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Andreev reflection and the Josephson effect in a quantum
point contact
An analogy with phase-conjugating resonators

H. van Houten and C.W.J. Beenakker
Philips Re^eaich Laboialones 5600 JA Eindhoven, The Netherland!,

We discuss thc analogy betwccn thc axial mode spcctium of an optical resonator with one or two phase-conjugating
mirrors, and the quasipaiticle excitation spectium ot an NS or SNS |unction (N = normal metal, S = superconductoi) As a
first application, wc consider Andreev reflection at an NS mteifacc for the case that the injector of thc current is a
quantum pomt contact Wc point out that whcn the point contact is close to pmch-oft quantum inteiference effects will
ansc in thc cunent-voltage charactenstic, and discuss thc rclation to the well-known geometncal icsonances occurnng
whcn a wide tunncl bainei is uscd äs an injector As a second application, we show that thc quantized conductance of a
pomt contact has its counterpait in thc stationary Josephson eftect The cntical current of a superconductmg quantum
pomt contact, shoit compared to the coherence length, is dcmonstiated to incieasc stcpwisc äs a function of its width or
Fermi cneigy, with a universal step hcight eA„lfi

1. Introduction

In this papcr, wc give a tutorial introduction
and discussion of rccent theoretical results [1,2]
concerning transport through point contacts be-
twecn superconducting regions. In the spirit of
this Symposium, our contnbution has an analogy
äs its Icitmotiv. The analogy [3,4] is between
Andreev reflection [5] and optical phase conju-
gation [6,7]. This analogy is not äs complete äs
that between conduction in the normal state and
transmission of light [8-11], but it is nevertheless
instructive.

The basic theoretical concepts underlying An-
dreev reflection are reviewed in section 2. In
section 3 we introduce optical phasc conjugation,
and discuss the axial mode spectrum of re-
sonators with two phase-conjugating mirrors, äs
an analogy to the Andreev spectrum m an SNS
junction (S = superconductor, N = normal
metal). In section 4 we consider possible new
effects in an Andreev reflection experiment with
a quantum pomt contact äs an injector. We
discuss the relation with the geometrical reso-
nances observed in tunneling experiments on an

NS bilayer, which has an analogue in a resonator
with one normal and one phase-conjugating mir-
ror. The coupling of transverse modes at the
quantum point contact - a diffraction effect - is
expected to be important, but has not yet been
invcstigatcd.

In section 5 we review our rccent theoretical
work on the stationary Josephson effect in a
weak link formed by a superconducting quantum
point contact [1]. The critical current of a super-
conducting quantum point contact which is short
compared to thc coherence length ξ0 is predicted
to increase stepwise äs a function of the width of
the point contact. The step height eAQlh is in-
dependent of the properties of the junction, but
depends only on the energy gap Δ0 in the bulk
superconductors. This effect is the analogue of
the quantized conductance [12, 13] of a quantum
point contact in the normal state. Thc origm of
the Josephson effect is thc dependence of the
excitation spectrum on the phase difference of
the superconductors on either side of the junc-
tion. The axial mode spectrum in an optical
resonator with two phase-conjugating mirrors
depends on the phase difference of the laser
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beams pumping thc mirrors. Such a resonator
may therefore be regarded äs the optical ana-
logue of a weak link exhibiting the Josephson
effect.

2. Andreev reflection

Let us first summanze some basic properties of
the excitation spectrum of a bulk superconduc-
tor. The quasiparticle excitations of a supercon-
ductor are described by the two-component wave
function Ψ = ( μ , υ ) , which is a solution of the
Bogoliubov-de Gennes (BdG) equation [14]

Δ' -; ψ= 0)

Here X = (p + eÄ) 12m + V- £F is thc single-
electron Hamiltonian in the presence of a vector
potential A(r) and an electrostatic potential V(r).
The excitation energy e > 0 is measured relative
to the Fermi energy EF. The pair potential A(r)
vanishes in a normal metal. In this case u and υ
are the wave functions of indcpendent electron
and hole excitations.

