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Quantum phase transitions in cuprates: stripes and
antiferromagnetic supersolids

J. Zaanen )

Institute Lorentz for Theoretical Physics, Leiden UniÕersity, P.O. Box 9506, NL-2300 RA Leiden, The Netherlands

Abstract

It is believed that the magnetic fluctuations in cuprate superconductors reflect the proximity to a quantum phase
transition. It will be argued that this notion acquires further credibility if combined with the idea that the superconducting
state is in a tight competition with the stripe phase over a large range of hole concentrations. On basis of existing data and
some simple considerations, a zero-temperature phase diagram will be proposed with an unusual topology which is unique to
the competition stripe phase superconductivity. It is argued that the existence of a state which is at the same time stripe

Ž .ordered and superconducting antiferromagnetic supersolid is a prerequisite for quantum critical behavior in the magnetic
sector. Various predictions follow which can be tested experimentally. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 64.60.y i; 71.27.qa; 74.72.yh; 75.10.yb
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1. Introduction

Until not long ago, it was assumed that cuprate
physics was about a rather anomalous metallic state,
subjected to a superconducting instability, and a
Mott-insulating antiferromagnetic state in a remote
corner of the phase diagram. A consequence of the

w xdiscovery of the stripe phase 1 is that stripes have
to be added to the list of states which compete at
zero temperature. Although still littered with uncer-
tainties, enough experimental information is avail-
able to conjecture the general shape of the zero-tem-

Ž . Ž .perature k Ts0 phase diagram see Fig. 1 . The xB

axis has the usual meaning of hole concentration and

) Corresponding author. Tel.: q31-71-527-5506; Fax: q31-71-
527-5511; E-mail: jan@lorentz.leidenuniv.nl

the other axis is taken in a rough sense as an
influence which helps charge localization over super-
conductivity: I call this gy1 since it is similar to the
inverse of the coupling constant of a quantum
phase–dynamics problem.

As will be further discussed in Section 2, it is
about a metal competing with the superconductor at
high dopings, about presumably some nickelate-like
‘classical’ stripes at very low dopings which are
strongly affected by quenched disorder and, last but
not least, by an ‘underdoped regime’ where over a
large concentration range the superconductor com-
petes with the stripe phase. Although still quite
controversial, it might be that at intermediate gy1

stripes and superconductivity coexist in this under-
w xdoped regime 2 . A main aim of this contribution is

to analyze the role of this ‘coexistence’ or, more
precisely, ‘antiferromagnetic supersolid’ phase.

0921-4534r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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Fig. 1. The topology of the zero-temperature phase diagram of
Ž .high T superconductors, as function of doping x and a controlc

Ž y1 .parameter g suppressing superconductivity andror promoting
Žthe stripe phase magnetic fields, the LTT deformation, Zn dop-

.ing .

Ž .At stake is that zero temperature ‘quantum’
phase transitions can govern the physics at finite
times, lengths and temperatures, also if one is away
from the locus of the transition in Ts0 parameter
space. If the transition is continuous, and if the
competition can be described in terms of a bosonic
field theory, one meets the phenomena often referred

w xto by quantum criticality 3,4 . A generic property of
the quantum critical regime is that the phase-relaxa-
tion time t ,"rk T while for an effectivelyf B

Lorentz invariant dynamics the correlation length j

is related to a geometrical average of energy v and
2 Ž .2 Ž .2 w xtemperature: 1rj ; "v q k T 3,4 . UsingB

inelastic neutron scattering, Aeppli et al. demon-
strated recently that this scaling behavior is obeyed
by the incommensurate magnetic fluctuations of

w xLa Sr CuO in its normal state 5 . Since these1.85 0.15 4

fluctuations are found at the same wavenumbers as
the magnetic superlattice Bragg peaks of the static

w xstripe phase 2,6 , it is tempting to think that these
fluctuations have to do with the proximity of the
stripe antiferromagnetic order. This interpretation is
further helped by the observation that the spectrum
of incommensurate fluctuations acquires a gap at low

Ž .temperatures, and this gap D´ is very small 6 meV
Ž .as compared to the lattice scale exchange 100 meV

w x7 : the smallness of this gap signals the close prox-
imity to the quantum critical point. In addition, it has
been argued that the antiferromagnet found in the

ŽLTT cuprates La RE Sr CuO RE s Eu,2yxyy y x 4
.Nd, . . . is characterized by strong quantum fluctua-

w xtions 8 , indicating the proximity of the stripe anti-
ferromagnet itself to the quantum disordering transi-
tion.

The above interpretation points at the presence of
a second order quantum phase transition, at least
involving the spin sector. As I will show, this obser-
vation together with the phase diagram of Fig. 1 puts
some strong constraints on the form of the effective

Ž .low energy theory. The argument rests on: a Some
well established notions developed in the context of
the strongly interacting boson problem, centered

w x Ž .around the concept of supersolid order 9–13 . b a
Ž .straightforward extension to the Ts0 quantum

case of the phenomenological theory by Zachar et al.
w x14 for stripe order. These matters will be discussed
in Section 3. Since the phase diagram Fig. 1 has, to
my knowledge, not been proposed before, let me
first discuss its somewhat uncertain status.

2. Topology of the zero-temperature phase dia-
gram

The assumption underlying the construction of
Fig. 1 is that the ‘perturbations’ stabilizing stripe

y1 Ž .order can all be understood as the ‘g ’ y-axis of
Fig. 1. This is not quite obvious, and even if true, the
physically realizable gy1 parameters are not well
behaved, with the effect that big portions of the
phase diagram have not yet been accessed. The best
documented ‘gy1 ’ is the rare earth concentration y
in the cuprates of composition La RE Sr CuO2yxyy y x 4
Ž .REsNd, Eu, etc. showing the low temperature

Ž .tetragonal LTT distortion. As argued by Tranquada
w xet al. 1 , the LTT deformation can be regarded as a

relatively weak collective pinning potential. If this
potential could be switched on continuously, it would
be close to an ideal realization of gy1. The problem
is, however, that at a critical substitution y the LTTc

deformation switches on in a first order transition
w x15,16 as expected for a 3D structural transition.
Apparently, this corresponds to a jump from deep
inside the superconducting regime into the coexis-
tence regime of Fig. 1. A next candidate is substitu-

w xtion by impurities like Zn 17 . The problem is that
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this introduces additional quenched disorder into the
problem, further obscuring the clean limit physics
w x w x18,19 . Finally, magnetic fields 20 are believed to
stabilize stripes also. Besides the practical problem
that few experiments can be done in ;60 T fields,
additional complexities are expected here also. 1 It is
a matter of high priority for the experimental com-
munity to search for alternative gy1 like control
parameters.

