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Quantum states extended over a large volume 1n phase space have oscillations from quantum
mnteiferences 1n their Wigner distribution on scales smaller than /i [W H Zurek, Nature (London)
412, 712 (2001)] We 1nvestigate the influence of those sub-Planck-scale structures on the sensitivity to
an external pertuibation of the state’s time evolution While we do find an accelerated decay of the
Loschmidt Echo for an extended state 1n compatison to a localized wave packet, the acceleration 1s
described entirely by the classical Lyapunov exponent and hence cannot originate from quantum

interference
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One common 1nterpretation of the Heisenberg uncer-
tainty principle 1s that phase-space structuies on scales
smaller than /% have no observable consequence The
recent asse1tion of Zuiek [1] that sub-Planck-scale stiuc-
tutes 1n the Wigner function enhance the sensitivity of a
quantum state to an exteinal pertuibation, theiefore,
came out as particulaily intriguing [2] and even contro-
versial [3] His aigument can be summarized as follows
The ovetlap (squaied amplitude of the scalai product) of
two quantum states ¢ and ¢’ 1s given by the phase-space
integial of the product of their Wigner functions,

Iy = Kgly)P = @) ] dedpW, Wy (D)

Fo1 an extended quantum state covering a large volume
A > K¢ of 2d-dimensional phase space, the Wigner func-
tion W, exhibits oscillations fiom quantum interferences
on a scale cortesponding to an action 88 = i2/AV4 < &
These sub-Planck-scale oscillations aie biought out of
phase by a shift ép, 6x with 6pdx=6S < h The
shifted state ¢’ 1s then neaily otthogonal to ¢ since
Iy =0 Zuiek concludes that sub-Planck stiuctuies
substantially enhance the sensitivity of a quantum state
to an external pertuirbation

A measure of this sensitivity 1s piovided by the
Loschmudr Echo [4,5]

M(1) = Kl exp(H1) exp(—iHot)l )], @

giving the decaying oveilap of two wave functions that
stait out 1dentically and evolve under the action of two
shghtly differtent Hamiltonians Hy and H = Hy + H,
(We set i = 1) One can inteipiet M(r) as the fidelity
with which a quantum state can be 1econstiucted by
inverting the dynamics with a peiturbed Hamiltonian
In the context of enviionment-induced dephasing, M(¢)
measutes the decay of quantum intetfetences 1n a system
with few degrees of fieedom interacting with an enviion-
ment (with many moie degiees of fieedom) [6] In this
case ¢ 1epiesents the state of the environment, which 1n
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general extends over a large volume of phase space This
motivated Karkuszewsk:, Jarzynski, and Zuiek [7]
to investigate the dependence of M(r) on short-scale
structuies

In this paper we study the same pioblem as in Ref [7],
but ai11ve at opposite conclusions Finer and finer struc-
tuites natuially develop in phase space when an initially
natriow wave packet ¢, evolves in time under the influ-
ence of a chaotic Hamiltonian Hy [7,8] Asin Ref [7], we
obser ve numetically a mote rapid decay of M(¢) fo1 ¢ =
exp(—1HyT)iy as the preparation time T 1s made larger
and laiger, with a satuiation at the Ehienfest time
Howevel, we demonstrate that this enhanced decay 1s
desciibed entuely by the classical Lyapunov exponent
and hence 1s insensitive to the quantum inteiference
that leads to the sub-Planck-scale stiuctutes in the
Wigner function

In the case of a narrow 1nitial wave packet, M(z) has
been calculated semiclassically by Jalabert and Pastawski
[5] Before discussing extended states with short-scale
stiuctures, we 1ecapitulate then calculation The time
evolution of a wave packet centered at ry 1s approximated
by

w0 = [ dvo 3 KI 6000000, )

KB (x, xg, t) = cl? expltSH(r, xo, 1) — 1w, /2] (D)

The semiclassical propagator 1s a sum over classical
tiajectories (labeled s) that connect r and ry 1n the time
t For each s, the partial propagator 1s expiessed 1n tetms
of the action integial SH(r, ry, £) along s, a Maslov index
m, (which will diop out), and the detetminant C, of the
monodromy matiix After a stationaiy phase apptoxima-
tion, one gets

2
M) = ’ [arS oGk e | ©
S
Squating the amplitude 1in Eq (5) leads to a double sum

© 2002 The American Physical Society 154103-1



VOLUME 89, NUMBER 15

PHYSICAL REVIEW LETTERS

7 OCTOBER 2002

over classical paths s, s’ and a double integration over
final coordinates r, r’. Accordingly, M(r) splits into di-
agonal (s = s’, r = r’) and nondiagonal (s # s’ orr # r')
contributions. Since quantum phases entirely drop out of
the diagonal contribution, its decay is solely determined
by the classical quantity C, « exp(—Az). Here A is the
Lyapunov exponent of the classical chaotic dynamics,
which we assume is the same for H and H,. The non-
diagonal contribution also leads to an exponential decay,
which however originates from the phase difference ac-
cumulated when traveling along a classical path with two
different Hamiltonians [5]. The slope I' of this decay is
the golden rule spreading the width of an eigenstate of Hy
over the eigenbasis of H [9,10]. Since M () is given by the
sum of these two exponentials, the Lyapunov decay will
prevail for I' > A.

