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presence of such a ratio in the current response is the hallmark of a non-
For a small number of channels M,,, the resistance

on the other hand, Pendry et al. (9] have shown that in the diffusive r

distribution of the conductance makes extreme excursions, or “maximal fluctuations®, We
might expect this non-self-averaging system to react to an energy change with maximal changes
of the phase ¢ for a minimum number of eigenchannels, whereas in the other cigenchannels so
phase changes take place. Thus a non-self-averaging system is likely to exhibit a larger charge
relaxation resistance than a usual system. The charge distribution of localized states ia the

insulator between the capacitor plates is likely to be another important source of mesoscopie

fluctuations [10]. To study this effect an approach is required which treats the microscopig

potential landscape.

IV. FROM THE DISCRETE-PARAMETER MODEL TO SPATIAL DEPENDENCE

For a system as in Fig. la, capacitances

Cu can be more accurately found by means of

space-dependent induced potentials: this requires the tools of the spatially resolved res

like the characteristic potential functions u(F) and the Lindhard response functions (7,7}
appeating in the table below. In principle, however, the derivation proceeds in full anslogy i
the scheme of Sect. 2. Crucial are the roles of the surface S and of the invariance under aa

overall potential shift (OPS) of the electro-che:

table compares the differing approaches:
Discrete-parameter model

edUp= Yiiudy
Tiig =1

dQx = 3y Cudl )

ko = c(dN,,/dE)dp,, - ngdUg dnl,(F)

%S fi, = edN,/dE

mical and the induced potentials. The following

Microscopic model

edU({p},#) = Xy wi(Fdp

p] "l(;) =1

—VU(R) = dxe)y dn(7)

= (dnlF,k)/dED s + dng () =

]

J PrILF,7) = dn(7,k)/dE

V. CONCLUSION

A mesoscopic capacitance has been introduced for systems interacting via long-rangs
Coulomb forces and the calculation of the dynamic admittance has been outlined.

Focussing on a simple system for the results, we find that the “capacitance” and “resistance
governing the ac admittance of a nanostructured capacitor exhibit mesoscopic signatures: they
are quantities which reflect the behavior of the system as a whole indivisible unit. In fact the
charge relaxation resistance in each arm and the corrections to the standard classical capac
tance are determined by the scattering properties along either side of the capacitor averaged
over the grand-canonical ensemble of the corresponding reservoir.
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Abstract. — A review is given of the shot-noise properties of metallic, dxfﬁllscxlve C(:)m:}l
. i i imodal distribution
ise i i he Poigson noise, due to the bimo
tors. The shot noise is one third of ¢ . | St
issi 1t can be obtained from a semiclass
of transmission eigenvalues The same resu ; N
culation. Starting from Oseledec’s theorem it is shown that the bimodal distribution

required by Ohm's law.

I. Introduction
Time-dependent fluctuations in the electrical current caused by the discretenes.s of th.e charge
carriers are known as shot noise. These fluctuations are characterized by a whlte- noise spec-
trum and persist down to zero temperature. The noise spectral density P (per unit frequefacy
bandwidth) is a measure for the magnitude of these fluctuations. A well-know? example is a
saturated vacuum diode, for which Schottky found that P = 2el = Poousson, With I the aver;
age current.!) This indicates that the electrons traverse the conductc.)r as uncorrela:leci cu::;
pulses, i e. are transmitted in time according to Poisson statistics. It is a.lso‘ known t. ata :
wire, of macroscopic length 3L, does not exhibit shot noise, because inelastic scat.tenng'relu?s
P by a factor [,/L, which is much smaller than 1in a macroscopic conductor (I, is the 11111e a:l 1(8:
scattering length). In the fast decade, the investigation of transport on smaller leu.gt SC! l:
has become accessible through the progress in microfabrication techniques Thfef—):x)ysms on th is
mesoscopic scale displays a wealth of new phenomena.??) Theoretical analysis shows t. a:
the shot noise in mesoscopic conductors may be suppressed below Ppossons due .to correlate
electron transmission as a consequence of the Pauli principle. This raises the question h(.)w large
P is in a metalhe, diffuswe conductor of length L < 1, but still longer than the elastic mean

~ i i f the
free path £. It has been predicted theoretically® 10 that P = %Ppawn. This suppression o
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shot noise by a factor one third is untwersal, in the sense that it does not depend on the specific
geometry nor on any intrinsic material parameter (such as £). The purpose of this paper is to
discuss the origin of the onec-thitd suppression. First, we review the fully quantum-mechanical
calculation, where the suppression originates from the bimodal distribution of transmission
eigenvalues. Then, a semiclassical calculation is presented, which surprisingly yields the same
suppression by one third. One might therefore ask whether there exists a semiclassical explana-
tion for the bimodal eigenvalue distribution. Indeed, we find that this distribution is required
by Ohm’s law. We conclude with a brief discussion of an experimental ohservation of suppressed

shot noise in a disordered wire, which has recently heen reported.'!)

