the peak around 2 T corresponds
to the case of four occupied spin-degenerate Landau levels, so the theoretical
upper limit is (h/2e?) x & ~ 800Q, well above the observed peak value of
about 350Q. The prediction of a maximum longitudinal resistance implies
that the linear scaling of the amplitude of the Shubnikov—De Haas oscilla-
tions with the distance between voltage probes found in the weak-field
regime, and expected on the basis of a description in terms of a local
resistivity tensor,2® breaks down in strong magnetic fields. Anomaious
scaling of the Shubnikov—-De Haas effect has been observed experiment-
ally*37-460.466 and has recently also been interpreted*3° in terms of a
nonequilibrium between the edge channels. A quantitative experimental and
theoretical investigation of these issues has now been carried out by McEuen
et al*7"

Selective backscattering and the absence of local equilibrium have
consequences as well for the two-terminal resistance in strong magnetic
fields.?°” In weak fields one usually observes in two-terminal measurements a
superposition of the Shubnikov-De Haas longitudinal resistance oscillations
and the quantized Hall resistance. This superposition shows up as a
characteristic “overshoot” of the two-terminal resistance as a function of the

477p, L. McEuen, A. Szafer, C. A. Richter, B. W. Alphenaar, J. K. Jain, and R. N. Sacks, Phys.
Rev. Lett. 64, 2062 (1990).
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magnetic field as 1t increases from one quantized Hall plateau to the next (the
plateaux coincide with minima of the Shubmkov—De Haas oscillations) In
the strong-field regime (in the absence of equilibration between source and
drain contacts), no such superposition is to be expected Instead, the two-
terminal resistance would increase monotonically from (h/2e*)N~! to
(h/2¢*)(N — 1)~ as the transmission probability from source to drain
decreases from N to N — 1 We are not aware of an experimental test of this
prediction

The foregoing analysis assumes that the length L of the conductor 1s much
greater than its width W, so edge channels are the only states at the Fermm
level that extend from source to dramn If L « W, additional extended states
may appear 1n the bulk of the 2DEG, whenever the Fermi level lies 1n a bulk
Landau level An experiment by Fang et al i this short-channel regime, to
which our analysis does not apply, 1s discussed by Buttiker 386

20 FractioNAL QUANTUM HALL EFFECT

Microscopically, quantization of the Hall conductance Gy in fractional
multiples of e?/h 1s entirely different from quantization 1n integer multiples
While the integer quantum Hall effect® can be explaned satisfactorily in
terms of the states of noninteracting electrons 1n a magnetic field (see Section
18), the fractional quantum Hall effect*’® exists only because of electron—
electron interactions *’° Phenomenologically, however, the two effects are
quite similar Several experiments on edge channel transport in the integer
QHE?39 340 426 reviewed m Section 19 have been repeated*®® #8! for the
fractional QHE with a similar outcome The nterpretation of Section 19 1n
terms of selective population and detection of edge channels cannot be
applied 1n that form to the fractional QHE Edge channels in the integer
QHE are defined 1n one-to-one correspondence to bulk Landau levels
(Section 18 b) The fractional QHE requures a generalization of the concept of
edge channels that allows for independent current channels within the same
Landau level Two recent papers have addressed this problem*32#83 and
have obtained different answers The present status of theory and experiment
on transport in “fractional” edge channels is reviewed m Section 20 b,
preceded by a brief introduction to the fractional QHE

478D C Tsuy, H L Stormer, and A C Gossard, Phys Rev Lert 48, 1559 (1982)

479R B Laughlin, Phys Rev Lertr 50, 1395 (1983)

480A M Chang and J E Cunmngham, Solid State Comm 72, 651 (1989), Surf Sct 229, 216
(1990)

4811, P Kouwenhoven, B J van Wees, N C van der Vaart, C J P M Harmans, C E
Timmering, and C T Foxon, Phys Rev Lett 64, 685 (1990), and unpublished

482C W J Beenakker, Phys Rev Lett 64, 216 (1990)

483A H MacDonald, Phys Rev Lett 64, 220 (1990)
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a Introduction

Excellent high-level introductions to the fractional QHE 1n an unbounded
2DEG can be found n Refs 97 and 484 The following 1s an oversimplifica-
tion of Laughlin’s theory*”® of the effect and 1s only intended to introduce the
reader to some of the concepts that play a role in edge channel transport in
the fractional QHE

It 18 instructive to first consider the motion of two interacting electrons in a
strong magnetic field “8> The dynamucs of the relative coordinate r decouples
from that of the center of mass Semiclassically, r moves along equipotentials
of the Coulomb potential e?/er (this 1s the guiding center dnift discussed mn
Section 18 b) The relative coordinate thus executes a circular motion around
the onigin, corresponding to the two electrons orbiting around their center of
mass The phase shift acquired on one complete revolution,

e

Aq')h

ﬂgdl-A - % Brr?, (20 1)

should be an integer multiple of 2z so that

r=1l./2q, qg=1,2, (202)

The mterparticle separation 1n units of the magnetic length [, = (h/eB)*/? 1s
quantized In the field regime where the fractional QHE 1s observed, only one
spin-split Landau level 1s occupied 1n general If the electrons have the same
spin, the wave function should change sign when two coordinates are
interchanged In the case considered here of two electrons, an interchange of
the coordinates 1s equivalent to r —» —r A change of sign 1s then obtained if
the phase shift for one half revolution 1s an odd multiple of # (1 e, for A¢ an
odd multiple of 2z) The Pauli principle thus restricts the mteger g 1n Eq
(20 2) to odd values

The interparticle separation of a system of more than two electrons 1s not
quantized Stil, one might surmise that the energy at densities n, ~ 1/772
corresponding to an average separation 7 1n accord with Eq (20 2) would be
particularly low This occurs when the Landau level filling factor v = hn,/eB
equals va 1/g Theoretical work by Laughhn, Haldane, and Hal-
perin®79 486 487 ghows that the energy density u(v) of a uniform 2DEG m a

484T Chakraborty and P Pietilainen, “The Fractional Quantum Hall Effect ” Springer, Berlin,
1988

“85R B Laughlin, Phys Rev B 27, 3383 (1983)

486F D M Haldane, Phys Rev Lett 51, 605 (1983)

4878 1 Halperin, Phys Rev Lett 52, 1583 (1984)
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strong magnetic field has downward cusps at these values of v as well as at
other fractions, given generally by

v = p/q, (20.3)

with p and g mutually prime integers and g odd. The cusp in u at integer vis a
consequence solely of Landau level quantization, according to

du/dn, = (Int[v] + Dho,. (20.4)

Because of the cusp in u, the chemical potential du/dn, has a discontinuity
Ap = ho, at integer v. At these values of the filling factor an infinitesimal
increase in electron density costs a finite amount of energy, so the electron gas
can be said to be incompressible. The cusp in u at fractional v exists because of
the Coulomb interaction. The discontinuity Au is now approximately
Au =~ e*[el, oc \/E, which at a typical field of 6 T in GaAs is 10meV, of the
same magnitude as the Landau level separation #w, oc B.