The Lyapunov decay sensitively depends on the choice
of an initial narrow wave packet ¢ [11]. The faster decay
of M(¢) resulting from the increased complexity of the
initial state can be quantitatively investigated by consid-
ering prepared states & = exp(—iHyT)iy, ie., narrow
wave packets that propagate during a time 7" with the
Hamiltonian H, [12], thereby developing finer and finer
structures in phase space as T increases [7,8]. The sta-
tionary phase approximation to the fidelity then reads

My(r) = lferKfi"(r, ry; ¢+ Ty k5o (r, ro;t+7) ’
(6

with the time-dependent Hamiltonian H, = Hy for7 <T
and H, = H for 7 > T.

We can apply the same analysis as in Ref. [5] to the
time-dependent Hamiltonian. Only the time interval
(T, t + T) of length ¢ leads to a phase difference between
K and k™, because H, = Hy for 7<T. Hence the
nondiagonal contribution to My(f), which is entirely due
to this phase difference, still decays o exp(—I'z), inde-
pendent of the preparation time 7. We will see below that
this is in agreement with a fully quantum mechanical
approach according to which the golden rule decay is
independent of the complexity of the initial state.

The preparation does however have an effect on the
diagonal contribution M;d)(z) to the fidelity. It decays o«
expl— A{zr + T)] instead of o exp(—A¢z), provided ¢, T >
AL This is most easily seen from the expression

M) = f dr Y 1K (@ xor + DIPIKE (vgs 0 + T2,
3

(7N

by following a path from its endpoint r to an intermediate

point r, reached after a time z. The time evolution from r

to r, leads to an exponential decrease o« exp(—Az) as in
Ref. [5]. Because of the classical chaoticity of Hy, the
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subsequent evolution from r, to rg in a time 7 brings in an
additional prefactor exp(—AT).

The combination of diagonal and nondiagonal contri-
butions results in the biexponential decay (valid for I'z, Az,
AT > 1)

Mp(t) = A(t) exp(=Tr) + B(n)exp[— At + T)],  (8)

with prefactors A and B that depend algebraically on time.
The Lyapunov decay prevails if I' > A and ¢ > AT/(I" —
A), while the golden rule decay dominates if either I' < A
or t < AT/(I' = A). In both regimes the decay saturates
when My has reached its minimal value 1/I, where [ is
the total accessible volume of phase space in units of /.
In the Lyapunov regime, this saturation occurs at ¢ =
tg — T, where t; = A~ !In/ is the Ehrenfest time. When
the preparation time 7 — ¢z, we have a complete decay
within a time A™! of the fidelity down to its minimal
value.

We now present numerical checks of these analytical
results for the Hamiltonian

Hy = (7/270)S, + (K/28)$2> 8(t — n7o).  (9)

This kicked top model [13] describes a vector spin of
magnitude S undergoing a free precession around the y
axis and being periodically perturbed (period 7;) by
sudden rotations around the z axis over an angle propor-
tional to §,. The time evolution after n periods is given by
the nth power of the Floquet operator

Fy = exp[—i(K/28)S*]exp[—i(7/2)S,].  (10)

Depending on the kicking strength K, the classical dy-
namics is regular, partially chaotic, or fully chaotic. We
perturb the reversed time evolution by a periodic rotation
of constant angle around the x axis, slightly delayed with
respect to the kicks in Hy,

Hy = ¢S, > 8(t — ny — €). an

The corresponding Floquet operator is F =
exp(—igS,)Fy. We set 7y = 1 for ease of notation. We
took S = 500 (both H and H, conserve the spin magni-
tude, the corresponding phase space being the sphere of
radius S) and calculated the averaged decay M; of
Mp(t = n) = Kgl(FTY"F2lyH> taken over 100 initial
states.

We choose i, as a Gaussian wave packet (coherent
state) centered on a point (6, ¢) in spherical coordinates.
The state is then prepared as ¢ = exp(—iHyT Y. We can
reach the Lyapunov regime by selecting initial wave
packets centered in the chaotic region of the mixed phase
space for the Hamiltonian (9) with kicking strength K =
3.9 [9]. Figure 1 gives a clear confirmation of the pre-
dicted decay o« exp[—A(z + T)] in the Lyapunov regime.
The additional decay induced by the preparation time T
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FIG 1 Decay of the average fidelity M for the kicked top

with parameters ¢ = 12 X 1073, K = 3 9 and for preparation
times 7 = 0 (cucles), 2 (diamonds), 4 (triangles), and 6
(squaies) In each case, the dashed lines give the analytical
decay My = exp[—A{t + T)], in the Lyapunov iegime with
A =042 Inset threshold time at which M7(t,) = M,
1072 The solid line gives the analytical behavior ¢, =
—A 'InM. - T

can be quantified via the time ¢, 1t takes for My to reach a
given thieshold M, [7] We expect
te=—A"'lnM, — T, (12)
provided M. > 1/1 =1/25 and T < —A"'"InM, In the
inset of Fig 1 we confiim this formula for M, = 1072 As
expected, #. satuiates at the first kick (z, = 1) when 7" =
—A7'InM, < t; Numerical results qualitatively sumilar
to those shown 1n the nset to Fig 1 [14] were obtained 1n