I1. Quantum-mechanical theory

A scattering forml'i}a for the shot noise in a phase-coherent conductor has been derived
by Biittiker.” It relatés the zero-temperatuie, zero-frequency shot-noise power P of a spin-

degenerate, two-probe conductor to the transmission matrix t:
N
P=RTt(1-t)) =P Y T,01~T). (1)
n=]

Here Py = 2eV(2¢?/h), with V the applied voltage, T,, denotes an eigenvalue of tt!, and N is
the number of transveise modes at the Fermi energy Ep. It follows from current conservation
that the transmission eigenvalues 7, € [0,1]. Equation (1) is the multi-channel generalization
of single-channel formulas found earlier.*® Levitov and Lesovik have shown!2 that Eq. (1)
follows from the fact that the electrons in each separate scattering channel are transmitted in
time according to a binomial (Bernoulli) distiibution (depending on T,). The Poisson noise is
then just a result of the limiting distribution for small T,. Using the Landauer formula for the

conductance

N
G = Go'Tr ttt = G Z T, ) (2)

n=1
with Gy = 2¢?/h, one finds from Eq. (1) that indeed P = 2eVG = 2¢] = Progson if T, < 1
for all n. However, if the transmission eigenvalues are not much smaller than 1, the shot noise
is suppressed below Ppgson. As mentioned above, this suppression is a consequence of the
electrons being fermions. In a scattering channel with 7,, <« 1 the electrons are transmitted in
time in uncorrelated fashion. As T,, increases the electron transmission hecomes more correlated
because of the Pauli principle. In a scattering channel with 7}, = 1 a constant cuirent is flowing,

so that its contiibution to the shot noise is ze10.
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Let us now turn to transport through a diffusive conductor (L 3> €), in the metallic regime

(L < localization length). To compute the ensemble averages (---) of Egs. (1) and (2) we

need the density of transmission eigenvalues p(T') = (¥, 6(T ~ T,,)). The first moment of p(T)
determines the conductance,

1
(G) = Go [dTp(T)T, ®)
0
whereas the shot-noise power contains also the second moment
1
(P)=Py / dT p(T)T(1 - T). (4)
0

In the metallic regime, Ohm’s law for the conductance holds to a good approximation, which

implies that (G) o< 1/L, up to small corrections of order e?/h (due to weak localization). The

Drude formula gives ~
(@ =61 @
where ¢ equals the mean free path ¢ times a numerical coefficient.'® From Egs. (3) and (5)
one might surmise that for a diffusive conductor all the transmission eigenvalues are of order
Z/L. and hence much smaller than 1. This would imply the shot-noise power P = Ppoisson 0f @
Poisson process.
However, the surmise T, = ¢/L for all n is completely incorrect for a metallic, diffusive
conductor. This was fiist pointed out by Dorokhov,') and later by Imry!®) and by Pendry et
al.1® In reality, a fraction /L of the transmission eigenvalues is of order unity (open channels),

the others being exponengially small (closed channels). The full distribution function is
1

N¢ 1

= T - (6)
. p(T) - "2’5 T\/l—:—T G(T TO) ’

where Ty ~ dexp(—2L/8) < 1 is a cutoff at small T such that [ dT p(T) = N (the function
©(r) is the unit step function). One easily checks that Eq. (6) leads to the Drude conductance
(5). The function p(T) is plotted in Fig. 1. It is bunodal with peaks near unit and zero
transmission. The distribution (6) follows from a scaling equation, which describes the evolution
of p(T) on increasing L.Y7719) A microscopic derivation of Eq. (6) has recently been given by
Nazatov,20)

. 8)
The bimodal distribution (6) implies for the shot-noise power (4) the unexpected result

N 1 )

1
= 2P = 7 Prowseon -
(P)y= 3R = 2R
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p(T) x(L/Ni)

1 | I |
0002 04 068 08 1.0
T

Figure 1. The bxmodal distribution of transmission eigenvalues according to Eq. (6).
The cutoff for T <4e\(p( 2L/£) is not shown.

