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We discuss the analogy between the axial mode spectium of an optical resonator with one or two phase-conjugating
mirrors, and the quasipaiticle excitation specttum of an NS or SNS junction (N = normal metal, S = superconductor) As a
first application, we consider Andrecv reflection at an NS inteiface for the case that the injector of the current is a
quantum point contact We pomt out that when the point contact 1s close to pinch-oft quantum terference effects will
arise 1 the curient-voltage characteristic, and discuss the relation to the well-known geometrical 1esonances occurring
when a wide tunnel batrier 1s used as an mjector As a second application, we show that the quantized conductance of a
point contact has its counterpart m the stationary Josephson eftect The critical current of a superconducting quantum
point contact, shott compared to the coherence length, 1s demonstiated to incicase stepwise as a function of 1ts width or

Fernu cnergy, with a universal step height ed /%

1. Introduction

In this paper, we give a tutorial introduction
and discussion of recent theoretical results {1, 2]
concerning transport through point contacts be-
tween superconducting regions. In the spirit of
this symposium, our contribution has an analogy
as its leitmotiv. The analogy [3,4] is betwecn
Andreev reflection [5] and optical phase conju-
gation [6, 7]. This analogy is not as complete as
that between conduction in the normal state and
transmission of light [8—11], but it is nevertheless
instructive.

The basic theoretical concepts underlying An-
drecv reflection are reviewed in section 2. In
section 3 we introduce optical phasc conjugation,
and discuss the axial mode spectrum of re-
sonators with two phase-conjugating mirrors, as
an analogy to the Andrecv spectrum 1n an SNS
junction (S = superconductor, N = normal
metal). In section 4 we consider possible new
effects in an Andrecv reflection experiment with
a quantum point contact as an injector. We
discuss the relation with the geometrical reso-
nances observed in tunneling experiments on an

NS bilayer, which has an analogue in a resonator
with one normal and onc phase-conjugating mir-
ror. The coupling of transverse modes at the
quantum point contact— a diffraction effect —is
expected to be important, but has not yet been
investigated.

In section 5 we review our recent theoretical
work on the stationary Josephson effect in a
weak link formed by a superconducting quantum
point contact [1]. The critical current of a super-
conducting quantum point contact which 1s short
compared to the coherence length &, is predicted
to increase stepwise as a function of the width of
the point contact. The step height ed,/# is in-
dependent of the properties of the junction, but
depends only on the energy gap 4, in the bulk
superconductors. This effect is the analogue of
the quantized conductance [12, 13] of a quantum
point contact in the normal state. The origin of
the Josephson effect is the dependence of the
excitation spectrum on the phase difference of
the superconductors on ecither side of the junc-
tion. The axial mode spectrum in an optical
resonator with two phase-conjugating mirrors
depends on the phase difference of the laser
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beams pumping the mirrors. Such a resonator
may therefore be regarded as the optical ana-
logue of a weak link exhibiting the Josephson
effect.

2. Andreev reflection

Let us first summarize some basic properties of
the excitation spectrum of a bulk superconduc-
tor. The quasiparticle excitations of a supercon-
ductor are described by the two-component wave
function ¥ = (u, v), which is a solution of the
Bogoliubov—de Gennes (BdG) equation [14]

(4 5 )w=cr. (1)
Here 3¢ =(p+ eA)’/2m+V— E. 1s the single-
electron Hamiltonian in the presence of a vector
potential A(r) and an electrostatic potential V(r).
The excitation energy € > 0 is measured relative
to the Fermi energy E.. The pair potential A(r)
vanishes in a normal metal. In this casc « and v
are the wave functions of independent electron
and hole excitations.

The dispersion law for a normal metal in the
case A =0, V=0 is given by

e=|p%2m— Ep|~hvplk — k|, (2)

in terms of momentum p or wave vector k, with
vy = (2E./m)'"? the Fermi velocity, and k. =
mu/f the Fermi wave vector. The linear approx-
imation in eq. (2) holds if e < E.. A plot of €
versus k 1s given in fig. 1 (dashed curve). The
dispersion law corresponds to electron excita-
tions (v = 0) for |k|> k., and to hole excitations
(u=0) for |k| < k.

