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The disputed character of the improvement assessment, and
the need for a systematic place for a discussion of the uncer-
tainties of LCA results have made it evident that the phase of
improvement assessment has been superseded by the phase of
interpretation. According to ISO, interpretation is "a system-
atic technique to identify, qualify, check, and evaluate infor-
mation from the results of the life cycle inventory (LCI) analy-
sis and/or LCIA of a product system" (ISO 1999). In the draft
ISO standard1 for interpretation, there are quite a number of
possibilities for interpretation. For the purpose of this paper,
we may categorise these into a class of procedural approaches
and numerical approaches. The procedural approaches include
all types of analyses that deal with the data and results in
relation to other sources of information, like expert judge-
ments, reports on similar products, intuition, reputation of
data suppliers, and so on. With the numerical approaches, we
will capture those approaches that somehow deal with the
data that is used during the calculations, without reference to
those other sources of information. In other words, the nu-
merical approaches explore the data in different ways. In gen-
eral, LCA can be seen as a form of data reduction: thousands
of numbers enter the calculation, and only a dozen or one
hundred are reported as the LCA-results. This leads to a loss
of information. We now define numerical approaches towards
interpretation as algorithms that use and process the data in
different ways, so as to produce different types of 'smart' data
reduction that provide an indication of reliability, key issues,
discernibility, robustness, and so on.

In this paper, we present five concrete ways to explore the
data that is used in an LCA. All these explorations may take
place at the level of the inventory analysis, the characterisa-
tion, the normalisation or the final weighting. The numerical
approaches towards interpretation could be used as a part of
each of those steps or phases, or after the whole sequence of
phases. All five approaches are discussed with respect to the
basic concept, the spectrum of possibilities, the most appro-
priate ways of tabulating or visualising the results, and the
restrictions and pitfalls. The five approaches are
− contribution analysis
− perturbation analysis
− uncertainty analysis
− comparative analysis
− discernibility analysis.
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Abstract. The ISO-standard for LCA distinguishes four phases,
of which the last one, the interpretation, is the least elaborated. It
can be regarded as containing procedural steps (like a complete-
ness check) as well as numerical steps (like a sensitivity check).
This paper provides five examples of techniques that can be used
for the numerical steps. These are the contribution analysis, the
perturbation analysis, the uncertainty analysis, the comparative
analysis, and the discernibility analysis. All five techniques are
described at a non-technical level with respect to basic concept,
possibilities, tabular and graphical representation, restriction and
warnings, and all are illustrated with a simple example.

Keywords: Comparative analysis; contribution analysis; discerni-
bility analysis; life cycle interpretation; perturbation analysis; sen-
sitivity analysis; statistical techniques; uncertainty analysis

Introduction

Developments within and surrounding the establishment of
an ISO standard for LCA have spurred the introduction and
conceptual development of a new phase of the LCA frame-
work interpretation. In earlier texts, like SETAC's 'Code of
Practice' (Consoli et al. 1993), the US guidelines (Vigon et
al. 1993) and the Dutch guidelines (Heijungs et al. 1992),
there was a phase of initialisation (goal definition and/or
scoping), two, three or four phases in which the processing
and collecting of data took place (inventory analysis and
impact analysis/assessment, where the latter was sometimes
divided into classification, characterisation and (e)valuation),
and one optional phase in which the possibilities for prod-
uct or process improvement are investigated (improvement
analysis). The idea of an improvement analysis always insti-
gated discussion: improvement was felt to be an application
of LCA, and therefore not a part of LCA. Others found a
way out by separating the analysis of possible improvements
from the actual implementation of improvements. The Dutch
guidelines, for instance, provided a numerical method (the
marginal analysis) which presented a list of key issues to
which small changes might lead to substantial improvements
in environmental performance. However, the approach was
not generally applied, perhaps partly for reasons of its lack
of clarity. In the context of SETAC, the improvement analy-
sis has never been worked out in the way that inventory
analysis, impact assessment and data quality have been.

1 The draft standard has become a standard during the review period of this
article. The quoted sentence has changed a bit in the final standard.
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Their definition and meaning is discussed in the following
five sections. The last section handles the five approaches in
an encompassing discussion. Some of the techniques (e.g.
the contribution analysis) are quite familiar, while others
(e.g. the discernibility analysis) are entirely new. In addition
to that, well-known techniques have not often been described
in their full range of possibilities and along with their re-
strictions. Finally, a discussion of the relative strengths and
weaknesses of the different techniques seems to be lacking
anyway. Therefore, this paper is not primarily focussed on
novel techniques, even though it describes some. Main em-
phasis is on systematically describing and comparing five
complementary approaches.