Corrections to Eq. (7) due to weak localization have also been computed,'® and are smaller by
a factor L/N? (which is < 1 in the metallic regime).

III. Semiclassical calculation

Since the Drude conductance (5) can be obtained semiclassically (without taking quantum-
interference effects into account), one may wonder whether the sub-Poissonian shot noise (7) —

which follows from the same P(T) — might also be obtained from a semiclassical calculation.

Such a calculation was presented by Nagaev,” who independently from Refs. 8, 10 arrived at
the result (7). Nagaev uses a Boltzmann-Langevin approach,?2?) which is a classical kinetic
theory for the non-equilibrium fluctuations in a degenerate electron gas. We refer to this
method as semiclassical, because the motion of the electrons is treated classically — without
quantum-interference effects — whereas the Pauli principle is accounted for, through the use
of Fermi-Dirac statistics. Nagaev's approach does not yield a formula with the same generality
as Biittiker’s formula (1), but is only applicable for diffusive transport.

To put the quantum-mechanical and the semiclassical theories of shot noise on equal terms,
we have recently derived a scattering formula for P from the Boltzmann-Langevin approach.
This formula is valid from the ballistic to the diffusive transport regime A detailed description
will be the subject of a forthcoming publication Here, we merely piesent the result. For

simplicity, we consider a two-dimensional wire (length L and width W), with a circular Fermi
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surface The geometry is shown in Fig. 2 (inset). The scattering formula relates P to the
classical transmission probabilities T'(r,¢), which denote the probability that an electron at
position r = (z,y) with velocity v = vp(cos y, sin @) (with v the Fermi velocity) is transmitted

into lead number 2. The result is

47erF/ ‘“/ dy7 d‘f’/ ! W (1) [T, 0) = T(x, )P T(x, )1 - T(x, )], (8)

where the number of channels N = Wmuvp/hr, and W,(r) is the transition rate for (elas-
tic) impurity-scattering from ¢ to ¢, which may in principle depend also on r. The time-
reversed probability T(r,¢) gives the probability that an electron at (r,¢) has originated
from lead 2. From now on we assume time-reversal symmetry (zero magnetic field), so that
T(r,¢) = T(x,¢ + ). Equation (8) corrects a previous result.?® In this notation, the conduc-

tance is given by w o
NGy )
= Sw dy [ do cose T(r, ).
¢ 0

Eq. (9) is independent of z because of current conservation. The transmission probabilities

obey a Boltzmann type of equation??
2 ;
V-VI(0) = [ 2 Wo(r) [T(e,0) - T, )] (10)
0

where V = (8/0z, 8/8y).

We now apply Eq. (8) to the case W, (r) = vp/¢ of isotropic impurity scattering. Since the
scattering is modeled by one parameter, the resulting P is the ensemble average. We assume
specular boundary scatteriﬁg, so that the transverse coordinate (y) becomes irrelevant. Let us
first show that in the diffusive limit (¢ < L) the result of Nagaev® is recovered. For a diffusive
wire the solution of Eq. (10) can be approximated by

x4+ Lcosp

1)
L

T(r,p) =
Substitution into Eq. (9) yields the Drude conductance (G) = NGy w£/2L in accordance with
Eq. (5). For the shot-noise power one obtains, neglecting terms of order (¢/L)?,

7l [dr z x 1
T :—Polssonv (12)
Py = NP"L/LL(1 L) 37"

in agreement with Eq. (7).
We can go beyond Ref. 9 and apply our method to quasi-ballistic wires, for whick ¢ and L

become comparable. In Ref. 24 it is shown how in this case the probabilities T(r, ) can be
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10 10 1 10 10

COf =

<P>/2el

107 107 1 10 10?