The incompressibility of the 2DEG at v = p/q implies that a nonzero
minimal energy is required to add charge to the system. An important
consequence of Laughlin’s theory is that charge can be added only in the
form of quasiparticle excitations of fractional charge e* =e/q. The dis-
continuity Ay in the chemical potential equals the energy that it costs to
create p pairs of oppositely charged quasiparticles (widely separated from
each other), Au = p x 2A with A the quasiparticle creation energy.

The fractional QHE in a disordered macroscopic sample occurs because
the quasiparticles are localized by potential fluctuations in the bulk of the
2DEG. A variation of the filling factor v = p/q + dv in an interval around the
fractional value changes the density of localized quasiparticles without
changing the Hall conductance, which retains the value Gy = (p/q)e*/h. The
precision of the QHE has been explained by Laughlin*®® in terms of the
quantization of the quasiparticle charge e*, which is argued to imply
quantization of Gy at integer multiples of ee*/h.

b. Fractional Edge Channels

In a small sample the fractional QHE can occur in the absence of disorder
and can show deviations from precise quantization. Moreover, in special
geometries*®! Gy, can take on quantized values that are not simply related to
e*. These observations cannot be easily understood within the conventional
description of the fractional QHE, as outlined in the previous subsection. An
approach along the lines of the edge channel formulation of the integer QHE
(Sections 18 and 19) seems more promising. In Ref. 482 the concept of an edge
channel was generalized to the fractional QHE, and a generalized Landauer

“88R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
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formula relating the conductance to the transmission probabilities of the edge
channels was derived We review this theory and the application to experi-
ments A different edge channel theory by MacDonald*®? 1s discussed toward
the end of this subsection

The edge channels for the conductance 1n the linear transport regime are
defined 1n terms of properties of the equilibrium state of the system If the
electrostatic potential energy V(x, y) varies slowly mn the 2DEG, then the
equilibrium density distribution s(x, y) follows by requiring that the local
electrochemaical potential V(r) + du/dn has the same value u at each point r in
the 2DEG Here du/dn 1s the chemical potential of the uniform 2DEG with
density n(r) As discussed 1n Section 20 a, the mternal energy density u(n) of a
uniform interacting 2DEG 1n a strong magnetic field has downward cusps at
densities n = v, Be/h corresponding to certain fractional filling factors v, Asa
result, the chemical potential du/dn has a discontinuity (an energy gap) at
v =v,, with du, /dn and du,, /dn the two hmiting values as v — v, As noted
by Halperin,*®® when u — V lies 1n the energy gap the filling factor 1s pinned
at the value v, The equilibrium electron density 1s thus given by*#®

n = v,Be/h, if du, /dn < p — V< du, /dn,
du/dn + V(r) = p, otherwise (205)

Note that V(r) itself depends on n(r) and thus has to be determined self-
consistently from Eq (20 5), taking the electrostatic screening in the 2DEG
mto account We do not need to solve explicitly for n(r), but we can identify
the edge channels from the following general considerations #82

At the edge of the 2DEG, the electron density decreases from its bulk value
to zero Eq (20 5) imphes that this decrease 1s stepwise, as illustrated 1n Fig
94 The requirement on the smoothness of V for the appearance of a well-
defined region at the edge in which v 1s pinned at the fractional value v, 1s that
the change mn V within the magnetic length [, 1s small compared with the
energy gap du, /dn — du, /dn This ensures that the width of this region 1s
large compared with [, which 1s a necessary (and presumably sufficient)
condition for the formation of the mcompressible state Depending on the
smoothness of ¥, one thus obtains a series of stepsat v=v,(p = 1,2, ,P)as
one moves from the edge toward the bulk The series terminates in the filling
factor vp = vy, of the bulk, assuming that in the bulk the chemical potential
4 — V hesn an energy gap The regions of constant v at the edge form bands
extending along the wire These incompressible bands [1n which the compress-
ibility y=(n*d*u/dn*)~* =0] alternate with bands 1n which u— ¥ does not lie
1 an energy gap The latter compressible bands (in which y > 0) may be

489B 1 Halpenn, Helv Phys Acta 56,75 (1983)
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F1G 94 Schematic drawing of the variation n filling factor v, electrostatic potential ¥; and
chemical potential du/dn, at a smooth boundary in a 2DEG The dashed line in the bottom panel
denotes the constant electrochemical potential u = V + du/dn The dotted intervals mdicate a
discontinuity (energy gap) in du/dn and correspond 1n the top panel to regions of constant
fractional filing factor v, that spatially separate the edge channels The width of the edge channel
regions shrinks to zero in the integer QHE, since the compressibility ¥ of these regions 1s
infinttely large n that case Taken from C W J Beenakker, Phys Rev Lett 64, 216 (1990)

identified as the edge channels of the transport problem, as will be discussed
later. To resolve a misunderstanding,**® we note that the particular potential
and density profile illustrated in Fig. 94 (in which the edge channels have a
nonzero width) assumes that the compressibility of the edge channels is not
infinitely large, but the subsequent analysis is independent of this assumption
(requiring only that the edge channels are flanked by bands of zero
compressibility). Indeed, the analysis is applicable also to the integer QHE,
where the edge channels have an infinitely large compressibility and hence an
mnfinitesimally small width (limited only by the magnetic length).

The conductance is calculated by bringing one end of the conductor in
contact with a reservoir at a slightly higher electrochemical potential u + Ap
without changing V (as in the derivation of the usual Landauer formula; cf.
Section 12.b). The resulting change An in electron density is

on on
An (9" A, (O 20.6
" <5u)v g (6V>u A (209

where 0 denotes a functional derivative. In the second equality in Eq. (20.6),
we used the fact that n is a functional of 4 — V, by virtue of Eq. (20.5). In a

*°A M Chang, Solid State Comm 74, 871 (1990)



QUANTUM TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES 207

N

7z
Z

N

S
N
<3
N

IR
DN

/%
Z é

FiG 95 Schematic drawing of the mcompressible bands (hatched) of fractional filling factor
v, alternating with the edge channels (arrows indicate the direction of electron motion 1n each
channel) (a) A uniform conductor (b) A conductor contatning a barrier of reduced filling factor
Taken from C W J Beenakker, Phys Rev Lett 64, 216 (1990)

strong magnetic field, this excess density moves along equipotentials with the
guiding-center-drift velocity E/B (E = dV/edr being the electric field). The
component vg,,q, of the drift velocity in the y-direction (along the conductor) is

. B 1 oV
Vinpt = ¥° (E X B—2'> = - zﬁ g' (207)
The current density j = —e Anvg,, becomes simply
e ov
j= —— Ay — 20.8
J , M (20.8)

It follows from Eq. (20.8) that the incompressible bands of constant v=v,
do not contribute to j. The reservoir injects the current into the compressible
bands at one edge of the conductor only (for which the sign of dv/dx is such
that y moves away from the reservoir). The edge channel with index p = 1, 2,
..., P is defined as that compressible band that is flanked by incompressible
bands at filling factors v, and v, _ ;. The outermost band from the center of the
conductor, which is the p = 1 edge channel, is included by defining formally
vo = 0. The arrangement of alternating edge channels and compressible
bands is illustrated in Fig. 95a. Note that different edges may have a different
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series of edge channels at the same magnetic field value, depending on the
smoothness of the potential ¥ at the edge (which, as discussed before,
determines the incompressible bands that exist at the edge). This is in contrast
to the situation in the integer QHE, where a one-to-one correspondence
exists between edge channels and bulk Landau levels (Section 18.b). In the
fractional QHE an infinite hierarchy of energy gaps exists, in principle,
corresponding to an infinite number of possible edge channels, of which only
a small number (corresponding to the largest energy gaps) will be realized in
practice.

