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To increase the sample of known small scale radio emission features in HII regions, a 6 arcsec resolution survey of 77 Sharpless HII
regions was made with the Westerbork Synthesis Radio Telescope at 4.995 GHz. Strip scan distributions were obtained for 103 fields,
with a limiting flux density of 30 mJy. Of this sample, 51 fields were reobserved more extensively and two-dimensional maps were
obtained. From these maps, positions and flux densities of several new sources were determined. A list of all observed fields and the
peak flux density detected in each field is given. The position, maximum size and flux density of all sources with S, > 25 mly are given.
These basic lists are presented as an aid to observers looking for interesting objects to observe at optical, infrared and radio wavelengths.
A more complete analysis of the fields will appear in a later paper.
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INTRODUCTION

In this paper the results of a systematic search for compact radio sources associated with the HII regions
listed in the Sharpless (1959) catalog are presented. This search was carried out with the Westerbork Synthesis
Radio Telescope (WSRT) at a frequency of 4.995 GHz (A = 6 cm). The primary motivation for this study
was to enlarge the sample of compact HII regions. With this larger sample it should be possible to make some
statistical conclusion concerning the early phases of the evolution of an HII region.

One of the main question to be answered is where are the compact HII regions located and what is their
relationship with respect to the other indicators of recent star formation. The solution to this problem is important
in testing the two following hypotheses on the manner in which star formation proceeds: 1) the expansion of
an evolving HII region triggers the formation of new stars (Hjellming 1970, Israel et al. 1973, Habing et al.
1975, Elmegreen and Lada 1977); 2) the formation of massive stars leads to the destruction of the dense
neutral cloud material and halts further star formation (Herbig 1962).

If the first hypothesis is true, then compact HII regions should be located inside or near evolved HII regions.
If the second one is true, then there should be no association between compact and evolved features. Finally,
a question related to the two hypotheses is whether compact components are isolated objects or they always
form in groups. Some evidence for the later has been presented by Harten (1976) and Israel (1976).

It is obvious that a large sample of objects must be studied before any definite conclusion about the
two hypotheses can be made. Although a fair number of HII regions have been searched in the past for
presence of compact components, we believe that the existing material is incomplete and suffers from strong
selection effects. Ideally one would like to have a survey of the galactic plane at a frequency of 5 GHz, a
sensitivity of at least 0.1 Jy and a resolution of a few arcsec. Such a survey does not exist and it is unlikely
that it will be undertaken due to the large amount of time and effort needed.

The existing surveys have been made: a) at lower frequencies, b) with poorer angular resolution
(~ 10 arcmin) and c) with poor sensitivity (~ 1 Jy). Such surveys are sensitive mainly to larger
(> 10 arcmin), low density (n, = 5 — 500 cm™) HII regions where self absorption by the gas is not important.

* Present address: Owens Valley Radio Observatory, Pasadena, Ca.
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Unfortunately, any weak compact components are lost due to the poor resolution and sensitivity. Only the
brightest compact components (e.g. in W3 and NGC 7538) have been discovered through these surveys.

Searches for compact components in areas of the sky near known indicators of stars formation, other
than radio HII regions, (H, emission stars, T Tauri stars, IR point sources or CO “‘hot spots’”) have not
been very successful and few new compact sources have been detected. Thus it appears that the chances of
detecting isolated components with flux densities > 1 Jy at 15 GHz are quite small (Churchwell ez al. 1969).

Recent work by the authors and others have shown that compact features are often associated with small,
visible HII regions, many of which are Sharpless objects. These results indicated that a systematic survey of
the Sharpless objects with known radio emission was needed.

A survey of this type was conducted by Felli ef al. (1974) using the Stanford five element interferometer,
at a wavelength of 2.8 cm. Of the 140 regions surveyed, 7% contained new compact features and 15%
contained features at the limit of the noise (1.2 Jy).

In the present search, with a factor 40 better in sensitivity and a much higher spatial resolution, we have
selected areas inside HII regions listed in the Sharpless catalogue which show a peak in the radio continuum
emission studied by Felli and Churchwell (1972).

If an HII region was larger than 10 arcmin and did not show any prominent peak in the lower resolution
data, only the central maximum was observed. This introduces a bias since we have selected the areas of
higher surface brightness for our observations. Sources near the equator were given lower priority because
of the degraded resolution of the synthesized beam. We did not include any source which had previously
been observed with the WSRT at 6 cm. Unfortunately, the area near the center of the Galaxy (0° << 90°)
was not completely sampled due to lack of available telescope time.

The combination of this work with other recent works done with the WSRT by the authors and others,

_provides a sample of approximately 150 HII regions. This sample is large enough to enable us to study some

of the problems regarding compact components and their relationship with more evolved HII regions. A
detailed study of individual regions and a discussion of some of the statistical properties of compact HII regions
as well as their relationship to more evolved HII regions will be discussed in two subsequent papers. The
present paper provides a short summary of the results of the survey and it is intended as an aid to those
planning future observations of HII regions.

OBSERVATIONS

The observations were made using the Westerbork Synthesis Radio Telescope at a frequency of 4.995 GHz.
The telescope and its operation have been described by Baars and Hooghoudt (1974) and Casse and Muller
(1974). The standard calibration and reduction procedures were used (Hogbom and Brouw 1974, van Someren
Greve 1974). Table 1 gives the basic parameters of the observations.