Every approach is illustrated with a simple example. For
this purpose, software has been used. The software that has
been used, as well as the data that are used, are available on
the Internet (http://www.leidenuniv.nl/cml/ssp/cmlca), so that
the interested reader has the opportunity to make a closer
study of the five numerical approaches described in this pa-
per, and to explore the different options. The uncertainty
analysis and the discernibility analysis use random numbers,
so that the results reported in the examples cannot be repro-
duced exactly. The example is a hypothetical comparison of
three product alternatives for producing light: the incandes-
cent lamp, the fluorescent lamp, and the tube lamp. All data
are completely fictitious, and are meant for illustration only.

1 Contribution Analysis

1.1 Basic concept

The first approach in this paper is the contribution analysis,
which is also sometimes called dominance analysis or analysis
of key issues. The idea of the contribution analysis is to de-
compose the aggregated results of inventory analysis, char-
acterisation, normalisation or weighting into a number of
constituent elements. For instance, one may wish to investi-
gate the share of electricity production to the total carbon
dioxide emission of a product life cycle. The idea of a con-
tribution analysis is so obvious that it has been practised in
many case studies, and that it is mentioned in many meth-
odological treatises, although a clear exposition has not of-
ten been written. We mention in this respect Heijungs et al.
(1992) and ISO (1999).

There can be several purposes for doing a contribution analy-
sis. Knowing the share of a certain process or life cycle stage
in a certain emission or impact category may provide op-
portunities for the redesign of products or processes, or for
prevention strategies at a more general level. This is an ap-
plication-oriented use of the contribution analysis. But there
are also analysis-oriented uses. A contribution analysis points
out those elements that make the highest contribution to a
certain emission or impact category, and a precise knowl-
edge of the data that correspond to those elements is there-
fore a prerequisite for a precise LCA result. Conversely, a
rough estimate is likely to be acceptable for those elements
that hardly contribute. However, it should be kept in mind
that 'false negatives' due to underestimated or missing flows
cannot be identified with a contribution analysis. A further

use of the contribution analysis is for testing the results
against what one would intuitively expect. If the LCA of car
transport is dominated by the use of the car radio, there is
probably a severe error in one or more data entries.

1.2 Possibilities

The contribution analysis may be used at the level of inven-
tory analysis, characterisation, normalisation and weight-
ing. With higher levels of aggregation, there are more direc-
tions along which a decomposition into contributing elements
may also be performed.

At the inventory analysis level, there is not much choice.
One may here investigate the contributions of the various
unit processes that form the life cycle. Alternatively, one may
assign all unit processes to a smaller number of life cycle
stages, like production of materials, production of energy,
use and maintenance, and post-consumer treatment, in or-
der to decompose the inventory results into the contribu-
tions of those life cycle stages.

At the characterisation and normalisation level, there is one
other direction of decomposition. One may investigate the
share of unit processes (or life cycle stages) or the share of
elementary flows in a category result. And one may even
combine these two directions of decomposition. Thus, one
may decompose the acidification score into the contribu-
tions of electricity production, tyre production, waste incin-
eration, and so on, or into the contributions of NOx, SO2,
NH3, and so on, or into the contribution of electricity pro-
duction through NOx, electricity production through SO2,
tyre production through SO2, waste incineration through
NOx, and so on.

At the weighting level, there is even one more direction: de-
composition into the contribution of impact categories. One
may now investigate the share of unit processes (or life cycle
stages) or the share of elementary flows or the share of impact
categories in the weighted index. And one may now combine
two or all three of those directions, for instance investigating
the share of electricity production associated with NOx emis-
sions causing acidification in the weighted index.

1.3 Tabular and graphical representation

The results of a contribution analysis are the contributions
that certain unit processes (or life cycle stages), elementary
flows and/or impact categories make to an aggregated LCA-
result. As such, they can be expressed in percentages that
add up to 100. This can be visualised easily with pie charts.
A table with the contributions, sorted in descending order is
also insightful.

There is one important complication that most notably turns
up in a pie chart: it may happen that certain contributions
are negative. The three most important cases here are unit
processes with negative emissions (like forestry which re-
moves CO2 from the air), elementary flows with negative
characterisation factors (like NO which has in some sce-
narios a negative POCP), and unit processes that are sub-
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tracted from a product life cycle, for reasons of coproduct
allocation with the substitution method, leading to avoided
emissions and avoided resource extractions. A stacked bar
diagram, in which negative contributions are shown down-
wards, and in which the 100% line may be lower than the
top of the upwards stack will be more easily understood by
the reader than the pie chart. The tabular representation
does not suffer from the problem of negative contributions,
although the entire concept itself will always require expla-
nation to the naive reader.