The dispcrsion law for a normal metal in the
case A = 0, V = 0 is given by

e = \p2/2m - ΕΓ\ (2)

in terms of momentum p or wave vector k, with
ÜF = (2EF/m)1/2 the Fermi velocity, and kF =
mvr/fi the Fermi wave vector. The linear approx-
imation in eq. (2) holds if e<^EF. A plot of e
versus k is given in fig. l (dashed curve). Thc
dispersion law corresponds to electron excita-
tions (v = 0) for \k\ > kF, and to hole excitations
(u = 0) for \k\<kF.

In a superconductor, Δ is non-zero. The cou-
pled equations for u and v then describe a
mixture of electron and hole excitations. Con-
sider a uniform bulk superconductor with A(r) =
4„ e1* and V(r) = 0. A plane wave solution of the
BdG equation has the form

•ιτ,/2

tk r
(3)

Fig l Dispersion telation for elcctrons and holcs in a
normal metal (dashed curvc) and foi quasipartiücs in a
superconductor, exhibiting an energy gap 4„ (füll curve)

where η and k = \k\ satisfy [15]

e = AQ cos(i7 - φ) ,

h2k2/2m = Er + iAn 5ΐη(η - φ) . (4)

The resulting dispersion law is given by

EF')
2 + A l ] l / 2 , (5)

äs plotted in fig. l (füll curvc). Quasiparticles
have an excitation gap AQ in a uniform supercon-
ductor. For e > 40 the dispersion laws (2) and
(5) of normal metal and superconductor
coincide.

The (unnormalized) wave functions de-
scribmg an electron-like (e) or hole-like (h)
quasiparticle at energy e are given by

(6)

(7)

(8)

(9)

-17)L 'V 2; /

with the definitions"

^ " = φ + σ1"'" arccos(e/40) ,

kc-h = (2m/fi2)l'2[EF+aL\e2-

One can verify that for e > AQ, "¥L has v = 0 (a
true electron), while Ψ^ has u = 0 (a true hole).

Thc function arccos t is defincd such that arccos / ε (Ο, ττ/2)
for 0< t< l, for / > l, onc has i arccos l = \n[t + (t2 - l)" 2]
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At e = 4, one nas ^/c = ^/h> so that the excita-
tions have equal electron and hole character.

Andreev reflection is the anomalous reflection
of an electron with e < 4, in a normal metal at
the boundary with a supcrconductor [5]. Because
of the cxcitation gap 4,, tne electron cannot
propagate in the supcrconductor. Ordinary
specular reflection has only a small probability if
the kinetic energy of motion normal to the NS
intcrface is much larger than 4> (which is the
case except for grazing incidcnce, since 4„ <!
Er). Instead, a Cooper pair is added to the
supcrconductor, the incident electron is annihi-
latcd, and a hole is reflected back along the
original path of the electron. This is known äs
Andreev reflection. Incident and reflected
quasiparticles have approximately equal wave
vectors kc ~ kF + e/fivF and k' ~ kr — e / f i v F ,
but opposite directions of motion (äs follows
from the opposite sign of the group velocity
d e / f i d k for electrons and holcs). Energy is con-
served: The Cooper pair has energy 2EF, the
energy of the incident electron is EF + e, and
that of the reflected hole is E, - e. Momentum is
conserved up to terms of order f i \ k c - kh\ =e #/£„,
with ξ(} = &ι>ρ/ττ4() the supcrconducting coher-
cnce length.