Given these reservations, the phase diagram
topology follows directly from experiments. The
metal–insulator transition at x,0.20, as seen in

w x Žmagnetic fields 20 and Zn substitution experiments
w x22 coincides with the concentration where Tran-

w xquada et al. 2 find the stripe order parameter to
disappear in the LTT system. It is firmly established
that in the concentration range xs0.125–0.20 in-
commensurate magnetic order is present in the LTT

w xsystem 2 and some evidence is available for the
presence of this order at x - 1r8, even in

w xLa Sr CuO 23,24 itself. A second singular dop-2yx x 4

ing concentration is x,0.06 where the supercon-
w xductivity disappears. Remarkably, Yamada et al. 6

find that with the diminishing of the superconductiv-
ity also the incommensurate magnetic fluctuations
disappear, being replaced by a broad peak centered

Ž .at the pra, pra wavevector. Although evidence
exists showing that one or the other collective phe-
nomenon involving the holes and the spins is at work

w xin the doping range 0-x-0.06 25,26 , it remains
to be seen if this is related to the stripes at higher
doping. Finally, a crucial issue is whether the super-
conductor and the stripe phase are separated by an

Žintervening microscopic coexistence phase see Fig.
. w x1 . The experimental situation 2 is far from settled,

and a main purpose of this communication is to
discuss the possible role of this coexistence phase.
However, assuming that it exists, it is clear that for
increasing ‘gy1 ’ the superconductivity will eventu-
ally vanish. It has been shown that for increasing

1 Given Fig. 1, it is expected that the cores of the superconduct-
Ž w x.ing vortices are antiferromagnetic see Ref. 21 . The magnetic

field driven superconductivity-stripe transition could be related to
a percolation-like transition where the vortex cores start to over-
lap.

LTT tilt angle in the La Sr Nd CuO system a2yxyy x y 4

region opens up around xs1r8 which is not super-
w xconducting 15,16 .

Ž .The novelty of the phase diagram Fig. 1 is that
as function of doping lines of Ts0 phase transitions
are present, instead of the isolated points which are
discussed in the theoretical literature. It is experi-
mental fact that stripe phases exists in a large doping

w xrange 2 . Different from Mott–Hubbard insulators,
the charge- and spin order exists away from points of
low order charge commensuration. Although the or-
dering seems characterized by a partial commensura-

w xtion 27,28 , what matters in the first instance is that
stripes can be formed in a large range of dopings.
Because the superconducting order is not critically
dependent on the hole density either, quantum phase
transitions can occur over a wide range of dopings.
This helps to remove a standard difficulty associated
with the idea that high-T superconductivity is re-c

lated to the physics of quantum phase transitions.
The quantum criticality as referred to in Section 1 is
apparently present over a large doping range, and
this is not natural if the physics is controlled by an
isolated quantum critical point on the doping axis.
However, it becomes more natural given that there is
a line of critical points as function of doping.

Ignoring the low doping regime, in addition to the
line of stripe related transitions there is a single
isolated singular point as function of doping: the

w xmetal–insulator transition at x,0.20 49 . The Ts0
phase diagram of Fig. 1 actually suggests a particular
interpretation of the finite temperature crossover

w xdiagram as constructed by Pines et al. 29 , based on
the analysis of a vast amount of data. This cross-over
diagram is reproduced in Fig. 2. The spin–gap tem-

U Ž .perature T dashed line can be interpreted as mea-
suring the ‘distance’ between the superconductor and
the coexistence phase. If temperature exceeds the
spin gap the ‘zs1’ quantum critical regime is en-
tered, which is associated with the freezing of the
stripe antiferromagnetism. It is obvious that this spin
gap will, at least initially, grow as function of in-
creasing doping. However, there are also crossover
lines associated with the singular xsx of theMI

Ž . w xmetal insulator transition: T full lines 30,31 . Incr

sharp contrast with TU , T is strongly doping depen-cr

dent, as expected for a crossover line associated with
w xan isolated point on the doping axis 50 .
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Fig. 2. Finite temperature crossover diagram according to Pines
w x29 , but now with an interpretation motivated by the zero temper-

Ž . Ž .ature phase diagram Fig. 1 . The dotted lines T indicate thecr

crossover to the quantum critical regime controlled by the metal–
insulator transition. To the underdoped side, a regime is entered
below T which is controlled by the line of quantum phasecr

transitions from the superconductor to the coexistence phase. The
spin–gap temperature TU measures the T s0 ‘distance’ to the
coexistence phase.

The precise nature of the critical regime associ-
ated with the metal-insulator transition depends on
the nature of the metal in the overdoped regime.
Assuming that this metal is a Fermi-liquid, the criti-

w xcal regime is likely of the Millis–Hertz variety 32,33
as controlled by the vanishing of the stripe order.
Such an interpretation acquires further credibility by
the observation that this regime is characterized by

Ž .mean field exponents zs2 , and the remaining
issue is if the transition is dominated by the spin-

w x w xchannel 29 or the charge channel 34 . Obviously, it
remains to be seen if high T superconductivity hasc

w xanything to do with Fermi-liquid physics 35 .