The observing was done in two stages. In the initial stage, Spring 1975, each selected field was observed
near meridian transit for a period of 20 minutes, yielding a “single cut” in the u,v plane. The data were
time averaged and a one-dimensional Fourier transformation was made. In this way we were able to observe
a large number of potentially interesting areas and to check for the presence of small scale structures. The
single cut observations were equivalent to scanning an 11 arcmin area in right ascension with a 6 X 660 arcsec
fan beam. To improve the detection of sources with extensions larger than 15 arcsec, we also made a second
Fourier transform of the original data with a resolution of 12 arcsec in right ascension.

In the second stage of the observations, the latter half of 1975 and throughout 1976, we reobserved
each field that showed a peak flux density = 30 mJy in the single cut data. During this stage, each source
was observed at five different hour angles (at 6 < 20° only three-hour angles could be observed). These multicut
data were then Fourier transformed in two dimensions, yielding an ultimate angular resolution of 6.6 X 6.6
cosec O over a field of view 11 arcmin in diameter. The Fourier transforms were carried out using slow
Fourier transforms in a specially designed programme, Slofour, written by one of us (Harten 1974). Several
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HII regions are larger than the field of view and we tried to cover them in adjacent observations. However,
lack of observing time has prevented us from always achieving this goal and compact components may have
been missed in such cases

Our method of observation and data reduction leads to several limitations on the data and its usage.
First, since only a limited number of discrete cuts were available and the u,v plane was not covered continuously,
large sidelobe levels of the synthesized beam occurred. It was necessary to correct for the effects of the
sidelobes, using the “clean”” method (Hogbom 1974). All data were cleaned to a level of 20 mJy and restored
using a Gaussian beam of the same size as the synthesized beam. Secondly, large extended fields with a
smooth brightness distribution will not be properly represented due to our incomplete sampling in hour angle
and baseline. Thirdly, the incomplete sampling, combined with a low signal-to-noise ratio can cause the clean
programme to work improperly, since artificial sources may occur at grating or sidelobe locations and a pattern
of closely spaced point-like objects in regions of relatively smooth emission may be created. This problem
was clearly present in S209 and S226. In these cases, the individual peaks were not treated as individual
sources. In most cases it was possible to correct for these problems by examining the uncleaned maps.
When we were reasonably but not completely certain that a source was real, we indicated it in the tables.
Similarly, we may have missed a few weak sources that occurred near grating or sidelobes. All sources listed
in this paper are either isolated or at least two to three times the level of the surrounding emission.

If a region is smaller than two arcmin, the shape is hardly distorted and we will have detected most of
the flux density. For larger sources, the grating responses and the associated zero level shifts in the maps
distort the source shape while the finite minimum baseline of the observations allows us to measure only a
small fraction of the total flux density of the object.

To check the limitations of our data and our reduction procedures, we included the object S90 in our
survey. A complete synthesis of this object has recently been published by Israel (1976). The object does
not contain any compact features and consists of a smooth low brightness region with a brighter arc
superimposed. Our observations were able to detect only the brightest ridge of emission corresponding to
the broad maximum in Israel’s map. We were unable to determine either the total extent or the basic shape
of the low brightness emission. This indicates that our search is not very sensitive to moderately extended
smooth objects.

An important difference between the single and multi-cut data is that the noise has different effects.
In the single cut data each baseline has an equal noise contribution. This noise when transformed in the Fourier
transform leads to false large and small scale components of comparable intensity. This is quite important
to keep in mind since generally one is tempted to attribute only small scale variations to the noise and large
scale variations to the astronomical source. In the multi-cut data the same argument applies to each baseline ;
however, the short baseline data is more closely packed in the u,v, plane that the longer baseline data.
This results in a lower effective noise in the shorter baseline data. Thus, the largest contribution to the noise
has a small scale size. Any low brightness, large scale features are more likely to be real in these maps.

DISCUSSION

Table 2 gives the summary of the observational results. For the non-detections, the coordinates given in
columns 2 and 3 are those of the field centre (FC in the “‘comments” column) used for the observations and
the upper limit to the flux density given in column 4 is the maximum flux density per beam area detected
in the observed field with a fan beam of 6 arcsec X 11 arcmin.

In a few cases a peak flux density larger than the noise was found in the observed field, but the source
was not reobserved because believed to be a non-thermal one. In these cases the peak flux density per beam
area (PEAK in column 4) is given.
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For the detected sources, the position, flux density (corrected for the primary beam attenuation), and
size are given. Several of the detected sources are at low declination and, because of the decreased resolution,
only a crude check of the source extent in the N-S direction can be given.

The broadened, B (20" < © < 60’’), sources are those which have minimal instrumental effects and in
which the measured flux density is probably close to the true flux density of the source. The extended,
E (6 > 60''), sources may be attenuated by the interferometric antenna pattern and we are probably
measuring only the fraction of the total flux density contained in the small scale structures. Also given in
column 6 is the name of the Sharpless source in which the field is located. It should be understood that the
Sharpless name should be used only as a reference, because the larger Sharpless objects are not completely
covered by our observations.

In the 103 fields searched a total of 47 sources were detected in 34 different Sharpless objects, 19 of which
are unresolved.
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Table 1 Observational parameters

Frequency of observations (GHz) 4.995

Wavelength (cm) 6

HPBW primary beam (arcmin) 11.3

HPBW synthesized beam (arcsec) 6.6 X (6.6/sin (d))
Radius of first grating response (arcmin) 2.8

Shortest spacing (wavelengths) 1200

FWHM of a gaussian source with a visibility of 0.5 at shortest spacing 1.3 X (1.3 x sin (8))
(arcmin)

r.m.s. noise per 20 minute observation (mJy) 30
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