Andreev reflection can be dcscribed by the
BdG equation. The Variation of 4 (r) at the NS
interface has in general to be determined self-
consistently from the equation

n

Here g is the BCS coupling constant (g = 0 in N
and g > 0 in S), / is the Fcrmi function, and the
sum is over all eigenvalucs e„ > 0. The qualita-
tive features of Andreev reflection are indepen-
dcnt of the precise pair potential profile. Con-
sider, äs an example, a stcp-function profile for
the pair potential (4 = 0 for z < 0, and 4 = 4„ e"''
for z>0) . In the normal metal (z<0), the
incident electron has a wave function A exp(iAc ·
r)(1,0) and the reflected hole has a wave func-
tion B cxp(iA:h · r)(0,1). In the superconductor
(z > 0) only the exponcntially decaying wave
function CT/e is acceptable if ordinary reflections

are neglected. Matching of the amplitudes at
z = 0 determines the coefficients of the wave
functions,

(11)

Incident and reflected wavcs have equal am-
plitude in absolute value, \A\ = \B\. The An-
dreev-rcflected hole acquircs a phase factor Bl
A = cxp(-iT7c) relative to the incident electron.
Similarly, an Andreev-reflccted electron acquires
a phase factor exp(iTjh). For Andreev reflection
at the Fermi energy (e = 0) one has k*~ = k \
Only thcn is the reflected wave the precise time
reverse of the incident wave (with a phase differ-
encc -1Γ/2 ± φ).

3. Resonators with phase-conjugating mirrors

Andreev reflection is analogous to optical
phase conjugation [3]. So far, this analogy has
only been worked out for the casc of a single NS
junction, or a single phasc-conjugating mirror
[4]. In this paper we considcr the bound states
that occur due to multiple Andreev reflections in
NS bilayers and SNS junctions, and establish the
analogy with the axial modes in resonators with
normal and/or phase-conjugating mirrors. In the
present section we examinc the optical problem.
For simplicity of notation, we take e = e„ for the
diclectric constant. Consider a cell of length Lc

containing a medium with a third-order non-
lincar susceptibility ^<3), pumpcd by two intense
counter-propagating lascr bcams of frequency ω()

(fig. 2(a)). Due to the nonlinear interaction, a
weak probe beam of frequency ω() + δ incident
on this medium at z = - Lc emcrges amplified at
z = 0. In addition, a fourth beam is generated,
with a wave vector opposite to that of the probe
beam. This reflected beam Starts with zero inten-
sity at z = 0 and emerges from the cell at z =
— LL. This is known äs four-wave mixing [6, 7]. If
5 = 0 (degenerate case) the rctro-reflected beam
is the exact phase conjugatc of the probe beam,
except for a different intensity. For non-zero
δ < ωη (nearly-degenerate four-wave mixing) the
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Fig 2 (a) Foui-wavc mixmg cell pumpcd by two countei-
propagating beams at frequcncy ω,,, with probe beam at
ω,, + S and d rcllccted conjugatc bcam at ω,, - δ (b) Spatial
vanation of thc intensities of probe and conjugate bcams
wi th in thc cell, for 5 = 0 and K„LC = -n/4

reflected beam has frequency a>„ - δ, analogous
to Andreev reflection äs a hole with energy
EP - e of an incident clectron with energy Er +
e. The mechanism of four-wave mixing is that
from each of the two pump beams a photon is
annihilated. One photon is added to the probe
beam, and another to the reflected beam. The
frcquencies are only approximately equal, to
order δ. Hence the requirement δ <«ω(), similar
to the case of Andreev reflection. A difference
with Andreev reflection is that the wave vector
changes sign with four-wave mixing, but not with
Andreev reflection.

In ordcr to explore thcse similarities and dif-
ferences it is instructive to consider the mathc-
matical description of nearly-degcnerate four-
wave mixing. This may be done on the basis of a

"Schrodinger cquation for light" [8], extended to
account for the third-order nonlinear suscep-
tibility [4]. In its stationary form, this equation
relates the complex amplitudes <£p and %L of the
probe beam and its phasc-conjugate

H γ 1

-γ -Η (12)

where H = p2/2m(] - \ϋω(}. Α common factor
e""""' has been eliminated from all amplitudes.
The equivalent mass of the photon is m0 =
Αω,,/c2. The probe beam is coupled to its phase
conjugatc in a region with non-zero γ, which
plays the role of the complex pair potential Δ in
the superconductor. The strength of the coupling

_ J^n_ O)ep <g /j^
ι n ^ Λ wl ^2 ·> \ A ^ /

is proportional to the product of the complex
amplitudes c?, and <£, of the two pump beams
with opposite wave vector. Equation (12) is valid
only for δ <l ω(), in view of the slowly-varying
envclope approximation on which it is based.