3. Criticality and the antiferromagnetic supersolid

Let us now focus on the doping regime character-
ized by the competition between superconductivity
and the stripe phase. It is assumed that the long
wavelength dynamics is governed by conventional
bosonic ordering fields, described in terms of a

Ž .Ginzburg–Landau–Wilson GLW action. A next
assumption is that the stripe-antiferromagnet orders
in a continuous quantum phase transition. This is

w xmotivated by the work of Aeppli et al. 5 as dis-
cussed in Section 1. Leaning heavily on the well
understood phenomenology of supersolid order, to-

w xgether with the work by Zachar et al. 14 on the
phenomenology of stripe ordering, I find that the
demand for a continuous transition acts as a strong
constraint on the allowed dynamics. First order be-
havior is more natural in the present context, and
only under quite specific circumstances second order
transitions can occur. The analysis which follows is
not complete. At several instances a full renormaliza-

Ž .tion group RNG analysis is still to be done, but it is
not expected that this will change the picture radi-
cally. Quenched disorder is neglected altogether. For
a two-dimensional order like the stripe phase,

w xquenched disorder has to dominate eventually 36 .
However, because the disordering lengths associated
with the static stripe phases tend to be rather large, it
should make sense to analyze first the clean limit,
while disorder physics becomes only of relevance
very close to the phase transition. This section is
organized as follows: first I will introduce a minimal

Ž .set of ordering fields Section 3.1 . In the absence of
the spin fields, the problem becomes quite similar to
the problem of supersolids, which will be discussed

Ž .next B . The charge–spin coupling will be dis-
Ž .cussed, following the work of Zachar et al. C , and

combined with the supersolid theme in Section 3.4.

3.1. The ordering fields

On the level of GLW-theory, the phase diagram
Fig. 1 suggests a rather rich dynamics because of the
involvement of a variety of ordering fields. The
order parameters of relevance are as follows.

Ž .i The spatially uniform d-wave superconducting
² iu 0:order parameter e , parametrized in terms of the

phase-angle u . The phase angle u is conjugate to0 0
w xthe uniform charge density N such that N ,u s i.0 0 0

Ž .ii The finite wavevector charge density wave
™

order N associated with the stripe phase charge2 ´

order. The total charge density can be written as,

N x sN qN cos 2´ x qN cos 2´ xŽ . Ž . Ž .0 2 ´ ,1 1 2 ´ ,2 2

1Ž .
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2´ is the wavevector of the charge order, while the
Žstripe phase can occur in two orientations x are1,2

Ž . Ž .the 1,0 and 0,1 directions in the lattice, respec-
.tively . The implication is that N is a vector:2 ´™ Ž . Ž .N s N , N . As under i , superfluid phase2 ´ 2 ´ ,1 2 ´ ,2

Ž .angles u is1, 2 are conjugated with the charge2 ´ , i

order, corresponding with finite momentum super-
w xconductivity: N , u s id . The interplay of2 ´ , i 2 ´ , j i j

charge density wave order and superconductivity is
the central theme in the literature dealing with super-
solid order.

Ž .iii The novelty is the incommensurate antiferro-
magnetic spin order associated with the stripe phase.
A crucial issue is if the spin order is collinear, with
the spatial modulation of the staggered order parame-
ter driven by the magnitude of the staggered magne-
tization, or if some spiral modulation is involved.
For the collinear case, the relevant long wavelength
theory is the same as, e.g., a simple two sublattice

Ž Ž .Heisenberg antiferromagnet O 3 quantum non-lin-
ear sigma model, or the ‘soft spin’ model adapted

.here while the fluctuations of spiral phases are
w xdescribed by more involved matrix models 37 .

Although direct experimental evidence is not avail-
able, it is generally believed that the stripe-antiferro-
magnet in the cuprates is of the collinear variety,
both because this is the unanimous outcome of theo-

w xretical work 38 , and because of the experience in
w xthe nickelates 39 . The staggered spin density is,

™ ™ ™
M x sM cos ´ x qM cos ´ x 2Ž . Ž . Ž . Ž .´ ,1 1 ´ ,2 2

™ ™ ™Ž . Ž .defining the O 6 rotor field M s M , M where´ ´ ,1 ´ ,2

´ refers to the modulation wavevector, is1, 2 to
™ x y zŽ .the stripe orientation, and M s M , M , M´ , i ´ , i ´ , i ´ , i

3.2. Phenomenology of the supersolid

In the absence of spin-order, the remaining charge
sector is similar to the well studied subject of super-
solid order. Although the microscopic physics behind
the stripe phenomenon is clearly quite different from
the simple Bose–Hubbard models discussed in the
latter context, there is no obvious reason to expect
the long-wavelength behavior to be different. In the
absence of antiferromagnetism, the progression su-
perconductor–coexistence phase–stripe phase of Fig.
1 translates in the triad superconductor–supersolid–

collinear charge order known from the study of
w xBose–Hubbard models 9–11,16 . Let me recollect

some results as of relevance to the present context.
The starting point is the Bose–Hubbard model,

HsJ a†a qa†a ym n qU n2Ž .Ý Ý Ýi j j i i 0 i
² : i iij

qU n n qU n n 3Ž .Ý Ý1 i j 2 i k
² : ² :ij ik

where a† and a are bosonic creation and annihila-i i
w † x Ž † .tion operators obeying a , a sd n sa a . Thei j i j i i i

parameters t, m and U are the hopping, thermody-0

namic potential and on-site interaction, respectively,
while U and U are nearest-neighbor and next-1 2

nearest-neighbor interactions. This model has a lit-
eral interpretation in the context of Josephson junc-
tion networks, while in the present context it is no
more than a convenient lattice cut-off model, reveal-
ing universal features of the long wavelength physics.

In the absence of the non-local interactions U1,2

this model describes the competition between the
Žcondensation of the qs0 charge mode Mott-insula-

.tor and the superfluid. For U /0 charge density1,2

wave order is found at particular densities. If U GU2 1

a particular charge ordering occurs which is of inter-
est in the present context: a stripe charge order

Žbecomes stable often called ‘collinear’ in the Bose-
.Hubbard literature . In Fig. 3 a representative part of

w xthe phase diagram is sketched 12 , as function of
Ž .increasing kinetic energy JrU and average parti-0

Ž .cle number n in the grand canonical ensemble, for0

some particular choice of non-local interactions. At
Ž .integer fillings n s0, 1, PPP the uniform Mott-0

Ž .insulating MI state is stable for small kinetic en-
Ž .ergy, while the stripe state Sol acquires stability at

Ž .half-integer fillings n s1r2, 3r2, PPP . Upon0

increasing the kinetic energy, first a phase is entered
characterized by a coexistence of stripe order and

Ž .superfluidity: the stripe or collinear supersolid
Ž .Ssol . Upon a further increase of J the stripe order
weakens to disappear at the phase boundary with the