In a superconductor, A is non-zero. The cou-
pled equations for u and v then describe a
mixture of clectron and hole excitations. Con-
sider a uniform bulk superconductor with A(r) =
A, €'’ and V(r) =0. A plane wave solution of the
BdG equation has the form

()= (L) e ()

IR

0 ke
— Kk

Fig 1 Dispersion ielation for electrons and holes i a
normdl metal (dashed curve) and for quasiparticles in a
superconductor, cxhibiting an cnergy gap 4, (full curve)

where 1 and k = |k| satisfy [15]

€= 4, cos(n— ),
Ak 2m = E. +i4, sin(n — ¢) . (4)

The resulting dispersion law is given by
e =[(F°kY2m — Ep)* + A3]"% (5)

as plotted in fig. 1 (full curve). Quasiparticles
have an excitation gap A, in a uniform supercon-
ductor. For € > A, the dispersion laws (2) and
(5) of normal metal and superconductor
coincide.

The (unnormalized) wave functions ¥*" de-
scribing an electron-like (e) or hole-like (h)
quasiparticle at energy € are given by

me b2 ,
eh _ e kN oy
4 = <e_mL h/2> S s (6)

with the definitions”

' "= ¢+ ¢° "arccos(e/4,) , (7)
koM = 2mih?) P Ep + o (e - 4072,

(8)
oct=1, o"=-1. (9)

One can verify that for e > 4,, ¥“ has v=20 (a
true electron), while ¥" has u =0 (a true hole).

” The function arccos f 15 defined such that arccos t € (0, w/2)
for 0<t<1, fort>1, onc has 1arccos = In[t + (£ — 1)'?]
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At € = A, one has ¥ =" so that the excita-
tions have equal electron and hole character.

Andreev reflection is the anomalous reflection
of an clcctron with € <4, in a normal metal at
the boundary with a supcrconductor {5]. Because
of the cxcitation gap 4, the electron cannot
propagatc in thc superconductor. Ordinary
specular reflection has only a small probability if
the kinctic energy of motion normal to the NS
interface is much larger than A4, (which is the
case except for grazing incidence, since 4,<€
E.). Instead, a Cooper pair is added to the
supcrconductor, the incident clectron is annihi-
lated, and a hole is reflected back along the
original path of thc clectron. This is known as
Andreev reflection. Incident and reflected
quasiparticles have approximately equal wave
vectors k° =k + e/fiv, and k"= k. — elfvy,
but opposite directions of motion (as follows
from the opposite sign of the group velocity
de/f dk for electrons and holcs). Energy is con-
scrved: The Cooper pair has energy 2E., the
cnergy of the incident electron is Eg + €, and
that of the reflected hole is E, — e. Momentum is
conserved up to terms of order |k* — k"| <#/&,,
with §,=fhv/m4, the superconducting coher-
cnce length.

Andreev reflection can be described by the
BdG cquation. The variation of A(r) at the NS
interface has in general to be determined sclf-
consistently from the equation

A(r) = 8(r) 2 v, (D, (N[1 = 2/(e,)} (10)

Here g is the BCS coupling constant (g=0in N
and g >0 in S), fis the Fermi function, and the
sum is over all eigenvalucs €, > 0. The qualita-
tive features of Andreev reflection are indepen-
dent of the precise pair potential profile. Con-
sider, as an example, a stcp-function profile for
the pair potential (A =0 for z <0, and A= 4,¢e"*
for z>0). In the normal metal (z<0), the
incident electron has a wave function A exp(ik® -
r)(1, 0) and the reflected hole has a wave func-
tion B cxp(ik"-r)(0,1). In the superconductor
(z>0) only the exponcntially decaying wave
function C¥° is acceptable if ordinary reflections

arc neglected. Matching of the amplitudes at
z =0 determines thec cocfficients of the wave
functions,