For degenerate four-wave mixing (δ=0), the
solution in a medium with constant γ = γ,,ε"'', for
a probe beam traveling in the positive z-direc-
tion, is given by

i? == constant
COS(K„Z) e

-i sin(K„z) e"'1'
(14)

with KO = γ,,/Äc and ka = ω,,/c. The probe beam
impinges on the cell at z = -Lc with amplitude
<op m, and emerges at z = 0 with the larger am-
plitude <i? p o u l . The conjugate beam Starts with
zero amplitude at z = 0 and emerges with am-
plitude %L out at z = -Lt. The incident amplitude
^ determines thc constant prefactor in (14),
with the result

p m cos(/c()LJ

x expi (15)
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Thc spatial Variation in the cell of thc probe and
conjugate beam intensities is plotted in fig. 2(b)
for a coupling strength K ( )LL = ττ/4, chosen in
order to have a conjugate beam with the same
intensity äs the incident probe beam (i.e.

<£ , ι 2 = l <? 2)· This choicc corresponds mostL t) 111 l p ι n / r

closely to Andreev reflection. The wavelength
2ττ/κ ( ) = hclyn is the analogue of the supercon-
ducting coherence length ξ(} = fivr/-nAH. These
lengths set the scale for the pcnetration depth in
the four-wave mixing cell and in the supercon-
ductor, respectively.

Let us now consider nearly-degenerate four-
wave mixing [16, 17]. Substitution of (o?p, $ [ ) =
(e ' " / 2 ~ 1 T " 2 l ( " " +)e l into eq. (12), with γ =
γ() c"'' and k(} = ω,,/c, gives a set of cquations
similar to eq. (4):

H8= -ίγ() 8ΐη(η + φ) ,

hcß= -yncos(i7 + φ) . (16)

The dispersion relation following from eq. (16) is

2 + K 2 ] 1 / 2 , (17)

which should be compared to eq. (5). As seen
from the plot of the dispersion relation in fig. 3,
in the four-wave mixing cell there is a momen-
tum gap fiKn = y0/c, instead of the energy gap Δ(}

in the superconductor [4].
The solution in the four-wave mixing cell

Fig. 3 Dispeision relation tor photons in free space (dashcd
curvc) and in a four-wave mixing cell, exhibitmg a momen-
tum gap fiK„ ( fü l l cuive)

( | z | < L L ) , for a probe beam moving in thc z-
direction is of the form

- AA

, e'7|2/2

A Λ %,/ 2!6·
\Q - '

(18)

where η, and 17, are the two Solutions of eq.
(16):

.
τη. = — φ + ττ — arcsml

•·ηΊ = -φ + arcsin
Το

(19)

(20)

The coefficients A , and A _ are determined from
the requirements <?p = <£p m at z = - LL and o? L =
0 at z = 0. The result is

CS (z) = % ,n

 Z exp(i/c ( )(Lc + z)) ,

sin(ßz)

exp(i[^(l(Lc + z) + 0-|]), (21)

with the definition

(22)

For 5 = 0 this solution reduces to eq. (15).
A probe beam at frequency ω(| ± δ (Ο < δ <t

ω,,) generates a reflected beam at frequency
ω() + S, with an amplitude

(23)

The phase shift χ^ and the reflection coefficicnt
R follow from the above solution (21). The
phase shift between probe and incident beam is
given by

;T = 0 - f - a r g f l ( - L t ) (24)

= 0- |±arctan[—tan( j8L c )J , (25)
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with Δ/c = 281 c. Whereas Andreev reflection oc-
curs with (approximately) unit probability for
e < Δ(}, the reflection cocfficient R for a four-
wavc mixing cell depends on the detuning 8,

(26)