The current I, = (e/h)Au(v, — v, ) injected into edge channel p by the
reservoir follows directly from Eq. (20.8) on integration over x. The total
current I through the wire is I = Y 7_, I,T,, if a fraction T, of the injected
current I, is transmitted to the reservoir at the other end of the wire (the
remainder returning via the opposite edge). For the conductance G = el/Ay,
one thus obtains the generalized Landuer formula for a two-terminal
conductor,*82

eZ

P
= ; (20.9)
which differs from the usval Landauer formula by the presence of the
fractional weight factors Av, = v, — v,_. In the integer QHE, Av, = 1 for all
p so that the usual Landauer formula with unit weight factor is recovered.
A multiterminal generalization of Eq. (20.9) for a two-terminal conductor
is easily constructed, following Biittiker® (cf. Section 12.b):

L=y -2 Y Tyup (20.10a)
2 h4

P
=5 T4, (20.10b)
p=1

Here I, is the current in lead o connected to a reservoir at electrochemical
potential p, and fractional filling factor v,. Equation (20.10b) defines the
transmission probability T, from reservoir § to reservoir o (or the reflection
probability for « = f8) in terms of a sum over the generalized edge channels in
lead . The contribution from each edge channel p = 1,2, ..., P; contains the
weight factor Av, = v, — v,_; and the fraction T, ,; of the current injected by
reservoir f§ into the pth edge channel of lead B that reaches reservoir a. Apart
from the fractional weight factors, the structure of Eq. (20.10) is the same as
that of the usual Biittiker formula (12.12).

Applying the generalized Landauer formula (20.9) to the ideal conductor
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i Fig 95a, where T, =1 for all p, one finds the quantized two-terminal
conductance
2

e P

The four-terminal Hall conductance Gy has the same value, because each
edge 1s 1n local equilibrium In the presence of disorder this edge channel
formulation of the fractional QHE 1s generalized 1n an analogous way as in
the integer QHE by including localized states in the bulk In a smoothly
varying disorder potential, these localized states take the form of circulating
edge channels, as 1n Figs 78 and 79 In this way the filling factor of the bulk
can locally deviate from v, without a change in the Hall conductance, leading
to the formation of a plateau in the magnetic field dependence of Gy In a
narrow channel, localized states are not required for a finite plateau width
because the edge channels make 1t possible for the chemical potential to lie in
an energy gap for a finite-magnetic-field interval The Hall conductance then
remamns quantized at vp(e?/h) as long as u — V 1 the bulk les between
dup /dn and dup /dn

We now turn to a discussion of experiments on the fractional QHE in
semiconductor nanostructures Timp et al *°! have measured the fractionally
quantized four-terminal Hall conductance Gy 1n a narrow cross geometry
(defined by two sets of split gates) The channel width W =~ 90 nm 1s greater
than, but comparable to, the correlation length [, of the incompressible state
n this expermment (/,, ~ 9nm at B = 8 T), so one may expect the fractional
QHE to be modified by the lateral confinement °2 Timp et al find, in
addition to quantized plateaux near 3, , and % x e?/h, a plateau-hke feature
around £ x e?/h This even-denominator fraction 1s not observed as a Hall
plateau in a bulk 2DEG *°3 The plateaux in Gy correlate with dips 1n a four-
terminal longitudinal resistance (the bend resistance defined in Section 16)

Consider now a conductor containing a potential barrier The potential
barrier corresponds to a region of reduced filling factor vp__ = v, separating
two regions of filling factor vp = v, The arrangement of edge channels
and mcompressible bands 1s illustrated in Fig 95b We assume that the
potential barrier 1s sufficiently smooth that scattering between the edge
channels at opposite edges can be neglected All transmission probabilities
are then either 0 or 1 T,=1 for I<p<P,, and T,=0 for

“'G Timp, R E Behringer, ] E Cunmngham, and R E Howard, Phys Rev Lett 63, 2268
(1989), G Timp, 1n Ref 9

4928 T Chui, Phys Rev Lett 56, 2395 (1986), Phys Rev B 36, 2806 (1987)

493H W Jang, H L Stormer, D C Tsw, L N Pfeiffer, and K W West, Phys Rev B 40, 12013
(1989)
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FI1G. 96. Two-terminal conductance of a constriction containing a potential barrier, as a
function of the voltage on the split gate defining the constriction, at a fixed magnetic field of 7 T.
The conductance is quantized according to Eq. (20.12). Taken from L. P. Kouwenhoven et al.,
unpublished.

P_in < P < P,y Equation (20.9) then tells us that the two-terminal con-
ductance is

G = (e*/h)v,y;,. (20.12)

In Fig. 96 we show experimental data by Kouwenhoven et al.*®' of the
fractionally quantized two-terminal conductance of a constriction containing
a potential barrier. The constriction (or point contact) is defined by a split
gate on top of a GaAs—-AlGaAs heterostructure. The conductance in Fig, 96
is shown for a fixed magnetic field of 7T as a function of the gate voltage.
Increasing the negative gate voltage increases the barrier height, thereby
reducing G below the Hall conductance corresponding to v,,,, = 1 in the wide
2DEG. The curve in Fig, 96 shows plateaux corresponding to v,;, = 1,%, and
3in Eq. (20.12). The £ plateau is not exactly quantized, but is too low by a few
percent. The constriction width on this plateau is estimated*®! at 500 nm,
which is a factor of 50 larger than the magnetic length at B = 7T. It would
seem that scattering between fractional edge channels at opposite edges
(necessary to reduce the conductance below its quantized value) can only
occur via states in the bulk for this large ratio of W/l

A four-terminal measurement of the fractional QHE in a conductor
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containing a potential barrier can be analyzed by means of Eq. (20.10),
analogously to the case of the integer QHE discussed in Section 19. The four-
terminal longitudinal resistance R, (in the geometry of Fig. 82) is given by the

analog of Eq. (19.3),
h(1 1
Ry =— ( - > (20.13)

Vmin Vimax

provided that either the edge channels transmitted across the barrier have
equilibrated with the extra edge channels available outside the barrier region
or the voltage contacts are ideal, that is, they have unit transmission
probability for all fractional edge channels. Similarly, the four-terminal
diagonal resistances RZ defined in Fig. 82 are given by [cf. Eq. (19.5)]

2
Rg=£ L. R5=£2( - 1), (20.14)

e?y e? \v v

min max min

Chang and Cunningham*8° have measured R and Ry, in the fractional QHE,
using a 1.5-um-wide 2DEG channel with a gate across a segment of the
channel (the gate length is also approximately 1.5 um). Ohmic contacts to the
gated and ungated regions allowed v, and v, to be determined independ-
ently. Equations (20.13) and (20.14) were found to hold to within 0.5%;
accuracy. This is illustrated in Fig. 97 for the case that v, =1 and v,
varying from 1 to 2/3 on increasing the negative gate voltage (at a fixed
magnetic field of 0.114T). Similar results were obtained*8° for the case that
Vonax = 2 and v,,;, varies from % to 3.