R S R

Incident and reflected waves have equal am-
plitude in absolute valuc, |A|=|B|. The An-
drecv-reflected hole acquires a phase factor B/
A = cxp(—in°) relative to the incident electron.
Similarly, an Andreev-reflected electron acquires
a phase factor exp(in"). For Andreev reflection
at the Fermi energy (e =0) one has k°=k"
Only then is the reflected wave the precise time
reverse of the incident wave (with a phase differ-
ence —m/2* ).

3. Resonators with phase-conjugating mirrors

Andreev reflection is analogous to optical
phasc conjugation [3]. So far, this analogy has
only been worked out for the casc of a single NS
junction, or a single phasc-conjugating mirror
[4]. In this paper we consider the bound states
that occur due to multiple Andrcev reflections in
NS bilayers and SNS junctions, and establish the
analogy with the axial modes in resonators with
normal and/or phase-conjugating mirrors. In the
present section we examine the optical problem.
For simplicity of notation, we takc € = ¢, for the
diclectric constant. Consider a cell of length L,
containing a medium with a third-order non-
lincar susceptibility V', pumped by two intense
counter-propagating laser beams of frequency w,
(fig. 2(a)). Due to the nonlinear interaction, a
weak probe beam of frequency w, + 6 incident
on this medium at z = — L_emerges amplified at
z=0. In addition, a fourth beam is generated,
with a wave vector opposite to that of the probe
beam. This reflected beam starts with zero inten-
sity at z=0 and emerges from the cell at z =
— L. This is known as four-wave mixing [6, 7]. If
8 =0 (degenerate case) the rctro-reflected beam
is the exact phase conjugatc of the probe beam,
cxcept for a different intensity. For non-zero
6 < w, (nearly-degenerate four-wave mixing) the
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Fig 2 (a) Four-wave mixing cell pumped by two countet-
propagating bcams at frequency w,, with probc beam at
w, + & and a reflected conjugate beam at w, ~ 8 (b) Spatial
vanation of the intensities of probe and conjugate beams
within the cell, for § =0 and «,L_=mw/4

reflected beam has frequency w, — 8, analogous
to Andreev reflection as a hole with energy
E. — € of an incident clectron with energy E. +
€. The mechanism of four-wave mixing is that
from each of the two pump becams a photon is
annihilated. One photon is added to the probe
beam, and another to the reflected beam. The
frcquencies are only approximately equal, to
order 6. Hence the requirement é < w,, similar
to the case of Andreev reflection. A difference
with Andreev reflection is that the wave vector
changes sign with four-wave mixing, but not with
Andreev reflection.

In order to explore these similarities and dif-
ferences it is instructive to consider the mathe-
matical description of nearly-degenerate four-
wave mixing. This may be done on the basis of a

“Schrodinger cquation for light” [8], extended to
account for the third-order nonlinear suscep-
tibility [4]. In its stationary form, this equation
relates the complex amplitudes & and &_of the
probe beam and its phasc-conjugate

H i ng o
(5 ) m(E)

where H=p*/2m,— hw,. A common factor
e "““ has been eliminated from all amplitudes.
The equivalent mass of the photon is m,=
fiw,/c*. The probe beam is coupled to its phase
conjugatc in a region with non-zero vy, which
plays the role of the complex pair potential A in
the superconductor. The strength of the coupling

— ﬁw()c (e ¢
Y= 260 X @lg’l’ (13)
is proportional to the product of the complex
amplitudes €, and €, of the two pump beams
with opposite wave vector. Equation (12) is valid
only for 6 <w,, in view of the slowly-varying
envclope approximation on which it is based.