In fig. 4 we havc plotted R2 for K()LC = ττ/4. In
the weak coupling limit [7] /< ( ) <t|A/c| the reflec-
tion coefficient may be approximated by
R = K„Lcsinc(AÄ:L (_./2), and the phase shift by
χ± = φ - ττ/2 ± A&L c/2. In the opposite l imit
|A&| <? K() one has instead R = l and χ± = φ - ττ/
2. As discussed by Siegman et al. [18], the
characteristic shapc of the R versus Δ/c curve
(reminiscent of the Fourier power spectrum of a
square pulse) can be understood from the fact
that the interaction time of probe and conjugate
beams with the medium is cut off for times
exceeding twice the transit time L Je. Indeed,
the width of the central lobe in fig. 4 corresponds
to a detuning δ = c Ak/2 ~ c/Lc.

In order to establish the analogy with the
geometrical resonances in an NS bilayer, and
with the Josephson effcct in an SNS junction, we
examine the axial mode spectrum of an optical
resonator. If the resonator is formed by two
conventional flat mirrors separated by a distance
L (a Fabry-Perot resonator) the axial modes for
normal incidence havc frequencies

ω = rmrcl L , m = l, 2, . . . . (27)

-3 -2

Fig. 4. Power reflection coefficient versus detuning in a
four-wave mixing ccll, for the case KaLL = ττ/4.

This follows from the requirement that the phase
shift 2kL on a single round trip (including two
phase shifts of ττ on reflection off a front-silvered
mirror) is an integer multiple of 2ττ.

Axial modes may also be formed in a re-
sonator with one conventional mirror and one
phase-conjugating mirror (see fig. 5(a)). Because
the frequency of probe and conjugate beam
jumps by an amount ±28 on each reflection, the
phase shift acquired on two round trips should
equal an integer multiple of 2ττ (after which the
original frequency is recovered) [17, 18]. In view
of eq. (25) this implies an axial mode spectrum
which for normal incidence is given by

45 L
+ 2 arctanl — tan(/3Lc) l = 2irm ,

c L 2 ß

/n =0 ,1 ,2 , (28)

Interestingly, a bound state with frequency ω,,
(i.e. 5 = 0, m = 0) exists for all values of the
resonator Icngth L. As will be discussed in sec-

(a)
ω0 +

ω0-

α>0-

δ

δ

δ

ω0 + δ

* *-
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Fig. 5. (a) Optical resonator with one conventional mirror
and one phase-conjugating mirror. The criterion for the
formation of an axial mode is that the phase shift acquired on
two round trips is an integer multiple of 2-ir. (b) Optical
resonator with two phase-conjugating mirrors. The criterion
for the formation of an axial mode is that the phase shift
acquired on one round trip is an integer mult iple of 2ττ. The
mode frequencies depend on the phase diffcrcncc φ, - <f>2.
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tion 4, this axial mode spectrum is analogous to
the quasiparticle excitation spectrum m an NS
bilayer In the weak couphng hmit κη <l |A/c | eq
(28) reduces to δ = mirc/[Lc + 2L], and in the
opposite hmit to δ = rmTC/2L

In d cavity with two phase-conjugatmg mirrors
pumped dt the same frequency ω(), the frequency
jumps from ω() + δ to ω,, - δ and back m a smgle
round-tnp (see fig 5(b)) [18] The condition for
the formation of an axial mode now becomes

28 L
2arctanl — tan(/3L c) l = 2irm ,

(29)

where the ± sign corresponds to the two possible
propagation directions of the beam with fre-
quency ω() + δ, and Δ φ denotes the difference in
phase of the couphng constants γ in the two
mirrors One may adjust Δψ by varymg the
phasc difference of the pump beams In the
weak and strong couphng limits one has
δ = ( + Δψ + m2<rr)c/2(Lc + L) and δ = (τΔψ +
ra2Tr)c/2L, respectively In either hmit the fre-
quency depends hnearly on Δ φ Note that the
difference between the two limits disappears al-
together for a short cell with Lc <^ L