Ž .pure superfluid SF . It is noticed that the Bose–
Hubbard collinear order has much in common with
the cuprate stripe order. For instance, the bond-

w xordered stripes as found by White and Scalapino 40
Ž .in their numerical studies of the t–J model Fig. 4

are quite like the Bose–Hubbard collinear states
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Fig. 3. The mean-field phase diagram of the Bose–Hubbard model
as function of JrU and average boson density n , according to0 0

w xvan Otterlo et al. 12 . Numerical studies indicate that the topol-
ogy of the phase diagram does not change significantly due to the

w xfluctuations in 2q1D, for both the checkerboard 12 and
w xcollinearrstripe 9 charge orders.

assuming that the electrons pair on the elementary
plaquet to form effective bosons. 2 Interestingly, a
simple explanation is found within this framework
for the doping independence of the stripe wavevector

w x´ in the doping regime 1r8-x-0.20 2 . The
stripe phase of the Bose–Hubbard model occurs in

Ž .the classical limit ts0 only at a half-integer fill-
ing, with the associated commensurate wavevector

Ž .pr2 a a is the lattice constant . The system would
Ž .phase separate at non- half integer fillings in Mott-

insulating and stripe regions. However, the super-
solid phase can exist in a homogeneous form away
from half integer filling, keeping the wavevector of
the charge order commensurate with the underlying
lattice: also away from charge commensuration the
density wave can stay commensurate because the
excess particle density can be ‘eaten’ by the super-
fluid order. Notice that the optimal stability of the
stripe phase of Fig. 3 occurs at half-integer filling;

2 It has been argued that the ‘half-filled’ cuprate stripes might
w xdevelop an on-stripe density wave instability 41–43 . Pending

microscopic details, these could give rise in principle to secondary
transitions in the charge sector.

this is quite like the special stability of the cuprate
stripes at the commensurate density xs1r8.

A subtle issue is the role played by the finite
² iu 2 ´:momentum superconductor, e . In the Bose–

Hubbard context, this is playing no role. In fact, by
letting the superconductivity live at qs0 and the
charge-order at finite wavevector the either-or com-
petition is avoided which is a consequence of the
number operator being conjugate to the phase, and
this makes possible the existence of the supersolid.
Self-evidently, since translation symmetry is broken
by the charge order, the superconducting order also
acquires a spatial modulation commensurate with the
charge order. However, this involves the amplitude
of the SC order parameter which acquires an admix-
ture with a finite momentum component. However,
this component is parasitic and does not play a
critical role. I will assume that this is also the case in
the cuprates.

Let us now discuss the nature of the phase transi-
tions of Fig. 3. Obviously, in the absence of the
intervening supersolid phase, the transition between
the stripe phase and the superconductor would be
first order. The intervention of the supersolid, on the
other hand, allows in principle for the occurrence of
continuous quantum phase transitions. Although sec-

Fig. 4. The mean-field phase diagram following from the stripe
Ž . Ž . Ž . w xaction Eqs. 4 , 8 and 9 according to Zachar et al. 14 , here

interpreted as a zero-temperature phase diagram. The axis are the
Ž 2 . Žcoupling constants of the charge r s r rl and spin r s˜ ˜n N 1 m

2 .r rl sectors, respectively. Dashed lines refer to second orderM 1

transitions and the heavy line corresponds with the spin–charge
coupling induced first order transitions.
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ond order transitions are found on the mean field
w xlevel, Frey and Balents 13 presented an interesting

analysis showing that the role of critical fluctuations
is subtle. For future use, let me review their argu-

Ž .ments. The Ginzburg–Landau–Wilson GLW ac-
™

tion consistent with the symmetries of N s2 ´

Ž . Ž Ž ..N , N Eq. 1 is2 ´ ,1 2 ´ ,2

221 1 2S s d xdt E N q = NŽ .ÝHN t 2 ´ , i 2 ´ , iž /½ 2 cNis1

2uN2 2qr N q nÝN 2 ´ , i 2 ´ , iž /4! i

wN 4y N , 4Ž .Ý 2 ´ , iž / 54! i

where c is a velocity characterizing the chargeN

order, while the mass r measures the distance fromN

the critical point associated with the charge ordering.
For the quartic anisotropy parameter w s0 thisN

Žwould correspond at k Ts0 and 2 space dimen-B
.sions with the GLW action of a classical XY system

in Ds3. If the anisotropy w )0, stripes orientedN
Ž . Ž .along 1,0 or 0,1 are favored in the ordered state.

The superfluid order parameter corresponds with
² iu 0:e , where the superfluid phase u is governed by0

the usual quantum phase dynamics,

21 1 2S s d xd t E u q =u , 5Ž . Ž .HS t 0 0ž /2 g cS S

at least deep in the superconducting phase. It is
noticed that the transition between the supersolid and
the stripe phase is actually governed by a dilute

w xBose-gas action 44 away from points of charge
w xcommensuration 3,4,12 . The physical interpretation

is that mobile bosonic defects in the stripes decon-
fine and these form initially a dilute gas of bosons.
Since the stripe phase excitation spectrum is charac-
terized by a commensuration gap, the stripe phase
order parameter acts like a spectator at this transi-
tion.

Of more interest is the transition between the
supersolid and the superconductor. Because of the
massless character of the phase fluctuations, these
can in principle interfere with the critical fluctuations

associated with the charge-ordering transition. The
lowest order allowed coupling between the phase
and the charge order parameter is,

S s d xdt is E u N 2 6Ž . Ž .ÝHNS N t 0 2 ´ , i
i

w xFrey and Balents 13 show that the critical fluctua-
Ž Ž ..tions renormalize the phase velocity c Eq. 5S

according to,

c2
S2c s 7Ž .S , R Da rŽ2ya .1qconst.j

Ž .where Ds3 space–time dimensionality and j the
correlation length associated with the stripe ordering.
a is the specific heat exponent and it is seen from

Ž . 2Eq. 7 that for a)0 c ™0 at the transition,S,R

signalling a runaway flow, while for a-0 the cou-
Ž .pling Eq. 6 is irrelevant. It is a classic result of

w xrenormalization group theory 45 that the quartic
Ž .anisotropy w in Eq. 4 is irrelevant at this transi-N

tion. The transition falls therefore in the Ds3 XY
universality class, and since the specific heat expo-
nent is negative, the coupling to the superfluid phase
mode is irrelevant also.