For degenerate four-wave mixing (6 =0), the
solution in a medium with constant y = y,e'?, for
a probe beam traveling in the positive z-direc-
tion, is given by

© cos(kyz) e *"?
<%)G> :constant( , ((0 ) e e, (14)
¢ —isin(k,z) """

with k, = y,/fic and k, = w,/c. The probe beam
impinges on the cell at z = — L_ with amplitude
€, ., and emerges at z =0 with the larger am-
plitude €, ... The conjugate beam starts with
zero amplitude at z =0 and emerges with am-
plitude &_,, at z= —L_. The incident amplitude

& determincs the constant prefactor in (14),

p

with the result

cos(k,z)

(gp(z) = gp.m m exp(lk()(Lc + Z)) ’

sin(k,z)
CgL((Z) = %gp m COS(K()L )
C

X exp(i[k(,(LL +2)+ P — g]) . (15)
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The spatial variation in the cell of thec probe and
conjugate beam intensities is plotted in fig. 2(b)
for a coupling strength «,L_=m/4, chosen in
order to have a conjugate beam with the same
intensity as the incident probe beam (i.e.
1€, oul” =18, ,|*)- This choice corresponds most
closely to Andreev reflection. The wavelength
2m/k, = hcly, is the analogue of the supercon-
ducting coherence length & ,=#hv/mA4,. These
lengths set the scale for the penetration depth in
the four-wave mixing cell and in the supercon-
ductor, respectively.

Let us now consider nearly-degenerate four-
wave mixing [16, 17]. Substitution of (&, €)=

(€™ e et into eq. (12), with y=
\¢h

v,c'¥ and k, = w,/c, gives a set of cquations
similar to eq. (4):

h6 = —iy, sin(n + @),
heB= —,cos(n+ ¢). (16)

The dispersion relation following from cq. (16) is
B=[(8/¢)" + k3]'"?, (17)

which should be compared to eq. (5). As seen
from the plot of the dispersion relation in fig. 3,
in the four-wave mixing cell there is a momen-
fum gap fik, = v,/c, instead of the energy gap 4,
in the superconductor [4].

The solution in the four-wave mixing cell

Fig. 3 Dispersion relation tor photons in free space (dashed
curve) and 1n a four-wave mixing cell, exhibiting a momen-
tum gap fik, (full curve)

(|z] < L), for a probe bcam moving in the z-
direction is of the form

oo my/2
(Op = A e"‘ Cx(l\(,ﬁﬁ):
((gn [ e*lnl/?_

11)5/2

sa () et (18)

where 7, and 7, are the two solutions of eq.
(16):

ihd
n,:—¢+7r—arcsin<l—>, (19)
Yo
iné
n=—¢+ arcsin(%) . (20)
0

The coefficients A, and A _ are determined from
the requirements € = €, atz=—-L and ¢ =
0 at z=0. The result is

pm

) w 0(z) .
((gp(z) = (gp m Q(_( L() exp(lkl)(l‘c + Z)) ’
¢ o Sin(Bz)

(gi(Z) = é7p n Q(_L )

X cxp(i[k(,(g +2)+ b - g]) , @D
with the definition

0(z)=[1+ (£8/y,)°]"*cos(Bz)
+i(hd/y,) sin(Bz) . (22)

For & = 0 this solution reduces to eq. (15).

A probe beam at frequency w, =6 (0<<é <
w,) generates a reflected beam at frequency
w, = &, with an amplitude
€l =& RN . (23)

c,out

The phase shift Y~ and the rcflection coefficient
R follow from the above solution (21). The
phase shift between probe and incident beam is
given by

oo Tamacty 2
Ak
= - g + arctan[ﬁ tan(BLc)] ; (25)
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with Ak =28/c. Whereas Andreev reflection oc-
curs with (approximately) unit probability for
€ < 4,, the reflection cocfficient R for a four-
wave mixing cell depends on the detuning 4,

R sn(BL) o6)
Kycos (BL.)+ (Ak/2)