The discrete excitation spectrum of a clean
SNS junction, to be discussed in section 5, has a
similar dependence on the phase difference of
the pair potential in the two superconductmg
regions The analogy is most complete for the
case K0LC = ττ/4, correspondmg to a unit reflec-
tion probabihty for δ = 0 In the optical case,
there is then at least one axial mode withm the
first lobe of the reflection probabihty curve (fig
4), even in the short resonator hmit L <ξ Lc This
is analogous to the fact that an SNS junction has
at least one bound state, even in the hmit of a
very short normal region (L <l £0) The phase
dependence of these bound states is at the ongin
of the Josephson effect

A resonator with two phase-conjugating mir-
rors does not have stable axial modes if the
mirrors are pumped at different frequencies ω,
and ω2 The frequency of a wave m the resonator
then mcreases (or decreases) by 2(ω, - ω2) οη
each round tnp [18] In view of the analogous

role of the pumping frequency and the Fermi
level in a superconductor, one would expect a
similar effect in a voltage biased SNS junction
This is indeed the case e mcreases by eV on each
pass through the normal region, until the
quasiparticle escapes mto the superconductor
(when e > 4()) or until melastic scattenng Inter-
rupts the process [19]

4. Andreev reflection through a quantum
point contact

In a typical Andreev reflection expenment
(see fig 6), a point contact in a normal metal is
used to mject electrons balhstically towards an
mterface with a superconductor The Andreev-
reflected holes may be dctected by focusmg them
onto a second point contact by means of a
magnetic field [20, 21] The apphcation of a mag-
netic field also leads to a reduction of the con-
ductance of the injector point contact [22,23],
for the followmg reason The mjected electrons
are Andreev reflected äs holes, back through the
point contact (normal reflection can be ignored if
there is no potential barner at the NS mterface)
Smce the Charge of the holes is +e, Andreev
reflection doubles the current and hence the
conductance The conductance is reduced to its
normal value m a weak magnetic field, because
the Andreev-reflected holes are deflected away
from the injector (dashed trajectory in fig 6)
The reduction of G by a magnetic field is a
sensitive probe of Andreev reflection

Fig 6 Andreev reflection äs holes of electrons which are
mjecled by a point contact (füll lines) has the effect of
doublmg its conductance This effect is suppressed in a
magnetic field due to the curvature of the trajectones of
electrons and holes (dashed curve)
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If the width of the point contact is comparablc
to the Fermi wavelength A r , we have what is
known äs a quantum pomt contact [11—13]. The
conductance of a quantum point contact is quan-
tized in units of 2e2/h, G = N(2e2lh). The integer
N equals the number of transverse modes at the
Fermi energy which can propagate through the
constriction. The conductance of a quantum
point contact will also be doubled by Andreev
reflection. This should be obscrvable äs a quanti-
zation of the conductance in units 4e /h, instcad
of 2e2/h.

In betwcen conductance plateaux deviations
from the simple factor-of-two enhancement
should be expccted, howevcr. In particular, if
the point contact is small compared to A r , ballis-
tic transport is no longer possible, because there
are no propagating modes (/V = 0). The current
is then carried by evanescent modes, which can
tunnel through the constriction. The problem
resembles that of tunneling through a wide bar-
ner into a normal metal overlaycr on a supercon-
ductor (S). In that case the tunnel current can be
obtained from the excitation spectrum in the
normal metal [23,24]. The combination of An-
dreev reflection at the NS interface and normal
reflection at the tunnel barrier, gives rise to the
formation of bound states for energies e < Δη

[25—27]. This discrete spectrum can be readily
obtained for the case of a stepwise increase of
the pair-potential at the NS interface, and for
specular reflection at the tunnel barrier. The
quantization condition is that the phase shift ζ
after two Andreev reflections and two specular
reflections equals an integer multiple of 2ττ (see
fig. 7(a)). The reflections themselves contributc
η1' - ηκ = -2 arccos(e/40) to ζ (cf. eq. (4)). The
two "round trips" contribute 2L5k/cos 0, with L
the Separation of tunnel barrier and NS inter-
face, and δ/c = kL - kh the wave vector differ-
ence of elcctron and hole. Since 8 /c~2e /Äu r