1.4 Restrictions and warnings

If one uses a contribution analysis to investigate the share of
the unit process 'use of a refrigerator' in the impact cat-
egory 'global warming', one finds a small contribution
through the leakage of CFCs or HCFCs, but not a large
contribution through the release of CO2 in electricity pro-
duction. That is because the unit process 'use of a refrigera-
tor' does not release CO2; only the unit process 'production
of electricity' does so. This follows from a straightforward
implementation of the concept of contribution: use of a re-
frigerator does not directly contribute to the CO2 emission,
but only indirectly. One might wish to include the indirect
contribution by redefining the concept of the contribution
analysis, but this leads to very strange results. Use of a re-
frigerator also indirectly implies the depreciation, and thereby
the replacement and dismantling of the refrigerator itself.
Therefore, inclusion of indirect contribution ultimately leads
to contributions of 100%, thereby depriving the contribu-
tion analysis of any meaning.

Although a contribution analysis can take place on clusters
of unit processes, the life cycle stages, it cannot take place
on clusters of elementary flows, like 'heavy metals', 'chlo-
rinated hydrocarbons' or 'pesticides'. Doing so would re-
quire a rule on how to add heavy metals: in mass units, in
toxic equivalents, or in whatever way. It is thus necessary to
select an elementary flow as a focal point for a contribution
analysis at the inventory analysis level, to select an impact
category as a focal point at the characterisation and nor-
malisation level, and, without selection, the weighted index
at the weighting level.

1.5 Example

For the product alternative fluorescent lamps, Table 1 shows
the contribution of the different processes to the atmospheric
carbon dioxide emission. We see that the production of elec-
tricity is the process with the highest share (67%) in the life
cycle CO2 emission.

2 Perturbation Analysis

2.1 Basic concept

The second approach that we discuss is the perturbation analy-
sis. This approach has been introduced as the marginal analy-
sis by Heijungs et al. (1992) and, more formally, by Heijungs
(1994). It is in some respects close to what may be referred to
as a sensitivity analysis, but this term has to most people not a
formal definition and meaning, and is applicable to any analysis
that explores the sensitivity of a calculation result. The basic
idea of the perturbation analysis is that small (marginal)
perturbations of the input parameters propagate as smaller or
larger deviations of the resulting output, and that a knowl-
edge of which parameters lead to large deviations and which
lead to small deviations may be useful.

There are two main purposes for a perturbation analysis.
One is that it provides a checklist of those input parameters
of which a small imprecision already leads to important
changes in the results. Thus, it draws the attention of the
researcher to those data items that should be known most
precisely, whereas it also lists those data items of which even
large uncertainties are unimportant, and that therefore do
not deserve priority in a more detailed analysis. The second
purpose of the perturbation analysis is application-geared.
Knowledge of the sensitive data items may suggest ideas for
product and process improvement. If one knows that a 1%
change of the electricity use of the production process leads
to 4% less CO2, a careful consideration of the electric effi-
ciency seems natural. Conversely, if a 1% change of the
amount of transport of the product leads to only 0.001%
less resource use, it seems best to concentrate the improve-
ment process to different items than the logistics details.

The extent to which the perturbation of a certain input pa-
rameter propagates into a certain output result can be inter-
preted as a multiplier. If an increase of 1% of an input pa-
rameter leads to an increase of 2% of an output result, the
multiplier that connects those two items is said to be 2. If
the output result decreases by 2%, the multiplier is said to
be -2. In theory, the concept of multipliers is restricted to
marginally small changes. Thus, it is not necessarily true
that a change of input of 40% with a multiplier of 2 leads to
a change of output of 80%. In certain situations, this will be
the case, but in other cases it will certainly not. Multipliers
for the perturbation analysis may be found by a compli-
cated analytical formula (Heijungs 1994), or by numerical
methods, simply calculating a result with and without a per-
turbed parameter, and dividing the difference in results by
the difference in input parameters. In the example below,
the size of the perturbation has been set to 1.001, which
means that calculations were performed with a certain value
and with that value increased by 0.1%.