In fig. 4 we have plotted R® for k,L.==/4. In
the weak coupling limit [7] «, < |Ak| the reflec-
tion coefficient may be approximated by
R = k,L_sinc(AkL./2), and the phase shift by
x =¢ —mw/2xAMkLJ/2. In the opposite limit
|Ak| < K, one has instead R=1and x~ = ¢ — 7/
2. As discussed by Siegman et al. [18], the
characteristic shapc of the R versus Ak curve
(reminiscent of the Fourier power spectrum of a
square pulse) can be understood from the fact
that the interaction time of probe and conjugate
beams with the medium is cut off for times
exceeding twice the transit time L./c. Indeed,
the width of the central lobe in fig. 4 corresponds
to a detuning 6 =c Ak/2~c/L..

In order to establish the analogy with the
geometrical resonances in an NS bilayer, and
with the Josephson effect in an SNS junction, we
examine the axial mode spectrum of an optical
resonator. If the rcsonator is formed by two
conventional flat mirrors separated by a distance
L (a Fabry—Perot resonator) the axial modes for
normal incidence have frequencies

w, =mmwc/L, m=1,2,.... (27)

0 ! I |
-3 -2 -1 0 1 2 3

— AkL /2n

Fig. 4. Power reflection cocfficient versus detuning in a
four-wave mixing ccll, for the case k,L = /4.

This follows from the requirement that the phase
shift 2kL on a single round trip (including two
phase shifts of = on reflection off a front-silvered
mirror) is an integer multiple of 2.

Axial modes may also be formed in a re-
sonator with one conventional mirror and one
phase-conjugating mirror (see fig. 5(a)). Because
the frequency of probe and conjugate beam
jumps by an amount +28 on cach reflection, the
phase shift acquired on two round trips should
equal an integer multiple of 2w (after which the
original frequency is recovered) [17, 18]. In view
of eq. (25) this implies an axial mode spectrum
which for normal incidence is given by

L et 2K (oL -2
c arctan 28 an(BL.) | =2mm,

m=0,1,2,.... (28)
Interestingly, a bound state with frequency o,

(i.e. =0, m=0) exists for all values of the
resonator length L. As will be discussed in sec-

(@)
W+ 0
/ wy— 0
y W, — & Yo
Wy + O
z
-~ L.
(b)
Wy + 0
Yoeum Yoe"Dz
w,— 0
Le L L

Fig. 5. (a) Optical resonator with one conventional mirror
and one phasc-conjugating mirror. The criterion for the
formation of an axial mode is that the phasc shift acquired on
two round trips is an integer multiplc of 2w. (b) Optical
resonator with two phasc-conjugating mirrors. The criterion
for the formation of an axial mode is that the phase shift
acquired on one round trip is an integer multiple of 27. The
mode frequencies depend on the phasc diffcrence ¢, — ¢,.
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tion 4, this axial mode spectrum 1s analogous to
the quasiparticle excitation spectrum in an NS
bilayer In the weak coupling limit x, < |Ak| eq
(28) reduces to & = mmc/[L,+2L], and 1n the
opposite limit to 6 = mwc/2L

In a cavity with two phase-conjugating mirrors
pumped at the same frequency w,, the frequency
jumps from w, + 8 to w, — & and back 1n a single
round-trip (see fig 5(b)) [18] The condition for
the formation of an axial mode now becomes

20L A
— *Ad + 2arctan[2—g tan(BLc)] =2mm

(29)

where the * sign corresponds to the two possible
propagation directions of the beam with fre-
quency w, + 8, and A¢ denotes the difference 1n
phase of the coupling constants y mn the two
mirrors One may adjust A¢ by varying the
phase difference of the pump beams In the
weak and strong coupling hmits one has
6 =(FAd + m2m)c/2(L .+ L) and 8§ =(FA¢ +
m2mw)c/2L, respectively In erther limit the fre-
quency depends linearly on A¢ Note that the
difference between the two limits disappears al-
together for a short cell with L < L