(section 2), onc finds the condition for a bound
state in the form [25]

4eL 0 e
2 arccos —

ÜF cos θ 4()

(a)

(b)

ΔηΘ
ιφ-ι Λ Ριφ2

" e

Fig 7 (a) Andiccv levels are formcd in an NS bilaycr if the
phase shift acquncd on two round trips is an integer multiple
of 2-TT (b) Andicev Icvcls are formcd in an SNS junction il
the phase shi f t acquired on onc round tnp is an intcgci
multiple of 2ττ The energies of the bound states depends on
the phase diftcrcnce ψ, — φ2.

The spectrum (30) for θ = 0 is similar to that of
eq. (28) for a resonator with one phase-conjugat-
ing mirror.

The bound states given by eq. (30) are observ-
able äs "geometrical resonances" in the differen-
tial conductance of a tunnel barrier on top of an
NS bilayer [23-27]. The enhancement factor of
the current on resonance over its value in the
absence of Andreev reflection greatly exceeds
the factor of two characteristic of the ballistic
case. (The enhancement is similar to the en-
hancement of the current in resonant tunneling
through a Symmetrie double-barrier tunneling
diode.) Calculations of the transmission prob-
ability [23,24] give for 0 = 0, e < 4„ the result
[24]

7X0 =
2

1 +j[ l -cos ζ] '
(31)

= 2ττιη , m = 0, l, 2, . . . . (30) where 5 is a function of the transmission prob-
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abihty T0 of the tunnel barner in the absence of
Andreev reflection As expected, transmission
maxima with 7 = 2 are obtamed at ζ = 2nm In
that case a bound state comcides with the energy
of the mjected particles (for 0 = 0) A tunnel
barner corresponds typically to T„ <l l In that
case s =2/Tl [24], so that the minimal transmis-
sion is Τ=Γ, 2

) /2 Ballistic transmission corre
sponds to Γ0 = l Then s = 0 [24], so that 7 = 2,
independent of the phase ζ

In the case of tunnelmg through a wide bar-
ner, the transverse modes (corresponding to dif-
fcrent values of Θ) may be considered indepen-
dently, smce the momentum parallel to the bar
ner is conserved In contrast, a pmched-off
quantum point contact excites a coherent super-
position of the transverse modes in the wide
normal region [9] f This diffraction effect may
well modify the geometncal resonances

5. Josephson effect in a quantum point contact

It is well known that the cntical current of a
supcrconductmg weak link is determmed by its
normal-state conductance [28] What happens if
the weak link is a quantum point contact9 We
have recently addressed that question [29]
theoretically [1] We find that in a short quantum
point contact (of length L <l £0) each propagatmg
transverse mode contnbutes eAQlh to the cntical
current at zero temperature As a result, the
cntical current is predicted to increase stepwise
äs a function of width or Fermi energy The Step
height eA0/h depends on the gap m the bulk
superconductors, but not on the properties of the
constriction This is to be contrasted with the
case of a quantum point contact in an SNS
junction with LN §> £„ where no such universal
behavior is found [2] (LN is the Separation of the
NS Interfaces)

In order to understand the difference between
the two geometries, let us first consider the case
of an SNS junction without a quantum point

'f An dtomically sharp tip of a scannmg tunnelmg microscope
is likely to function in the same way providing an alterna
tive expenmental System m which to stucly these effects

contact (fig 7(b)) The pair potential profile has
to be determmed self-consistently As a first
approximation, we assume

A(r) =
if z < 0 ,
i f O < z < L N

if Z > LM

(32)

The bound states for e < 40 may be found by
equatmg the phase shift acquired on a smgle
round trip to an integer multiple of 2ir The
resulting condition is [5, 30]