Summarizing, although the direct transition from
the superconductor to the stripe phase is first order,
in the presence of a supersolid two continuous quan-
tum phase-transitions are found: the supercon-
ductor-supersolid transition is a 3D XY transition,
and the supersolid-stripe transition is generically
described by the dilute bose gas.

3.3. Phenomenology of quantum stripes

As compared to Section 3.2, the novelty of the
cuprate stripe phase is the prominent role of antifer-
romagnetism. Neglecting superconductivity, the
problem remains of the interplay of the finite
wavevector charge- and spin modes and this has
been analyzed on the phenomenological level by

w xZachar et al. 14 . This work focuses on the finite
temperature classical phase diagram, but it is easily
generalized to the 2q1D k Ts0 quantum dynam-B

ics.
The zero-temperature dynamics of the stripe-anti-

™ Ž Ž ..ferromagnetic order parameter M Eq. 2 can be´
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represented by a ‘soft-spin’ GLW action, which is
Ž .the six-flavor version of the charge action, Eq. 4 ,

261 1 2S s d xdt E M q = MŽ .ÝHM t ´ , i ´ , iž /½ 2 cMis1

2uM2 2qr M q MÝM ´ , i ´ , iž /4! i

2w ™ ™ ™ ™M
y M PM qM PM . 8Ž .´ ,1 ´ ,1 ´ ,2 ´ ,2ž / 54!

The quartic anisotropy w is chosen such that itM
Ž .leaves the internal O 3 spin rotation unaffected,

breaking the spatial rotation symmetry to Z ; overall,2
Ž . Ž .O 6 is broken by w to O 3 =Z . As shown byM 2

w xBrezin et al. 45 , any quartic anisotropy is relevant
Ž .at the phase transition of a O N problem with

Ž .N)4. Since Ns6 for the action Eq. 8 , its phase
Ž .transition is governed by O 3 =Z universality.2

Little attention has been paid to such symmetry
breakings in the statistical physics literature and the
precise nature of its quantum critical regime is under
investigation.

Ž . Ž .The actions Eqs. 4 and 8 describe the ordering
of the stripe charge- and spin fields independently.
Because a fully developed stripe phase is at the same
time charge- and spin ordered, the mode couplings
between these fields should be included. These have

w xbeen analyzed by Zachar et al. 14 . Their findings
can be directly applied to the present context of
quantum phase transitions. Including the twofold
degeneracy related to the stripe orientation, the low-
est order allowed spin-charge mode couplings are,

2l ™ ™1 US s d xdt N M M qh.c.ÝHNM 2 ´ , i ´ , i ´ , i½ 2 is1

2l ™2 2 2< < < <q N M 9Ž .Ý 2 ´ , i ´ , i 52 is1

The leading order spin-charge coupling l is propor-1

tional to the charge field itself and to the square of
the spin-field, because the former is a scalar and the
latter is a vector. This explains directly why spin
orders at the wavevector ´ and the charge at 2´ . The

Ž . Ž . Ž .coupling Eq. 9 , together with Eqs. 4 and 8 ,

defines a phenomenological theory for stripe order-
ing,

S sS qS qS . 10Ž .stripes N M NM

On the mean-field level, the coupling l gives rise1

to a rich phase diagram, which is reproduced in Fig.
4. Although still to be confirmed by a full RNG
analysis, it is expected that the topology of this phase
diagram will not change in three dimensions if fluc-
tuations are included. This is quite different in two
dimensions. Assuming 2´ to be commensurate with
the lattice, and neglecting the orientational freedom,
the charge sector is Ising-like and can therefore order
at finite temperature. However, the spin sector car-
ries a continuous internal symmetry such that mag-
netic order is forbidden at any finite temperature
according to the Mermin–Wagner theorem. The in-
terpretation by Zachar et al. of the finite temperature
phase transitions of LTT cuprates in terms of the
phase diagram Fig. 4 was criticized by van Duin and

w xmyself 8 . We argued that the stripe antiferromagnet
is relatively close to the zero-temperature order-dis-
order transition, with the effect that the 2D–3D
crossover in the magnetic sector is pushed to low
temperatures, such that mean-field theory loses its
validity.

The quantum ordering dynamics at zero tempera-
Ž .ture is governed by the three dimensionality of

space-time and the topology of the mean-field phase
Ž .diagram Fig. 4 is not expected to be affected by

fluctuations in a significant way. It is therefore ex-
pected that a quantum stripe system has the follow-

Ž . Ž 2 .ing phases: a Phase I r , r )l : the ‘quantumM N 1

incompressible stripe phase’. Both the spin- and
charge sector are quantum disordered. Because the
correlation length in the imaginary time direction is
finite in both sectors, both the charge- and spin
excitation spectrum should show gaps at the stripe
wavevectors. This is the interpretation found in the
present framework for the ‘dynamical stripes’ con-

Ž .jectured to exist in cuprate superconductors. b Phase
Ž 2 2 .II r rl -1 andror r rl -2 : the ‘renormalizedM 1 N 1

classical stripe phase’. Both spin- and charge are
ordered, and this phase corresponds with the ‘static’

Ž . Ž . Ž 2stripe phase. c Phase III r -0 and r rlN M 1
.larger than a critical value : the ‘quantum paramag-

netic stripe phase’. Although the charge is ordered,
the spin system remains in a quantum disordered
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state, and is characterized by a dynamical mass gap.
It is noticed that in principle also a state can exist
which is spin ordered and charge disordered but this
involves necessarily transversal modulations of the

Žspin system the circular spiral state of Zachar et al.
w x.14 .

The phase transitions behave in an interesting way
as function of the various coupling constants. Start-
ing at r 4l2, there is a second order transitionN 1

between the fully disordered state and the static
stripe phase. This transition is driven by the sign
change of r : the spin driven transition. The chargeM

Ž .mode is massive r 40 and is unimportant in theN

critical regime, as will be further discussed in Sec-
tion 3.4.