The discrete excitation spectrum of a clean
SNS junction, to be discussed 1n section 5, has a
similar dependence on the phase difference of
the pair potential in the two superconducting
regions The analogy 1s most complete for the
case k,L_= w/4, corresponding to a umt reflec-
tion probability for 6 =0 In the optical case,
there 1s then at least one axial mode within the
first lobe of the reflection probability curve (fig
4), even 1n the short resonator imut L < L, This
1s analogous to the fact that an SNS junction has
at least one bound state, even in the hmit of a
very short normal region (L <§&,) The phase
dependence of these bound states 1s at the origin
of the Josephson effect

A resonator with two phase-conjugating mur-
rors does not have stable axial modes if the
mirrors are pumped at different frequencies w,
and w, The frequency of a wave 1n the resonator
then increases (or decreases) by 2(w, — w,) on
each round trip [18] In view of the analogous

role of the pumping frequency and the Fermi
level 1n a superconductor, one would expect a
similar effect m a voltage biased SNS junction
This 1s mdeed the case e increases by eV on each
pass through the normal region, until the
quasiparticle escapes nto the superconductor
(when € > 4,) or until inelastic scattering inter-
rupts the process [19]

4. Andreev reflection through a quantum
point contact

In a typical Andreev reflection experiment
(see fig 6), a pomt contact in a normal metal 1s
used to iject electrons ballistically towards an
mterface with a superconductor The Andreev-
reflected holes may be detected by focusing them
onto a second point contact by means of a
magnetic field [20,21] The application of a mag-
netic field also leads to a reduction of the con-
ductance of the injector poiwnt contact [22, 23],
for the following reason The njected electrons
are Andreev reflected as holes, back through the
point contact (normal reflection can be 1gnored if
there 1s no potential barrier at the NS interface)
Since the charge of the holes 1s +e, Andreev
reflection doubles the current and hence the
conductance The conductance 1s reduced to 1ts
normal value n a weak magnetic field, because
the Andreev-reflected holes are deflected away
from the injector (dashed trajectory m fig 6)
The reduction of G by a magnetic field 1s a
sensittve probe of Andreev reflection

Fig 6 Andreev reflection as holes of clectrons which are
injected by a point contact (full hines) has the effect of
doubling 1ts conductance This effect 1s suppressed m a
magnetic field due to the curvature of the trajectones of
clectrons and holes (dashed curve)
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If the width of the point contact is comparablc
to the Fermi wavelength Ay, we have what is
known as a quantum point contact [11-13]. The
conductance of a quantum point contact is quan-
tized in units of 2¢”/h, G = N(2¢"/h). The integer
N equals the number of transverse modes at the
Fermi energy which can propagate through the
constriction. The conductance of a quantum
point contact will also be doubled by Andrcev
reflection. This should be obscrvable as a quanti-
zation of the conductance in units 4e*/A, instcad
of 2¢°/h.

In between conductance plateaux deviations
from the simple factor-of-two enhancement
should be expected, however. In particular, if
the point contact is small compared to A, ballis-
tic transport is no longer possible, because there
are no propagating modes (N =0). The current
is then carried by evanescent modes, which can
tunnel through the constriction. The problem
resembles that of tunneling through a wide bar-
rier into a normal metal overlaycr on a supercon-
ductor (S). In that case the tunnel current can be
obtained from the excitation spectrum in the
normal metal [23,24]. The combination of An-
dreev reflection at the NS interface and normal
reflection at the tunnel barrier, gives rise to the
formation of bound states for energies e < A4,
[25-27]. This discrete spectrum can be readily
obtained for the case of a stepwise increase of
the pair-potential at the NS interface, and for
specular reflection at the tunnel barrier. The
quantization condition is that the phase shift ¢
after two Andreev reflections and two specular
reflections equals an integer multiple of 2w (see
ﬁg 7(a)) The reflections themselves contribute
n" —n® = —2arccos(e/4,) to ¢ (cf. eq. (4)). The
two “round trips” contribute 2L8k/cos 8, with L
the separation of tunnel barrier and NS inter-
face, and 8k = k° — k" the wave vector differ-
ence of electron and hole. Since 8k ~2e/fivy
(section 2), onc finds the condition for a bound
state in the form [25]