Most multipliers will be between -1 and 1, with a concen-
tration around 0, although values smaller than -1 and larger
than 1 may occur under certain conditions (and are in fact
of special interest); see under Possibilities. As a rule of thumb,
one can say that multipliers of which the absolute value is
higher than 0.8 and especially larger than 1 are noteworthy.
For reasons that go beyond the scope of this paper, the mul-
tipliers for one selected elementary flow, impact category,
or the weighted index, add to 0.

unit process kg %

production of electricity 0.002 67

incineration of fluorescent lamps 0.0008 27

production of fuel 0.0002 7

Table 1: Example of the results of a contribution analysis. See text
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It is worth observing that the perturbation analysis does not
require that parameter uncertainties be specified. It makes
an analysis of the inherent sensitivity of the results for each
consecutive input parameter, without paying regard to the
real uncertainty of these parameters. The perturbation analy-
sis can therefore be performed whenever LCA-results are
produced; no additional data are required. When uncertainty
estimates of input parameters are available, they are ignored
in the perturbation analysis, and their use is discussed in the
sections on uncertainty analysis and discernibility analysis.
As we will see, there is a large similarity between the contri-
bution analysis and a perturbation analysis of elementary
flows. This similarity may easily lead to a misapprehension
of the entire concept of perturbation analysis. Its main in-
terest lies in pointing out the system's response to small
changes of the economic flows between unit processes.

2.2 Possibilities

The perturbation analysis can be performed at the four lev-
els that are distinguished throughout this paper: inventory
analysis, characterisation, normalisation and weighting.
However, with increasing input data being needed as the
level of aggregation grows higher, more input data items are
required, and more input data items can hence be perturbed.
At the inventory analysis level, one selects an elementary
flow, and can choose to perturb the intermediate flows of
products, materials and energy (which we will call the eco-
nomic flows) or to perturb the elementary flow at the suc-
cessive unit processes. Interestingly enough, it is the recur-
sive structure of economic flows (coal production needs
electricity, and electricity production needs coal), which
makes certain that multipliers are larger than 1 or smaller
than -1. Also interesting is that the perturbation of the input
parameters that correspond to the elementary flows of the
unit processes gives a result that is very similar to the result
of the contribution analysis. Therefore, one could argue that
the perturbation analysis encapsulates the contribution analy-
sis, thereby obviating the need for the latter one. From a
practical perspective, however, things are different. The per-
turbation analysis is much slower and more difficult to com-
prehend than the contribution analysis. Moreover, the unit
processes are perturbed one by one, and their resulting mul-
tipliers are listed one by one. A grouping into life cycle stages
seems incompatible with the idea of the perturbation analy-
sis, while it is obvious for the contribution analysis.

At the characterisation level, the characterisation factors can
also be perturbed; at the normalisation level, the normalisa-
tion factors can be perturbed, and at the weighting level, the
weighting factors can be perturbed. In principle, the pertur-
bation analysis can also be applied to allocation factors.

2.3 Tabular and graphical representation

As the multipliers higher than 0.8 and smaller than -0.8 are
of particular interest, the most obvious tabular presentation
is to sort the absolute values of the multipliers in descending
order, with an optional cut-off for small multipliers, say be-
tween -0.2 and 0.2. A graphical representation is no more
insightful than a tabular one.

2.4 Restrictions and warnings

An important restriction on the use of the perturbation analy-
sis is the time it takes. If one uses the numerical approxima-
tion, a product life cycle of 100 unit processes, with each
unit process connected with 6 economic flows, the pertur-
bation analysis for one elementary flow requires 600 calcu-
lation procedures. When one calculation takes one second,
which seems to be optimistic for certain LCA software im-
plementations, this means 10 minutes computing time. Com-
putation time will increase slightly at higher levels of aggre-
gation, as the most time-intensive step in the algorithm is
the inventory analysis. The analytic formulas for the pertur-
bation are not likely to be less time consuming, as they im-
ply a bunch of time consuming matrix manipulations, again
with 600 repetitions.

2.5 Example

Table 2 shows part of the results of a perturbation analysis
of the economic flows with respect to atmospheric carbon
dioxide emission for the product alternative fluorescent
lamps. We see that producing 1% more light in the use proc-
ess yields 0.999% less CO2, and that producing 1% more
electricity in the electricity production process yields 0.733%
less CO2. Using 1% less electricity in the use process results
in 0.731% less CO2.

unit process economic flow multiplier

use of fluorescent lamps fluorescent lamp light -0.999

production of electricity electricity -0.733

use of fluorescent lamps electricity 0.731

use of fluorescent lamps disposed fluorescent lamp 0.266

incineration of disposed
fluorescent lamps

disposed fluorescent lamp -0.266

production of electricity fuel 0.067

production of fuel fuel -0.067

Table 2: Example of the results of a perturbation analysis. See text

3 Uncertainty Analysis

3.1 Basic concept

There are many input parameters that are known to be un-
certain. Several data sources yield different production or
emission characteristics, or different levels of environmen-
tal impact. The systematic study of the propagation of input
uncertainties into output uncertainties will take place in the
uncertainty analysis. For several reasons, the topic will be
treated on the basis of Monte Carlo simulations (see, e.g.
Morgan & Henrion 1990).