Adiabatic transport in the fractional QHE can be studied by the selective
population and detection of fractional edge channels, achieved by means of
barriers in two closely separated current and voltage contacts (Fig. 98a). The
analysis using Eq. (20.10) is completely analogous to the analysis of the
experiment in the integer QHE,*2¢ discussed in Section 19. Figure 98b
illustrates the arrangement of edge channels and incompressible bands for the
case that the chemical potential lies in an energy gap for the bulk 2DEG (at
V = Vpui), a8 well as for the two barriers (at v; and vy for the barrier in the
current and voltage lead, respectively). Adiabatic transport is assumed over
the barrier, as well as from barrier I to barrier V (for the magnetic field
direction indicated in Fig. 98). Equation (20.10) for this case reduces to

I e
= v,
“h 1M

0= % Vvilty — % min(vy, vy, (20.15)
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Fi6 97 Four-terminal resistances of a 2DEG channel containing a potential barrier, as a
function of the gate volrage (B=0114T, T = 70mK) The current flows from contact 1 to
contact 5 (see mset), the resistance curves are labeled by the contacts 1 and j between which the
voltage 1s measured (The curves for 1,7 = 2,4 and 8,6 are 1dentical ) The magnetic field points
outward This measurement corresponds to the case v, = 1 and v,,,, = v, varying from 1 at
V, > —10mV to 2/3 at ¥, ® —90mV (arrow) The resistances R, = R, , = Rg¢ and Ry =R 6
are quantized according to Eqs (20 13) and (20 14), respectively The resistances R; ; and R, ¢
are the Hall resistances in the gated and ungated regions, respectively From Eq (20 10) one can
also derive that Rg ; = Ry, = R_ and R, ; = R, ¢ = 0 on the quantized plateaux, as observed
experimentally Taken from A M Chang and ] E Cunningham, Surf Sei 229, 216 (1990)

so the Hall conductance Gy = el/uy becomes

e? e?
Gy = " max(vy, vy) < 7 Vbuik- (20.16)

The quantized Hall plateaux are determined by the fractional filling factors of
the current and voltage leads, not of the bulk 2DEG. Kouwenhoven et al.*®!
have demonstrated the selective population and detection of fractional edge
channels in a device with a 2-um separation of the gates m the current and
voltage leads. The gates extended over a length of 40 um along the 2DEG
boundary. In Fig. 99 we reproduce one of the experimental traces of
Kouwenhoven et al. The Hall conductance 1s shown for a fixed magnetic field
of 7.8 T as a function of the gate voltage (all gates being at the same voltage).
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(a)
OB

(b)

FIG. 98. (a) Schematic of the experimental geometry of Kouwenhoven et al.*8! The crossed
squares are contacts to the 2DEG. One current lead and one voltage lead contain a barrier
(shaded), of which the height can be adjusted by means of a gate (not drawn). The current I flows
between contacts 1 and 3; the voltage V is measured between contacts 2 and 4. (b) Arrangement
of incompressible bands (hatched) and edge channels near the two barriers. In the absence of
scattering between the two fractional edge channels, one would measure a Hall conductance
Gy = I/V that is fractionally quantized at  x e?/h, although the bulk has unit filling factor.
Taken from C. W. J. Beenakker, Phys. Rev. Lett. 64, 216 (1990).
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F1G. 99. Anomalously quantized Hall conductance in the geometry of Fig. 98, in accord with
Eq. (20.16) (vyui = 1, v, = vy decreases from 1 to 2/3 as the negative gate voltage is increased).
The temperature is 20mK. The rapidly rising part (dotted) is an artifact due to barrier pinch-off.
Taken from L. P. Kouwenhoven et al., Phys. Rev. Lett. 64, 685 (1990).
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As the barrier heights 1n the two leads are imncreased, the Hall conductance
decreases from the bulk value 1 x e?/h to the value £ x e?/h determined by the
leads, 1n accord with Eq (20 16) A more general formula for Gy valid also in
between the quantized plateaux 1s shown in Ref 481 to be in quantitative
agreement with the experiment

MacDonald has, independent of Ref 482, proposed a different generalized
Landauer formula for the fractional QHE 483 The difference with Eq (209)1s
that the weight factors in MacDonald’s formula can take on both positive and
negatwe values (corresponding to electron and hole channels) In the case of
local equilibrium at the edge, the sum of weight factors 1s such that the two
formulations give 1dentical results The results differ in the absence of local
equilibrium 1f fractional edge channels are selectively populated and detected
For example, MacDonald predicts a negative longitudinal resistance 1in a
conductor at filling factor v =% contamning a segment at v =1 Another
implication of Ref 483 1s that the two-terminal conductance G of a conductor
at v, = 1 containing a potential barrier at filling factor v,,,, 1s reduced to
Ixe?/hif v, =4 [1n accord with Eq (20 12)], but remamns at 1 xe?/h 1f
Vmm = 2/3 That this 1s not observed experimentally (cf Fig 96) could be due
to interedge channel scattering, as argued by MacDonald The experiment by
Kouwenhoven et al*®! (Fig 99), however, 1s apparently in the adiabatic
regime, and was interpreted 1n Fig 98 1n terms of an edge channel of weight 4
at the edge of a conductor at v=1 In MacDonald’s formulation, the
conductor at v = 1 has only a single edge channel of weight 1 This would
need to be reconciled with the experimental observation of quantization of
the Hall conductance at 2 x e2/h

We conclude this section by briefly addressing the question What charge
does the resistance measure? The fractional quantization of the conductance
1n the experiments discussed 1s understood as a consequence of the fractional
weight factors 1n the generalized Landauer formula (209) These weight
factors Av, = v, — v,_ are not 1n general equal to e*/e, with e* the fractional
charge of the quasiparticle excitations of Laughlin’s mncompressible state (cf
Section 20a) The reason for the absence of a one-to-one correspondence
between Av, and e* 1s that the edge channels themselves are not incompress-
ible #82 The transmission probabilities in Eq (20 9) refer to charged “gapless”
excitations of the edge channels, which are not identical to the charge e*
excitations above the energy gap in the incompressible bands (the latter
charge might be obtained from thermal activation measurements, cf Ref

#%R G Clark,J R Maliett, S R Haynes,J J Harris and C T Foxon, Phys Rev Lett 60,1747
(1988)