Upon decreasing r , a regime is entered whereN

the thermodynamics becomes driven by the spin-
Ž . �charge coupling, Eq. 9 , and this causes _em first

4 Ž .order behavior heavy line in Fig. 4 . Initially, this
first order transition separates the disordered from
the fully ordered stripe phase, but when r changesN

Žsign a second order charge transition splits off E in1
. 2Fig. 4 . For r )l one finds therefore the se-M 1

quence: quantum disordered stripes, quantum param-
agnetic stripe phase, and renormalized classical stripe
phase. Initially the spin ordering transition remains

Ž .first order due to the mode coupling to change to a
continuous transition in the purely charge driven
regime. It is noticed that this latter transition is in the

Ž .3D O 3 universality class because the orientational
freedom is already broken at the charge transition.

3.4. Stripes and superconductiÕity: antiferromag-
netic supersolids

In direct analogy with the coupling between the
charge-density mode and the superfluid phase, Eq.
Ž .6 , the coupling between the uniform superconduc-
tor and the stripe-antiferromagnet becomes,

6
2S s d xdt is E u M 11Ž . Ž .ÝHMS M t 0 ´ , i

is1

The crucial observation is that the interplay between
finite wavevector charge order and zero-momentum
superconductivity, as discussed in Section 3.2, can
be ‘dressed up’ with the stripe antiferromagnetism,

without changing the picture drastically. On the phe-
nomenological level, the magnetic order parameter
can be substituted anywhere for the charge order
parameter, with the only difference that the symme-
try is becoming larger. In analogy with the super-
solid, a pure antiferromagnet and a pure supercon-
ductor are separated by a first order boundary. How-

Žever, a coexistence antiferromagnetic superconduc-
.tor phase is thermodynamically allowed and both

the antiferromagnet-coexistence phase and the coex-
istence phase-superconductor transitions are of sec-
ond order. In the context of stripes we meet in
addition the charge–spin mode couplings causing the

Ž .rich phase diagram Fig. 4 . Since the charge and
spin modes couple in a similar way to the supercon-

Ž . Ž .ductivity, the supersolid Fig. 3 and stripe Fig. 4
phase diagrams ‘commute’ with each other.

First order boundaries are rather natural in the
present context and I leave it to the reader to enu-
merate all possible transitions of this kind. From now
on, I insist on the continuous character of the transi-
tion involving the ordering of the stripe antiferro-
magnet, as motivated by the observations in Sections
1 and 2. A first condition is that a coexistence phase
should be present; a direct transition from the singlet
superconductor to a pure stripe phase is necessarily
of first order. The second condition follows from the

Ž .stripe phase diagram Fig. 4 : the charge–spin driven
first-order transitions should be avoided. By these
simple considerations I find two possible scenario’s
which allow for a second order spin ordering transi-

Ž .tion Fig. 5 .

3.4.1. Scenario I: Independent transitions
The trivial way to arrive at a continuous magnetic

transition is obviously to let all orderings occur
independently. This is possible if the stripe sector is

Ž .in the ‘charge driven’ large r region of the phase˜m
Ž .diagram Fig. 4 . A typical sequence of quantum

phase transitions as function of decreasing ‘gy1 ’
could be as indicated in Fig. 5a: the superconductor

Ž .acquires a charge order in the O 2 transition of Frey
w xand Balents 13 . The spin system of this stripe phase

is still quantum disordered, and orders independently
Ž .in a standard O 3 transition. The dilute boson transi-

tion where the superconductivity vanishes might
happen before or after this spin freezing transition;
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Fig. 5. The two possible scenarios, implied by the presence of a
continuous spin ordering transition. The symmetries governing the

Ž .various phase transitions are also indicated DB is dilute bosons .

the charge- and spin sectors are in principle gov-
erned by independent coupling constants and the
order in which the transitions happen is determined
by the microscopy. Assuming that the antiferromag-
netic supersolid exists, the sequence of the transi-
tions is as indicated in Fig. 5a. This fingerprint of
this scenario is a stripe phase which is charge or-
dered while the spin sector is still quantum disor-
dered: the quantum paramagnetic supersolid, or in
other words, a superconducting stripe phase with a
spin gap. Although such a state has not been seen in

Ž .experiments, it has been implicitly discussed theo-
w xretically by Tworzydlo et al. 46 . The scenario Fig.

5a might appear as less natural for the cuprates. It
Ž .would be expected that the quantum critical fluctu-

ations in the superconducting state would be domi-
nated by the charge dynamics associated with the
superconductor–paramagnetic stripe phase transition,
and not by the spin fluctuations. At the same time,
very little is known experimentally on how the stripe
related charge fluctuations behave and this possibil-
ity cannot be excluded on basis of the available data.

3.4.2. Scenario II: The spin-driÕen stripe ordering
There is yet another possibility: the spin-driven

Ž .regime of the stripe phase diagram Fig. 4 . The
Ž .phase diagram simplifies in this case Fig. 5b , and

becomes literally like the empirical phase diagram
shown in Fig. 1. Different from the charge driven

Ž .case scenario I , the transition is now from the

superconductor directly into the antiferromagnet su-
persolid. In addition, since the transition is domi-
nantly spin driven this possibility appears as more
natural, given the quantum critical spin dynamics
observed by Aeppli et al.

Although one would expect the transition from a
superconductor to an antiferromagnetic supersolid to
be of first order, the transition can be of second order

Ž .because the coupling term, Eq. 9 , can force the
charge fields to follow the spin fields parasitically.
On the ordered side, this implies that the charge
order parameter grows quadratically slower than the

w x Žspin order parameter 14 . Defining r ; gyM
. Žg rg g is the bare coupling constant and g thec c c

.critical coupling and b as the order parameter
Ž .exponent of the Z =O 3 transition,2

bg yg™ c
M; ,ž /gc

12Ž .
2 bg ygc

N; ,ž /gc

a behavior which can easily be checked experimen-
tally by, e.g., measuring the increase of the spin- and
charge superlattice peaks as function of increasing
Nd concentration.