Suppose that we have a system with input parameters that
are specified in the form of a probability density function.
For instance, for each parameter one knows that the value
is distributed according to a Gaussian or normal distribu-
tion, with a certain mean value and a certain standard de-
viation. In one Monte Carlo simulation, one obtains one
outcome of the system by drawing every parameter value
from its distribution. In this way, one finds a certain result,
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say for the aggregated CO2 emission. In another Monte Carlo
run, one obtains another outcome by drawing again from
the specified distributions. This will lead to a new value of
the CO2 emission. If this procedure of drawing and calcu-
lating is repeated a large number (say 1000) of times, a prob-
ability density function for the aggregated CO2 emission will
have been constructed. It can be characterised by a certain
mean, a standard deviation, and possibly other statistical
indices (like the median). Possibly, it follows more or less a
Gaussian distribution, so that mean and standard deviation
suffice to give a complete description.

The purpose of a large number of Monte Carlo simulations
is to provide an understanding of the uncertainty of the LCA
results. A specific output result, like '120 kg CO2' then re-
ceives some sort of indication of significance (although not
significance in the statistical sense), like '120 kg CO2 with a
standard deviation of 10 kg'. A comparison of product al-
ternatives on the basis of merely results without uncertain-
ties is harder to believe than if uncertainties are included.
Statements on uncertainty intervals may in principle improve
to this situation; see, however, the section on discernibility
analysis for a more complete discussion.

3.2 Possibilities

All input data can include information on uncertainties. This
applies to unit process data, to characterisation factors, to
normalisation factors, and to weighting factors. That is, one
may specify all input data in the form of probability density
functions. In practice, this reduces to only a few different op-
tions: a normal distribution with specified mean and standard
deviation, and a uniform distribution with specified smallest
and largest values are the two most frequent. Huijbregts (1998)
also uses triangular and lognormal distributions for certain
parameters. Sometimes, one may wish to specify two or three
discrete values with specific probabilities, for instance a car
with one, two, three or four passengers with probabilities 0.5,
0.3, 0.1 and 0.1. In principle, one may also indicate uncer-
tainty estimates of allocation factors, and even to allocation
principles, for instance substitution method, mass allocation
and economic allocation with probabilities 0.4, 0.3 and 0.3.
In that case, one should interpret the term 'probability' as some-
thing like the 'degree of belief'.

3.3 Tabular and graphical representation

The simulation results may be presented in different forms.
The most basic form is to calculate mean and standard de-
viation for every output result. Observe that the mean may
differ from the baseline result without uncertainty estimates.
The difference may be due to chance, but it may also be that
the distribution of the output result is asymmetric, so that
mean and mode differ, even for extremely large numbers of
simulations. The reason for the asymmetry is explained in
the Appendix.

One may also choose to produce more statistics for every
output item: lowest and highest value, mean, mode and
median, standard deviation and skewness. One may even pro-
duce test statistics for normality (the Kolmogorov-Smirnov

test), for difference with another product alternative (the t test),
and so on. A problem is, of course, that more statistics means
more pages of output, and that interpretation should provide
a help rather than a bunch of pages filled with statistical infor-
mation. Another alternative is to tabulate all realisations for
every Monte Carlo trial. The most important graphical aid is
in that case a histogram of the Monte Carlo results, which
gives a quick indication of how these values are distributed.
Aspects like symmetry and unimodality can then easily be
detected visually.

3.4 Restrictions and warnings

As with the perturbation analysis, the uncertainty analysis
requires quite some computing time. It is said in literature
(Morgan & Henrion 1990) that 10,000 runs yield in gen-
eral reliable results. This means calculating 10,000 times
the inventory analysis and possibly the subsequent impact
assessment. With the aforementioned estimate of 1 second
per inventory calculation, some 3 hours would be needed.
This suggests that a researcher makes some quick calcula-
tions with 100 runs, and that the real analysis with 10,000
runs is something to have run overnight.

An uncertainty analysis presumes that uncertainty param-
eters are available for all input parameters, like unit process
data, characterisation factors, normalisation factors, weight-
ing factors, allocation details, and so on. These uncertainty
parameters should be quantitative information, like stand-
ard deviations or other parameters that specify a probabil-
ity distribution. Qualitative labels, like the pedigree matrix
of Weidema and Wesnæs (1996), do not suffice to carry out
an uncertainty analysis in this sense. Unfortunately, there is
at present not much available with respect to quantitative
uncertainty parameters. Most available databases with unit
processes and equivalency factors do not contain standard
deviations, and an LCA-practitioner is often glad to get point
estimates of data at all, and will not pursue getting interval
estimates or other measures of dispersion.