4938 A Kivelson and V L Pokrovsky, Phys Rev B 40, 1373 (1989)

496] A Simmons, H P Weir,L W Engel, D C Tsui, and M Shayegan, Phys Rev Lett 63,1731
(1989)
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494) It 1s an interesting and (to date) unsolved problem to determine the
charge of the edge channel excitations Kivelson and Pokrovsky*®> have
suggested performing tunneling experiments 1n the fractional QHE regime
for such a purpose, by using the charge dependence of the magnetic length
(h/eB)*? (which determines the penetration of the wave function 1n a tunnel
barrier and, hence, the transmussion probability through the barrier) Alter-
natively, one could use the h/e periodicity of the Aharanov—Bohm mag-
netoresistance oscillations as a measure of the edge channel charge Simmons
et al*°® find that the characteristic field scale of quasiperiodic resistance
fluctuations 1n a 2-um-wide Hall bar increases from 0016 T+ 309 near
v=1,2,34t0005T & 30% near v =% This 1s suggestive of a reduction 1n
charge from e to e/3, but not conclusive since the area for the Aharonov—
Bohm effect 1s not well defined 1n a Hall bar (cf Section 21)

21 AHARONOV—-BOHM EFFECT IN STRONG MAGNETIC FIELDS

As mentioned briefly 1n Section 8, the Aharonov—Bohm oscillations in the
magnetoresistance of a ring are gradually suppressed in strong magnetic
fields This suppression provides additional support for edge channel trans-
port 1n the quantum Hall effect regime (Section 21 a) Entirely new mechan-
1sms for the Aharonov—Bohm effect become operative in strong magnetic
fields These mechanisms, resonant tunneling and resonant refiection of edge
channels, do not requre a ring geometry Theory and experiments on
Aharonov~Bohm oscillations in singly connected geometries are the subject
of Section 20 b

a Suppression of the Aharonov—Bohm Effect in a Ring

In Section 8 we have seen how the quantum nterference of clockwise and
counterclockwise trajectories 1 a ring in the diffusive transport regime leads
to magnetoresistance oscillations with two different periodicities the funda-
mental Aharonov-Bohm effect with AB = (h/e)S ! periodicity, and the
harmonic with AB = (h/2¢)S ™! periodicity, where S 1s the area of the ring In
arrays of rings only the h/2e effect 1s observable, since the h/e effect has a
sample specific phase and 1s averaged to zero In experiments by Timp et al ®°
and by Ford et al ’* on single rings i the 2DEG of high-mobility GaAs—
AlGaAs heterostructures, the h/e effect was found predominantly The
amplitude of these oscillations 1s strongly reduced®® 74195497 by a large
magnetic field (cf the magnetoresistance traces shown in Fig 26) This
suppression was found to occur for fields such that 21 ., < W, where W 1s the
width of the arms of the ring The reason 1s that in strong magnetic fields the

497G Timp, P M Mankiewich, P DeVegvar, R Behringer,J] E Cunmngham, R E Howard, H
U Baranger, and J K Jain, Phys Rev B 39, 6227 (1989)
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F1G. 100. Illustration of a localized edge
channel circulating along the inner perimeter
of aring, and of extended edge channels on the
leads and on the outer perimeter. No
Aharonov—Bohm magnetoresistance oscillat-
ions can occur in the absence of scattering
between these two types of edge channels.

states at the Fermi level that can propagate through the ring are edge states at
the outer perimeter. These states do not complete a revolution around the
ring (see Fig. 100). Scattering between opposite edges is required to complete
a revolution, but such backscattering would also lead to a nonzero longi-
tudinal resistance. This argument'!?4°® explains the absence of Aharonov—
Bohm oscillations on the quantized Hall plateaux, where the longitudinal
resistance is zero. Magnetoresistance oscillations return between the plateaux
in the Hall resistance, but at a larger value of AB than in weak fields. Timp et
al*°7 have argued that the Aharonov—Bohm oscillations in a ring in strong
magnetic fields are associated with scattering from the outer edge to edge
states circulating along the inner perimeter of the ring. The smaller area
enclosed by the inner perimeter explains the increase in AB.This interpre-
tation is supported by numerical calculations.*®’

b. Aharonov—Bohm Effect in Singly Connected Geometries

(1) Point Contact. Aharonov—Bohm oscillations in the magnetoresistance of
a quantum point contact were discovered by van Loosdrecht et al.2°? The
magnetic field dependence of the two-terminal resistance is shown in Fig. 101,
for various gate voltages. The periodic oscillations occur predominantly
between quantum Hall plateaux, in a limited range of gate voltages, and only
at low temperatures (in Fig. 101, T'= 50mK; the effect has disappeared at
1 K). The fine structure is very well reproducible if the sample is kept in the
cold, but changes after cycling to room temperature. As one can see from the
enlargements in Fig. 102, a splitting of the peaks occurs in a range of magnetic
fields, presumably as spin splitting becomes resolved. A curious aspect of the
effect (which has remained unexplained) is that the oscillations have a much
larger amplitude in one field direction than in the other (see Fig. 101), in
apparent conflict with the + B symmetry of the two-terminal resistance
required by the reciprocity relation (12.16) in the absence of magnetic
impurities. Other devices of the same design did not show oscillations of well-
defined periodicity and had a two-terminal resistance that was approximately
+ B symmetric.

498] K. Jain, Phys. Rev. Lett. 60, 2074 (1988).
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Fic. 101. Two-terminal magnetoresistance of a point contact for a series of gate voltages at
T= 50mK, showing oscillations that are periodic in B between the quantum Hall plateaux.
The second, third, and fourth curves from the bottom have offsets of, respectively, 5, 10, and
15kQ. The rapid oscillations below 1T are Shubnikov—De Haas oscillations periodic in 1/B,
originating from the wide 2DEG regions. The sharp peak around B = 0T originates from the
ohmic contacts. Taken from P. H. M. van Loosdrecht et al., Phys. Rev. B 38, 10162 (1988).
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FIG. 102. Curves a and b are close-ups of the curve for ¥, = —1.7V in Fig. 101. Curve cis a
separate measurement on the same device (note the different field scale due to a change in

electron density in the constriction). Taken from P. H. M. van Loosdrecht et al., Phys. Rev. B 38,
10162 (1988).
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FiG 103 Equipotentials at the guiding center energy in the saddle-shaped potential created
by a spht gate (shaded) Aharonov-Bohm oscillations 1n the point contact magnetoresistance
result from the mterference of tunneling paths ab and adch Tunneling from a to b may be
assisted by an impurity at the entrance of the constriction Taken from P H M van Loosdrecht

et al, Phys Rev B 38, 10162 (1988)

Figure 103 illustrates the tunneling mechamism for the periodic mag-
netoresistance oscillations as 1t was originally proposed?°? to explan the
observations Because of the presence of a barrier in the point contact, the
electrostatic potential has a saddle form Equipotentials at the guiding center
energy (18 1) are drawn schematically in Fig 103 (arrows indicate the
direction of motion along the equipotential) An electron that enters the
constriction at a can be reflected back into the broad region by tunneling to
the opposite edge, either at the potential step at the entrance of the
constriction (from a to b) or at 1ts exit (from d to ¢) These two tunneling paths
acquire an Aharonov—Bohm phase difference*®® of eBS/h (were S 1s the
enclosed area abcd), leading to periodic magnetoresistance oscillations {(Note
that the periodicity AB may differ**® 5°° somewhat from the usual expression
AB = h/eS, since S 1tself 1s B-dependent due to the B-dependence of the
guiding center energy) This mechanism shows how an Aharonov-Bohm
effect 15 possible 1n principle in a singly connected geometry The point
contact behaves as 1f 1t were multiply connected, by virtue of the spatial
separation of edge channels moving 1n opposite directions (Related mechan-
1sms, based on circulating edge currents, have been considered for
Aharonov—Bohm effects 1 small conductors 473 474 501-503) The oscillations