This ‘slavery’ of the charge field to the spin fields
is also expected to hold in the quantum disordered
regime close enough to the transition. The arguments
is as follows: in the neighborhood of the spin transi-
tion, where r changes sign, the charge sector is stillM

in the disordered regime, implying a charge-correla-
tion length j ;1r r or a charge mass gap D s(N N N

Ž .c rj ;c r . For lengths4j energies -D ,(N N N N N N

these fields can be integrated out by taking their
Ž Ž ..saddlepoint values. Minimizing S Eq. 10 tosstripes

the charge fields,

l1 2N s M 13Ž .Ýq i ,q24 r r2qqŽ .N i

Žincluding the gradient terms q is Euclidean momen-
. Ž .tum . After substitution of Eq. 13 in the full action
Ž .Eq. 10 a spin-only action is obtained with a renor-

2 Ž .malised quartic term u r4!™u r4!yl r 2 r .M M 1 N

As long as this quantity is positive, the critical
Ž Ž ..dynamics is in the spin-only Z =O 3 universality2

class. This implies that the charge-field does not
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carry any dynamics of its own, but follows instead
adiabatically the spin dynamics. This has interesting
consequences for the charge dynamics. Using Eq.
Ž . Ž .13 the dynamical charge susceptibility becomes
in terms of the euclidean momentum q,

N ² :x s N Nq q yq

l2
1 2 2; M M . 14Ž .Ý Ýq , i yq , j2¦ ;ž / ž /2r qq i jŽ .N

This implies that the stripe-like charge fluctuations
will exhibit a dynamics which is quite similar to the
spin dynamics. For instance, the charge fluctuations
will show a quantum gap in the disordered regime
which will be identical to the spin gap in the mag-
netic sector. On a more detailed level, there will be

N Ždifferences. On the Gaussian level x ;1r r qq N
2 .2 Ž M .2 M ² : Žq x where x sÝ M M dynami-q q i i , q i , y q

.cal spin susceptibility . However, in the 3D case this
will no longer be true because of the relevancy of the
four point vertex.

It is noticed that it remains to be established how
the critical fluctuations associated with this transition
interact with the ‘background’ superconductor. In

Ž .the charged quasi-2D superfluid, the action Eq. 5
describes the acoustic plasmon, keeping in mind that
the c-axis Josephson plasma frequency sets a low
energy cut-off. The arguments by Frey and Balents
w x13 for the supersolid transition, as discussed in
Section 3.2, can now be directly transferred to the

Žcase of a pure spin transition the specific heat
Ž ..exponent a-0 for O 3 . The subtlety is, however,

that the spin ordering is accompanied by the break-
Žing of spatial rotational symmetry the two stripe

.directions , which changes the universality class of
Ž .the transition to Z =O 3 and this has to be studied2

in further detail.
Finally, there is a serious problem with this sce-

nario. In the above I asserted that the zero tempera-
ture phase diagram has to do with the spin driven
transition of Zachar et al. At the same time, in the
LTT stripe phases the finite temperature transitions
in the stripe ordered region of the Ts0 phase
diagram are of the charge driven kind: charge orders
at a higher temperature than the stripe antiferromag-
net. At least in the close neighborhood of the quan-

tum phase transition, where the GLW theory is valid,
such a finite temperature behavior appears as impos-
sible. In strictly 2q1 dimensions, any finite temper-
ature will destroy the spin order, and it is easy to

Žunderstand that in the realistic case spin anisotropy,
.3q1 D couplings the spin ordering temperature can

become quite low due to the fluctuations. The prob-
lem is, however, that in the close neighborhood of
the quantum transition the charge sector does not
show a tendency to order in the absence of the spins.
In order to find a finite temperature charge ordering
transition, it is necessary to renormalize r from aN

large positive value at Ts0 to a negative value at
any finite temperature. Since temperature acts in
quantum field theory like a finite size scaling, it is
hard to see how this can happen.

4. Conclusions

I have presented here a minimal option for the
phenomenological theory of the zero temperature
competition between superconducting- and stripe or-
der. It is based on current beliefs on the types of
order relevant for the cuprates. The identification of
these orders is based on a still highly incomplete
experimental characterization. At the same time, I
hope I have convinced the readership that by elemen-
tary considerations a variety of predictions can be
derived. It is hoped that these issues are taken up by
the experimentalists, who are in the position to prove
the above right or wrong.

Let me end this discussion by commenting on
Ž .some distinct, but closely related ideas: i Laughlin

argues that the coexistence phase, critical behaviors,
etcetera, are not an intrinsic property of the clean

w xlimit but instead are caused by dirt effects 47 . As
repeatedly emphasized, first-order behavior is rather
natural in the present context. Laughlin argues that
the ‘most relevant operator’ quenched disorder

Ž .changes this into a pseudo continuous behavior,
while the coexistence phase is a strongly disordered
micro-phase-separated affair of insulating stripes and
pure superconductors. Although this possibility is not
excluded, I repeat that it is not easy to understand
how to arrive at the spin quantum criticality claimed

Ž .by Aeppli et al. ii The quantum liquid crystals as
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w xproposed by Kivelson et al. 27,28 . There is no
conflict between those ideas and what is presented
here. The liquid crystal ideas amount to the assertion
that the charge sector might reveal a substructure
which is more complex than the simple density wave

Ž .order which has been considered here. iii The
Ž . w x‘unified’ SO 5 ideas of Zhang 48 . It is actually the

case that the phenomenology presented here can be
Ž .completely reformulated in terms of a SO 5 action,

if appropriate anisotropies are added. For instance,
the antiferromagnetic supersolid can be understood

Ž .as a ‘canted’ superspin phase, where the SO 5
vector is canted in a direction in between the mag-

Žnetic and superconducting directions p mode con-
. Ž .densation . A difference with the original SO 5
w xproposal 48 is that the antiferromagnetic compo-

nent is now associated with the finite wavevector
stripe antiferromagnet, instead of the commensurate
magnet of half-filling. Assuming that a mildly bro-

Ž .ken SO 5 symmetry is governing the dynamics
gives rise to a number of additional possibilities. For
instance, finite momentum superconductivity appears

Ž .as a serious possibility within the SO 5 framework:
the simplest superconducting stripe phase corre-

Ž .sponds with a SO 5 spiral where the superspin
rotates from magnetic to superconducting directions.
It follows immediately that the superconductivity
lives at the same wavevectors as the stripe antiferro-
magnet. Obviously, the most striking specialty of

Ž .SO 5 is that the full symmetry can get restored at
Ž .isolated point s in the zero temperature phase dia-

gram, such that superconductivity and antiferromag-
netism occur on a strictly equal footing.