3.5 Example

Table 3 presents the results of an uncertainty analysis with
1000 runs of the atmospheric emission of carbon dioxide of
the product alternative incandescent lamp. We see that the
result without uncertainty analysis (indicated as the base-
line result) coincides well with the mean of the Monte Carlo
runs. This suggests a quite symmetrical distribution, which
indeed is confirmed by a graphical inspection. The coeffi-
cient of variation is defined as the ratio between the stand-

parameter value unit

baseline 0.024 kg

mean 0.024 kg

standard deviation 0.002 kg

variation 8 %

lowest 0.018 kg

highest 0.031 kg

Table 3: Example of the results of an uncertainty analysis. See text
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ard deviation and the mean; a value of 8% suggests a rea-
sonably certain result. This is also suggested by the extreme
values, which lie about 0.06 kg on both sides of the mean
value, again suggesting a fairly symmetrical distribution.

Fig. 1 presents the frequency distribution of the 1000 differ-
ent values for the carbon dioxide emission that were ob-
tained by the uncertainty analysis. We see that the distribu-
tion is fairly symmetric, resembles a normal distribution,
and has a maximum that is quite close to the baseline result.

4.4 Restrictions and warnings

A comparative analysis is seductively simple. It is danger-
ous, because it may easily induce one to make claims with-
out a proper analysis of the robustness of these claims with
respect to the influence of uncertainties.

4.5 Example

Table 4 shows an example of the results of a comparative analysis
at the inventory level for the three product alternatives. We have
chosen to put the lowest intervention to 1 for every elementary
flow, so that we can easily see how much worse a certain prod-
uct alternative is. For instance, the tube lamp is superior for
CO2, as it beats the fluorescent lamp by a factor of 2 and the
incandescent lamp by a factor of more than 16.

0

20

40

60

80

100

120

0.015 0.02 0.025 0.03 0.035
emission (kg)

fre
qu

en
cy

Fig. 1: Histogram (with bin size 0.005) of the individual Monte Carlo results
of an uncertainty analysis. See text

4 Comparative Analysis

4.1 Basic concept

The comparative analysis is nothing more than a systematic
place to list the LCA results for different product alterna-
tives simultaneously.

4.2 Possibilities

The comparative analysis can take place at all four levels,
i.e. inventory analysis, characterisation, normalisation and
weighting. The most interesting feature that we mention here
is that different scales can be used to display the results.
First, one may show the absolute values, e.g. the kg CO2,
the kg SO2, etc., all in their own units and scales. Alterna-
tively, one can put the smallest or the largest result for each
elementary flow, impact category or weighted index to 1.
For instance, if one puts the largest elementary flow to 1,
one easily sees how much better each alternative is for each
elementary flow. Or, one may put all elementary flows for
one product alternative to 1, thereby declaring that alterna-
tive as the reference product.

4.3 Tabular and graphical representation

All the possibilities that are mentioned find an easy place in
a tabular form with a column for every product alternative
and a row for every elementary flow or impact category.

A natural graphical presentation is through a bar chart for a
certain result, where each bar represents the score of one prod-
uct alternative. A logarithmic scale is often difficult to inter-
pret, but one should be cautious with any product alternative
that strongly dominates the others, thereby suggesting that
the difference between the other alternatives is small.

elementary flow incandescent
lamp

fluorescent
lamp

tube
lamp

CO2 to air 16.2 2.0 1

SO2 to air 27.7 2.8 1

copper to soil 1 1.1 1.1

sand 2.5 1 1.4

copper ore 1 6.0 5.7

crude oil 27.7 2.8 1

Table 4: Example of the results of a comparative analysis. See text

5 Discernibility Analysis

5.1 Basic concept

It is said that an important goal of LCA is the comparison
of product alternatives, but a comparison need not assume
the form of comparison of point estimates and/or interval
estimates. What matters, in fact, is the ranking of product
alternatives in a statistically sound way, like judgements of
the form 'product A is significantly better than product B'.
Statistically significant then follows the usual interpretation
of 'there is a 95% chance that product A is better than prod-
uct B', at least if the significance level is put at a conven-
tional 0.05 level. In other words, we seek to test if product
A is statistically discernible from product B.

The idea of the discernibility analysis stems from the desire
to combine the comparative analysis and the uncertainty
analysis. One Monte Carlo realisation is used to calculate
the results for all product alternatives simultaneously. No-
tice that this means that the discernibility analysis is only
applicable when uncertainty estimates are available. Huij-
bregts (1998) gives an example for two product alternatives.
He proposes the comparison index (CI) as the ratio between
the score for the two alternatives, and shows frequency dis-
tributions for the CI. If a significant part (e.g. 95%) of the
frequency distribution is on one side of the 1, the two alter-
natives are said to have significantly different scores. As a
comparison index is the ratio between the scores of two prod-
ucts, use of it is restricted to comparing two product alter-
natives only.

