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1 INTRODUCTION

ABSTRACT

We have attempted to model the formation and evolution of clusters of galaxies
consisting of both galaxy and dark background particles. Starting from initial conditions
with only equal-mass dark particles, as traditionally done, at a certain epoch galaxies are
identified using a local density percolation technique combined with a virial equilibrium
condition. For each galaxy found, its constituent particles are replaced by a single
softened particle, where the binding energy of the original particles is transferred
into internal energy of the single particle galaxy. While rather crude, this is a first
attempt to include dissipation (by hand) on galactic scales in inherently dissipationless
N-body methods. More importantly, it keeps galaxies intact which would otherwise
get disrupted within clusters because of either two-body or tidal effects. Not doing so
results in smooth final mass distributions, in which galaxies cannot be identified, even
for quite large particle numbers. The softening parameter of a galaxy is proportional
to the half-mass radius of its original group, so a spectrum of masses and sizes is thus
produced automatically. However, the softening of the dark background particles is
still chosen on numerical grounds, since at present their nature and distribution are
largely unknown.

These ideas have been tested on several matter distributions, including an average
piece of universe, a small cluster (or group) of galaxies with a mass of around 2 x 104
M,, regular clusters with a mass of almost 101 My, and a rich cluster heavier than
3 x 101 M. Galaxies are made ‘instantly’ at one or more redshifts, supposing a
peak in the galaxy formation rate, with both a lower and an upper mass cut-off. The
resulting mass functions compare reasonably to observed luminosity functions. Mass
segregation of the galaxies with respect to the dark matter is shown to occur, with details
depending on the epoch of galaxy formation. A clear spatial bias between these two
mass components is observed. There is only marginal evidence for velocity bias in some
of the simulations. The segregation and biasing effects cause a general underestimation
of the total cluster mass. Hy = 50 km s~!Mpc~! is adopted throughout the paper.

Key words: methods: numerical — galaxies: clusters: general — galaxies: formation —
galaxies: luminosity function, mass function — dark matter — large-scale structure of
Universe.

O’Dea & Uson 1986), and X-ray wavelengths (e.g. Forman &
Jones 1982; Sarazin 1986). Most of this radiation, except for

Clusters of galaxies are the most massive self-gravitating sin-
gle objects presently known to exist in our Universe, and are
therefore of major interest to cosmology. Large catalogues of
observed clusters of galaxies exist. This makes it possible to
study the variations in their global properties which can in
turn be used to test theories of formation and evolution of
the large-scale structure of the Universe. However, only the
luminous component has been mapped reasonably well, espe-
cially in the optical (e.g. Abell 1958; Dickey 1988), radio (e.g.

* Present address: Royal Observatory Edinburgh, Blackford Hill,
Edinburgh EH9 3H]J, evk@roe.ac.uk

the X-rays, is related to the galaxies. To understand the ob-
servational properties of clusters of galaxies we need to model
the formation of their member galaxies. We will not deal here
with the intrinsic properties of these galaxies, but will study
their distribution in cluster phase-space, their mass spectrum
and how well they trace the total mass distribution, focusing
on issues like mass segregation, spatial bias and velocity bias.

Modelling of clusters of galaxies is an intrinsically non-
linear problem, and therefore numerical methods are most
often used. The standard N-body method uses N equally mas-
sive particles which sample the mass distribution of the cluster
and its immediate environment. Aarseth (1963) was the first
to apply this method to clusters, and, although there was far
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less computer power at the time, it was a vast improvement
over analytical calculations. Over the years faster computers
became available, so higher resolution experiments became
feasible (e.g. White 1976; Turner et al. 1979; McGlynn 1984;
Frenk et al. 1990, and many others), and cluster models could

be devised for several cosmological scenarios (e.g. West, Dekel -

& Oemler 1989; van Haarlem & van de Weygaert 1993). Sev-
eral approaches to improve the modelling further include the
addition of smoothed particle hydrodynamics (SPH) to incor-
porate dissipational effects (e.g. Evrard 1990; Katz & White
1993; Evrard, Summers & Davis 1994), the use of many more
particles to increase the resolution (e.g. Carlberg 1994), and
the inclusion of many physical effects operating on galactic
scales in a parametrized form (e.g. Mamon 1987).

With the aim of producing a large model catalogue in
mind, we limit ourselves to relatively modest particle numbers
and gravitational interaction only, but we do include a method
to make galaxies ‘by hand’ in order to ensure their survival.
At a certain epoch, groups of simulation particles found to
represent a galaxy will be replaced by single particles, thereby
assuming that after that epoch galaxies can be treated as single
entities. It will be demonstrated that this is really necessary,
because galaxies, or rather dark haloes, which form during
the cluster evolution are easily disrupted in standard N-body
models. This is either a result of two-body disruption, which is
a numerical artefact, or due to tidal disruption, a real physical
effect.