499] K Jamn and S Kivelson, Phys Rev B 37,4111 (1988)

5008 J van Wees, L P Kouwenhoven, C J P M Harmans, J G Williamson, C E T
Timmering, M E I Broekaart, C T Foxon,and J J Harrs, Phys Rev Lett 62,2523 (1989)

501 N Bogachek and G A Gogadze, Zh Eksp Teor Fiz 63,1839 (1972) [Sov Phys JETP 36,
973 (1973)]

502N B Brandt, D V Gitsu, A A Nikolaevna, and Ya G Ponomarev, Zh Eksp Teor Fiz 72,
2332 (1977) [Sov Phys JETP 45,1226 (1977)], N B Brandt, D B Gitsu, V A Dolma, and
Ya G Ponomarev, Zh Eksp Teor Fiz 92,913 (1987) [Sov Phys JETP 65, 515 (1987)]

503y Isawa, Surf Sci 170, 38 (1986)
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FiG 104 Cavity (of 1 5 um diameter) defined by a double set of split gates A and B For large
negative gate voltages the 2DEG region under the narrow gap between gates A and B 1s fully
depleted, while transmission remains possible over the potential barrier 1n the wider openings at
the left and right of the cavity Taken from B J van Wees et al, Phys Rev Lett 62,2523 (1989)

periodic in B are only observed at large magnetic fields (above about 1 T, the
oscillations at lower fields are Shubnikov—De Haas oscillations periodic 1n
1/B, due to the series resistance of the wide 2DEG regions) At low magnetic
fields the spatial separation of edge channels responsible for the Aharanov—
Bohm effect 1s not yet effective The spatial separation can also be destroyed
by a large negative gate voltage (top curve in Fig 101), when the width of the
point contact becomes so small that the wave functions of edge states at
opposite edges overlap

Although the mechamism 1llustrated m Fig 103 1s attractive because 1t 1s
an ntrinsic consequence of the point contact geometry, the observed well-
defined periodicity of the magnetoresistance oscillations requires that the
potential induced by the split gate varies rapidly over a short distance (1n
order to have a well-defined area S) A smooth saddle potential seems more
realistic Moreover, one would expect the periodicity to vary more strongly
with gate voltage than the small 109, variation observed experimentally as ¥,
1s changed from —14 to —17V Glazman and Jonson**® have proposed
that one of the two tunneling processes (from a to b 1n Fig 103) 1s mediated
by an impurity outside but close to the constriction The combination of
mmpurity and point contact introduces a well-defined area even for a smooth
saddle potential, which moreover will not be strongly gate-voltage-
dependent Such an impurity-assisted Aharonov—Bohm effect in a quantum
point contact has been reported by Wharam et al *°* In order to study the
Aharonov—-Bohm effect due to interedge channel tunneling under more
controlled conditions, a double-point contact device 1s required, as discussed
below

(2) Cavity. Van Wees et al °°° performed magnetoresistance experiments 1n
a geometry shown schematically in Fig 104 A cavity with two opposite point

%D A Wharam M Pepper, R Newbury, H Ahmed, D G Hasko, D C Peacock, ] E F
Frost, D A Ritchie, and G A C Jones, J Phys Condens Matter 1, 3369 (1989)
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FiG. 105. Magnetoconductance experiments on the device of Fig. 104 at 6 mK, for a fixed gate
voltage of —0.35V. (a) Conductance of point contact A, measured with gate B grounded. (b)
Conductance of point contact B (gate A grounded). (c) Measured conductance of the entire
cavity. (d) Calculated conductance of the cavity, obtained from Eqgs. (21.1) and (21.2) with the
measured G, and Gy as input. Taken from B. J. van Wees et al,, Phys. Rev. Lett. 62, 2523 (1989).

contact openings is defined in the 2DEG by split gates. The diameter of the
cavity is approximately 1.5 um. The conductances G, and G of the two point
contacts A and B can be measured independently (by grounding one set of
gates), with the results plotted in Fig. 105a, b (for ¥, = —0.35V on either gate
A or B). The conductance G of the cavity (for ¥, = —0.35V on both the split
gates) is plotted in Fig. 105c. A long series of periodic oscillations is observed
between two quantum Hall plateaux. Similar series of oscillations (but with a
different periodicity) have been observed between other quantum Hall
plateaux. The oscillations are suppressed on the plateaux themselves. The
amplitude of the oscillations is comparable to that observed in the experi-
ment on a single point contact?®? (discussed before), but the period is much
smaller (consistent with a larger effective area in the double-point contact
device), and no splitting of the peaks is observed (presumably due to a fully
resolved spin degeneracy). No gross + B asymmetries were found in the
present experiment, although an accurate test of the symmetry on field
reversal was not possible because of difficulties with the reproducibility. The
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Fic 106 Illustration of mechamsms leading to Aharonov-Bohm oscillations 1n singly
connected geometries (a) Cavity containing a circulating edge state Tunneling through the left
and night barriers (as indicated by dashed hines) occurs with transmisston probabilities T, and Ty
On increasing the magnetic field, resonant tunneling through the cavity occurs periodically each
trme the flux @ enclosed by the circulating edge state increases by one flux quantum h/e (b) A
arrculating edge state bound on a local potential maximum causes resonant backscattering,
rather than resonant transmission

oscillations are quite fragile, disappearing when the temperature is raised
above 200mK or when the voltage across the device exceeds 40 4V (the data
in Fig. 105 were taken at 6 mK and 6 uV). The experimental data are well
described by resonant transmission through a circulating edge state in the
cavity,>®? as illustrated in Fig. 106a and described in detail later. Aharonov—
Bohm oscillations due to resonant transmission through a similar structure
have been reported by Brown et al.’°® and analyzed theoretically by
Yosephin and Kaveh.3%6

(3) Resonant Transmission and Reflection of Edge Channels. The electrosta-
tic potential in a point contact has a saddle shape (cf. Fig. 103), due to the
combination of the lateral confinement and the potential barrier. The height
of the barrier can be adjusted by means of the gate voltage. An edge state with
a guiding center energy below the barrier height is a bound state in the cavity
formed by two opposite point contacts, as is illustrated in Fig. 106a.