The discernibilty analysis is a generalisation for the case of
two or more product alternatives. To understand the idea, it
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is necessary to note that, although Huijbregts' approach cal-
culates the difference (or rather the ratio) of the scores in one
Monte Carlo run, and although the full probability distribu-
tion is constructed, the final judgement discards most of this
information. The only thing that counts in one run is, whether
the score for the first product alternative is higher or lower
than the score for the other one. The approach effectively comes
down to counting the number of times that the first product
alternative has a higher score and the number of times that
the second product alternative has a higher score. Let us indi-
cate the first event with n(A>B) and the second one with
n(B>A). The decision criterion for discernibility of product
alternatives A and B with respect to the selected item (emis-
sion, impact category, weighted index) is that either of the ns
dominates the other in a statistically significant way. A usual
significance level is 0.95, so if there are n runs, n(A>B) should
be at least 0.95n if we are allowed to declare that product
alternative A has a significantly higher score than B. And con-
versely, n(B>A) should be at least 0.95n if we are allowed to
declare the opposite. If n(A>B) is 0.95n or less and n(B>A) is
0.95n or less as well, we may say that we cannot reject the
null hypothesis of indiscernibility of the two product alterna-
tives. Obviously, two almost indiscernible product alternatives
will yield about 0.50n. And in normal situations, the prob-
ability of a tie (A and B having exact the same score) is
vanishingly small, so that n(A>B)+n(B>A)=n.

If the direction (smaller or larger) and not the distance be-
tween the scores for the product alternatives is recorded, it
leads to an important reduction of information. It is exactly
the reduction that creates the possibility of analysing the
general case of more than two product alternatives. See the
section on representation below for an example.

5.2 Possibilities

Like any Monte Carlo-based analysis, the uncertainties of the
input data and a number of runs are required. The discernibility
analysis can take place for elementary flows, for impact cat-
egories, and for the weighted index. The major option for
displaying results, is that one can choose between listing counts
(like n(A>B) = 9,163 for 10,000 runs), listing fractions (like
p(A>B) = 0.9163), listing percentages (like p(A>B) = 91.63%),
and listing significance tests (like p(A>B) = n.s., where n.s.
means not significant at the 95%-level).

5.3 Tabular and graphical representation

A convenient form of representing the results of a discerni-
bility analysis is as in Table 5. In this table, one reads that the
score for product alternative B is lower than that for A in
91% of the Monte Carlo runs, that it is lower than the score
for product alternative C in 43% of the runs, and that the
score for product alternative C is lower than that for A in
97% of the runs. Hence, with a significance level of 95%,
product C can be said to have a significantly lower score than
product A. Furthermore, product B can be said to have a quite
but not significantly lower score than product A. Finally, prod-
ucts B and C are barely discernible with respect to the selected
indicator. Of course, one could restrict the table to the right
upper triangle alone, as the other part is redundant.

A B C
A –– 0.09 0.03
B 0.91 –– 0.43
C 0.97 0.57 ––

Table 5: Illustration of the results of a discernibility analysis. Here, one
would conclude that product C has a lower score than product A in 97% of
the simulations, so that the two products are highly discernible, whereas
product C is almost indiscernible from product B

One could visualise the ranks of the different products on a
line interval, indicating significance intervals. It is question-
able if this would add much to the tabular presentation.

5.4 Restrictions and warnings

A point to notice is that the discernibility analysis ignores the
distance between the scores of product alternatives; it only
uses a smaller-larger dichotomy. It measures the probability
that a specific product alternative has a lower (or higher) score
than the other alternatives. Two alternatives can be very close
in numerical value (say, 12.2 and 12.3 kg CO2) and still be
statistically discernible or vice versa. The difference is due to
the degree of uncertainty in the point estimates. In that sense,
the discernibility analysis fits in the set of non-parametric sta-
tistical tests, like the sign test, the Kruskal-Wallis test, and
Kendall's coefficient of concordance (see, e.g. Siegel 1956). In
a certain sense, the discernibility analysis is a complement to
the comparative analysis: the former only yields information
with respect to discernibility, while the latter only states the
point estimates of the scores.

Because the discernibility analysis is a special form of an
uncertainty analysis, the problems that are associated with
this latter type of analysis also apply here. A discernibility
analysis is time-consuming, and requires the specification of
many uncertainty parameters.