To form the galaxies, we use a local density percolation
technique supplemented with a virial equilibrium condition.
The galaxies thus found are modelled by a single softened
particle, and the remaining matter is considered dark. The
choice for the softening of the dark matter before and after the
galaxy formation step is important for its general evolution,
but also influences the galaxy formation process. The dark
matter should be softened according to its nature, but the
type and amount of softening will still be based on numerical
considerations because the nature of the dark matter is as yet
largely unknown.

In Section 2 we describe the simulation sets used and their
purpose, demonstrate the problem of galaxy disruption, and
present the solution along with the precise methods chosen.
Choices for the parameters are discussed and tested in Section
3. This includes the softening for both the galaxy and the dark
matter particles, and two ad hoc parameters in the galaxy
formation recipe. In Section 4 we test the galaxy formation
method for several formation epochs in order to study the
influence of the epoch of galaxy formation on the properties
of the resulting clusters. Section 5 gives the first quantitative
results on some global properties of the model clusters built.

2 GALAXIES IN N-BODY CLUSTER MODELS

2.1  The simulation set

We first describe the five sets of simulations used in this paper,
and their specific purpose. Each set, of which the overall
properties are listed in Table 1, consists of several simulations
which have just one parameter varying. The background model
for all simulations is an Einstein-de Sitter unbiased cold dark
matter (CDM) universe. The Hubble parameter Hy is usually
given in a dimensionless form as Hy = 100hy' km s~'Mpc~'.

Because the CDM spectrum has a characteristic length which
scales as Qp lhg 2, while observed sizes of objects scale as hy L
to change hy changes the physical model. We therefore chose
to remove the hy scaling and adopt a value of 50 km s~ 'Mpc™!
for Ho, i.e. ho = 3.

The main motivation for using N-body simulations is that
the non-linear evolution of the density distribution can be fol-
lowed more realistically. But equally important in any model
building is to start from the right initial conditions in the most
practical way. For this purpose we use a constrained random
field method as first developed by Bertschinger (1987). He
used an iterative and approximate approach, which was later
improved upon by Hoffman & Ribak (1991) who solved the
problem exactly. With this method one can constrain a Gaus-
sian random field to form a specified ‘object’ at a certain point
in space. In fact, one can put more than one constraint on
the field, restricting the properties of one object or specifying
various objects. Clearly, the more constraints one imposes, the
less probable the resulting object will be. The theory of Gaus-
sian random fields enables us to calculate the corresponding
probability densities (e.g. Bardeen et al. 1986).

As the name suggests, the constrained random field
method is restricted to cosmological scenarios that assume
structure to form from gravitational instabilities in an initial
Gaussian-distributed density fluctuation field. Proto-objects in
the initial density field 6(r) are defined as peaks (or dips) in
its smoothed counterpart 6% (r), obtained by convolving (r)
with a Gaussian window function

W(r) = (2nR2)~3e /2R | (1

So each object is defined by the smoothing scale Rs and its
density excess 6" . Constraints are most conveniently expressed
in units that characterize the expected values of the quantities
constrained. Root-mean-square values for the smoothed den-
sity field and derived (linear) functions, which depend on the
cosmological scenario through the power spectrum, are most
suitable for this purpose. Define a set of spectral moments for
a density field smoothed with a Gaussian filter of width Rg
(Bardeen et al. 1986):

2 LTI ey
"j(RS)E/E;WH e K kMdk (2

where 6, is the Fourier transform of the unsmoothed density
field and |6;|? its power spectrum. With this definition go(Rs)
is the rms density fluctuation of the smoothed field 5%, and we
can express amplitude constraints as voo(Rs) peaks (or dips).
Specification of only 8" = vay(Rs) requires just one con-
straint. This initial amplitude is assumed to be the value calcu-
lated backwards from the present to the initial epoch assuming
linear evolution. This will in general not be correct for signif-
icant overdensities, since non-linear evolution will produce a
larger final amplitude, and one has to iterate a few times to
obtain the correct initial amplitude. We can specify the object
further by the first and second spatial derivatives of 6" (at the
same point). We always set the gradient V6" equal to zero to
be certain of a local extremum. This accounts for three extra
constraints. The second derivative tensor V,~V,6W has six inde-
pendent quantities, resulting in six additional constraints. They
define the shape (two constraints), the orientation (three con-
straints) and the size (one constraint) of the object. The latter
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Table 1. Parameters of the basic simulation sets and resulting main cluster properties. A value of 50 km s~! Mpc~!