_ 4del €
g_ﬁvp P 2 arccos A
=2mm, m=0,1,2,.... (30)

(a)

S
AO
{b)
S N S
Q// ANY
Aoelq” / Aoe|¢2
[¢]

Fig 7 (a) Andicev levels are formed in an NS hilayer 1if the
phase shift acquued on two round trips is an mteger multiple
of 2 (b) Andicev levels are formed m an SNS junction i
the phase shift acqured on onc round trip is an integer
multiple of 21t The cnergies of the bound states depends on
the phase difterence ¢, — ¢,.

The spectrum (30) for 6 =0 is similar to that of
eq. (28) for a resonator with one phase-conjugat-
ing mirror.

The bound states given by eq. (30) are observ-
able as “geometrical resonances” in the differen-
tial conductance of a tunnel barrier on top of an
NS bilayer [23-27]. The enhancement factor of
the current on resonance over its value in the
absence of Andreev reflection greatly exceeds
the factor of two characteristic of the ballistic
case. (The cnhancement is similar to the en-
hancement of the current in resonant tunneling
through a symmetric double-barrier tunneling
diode.) Calculations of the transmission prob-
ability [23,24] give for 6 =0, € <4, the result
[24]

2

)= 1+ sl —cos¢]’

(31)

where s is a function of the transmission prob-
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ability T, of the tunnel barrier 1n the absence of
Andreev reflection As expected, transmission
maxima with 7 =2 are obtamed at { =2nm In
that case a bound state comcides with the energy
of the njected particles (for § =0) A tunnel
barrier corresponds typically to T,<<1 In that
case s =2/T [24], so that the minimal transmis-
sion 15 7= T;/2 Ballistic transmission corre
sponds to T, =1 Then s =0 [24], so that T =2,
independent of the phase {

In the case of tunneling through a wide bar-
rier, the transverse modes (corresponding to dif-
ferent values of 6) may be considered indepen-
dently, since the momentum parallel to the bar
rier 1S conserved In contrast, a pinched-off
quantum point contact excites a coherent super-
position of the transverse modes in the wide
normal region [9] " This diffraction effect may
well modify the geometrical resonances

5. Josephson effect in a quantum point contact

It 1s well known that the critical current of a
supcrconducting weak link 1s determined by its
normal-state conductance [28] What happens 1if
the weak link 1s a quantum point contact?” We
have recently addressed that question [29]
theoretically [1] We find that 1n a short quantum
point contact (of length L < £,) each propagating
transverse mode contributes eA,/# to the critical
current at zero temperature As a result, the
critical current 1s predicted to increase stepwise
as a function of width or Fermu energy The step
height eA,/fi depends on the gap in the bulk
superconductors, but not on the properties of the
constriction This 1s to be contrasted with the
case of a quantum point contact 1n an SNS
junction with L, > &, where no such universal
behavior 1s found [2] (L 1s the separation of the
NS mterfaces)

In order to understand the difference between
the two geometries, let us first consider the case
of an SNS junction without a quantum point

* An atomcally sharp tip of a scanning tunneling microscope
1s likely to function 1n the same way providing an alterna
tive experimental system in which to study these effects

contact (fig 7(b)) The pair potential profile has
to be determined sclf-consistently As a first
approximation, we dssume

A,e'" if 2 <0,
A(r) =40 f0<z<Ly, (32)
Aye'® fz> Ly

The bound states for € <A, may be found by
equating the phase shift acquired on a single
round trip to an integer multiple of 2w The
resulting condition 1s [5, 30]