Acknowledgements

I acknowledge stimulating discussions with G.A.
Aeppli, V.J. Emery, R.J. Laughlin, S. Sachdev, J.M.
Tranquada, A. van Otterlo, W. van Saarloos, and
S.-C. Zhang.

References

w x1 J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S.
Ž .Uchida, Nature 375 1995 561, see also J.M. Tranquada,

cond-matr9802034 and refs. therein.

w x Ž .2 J.M. Tranquada et al., Phys. Rev. Lett. 78 1997 338.
w x3 S. Sachdev, Quantum Phase Transitions, Cambridge Univ.

Press, to be published.
w x Ž .4 S. Sachdev, in: B.-L. Hao Ed. , Proc. of the 19th IUPAP

International Conference on Statistical Physics, World Scien-
tific, Singapore, 1996; cond-matr9508080.

w x Ž .5 G.A. Aeppli et al., Science 278 1998 1432.
w x Ž .6 K. Yamada et al., Phys. Rev. 57 1998 6165.
w x Ž .7 K. Yamada et al., Phys. Rev. Lett. 75 1995 1626.
w x Ž .8 C.N.A. van Duin, J. Zaanen, Phys. Rev. Lett. 80 1998

1513.
w x Ž .9 C. Bruder, R. Fazio, G. Schon, Phys. Rev. B 47 1993 342.¨

w x10 G.G. Batrouni, R.T. Scalettar, G.T. Zimanyi, A.P. Kampf,
Ž .Phys. Rev. Lett. 74 1995 2527.

w x11 R.T. Scalettar, G.G. Batrouni, A.P. Kampf, G.T. Zimanyi,
Ž .Phys. Rev. B 51 1995 8467.

w x Ž .12 A. van Otterlo et al., Phys. Rev. B 52 1995 16176.
w x Ž .13 E. Frey, L. Balents, Phys. Rev. B 55 1997 1050.
w x14 O. Zachar, S.A. Kivelson, V.J. Emery, Phys. Rev. B 57

Ž .1998 1422.
w x15 B. Buchner, M. Breuer, A. Freimuth, A.P. Kampf, Phys.¨

Ž .Rev. Lett. 73 1994 1841.
w x16 A.R. Moodenbaugh, L.H. Lewis, S. Soman, Physica C 290

Ž .1997 98.
w x17 K. Hirota, K. Yamada, I. Tanaka, H. Kojima, Physica B, in

press.
w x18 A.H. Castro-Neto, A.V. Balatski, cond-matr9805273.
w x19 N. Hasselman et al., cond-matr9807070.
w x Ž .20 G.S. Boebinger et al., Phys. Rev. Lett. 77 1996 5417.
w x Ž .21 D. Arovas et al., Phys. Rev. Lett. 79 1997 2871.
w x22 Y. Fukuzumi, K. Mizuhashi, K. Takenaka, S. Uchida, Phys.

Ž .Rev. Lett. 76 1996 684.
w x Ž .23 Ch. Niedermayer et al., Phys. Rev. Lett. 80 1998 3843.
w x Ž .24 T. Suzuki et al., Phys. Rev. B 57 1998 R3229.
w x Ž25 B.J. Suh et al., Phys. Rev. Lett. in press, cond-

.matr9804200 .
w x26 P.C. Hammel et al., cond-matr9809096.
w x Ž .27 S.A. Kivelson, E. Fradkin, V.J. Emery, Nature 393 1998

550.
w x28 S.A. Kivelson, V.J. Emery, cond-matr9809082.
w x Ž .29 D. Pines, Z. Phys. B 103 1997 129, and refs. therein.
w x Ž .30 J.W. Loram et al., Physica C 235–240 1994 134.
w x Ž .31 J.W. Loram et al., Physica C 282–287 1997 1405.
w x Ž .32 J.A. Hertz, Phys. Rev. B 14 1976 525.
w x Ž .33 A.J. Millis, Phys. Rev. B 48 1993 7183.
w x34 C. Castellani, C. Di Castro, M. Grilli, Phys. Rev. Lett. 75

Ž .1995 4650.
w x35 P.W. Anderson, The Theory of Superconductivity in the

High T Cuprates, Princeton Univ. Press, Princeton, 1997.c
w x Ž .36 A.I. Larkin, Zh. Eksp. Teor. Fiz. 58 1970 1466, Sov. Phys.

Ž .JETP 31 1970 784.
w x Ž .37 T. Dombre, N. Read, Phys. Rev. B 39 1989 6797.
w x Ž .38 J. Zaanen, J. Phys. Chem. Sol. in press, cond-matr9711009

and refs. therein.
w x39 J.M. Tranquada, J.E. Lorenzo, D.J. Buttrey, V. Sachan, Phys.

Ž .Rev. B 52 1995 3581.
w x Ž .40 S.R. White, D.J. Scalapino, Phys. Rev. Lett. 80 1998 1272.



( )J. ZaanenrPhysica C 317–318 1999 217–229 229

w x Ž .41 O. Nayak, F. Wilczek, Phys. Rev. Lett. 78 1997 2465.
w x Ž .42 J. Zaanen, A.M. Oles, Ann. Physik 5 1996 224.´
w x43 G. Seibold, C. Castellani, C. Di Castro, M. Grilli, cond-

matr9803184.
w x Ž .44 D.S. Fisher, P.C. Hohenberg, Phys. Rev. B 37 1988 4936.
w x45 E. Brezin, J.C. Le Guillou, J. Zinn-Justin, in: C. Domb, M.S.

Ž .Green Eds. , Phase Transitions and Critical Phenonema,
Vol. 6, Academic Press, London, 1976.

w x46 J. Tworzydlo, O.Y. Osman, C.N.A. van Duin, J. Zaanen,
Ž .submitted to Phys. Rev. B cond-matr9804012 .

w x47 R.B. Laughlin, unpublished.
w x Ž .48 S.-C. Zhang, Science 275 1997 1089.
w x Ž .49 C. Castellani, C. di Castro, M. Grilli, Z. Phys. B 103 1997

137.
w x50 A. Perali, C. Castellani, C. di Castro, M. Grilli, Phys. Rev. B

Ž .54 1996 16216.