S05R J Brown, C G Smuth, M Pepper, M J Kelly, R Newbury, H Ahmed, D G Hasko,J E
F Frost, D C Peacock, D A Ritchie, and G A C Jones, J Phys Condens Matter 1, 6291
(1989)

598Y Yosephin and M Kaveh, J Phys Condens Matter 1, 10207 (1989)
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Tunneling of edge channels through the cavity via this bound state occurs

with transmission probability T,5, which for a single edge channel is given
by474.498

_ Ialp |2 _ N
871 — rargexp(i®e/h)| 1+ RyRy — 2(RyRy)' 7 cos(po + De/h)’
(21.1)

T,

Here t, and r, are the transmission and reflection probability amplitudes
through point contact A, T, = |t,|%, and R, = |rs|> = 1 — T, are the trans-
mission and reflection probabilities, and ¢5, r5, T, Ry denote the correspond-
ing quantities for point contact B. In Eq. (21.1) the phase acquired by the
electron on one revolution around the cavity is the sum of the phase ¢, from
the reflection probability amplitudes (which can be assumed to be only
weakly B-dependent) and of the Aharonov-Bohm phase ® = BS, which
varies rapidly with B (® is the flux through the area S enclosed by the
equipotential along which the circulating edge state is extended). Resonant
transmission occurs periodically with B, whenever ¢, + ®e/h is a multiple of
2n. In the weak coupling limit (7,, Ty <« 1), Eq. (21.1) is equivalent to the
Breit—Wigner resonant tunneling formula (17.1). This equivalence has been
discussed by Biittiker,38® who has also pointed out that the Breit—Wigner
formula is more generally applicable to the case that several edge channels
tunnel through the cavity via the same bound state.

In the case that only a single (spin-split) edge channel is occupied in the
2DEG, the conductance G = (e2/h) T,z of the cavity follows directly from Eq.
(21.1). The transmission and reflection probabilities can be determined
independently from the individual point contact conductances G, = (e*/h)T,
(and similarly for Gg), at least if one may assume that the presence of the
cavity has no effect on T, and T; itself (but only on the total transmission
probability T,g). If N > 1 spin-split edge channels are occupied and the
N — 1 lowest-index edge channels are fully transmitted, one can write

e? e’ e?
Gczz(N‘l‘l'TAB)a GA:";;(N—I_"TAL GB=7(N_1+TB)-

(21.2)

Van Wees et al.5°® have compared this simple model with their experimental
data, as shown in Fig. 105. The trace in Fig. 105d has been calculated from
Egs. (21.1) and (21.2) by using the individual point contact conductances in
Fig. 105a,b as input for T, and Tz. The flux ® has been adjusted to the
experimental periodicity of 3mT, and the phase ¢, in Eq. (21.1) has been
ignored (since that would only amount to a phase shift of the oscillations).
Energy averaging due to the finite temperature and voltage has been taken
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into account in the calculation. The agreement with experimental trace (Fig.
105¢) is quite satisfactory.

Resonant reflection of an edge channel can occur in addition to the
resonant transmission already considered. Aharonov—Bohm oscillations due
to interference of the reflections at the entrance and exit of a point contact,
illustrated in Fig. 103, are one example of resonant reflection.??2 Jain*?® has
considered resonant reflection via a localized state circulating around a
potential maximum, as in Fig. 106b. Such a maximum may result naturally
from a repulsive scatterer or artificially in a ring geometry (cf. Fig. 100).
Tunneling of an edge state at each of the channel boundaries through the
localized state occurs with probabilities T, and T. The reflection probability
of the edge channel is still given by T, in Eq. (20.1), but the channel
conductance G is now a decreasing function of T,, according to

eZ
Ge = (N — Tho). (21.3)

Quasi-periodic magnetoresistance oscillations have been observed in narrow
channels by several groups.”’®#9%:507 These may occur by resonant reflection
via one or more localized states in the channel, as in Fig. 106b.

22. MAGNETICALLY INDUCED BAND STRUCTURE

The one-dimensional nature of edge channel transport has recently been
exploited in an innovative way by Kouwenhoven et al.2*° to realize a one-
dimensional superlattice exhibiting band structure in strong magnetic fields.
The one-dimensionality results because only the highest-index edge channel
(with the smallest guiding center energy) has an appreciable backscattering
probability. The N — 1 lower-index edge channels propagate adiabatically,
with approximately unit transmission probability. One-dimensionality in
zero magnetic fields cannot be achieved with present techniques. That is one
important reason why the zero-field superlattice experiments described in
Section 11 could not provide conclusive evidence for a bandstructure effect.
The work by Kouwenhoven et al.?5° is reviewed in Section 22.a. The
magnetically induced band structure differs in an interesting way from the
zero-field band structure familiar from solid-state textbooks, as we show in
Section 22.b.

a. Magnetotransport through a One-Dimensional Superlattice

The device studied by Kouwenhoven et al.>*° is shown in the inset of Fig.
107. A narrow channel is defined in the 2DEG of a GaAs—AlGaAs

07R. Mottahedeh, M. Pepper, R. Newbury, J. A. A. J. Perenboom, and K.-F. Berggren, Solid
State Comm. 72, 1065 (1989).
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FiG 107 Inset Corrugated gate used to define a narrow channel with a one-dimensional
periodic potential (the total number of barriers 1s 16, corresponding to 15 unit cells) Plotted 1s
the conductance 1n a magnetic field of 2T as a function of the voltage on the smooth gate at
10mK The deep conductance minima (marked by + and *) are attributed to mimigaps, and the
15 enclosed maxima to discrete states in the mimmiband Taken from L P Kouwenhoven et al,
Phys Rev Lett 65, 361 (1990)

heterostructure by two opposite gates. One of the gates is corrugated with
period a = 200nm, to introduce a periodic modulation of the confining
potential. At large negative gate voltages the channel consists of 15 cavities
[as in Section 21.b(2)] coupled in series. The conductance of the channel was
measured at 10 mK in a fixed magnetic field of 2 T, as a function of the voltage
on the gate that defines the smooth channel boundary. The results, repro-
duced m Fig. 107, show two pronounced conductance dips (of magnitude
0.1¢%*/h), with 15 oscillations in between of considerably smaller amplitude.
The two deep and widely spaced dips are attributed to minigaps, the more
rapid oscillations to discrete states in the miniband.

This interpretation is supported in Ref. 250 by a calculation of the
transmission probability amplitude ¢, through n cavities in series, given by
the recursion formula

= i S (22.1)
1 —rr,_, exp(ip)

Here ¢ and r are transmission and reflection probability amplitudes of the
barrier separating two cavities (all cavitities are assumed to be identical), and

Ly
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F1G. 108. Top: Calculated transmission probability Ty of an edge channel through a periodic
potential of N = 15 periods as a function of the Aharonov—Bohm phase eBS/# (with S the area of
one unit cell). The transmission probability through a single barrier is varied as shown in the
bottom panel. Taken from L. P. Kouwenhoven et al., Phys. Rev. Lett. 65, 361 (1990).

¢ = eBS/h is the Aharonov—-Bohm phase for a circulating edge state
enclosing area S. Equation (22.1) is a generalization of Eq. (21.1) for a single
cavity. The dependence on ¢ of T, =|t,|> shown in Fig. 108 is indeed
qualitatively similar to the experiment. Deep minima in the transmission
probability occur with periodicity A¢ = 2n. Experimentally (where S is
varied via the gate voltage at constant B) this would correspond to
oscillations with periodicity AS=h/eB of Aharonov—Bohm oscillations in a
single cavity. The 15 smaller oscillations between two deep minima have the
periodicity of Aharonov—Bohm oscillations in the entire area covered by the
15 cavities. The observation of such faster oscillations shows that phase
coherence is maintained in the experiment throughout the channel and
thereby provides conclusive evidence for band structure in a lateral
superlattice.

b. Magnetically Induced Band Structure

(1) Skew Minibands. The band structure in the experiment of Kouwenhoven
et al.*>° is present only in the quantum Hall effect regime and can thus be said
to be magnetically induced. The magnetic field breaks time-reversal symmetry.
Let us see what consequences that has for the band structure.