2e L ) € L sp—2
Fior cos 6 arccos At ¢é=2mm,

m=0,1, , (33)

where 8¢ = ¢, — ¢, € (—m, w) and 6 1s the angle
with the normal to the N-S interface The =* sign
corresponds to the two directions of motion of
the electron (or hole) For e <€ 4, the spcctrum
depends linearly on 3¢, according to
e=[2m+ 1)n *dpJhivpcos /2L, Note the
similarity to the phase dependence of the axial
modes 1n a resonator with two phase conjugating
miurrors (compare with eq (29) 1n the hmit Ak <
Ko)

For L > ¢, the encrgy spectrum of the SNS
junction depends sensitively on L, The Joseph
son current 1s a piecewise linear function of d¢
with a critical current given by [31] I, = a Ghvg/
el where « 1s a numerical coefficient of order
unity (dependent on the dimensionality of the
system) and G 1s the normal state conductance of
the SNS junction The dependence of /. on the
junction geometry (through L) 1s characteristic
of the case L > ¢,, and persists if the SNS
junction contams a constriction 1n the normal
region (2]

In the opposite hmit L < §,, only a single
bound state for each of the N transverse modes
remains, at energy € = 4, cos(8¢/2) mdepen-
dent of L This result implies a zero-tempera-
ture Josephson current**

** The equality 1(3¢) — —N(2e/A)(de/dd¢) follows from the
general formula I = (2e/#) dF/d8¢ with F the free energy
{32] inthe mit T=0 Ly <€¢ [33]
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2e¢ de
169) = ~N 5 52
:N%Aﬁm@¢uy T<3 <, (34)

and critical current
e

I.=N 3

4, (35)
both of which are independent of L. The results
(34) and (35) are, however, not independent of
the ansatz (32) made for the pair potential pro-
file, and are therefore only a first approximation
to the result for a self-consistent pair potential.
The self-consistency equation (10) implies that
A(r) becomes a constant 4, ¢'® only at a distance
¢, from the interface with the normal metal, in
disagreement with the ansatz (32).

The case of a superconducting quantum point
contact is fundamentally different [1]. If the two
superconducting reservoirs are coupled via a nar-
row constriction, of length L < ¢;, then non-
uniformities in A(r) decay on the length scale L
rather than §&,. This “geometrical dilution” effect
was pointed out by Kulik and Omel’yanchuk
[34]. The behavior of A(r) within the constriction
depends on its shape, and on whether the point
contact consists of a superconductor or of a
normal metal. However, as we have shown in
ref. [1], the energy spectrum and Josephson
current are independent of the behavior of A(r)
for |x|< L. The results for a superconducting
quantum point contact are formally identical to
those for an SNS junction with L <§,. How-
ever, now the energy spectrum and critical cur-
rent are the correct results for the self-consistent
pair potential, rather than a first approximation.
At finite temperatures we find for the Josephson
current the expression

I@@zN%AJDQMMQ)

X tanh(% cos(8d>/2)) , (36)

plotted in fig. 8 for three temperatures. In the
classical limit N— o0 our result agrees with that
of Kulik and Omel’yanchuk [34].
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Fig. 8 Current—phase difference relation in a superconduct-
ing quantum point contact, much shorter than the coherence
length, calculated from eq. (36) for threc temperatures. Full
line: 7T=0. Dashed line: T=0.14,/k,. Dotted linc:
T=0.2A4,/k, At these tempciatures 4, has approximately
1ts zero-temperature value.

m 27 37

This is a good place to conclude our contribu-
tion to this symposium on analogics. The con-
ductance quantization of a quantum point con-
tact for eclectrons was discovered by surprise
[12, 13]. The analogy with photons led to the
prediction [9] and observation [10] of the discret-
ized optical transmission cross-section of a slit.
Now the notion of analogies has brought us the
quantum point contact for Cooper pairs [1], with
its discretized Josephson current. We hope that
this paper will stimulate efforts to realize such a
superconducting quantum point contact ex-
perimentally.
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