2eLN e
- 2 arccos — ± οώ = 2-ττ/η ,

nvP cos θ Δα

m = 0,1, (33)

where δφ = φ, - φΊ Ε. (—ττ, ττ) and θ is the angle
with the normal to the N-S mterface The ± sign
corresponds to the two directions of motion of
the electron (or hole) For e <g 40 the spcctrum
depends hnearly on δψ, according to
e = [(2m + l)TT + 8^]ÄüFcos0/2LN Note the
similanty to the phase dependence of the axial
modes in a resonator with two phase conjugating
mirrors (compare with eq (29) m the hmit Δ/c <f

K<>)
For LN l> ξ() the energy spectrum of the SNS

junction depends sensitively on LN The Joseph
son current is a piecewise linear function of δψ
with a cntical current given by [31] /c = aGhvP/
eLN where α is a numencal coefficient of order
unity (dependent on the dimensionahty of the
System) and G is the normal state conductance of
the SNS junction The dependence of 7C on the
junction geometry (through LN) is charactenstic
of the case LN^>£ 0, and persists if the SNS
junction contams a constriction in the normal
region [2]

In the opposite hmit L N <l£ 0 , only a smgle
bound state for each of the N transverse modes
remains, at energy e = 4() cos(80/2) indepen-
dent of LN This result imphes a zero-tempera-
ture Josephson current1''1

" The equality 7(δψ) - -/V(2e/A)(de/d8<£) follows from the
general formula / = (2e/fi) dF/d§<f> with F the free energy
[32] m the hmit Γ = 0 LN < ξ [33]
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and critical current

e
c - ft 0 '

(34)

(35)

both of which are independent of LN. The results
(34) and (35) are, however, not independent of
the ansatz (32) made for the pair potential pro-
file, and are therefore only a first approximation
to the result for a self-consistent pair potential.
The self-consistency equation (10) implies that
A(r) becomes a constant 4„ e1* only at a distance
£„ from the interface with the normal metal, in
disagreement with the ansatz (32).

The case of a superconducting quantum point
contact is fundamentally different [1]. If the two
superconducting reservoirs are coupled via a nar-
row constriction, of length L<S£ ( ), then non-
uniformities in A(r) decay on the length scale L
rather than ξ0. This "geometrical dilution" effect
was pointed out by Kulik and Omel'yanchuk
[34]. The behavior of A(r) within the constriction
depends on its shape, and on whether the point
contact consists of a superconductor or of a
normal metal. However, äs we have shown in
ref. [1], the energy spectrum and Josephson
current are independent of the behavior of A(r)
for \x < L. The results for a superconducting
quantum point contact are formally identical to
those for an SNS junction with LN <l £(). How-
ever, now the energy spectrum and critical cur-
rent are the correct results for the self-consistent
pair potential, rather than a first approximation.
At finite temperatures we find for the Josephson
current the expression

= N-A0(T)Sin(^/2)

x tanhf
\2kBT

cos(ö<A/2) (36)

plotted in fig. 8 for three temperatures. In the
classical limit yv^>°° our result agrees with that
of Kulik and Omel'yanchuk [34].

0.5

ω
z

-0.5

-3π -2π -π Ο

δφ

π 2π 3π

Fig. 8 Current-phase differencc rclation in a superconduct-
ing quantum point contact, much shorter than the coherence
length, calculated from eq. (36) for three temperatures. Füll
line: T = 0. Dashed line: T=().\A„lka. Dotted line:
T = 0.2A„/kK At these tcmpciatures Δ(, has approximatcly
its zeio-tcmpcrature valuc.

This is a good place to conclude our contribu-
tion to this Symposium on analogies. The con-
ductance quantization of a quantum point con-
tact for electrons was discovered by surprise
[12, 13]. The analogy with photons led to the
prediction [9] and observation [10] of the discret-
ized optical transmission cross-section of a slit.
Now the notion of analogies has brought us the
quantum point contact for Cooper pairs [1], with
its discretized Josephson current. We hope that
this paper will stimulate efforts to realize such a
superconducting quantum point contact ex-
perimentally.
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