L/t

Figure 2. (a) The conductance (normalized by the Sharvin conductance Gs = NGy)
and (b) the shot-noise power {in units of Ppowsop = 2el), as a function of the ratio
L/¢, computed from Eqs. (8) and (9) for isotropic impurity scattering. The inset shows
schematically the wite and its coordinates

calculated numerically by solving Eq (10) through Miine’s equation. In Fig 2 we show the
result for both the conductance and the shot-noise power. The conductance crosses over from
the Sharvin conductance (Gs = NGy) to the Drude conductance with mcreasing wite length %

This crossover is accompanied by a rise in the shot noise, fiom 7ero to 1 Proisson

IV. Bimodal eigenvalue distribution from Ohm’s law

Now that it is established that the quantum-mechanical caleulation (Sec. IT) and the semu-
classical approach (Sec III) yield the one-thitd suppression of the shot noise, we wonld like to
close the circle by showing how the bimodal distnbution {6) of the transmission eigenvalues

can be obtained semiclassically.
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It is convenient to work with the parametrization
1
T, = ——r—
" cosh¥(a, L)

which relates the eigenvalues 7T}, of ttf to the eigenvalues exp(£2a,L) of MMf. Here t is the

n=12 .N, (13)

N x N trausmission matrix, M is the 2V x 2/V transfer matrix of the conductor, and o, € {0, 00)
for all n The ecigenvalues of MM! come in inverse pairs as a result of current conservation.!®
The «,’s are known as the inverse localization lengths of the conductor. Scattering channels
for which the localization length is longer than the sample length (oL < 1) are open, if the
sample length exceeds the localization length (@, L >> 1) the scattering channel is closed, as is
clear from Eq. (13) The bimodal distribution (6) of the transmission eigenvalues is equivalent

to a unyform distribution of the inverse localization lengths,
o) = NIO(a — 1/8), (14)

whete p(a) = {3, §(e — ). Furthermore, the distribution of the a’s implied by Eq. (14) is
independent of the somple length /. e will argue that these two properties, L-independence
and uniformity, of p(c) follow from Oseledec’s theorem® and Ohm'’s law, respectively

We recall' that the transfer matiix has the multiplicative property that if two pieces of
wire with matriccs My and M, are connected in series, the transfer matrix of the combined
system is simply the product M;M,, In this way the transfer matrix of a disordered wire can

be constructed from the product of N individual transfer matrices m,,
No
M=[[m., (15)
=1

where N = L/Ais ala.rge‘munbcr proportional to L. The m,’s are assumed to be independently
and identically distributeh random matrices, each representing transport through a slice of
conductor of small, but still macroscapic. length A, In the theory of random matrix products,?s
the limits limz_.co & are known as the Lyapunov exponents Oseledec’s theorem®) is the
statement that this limit exists Numetical simulations!® indicate that the large-L limit is
esseptially reached for L 3> ¢, and does not require L » NZ. This explains the L-independence
of the distiibut.on of the inverse localization lengths in the metallic, diffusive 1egime (¢ < L <
N

Oseledec’s theorem tells us that p{n) 1s independent of L, but it does not tell us how it

depends on ¢ To deduce the uniformity of p{e) we invoke Ohm's law, (G) o 1/L. This

requires
(2]

L / da pla)

0

cosh’*(alL) B (16)

s v s e
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where C is independent of L. It is clear that Eq. (16) implies the uniform distribution p(a) = C.
A cutoff at large o is allowed, since 1/ cosh?(a L) vanishes anyway for aL > 1. From Drude’s

formula (4) we deduce C = N¢, and normalization then implies a cutoff at o 2 1/£, in accordance
with Eq. (14).

V. Conclusion

In summary, we have discussed the equivalence of the fully quantum-mechanical and the
semiclassical theories of sub-Poissonian shot noise in a metallic, diffusive conductor. Both
approaches yield a one-third suppression of P relative to Proisson- The bimodal distribution,
which is at the heart of the quantum-mechanical explanation, can be understood semiclassically
as a consequence of a mathematical theorem on eigenvalues (Oseledec) and a law of classical
physics (Ohm’s law).

The fact that phase coherence is not essential for the one-third suppression of P suggests
that this phenomenon is more robust than other mesoscopic phenomena, such as universal
conductance fluctuations. This might explain the success of the recent attempt to measure the
shot-noise suppression due to open scattering channels in a disordered wire defined in a 2D
electron gas.'!) In this experiment a rather large current was necessary to obtain a measurable
shot noise, and it seems unlikely that phase coherence was maintained under such conditions.

In both the quantum-mechanical and semiclassical theories discussed in this review, the
effects of electron-electron interactions have been ignored. The Coulomb repulsion is known
to have a strong effect on the noise in confined geometries with a small capacitance.?”’) We
would expect the interaction effects to be less important in open conductors.?®) While a fully
quantum-mechanical theory of shot noise with electron-electron interactions seems difficult, the
semiclassical Boltzmann-Langevin approach discussed here might well be extended to include

electron-electron scattering and screening effects.
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