5.5 Example

Table 6 shows the results of a discernibility analysis at the
characterisation level for the impact category ecotoxicity.
We see that the tube lamp has a lower score than the fluo-
rescent lamp in all cases, which suggests that the scores are
fully discernible and that tube lamps are with 100% cer-
tainty superior to fluorescent lamps with respect to
ecotoxicity. The tube lamp has a lower score than the incan-
descent lamp in about 40% of the cases. This suggests that
the incandescent lamp is better, but not significantly better.
A similar argument can be made for the discernibility of
fluorescent lamps and incandescent lamps.

incandescent
lamp

fluorescent
lamp

tube lamp

incandescent lamp – 66 60.4
fluorescent lamp 34 – 0
tube lamp 39.6 100 –

Table 6: Example of the results of a discernibility analysis. See text

6 Discussion

This paper has given an overview of five different ways to
explore the data of an LCA. The five approaches can be
used under different conditions, that are summarised in
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Table 7. Having performed a point estimate of the elementary
flows, the impact category results, the normalisation results,
or the weighted index, one can always do a contribution analy-
sis and a perturbation analysis, and we think that it is wise to
include them in every LCA that has the ambition to transcend
from a quick scan. Most software for LCA includes the possi-
bility for a contribution analysis, but unfortunately does not
include a perturbation analysis. We hope that practicality and
practice will change in this respect.

one product
alternative

more than one
product alternative

without uncertainty
estimates

contribution analysis
perturbation analysis

comparative analysis

with uncertainty
estimates

uncertainty analysis discernibility analysis

Table 7: Overview of five numerical approaches towards life cycle inter-
pretation that are discussed in this paper in relation to their applicability
along the dimensions for one product/several products and with/without
uncertainty estimates

We have discussed that uncertainty estimates, required for an
uncertainty analysis and a discernibility analysis, is most of-
ten lacking. Carrying out Monte Carlo simulations therefore
implies either using partial uncertainty information (e.g. for a
selection of unit processes and/or characterisation factors), or
adding subjective uncertainty estimates (like putting the stand-
ard deviation to 10% where no information is available). Both
options are obviously second-rate solutions. On the one hand,
the majority of LCA-software programmes cannot deal with
uncertainty estimates of input parameters because these data
have typically not been available anyhow. On the other hand,
the absence of computational devices for handling such infor-
mation has lowered the priority for the collection of these data.
We think it is important that both designers of LCA-software
and developers of LCA-databases for inventory analysis and
impact assessment show the courage to escape from this trap.
In this respect, we refer to Burmaster & Anderson (1994) for
a survey of the principles of good practice for carrying out
Monte Carlo simulations.

If the purpose of the LCA is to rank product alternatives in a
decision-context, the right-hand column in Table 7 becomes
of interest. If the purpose is merely an analysis of a certain
product life cycle, with possible applications in the form of
obtaining recommendations, the other column is important.

A combination of techniques may be appropriate in certain
cases. One could, for instance apply a perturbation analysis to
find out for which data obtaining uncertainty intervals will
have the highest priority. A subsequent uncertainty analysis
and/or discernibility analysis will then be more powerful.

The subject of interpretation has barely been addressed in lit-
erature. This paper provides five numerical techniques, and
the ISO standard and certain other reports provide a number
of more procedural techniques. We think that there may be
many more numerical approaches for interpretation. We also
think that the five approaches that have been discussed are in
their infancy, which means that they may be developed fur-
ther, and that their usefulness and realm of application is not
yet completely clear. Although we have benefited much from
the ISO text on interpretation, it should be clear that the label
'standard' is somewhat premature, in the sense that it is diffi-

cult to speak of a standard at a time that there is merely a
procedural framework, and no experience with the applica-
tion. More research efforts in this field are needed, especially
if one recognises that the input data of a typical LCA consists
of thousands of numbers, and that statistical techniques for
data exploration have been developed to a high degree of so-
phistication in other fields of interest. In this respect, we just
mention the enormous toolbox of multivariate methods, like
principal component analysis, factor analysis and cluster analy-
sis (see, e.g. Johnson & Wichern 1992).
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Appendix

Symmetric uncertainty distributions of input parameters may eas-
ily lead to asymmetric uncertainty distributions of results. This
appendix demonstrates for a very simple system how this works.

Suppose that a product system consists of two unit processes:
production of a product and production of electricity. To make 1
product, one needs 10 MJ electricity, and to make 1 MJ electric-
ity one emits 10 kg CO2. There will therefore be a baseline emis-
sion of 100 kg CO2. Now suppose that we replace the point esti-
mate of 10 MJ electricity per product by a symmetric interval
estimate that ranges between 5 and 15 MJ electricity per prod-
uct. It follows that this leads to an emission of CO2 that ranges
between 50 kg and 200 kg. This interval is obviously not sym-
metrically centred around the baseline result of 100 kg. Observe
that this argument nowhere makes assumptions with respect to
the exact distribution: it applies to uniform and Gaussian and all
other symmetric distributions.