The hamiltonian in the Landau gauge A = (0, Bx, 0) is

%=p_§+____(py+e3x)2

+ V(x, y), Vix,y+a) =V, ), ((222)
2m 2m

where V is the periodically modulated confining potential. Bloch’s theorem is
not affected by the presence of the magnetic field, since s# remains periodic in
y (in the Landau gauge). The eigenstates ¥ have the form

ank(xa y) = eikyf;lk(x’ y)s f;xk(xs y + a) :f;lk(x7 _V), (223)
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where the function f is a solution periodic in y of the eigenvalue problem

<p,2c (p, + Bk + eBx)?
2m + 2m

If the wave number k is restricted to the first Brillouin zone |k| < 7/a, the
index n labels both the subbands from the lateral confinement and the
minibands from the periodic modulation. Since E and V are real, one finds by
taking the complex conjugate of Eq. (22.4) that

E.(k, B)y= E,(—k, —B). (22.5)

+ Vix, y)) Ju(x, y) = E,(k, B)fu(x, ). (22.4)

In zero magnetic fields the energy E is an even function of k, regardless of the
symmetry of the potential V. This can be viewed as a consequence of time-
reversal symmetry.>°® In nonzero magnetic fields, however, E is only even in
k if the lateral confinement is symmetric:

E,(k, B)= E,(—k, B)  only if V(x, y) = V(—x, y). (22.6)

To illustrate the formation of skew minibands in a magnetically induced
band structure, we consider the case of a weak periodic modulation ¥(y) of
the confining potential ¥V(x, y) = V,(x) + Vi{x,y). The dispersion relation
E?(k) in the absence of the periodic modulation can be approximated by

E2(K) = (n — Yoo, + V(x = —ki2). 22.7)

The index n labels the Landau levels, and the wave number k runs from — o0
to +oco. The semiclassical approximation (22.7) is valid if the confining
potential ¥, is smooth on the scale of the magnetic length [, = (#/eB)*>.
(Equation (22.7) follows from the guiding center energy (18.1), using the
identity X = —k#h/eB between the guiding center coordinate and the wave
number; cf. Section 12.a.] For simplicity we restrict ourselves to the strictly
one-dimensional case of one Landau level and suppress the Landau level
index in what follows. To first order in the amplitude of the periodic
modulation V;, the zeroth-order dispersion relation is modified only near the
points of degeneracy K, defined by

E%K, — pQn/a) = E%K,), p=+1, +2,.... (22.8)

A gap opens near K,, leading to the formation of a band structure as
illustrated in Fig. 109. The gaps do not occur at multiples of n/a, as in a
conventional 1D band structure. Moreover, the maxima and minima of two
subsequent bands occur at different k-values. This implies indirect optical
transitions between the bands if the Fermi level lies in the gap.

5051, D. Landau and E. M. Lifshitz, “Statistical Physics,” Part 2, Section 55. Pergamon, Oxford,
1980.
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FiG 109. Illustration of magnetically induced band structure 1n a narrow channel with a weak
periodic modulation of the confining potential V(x) (for the case V(x)# V(—x)) The dashed
curves represent the unperturbed dispersion relation (22.7) for a single Landau level. Skew
minibands result from the broken time-reversal symmetry in a magnetic field

It is instructive to consider the special case of a parabolic confining
potential V,(x) = 4mw3x* in more detail, for which the zeroth-order disper-
sion relation can be obtained exactly (Section 10). Since the confinement is
symmetric in x, the minigaps in this case occur at the Brillouin zone
boundaries k = prn/a. Other gaps at points where the periodic modulation
induces transitions between different 1D subbands are ignored for simplicity.
From Eq. (10.5) one then finds that the Fermi energy lies in a minigap when

h? [(pm\?
Ep = (n— Hho + 5 <”7> : (22.9)

with the definitions w = (w? + 0%, M = mw?/w}. In the limiting case
B =0, Eq. (22.9) reduces to the usual condition®**® that Bragg reflection
occurs when the longitudinal momentum mv, is a multiple of An/a. In the
opposite limit of strong magnetic fields (w, » w,), Eq. (22.9) becomes

h 2EG\?
B=p-, Wy =2 . 22.10
aWese p e ff (mcoé) ( )
The effective width W, of the parabolic potential is the separation of the
equipotentials at the guiding center energy Eg = Ep — (n — $ho..
The two-terminal conductance of the periodically modulated channel
drops by e?/h whenever E lies in a minigap. If the magnetic field dependence
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of Wy 1s small, then Eq (22 10) shows that the magnetoconductance
oscillations have approximately the periodicity AB ~ hfeaW,, of the
Aharonov-Bohm effect 1n a single umit cell, in agreement with the cal-
culations of Kouwenhoven et al 2°° (Note that 1n their experiment the Fermi
energy 1s tuned through the minmigap by varying the gate voltage rather than
the magnetic field ) The foregoing analysis 1s for a channel of infinite length
The nterference of reflections at the entrance and exit of a finite superlattice
of length L leads to transmussion resonances®*® 387 whenever k=pn/L, as
described by Eqs (229) and (2210) after substituting L for a These
transmission resonances are observed by Kouwenhoven et al as rapid
oscillations 1n the conductance The number of conductance maxima between
two deep minima from the mimigap equals approximately the number L/a of
unit cells 1n the superlattice The number of maxima may become somewhat
larger than L/a if one takes into account reflections at the transition from a
narrow channel to a wide 2DEG This might explain the observation in Ref
250 of 16, rather than 15, conductance maxima between two minigaps in one
particular experiment on a 15-period superlattice

(2) Bloch Oscillations. In zero magnetic fields, an oscillatory current has
been predicted to occur on application of a dc electric field to an electron gas
m a periodic potential 3°° This Bloch oscillation would result from Bragg
reflection of electrons that, accelerated by the electric field, approach the
band gap A necessary condition 1s that the field be sufficiently weak that
tunneling across the gap does not occur *1° 313 The wave number increases
1n time according to k = eE/A 1 an electric field E The time interval between
two Bragg reflections 1s 2n/ak = h/eaE The oscillatory current thus would
have a frequency AVe/h, with AV = aE the electrostatic potential drop over
one unit cell Bloch oscillations have so far eluded experimental observation

The successful demonstration®®° of mimiband formation 1n strong magne-
tic fields naturally leads to the question of whether Bloch oscillations might
be observable 1n such a system This question would appear to us to have a
negative answer The reason 1s simple, and 1t illustrates another interesting
difference of magnetically induced band structure In the quantum Hall effect
regime the electric field 1s perpendicular to the current, so no acceleration of
the electrons occurs Since k = 0, no Bloch oscillations should be expected

S09F Bloch, Z Phys 52, 555 (1928)

5107 N Churchill and F E Holmstrom, Phys Lett 85A, 453 (1981)
5117 N Churchill and F E Holmstrom, Am J Phys 50, 848 (1982)
512] Zak, Phys Rev B 38, 6322 (1988)
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