is adopted for Hy.

sim. constraint Rs number of  size (n) b € Mpart Riurn Miurn Mabell

set Mpc]  particles [Mpc] [Mpc™] [Mpc] [Mpc] [10°°Mp] [Mpd [10PMo] [10'Mg)

A none - 16672  20.0 0.51 039  var. 1.7 - - -

! B 30¢ peak 4.0 19042 200 051 039  var 1.7 6 0.3 0.2
C 209 broad peak 8.0 18125  40.0 41 078  var 14 11 14 0.8

D 20 broad peak 8.0 146654  40.0 051 039 0.02 1.7 11 1.6 0.7

E 500 peak 8.0 143641  80.0 41 078 005 14 20 12.0 3

is usually defined in a dimensionless form as the curvature

25W

= V2o , 3)
62(Rs)

which is positive for a peak, and negative for a dip.

The simulations of set A represent an average piece of
universe within a sphere of radius 20 Mpc, giving a reference
frame for the other simulations containing overdensities. For
set B we chose a small cluster in order to study the effects
of softening in a not too violent environment but with power
on small scales. The initial conditions for sets A and B were
generated using an implementation of Bertschinger’s method
which can constrain 6" at the centre of the simulation volume
for any cosmological density fluctuation spectrum (van de
Weygaert 1991; van de Weygaert & van Kampen 1993). Only
set B has a constraint in fact: a 30y peak for 4-Mpc Gaussian
smoothing. This corresponds to a total mass of ~ 2 x 101 M,
within the Abell radius of 3 Mpc (Abell 1958). An example
of the outcome of one of its simulations is shown in Fig. 1.
Set B can be considered a group or poor cluster, of which
Fornax or Dorado would be examples (Ferguson & Sandage
1990).

An implementation of the Hoffman-Ribak method (van
Haarlem & van de Weygaert 1993; van de Weygaert &
Bertschinger 1994) became available to us after performing
the simulations of sets A and B. We utilized its abilities to
build a somewhat extended, not too rich cluster, which will
remain isolated during most of the evolution, and does not
collapse too rapidly. This is simulation set C. The amplitude
of the 8-Mpc Gaussian smoothed density field in the centre of
the simulation sphere is set to 26, and the three gradients are
set to zero. The smoothing scale is twice that taken for sets A
and B. The 20 amplitude is chosen to prevent many clusters
forming nearby, since higher peaks cluster more strongly. Fi-
nally the 6 independent second derivatives were given values
such that the peak will be broad enough to prevent a fast
collapse of the peak. A value of 1 was taken for the curvature
x, while ~ 2 is the expectation value according to Gaussian
random field theory (Bardeen et al. 1986). These constraints
do not produce a typical cluster; we deliberately selected a
quiet, isolated cluster to test the ideas presented. The top row
of Fig. 13 displays four stages of the evolution of one of the
models of set C. Test set D is similar to set C, but at higher
resolution. We took 8 times more particles in the same volume
and applied the same constraints as in set C, but with a differ-
ent random number seed yielding a different realization. The
main purpose of these simulations is to test resolution issues.
The particle distributions at z = 2 and at the present epoch

are shown in Fig. 2. The models from both sets C and D are
comparable to, for example, Virgo A (Binggeli, Tammann &
Sandage 1987).

Finally, we examine an example of a very rich cluster of
the well-observed Abell type: the target objects of our method.
A 5S¢ peak for 8-Mpc Gaussian smoothing with zero gradients
gives such a very rich cluster, comprising set E. The second
derivatives were chosen such that the cluster has a typical
shape and extent; a triaxial shape with axial ratios 1:1.31:1.56
was taken, while we set the mean curvature x to 4.2. Both
choices have the highest probability (Bardeen et al. 1986).
We should note here that these numbers are valid for linear
evolution only, so different final values will result. For a large
peak of this size, the simulation sphere has to be large enough
to encompass all the matter that will end up in the cluster at
the present epoch. The boxsize was therefore taken to be twice
as large as for sets C and D. To retain the same resolution as
for set C, the number of particles was increased accordingly.
An observed counterpart of this model might be Abell 1069
from the sample of Beers et al. (1991). Their sample consists
solely of double clusters, which set E turns out to be also
(Section 5).