Ref [7] and interpieted theie as the acceleiated decay
tesulting fiom sub-Planck-scale stiuctuies The fact that |

M@ = datipbys(al exp(—iHod)| B)ylexp(tHo)|8) expli(en — €5)1]

afBys

RMT 1mplies the ¢-independent aveiage &, gth, s =
(84p8,5 + 84y8p5 + 84585,)/N* The thud contraction
gives a contiibution N~ representing the satuiation of
M(z) for 1 — oo The other two give the time dependence

M) = N1+ 2N > KalBo)l? expli(e, — €9l
afy
(14)

For pertuibatively weak H; one has €, = €% + {(a|H;|a)
and («|Bg) = 6,5, According to RMT the matuix ele-
ments (a|H,|a) ate independent 1andom numbers, and
for laige N the central lrmit theorem leads to the Gaussian
decay (1) [o1 the parabolic decay (1) for shoit times]
At laiger peirtuibation stiength, [{alB)l> becomes
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our numetical data are desciibed so well by Eq (12)
points to a classical 1ather than a quantum o1nigin of the
decay acceleiation Indeed, Eq (12) contains only the
classical Lyapunov exponent as a system dependent pa-
1ametet, so that it cannot be sensitive to any fine sttucture
1n phase space 1esulting flom quantum 1ntet ference

We next illustrate the independence of Mp(f) on the
prepaiation tume 7 1n the golden rule 1egime, 1 €, at laigex
kicking stiength K when A > I" [9] As shown in Fig 2,
the decay of My(r) 18 the same for the four different
piepaiation times T = 0, 5, 10, and 20 We estimate the
Ehtenfest time as fg = 7, so that increasing T further
does not 1ncrease the complexity of the initial state

These numerical data give a clear confiimation of the
semiclassical 1esult (8) Pievious investigations have es-
tablished the existence of five different regimes for the
decay of M(z) [4,5,9,10,15], and since only two of them
aie captuted by the semiclassical approach used above,
we now show that short-scale structures do not affect the
rtemaining three The five regimes coriespond to different
decays (1) Parabolic decay, M(f) = 1 — o2¢%, with 02 =
(ol HH o) — (ol H lho)?, which exists for any pertur-
bation stiength at short enough times (11) Gaussian decay,
M(1) < exp(—a?t?), valid 1f o 1s much smallet than the
level spacing A (1) Golden 1ule decay, M(r) «
exp(—T'1), with T'=~ ¢?/A, if A<T <A (1v) Lyapunov
decay, M(r) < exp(—Az), 1f A<T (v) Gaussian decay,
M(t) = exp(—B??), if H, 1s so laige that I' 1s laiger
than the energy bandwidth B of H

All these regimes except 1egime (1v) can be dealt with
quantum mechanically under the sole assumption that
both Hy and H ate classically chaotic, using 1andom
matrix theoty (RMT) [16] Both sets of eigenstates |a)
of H (with N eigenvalues €,) and |ag) of Hy (with N
eigenvalues €%) ate then 1otationally invarant [17]
Expanding ¢ = >, ¥,|la) and assuming unbioken
time-1eveisal symmetry, the fidelity (2) can be 1ewritten
as

13)

| Loientzian,

/2=
(e, — E%)2 +I2/4°

KalBo)l? = (15)

with a width T = [{aolH;|B)|?/A given by the golden
tule This leads to 1egime (u11) Incieasing H, fuither,
one obtains an ergodic distiibution [{a|By)?> = N~! and
a stiaightforwaid calculation produces 1egime (v) This
establishes that, undei1 the sole assumption that Hy and H
ale classically chaotic, the decay of the fidelity in the
thiee quantum regimes (11}, (111), and (v) does not depend
on the choice of the initial state
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FIG. 2. Decay of M in the golden rule regime for ¢ = 2.6 X
1074, 3.8 X 1074, 5X 107%, K = 13.1, and for preparation
times 7 =0, 5, 10, and 20 (nearly indistinguishable dashed
lines). The solid lines give the corresponding golden rule decay
with [ = 0.84¢425% [9].

In summary, we have investigated the decay of the
Loschmidt Echo, Eq. (2), for quantum states ¢ =
exp(—iHyT)¢, that have spread over phase space for a
time 7. As in Ref. [7], we found a faster decay of M(¢)
than for a localized wave packet, but only in the regime
where the decay rate is set by the classical Lyapunov
exponent A. Since quantum interferences play no role in
this regime, we conclude that sub-Planck-scale structures
in the Wigner representation of ¢ do not influence the
decay of the Loschmidt Echo.
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