2.2 Identifying galaxies: local density percolation

In order to compare N-body cluster models to observations
we need to find the galaxies, i.e. physical groups of parti-
cles, in these models. A frequently used algorithm to iden-
tify groups in a distribution of particles is percolation, also
called friends-of-friends. This links all particles together with
a pairwise separation less than a certain cut-off length. Ve-
locity information is not used in this method, and the local
density is not taken into account either. The latter omis-
sion is in fact a major defect of the ordinary percolation
method, because the local density strongly influences the kind
of groups found. It will not separate substructure within large
haloes, but does link together strangely shaped groups in low-
density regions. This is demonstrated clearly by Bertschinger
& Gelb (1991). They solve this problem by a method called
DENMAX which temporarily evolves all bound particles in a
quasi-hydrodynamical fashion to examine which particles will
end up in a real halo when dissipation is taken into account.
This produces very good results, but requires a substantial
amount of CPU-time in practice. Because our final goal is a
large catalogue of models we have to be keen on performance,
so we chose to improve upon the plain percolation method by
actually using the local density to determine a local percola-
tion length. Particles should be linked together when they are
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Figure 1. Example of the outcome of a simulation from set B. The left panel shows the x — y projection of most of the simulation sphere; the
right panel zooms in on the overdense region formed. The dashed lines indicate the region within which the power spectra shown in Fig. 5 were

calculated.

separated by a distance less than a certain fraction of what
is expected locally when the particles would be Poisson dis-
tributed. This idea resembles peak bias from a particle point
of view.

A general particle distribution is clustered as described by
the two-point correlation function £(r). The average number
of galaxies (N) within a radius r around a randomly chosen
galaxy is given by

(N) = 4?7zr3(n) + 4?ﬁ(n) /' E(Fyr?dr . 4)
0

The average nearest neighbour distance ry, is defined as the
separation for which (N) = 1. This is not easily derived from
equation (4) for general £(r). For a Poisson distribution ¢ van-
ishes, and the Poissonian average nearest neighbour distance
is therefore

Ton = [3/4n(n)]'” . )

The idea of local density percolation is to use the local
number density instead of its global average, so for this pur-
pose we define the Gaussian smoothed number density field
n¥(r, Rs), being the number density field n(r) convolved with
the Gaussian window function (1). This introduces the Gaus-
sian smoothing length Rs as a free parameter of the method.
We will use it in a dimensionless form, and express it in units
of rP :

s=Rg/ rﬁn . (6)

The local percolation length then is a fraction p of rf, which

is modulated according to the local density:
w -1/3

Ry(r5) = p 7k | (”s)] :

(18 = 1| s ™)

This defines the fraction p as the second free parameter of our

method. A problem with (7) is that the local density is different
for each particle tested, and therefore so is R,. The simplest

way out is to take the mean of the two local percolation
lengths for each pair. Another problem arises in low-density
regions. We need to prevent groups from forming too easily
in these regions, where R, would become very large. So we
should adopt a maximum for R,, since slight overdensities
in underdense regions are not expected to collapse within a
Hubble time. A first choice for this maximum would be rf,
the local percolation length corresponding to the mean number
density, arriving at

Rytri) = () %Min{(niw Hretams, @

where we used (5) to simplify the expression. This is similar
to a recently published adaptive-linking method by Suto, Cen
& Ostriker (1992) and Suginohara & Suto (1992, hereafter
SuSu), although they use a different maximum length, which
is rug for a totally anti-correlated distribution (all particles on
a grid). More importantly, they use an absolute maximum,
ie. their maximum length is not multiplied by the percolation
parameter p, as done in (8). These differences are most promi-
nent in regions of average density: our method is of a more
global nature while the adaptive-linking method by Suto et
al. (1992) and SuSu is somewhat biased towards overdense re-
gions. Before starting the local density percolation algorithm,
we selected only locally bound particles, ie. particles with a
negative comoving binding energy, because unbound particles
are expected to leave the local region and should therefore not
be grouped into bound systems like galaxies.

After geometrically grouping particles together we want
to make sure that these groups resemble physical galaxies.
In general these are systems in virial equilibrium, and have
half-mass radii satisfying

GM
Rh ~ 04 7 (9)

(Spitzer 1969). This is also true for the Plummer and Hernquist

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1995MNRAS.273..295V&amp;db_key=AST

SVNRAS. 2737 295V

rt

[Mpc]

Modelling clusters of galaxies 299
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Figure 2. x — y projections of part of the volume of the high-resolution simulation D1 (left column) and its low-resolution counterpart D2 (right

column) at z=2 (top row) and z=0 (bottom row).

profiles (see Appendix B) used extensively in this paper. We
apply this relation as a second criterion for whether a galaxy
has formed: only groups for which condition (9) is satisfied
within a factor of two are considered to be galaxies. This
latter freedom has to be allowed because of the numerical
noise for groups consisting of a small number of particles,
but also because the virial theorem does not really apply for a
system of softened particles: one should use the Clausius Virial
instead (equation (24), discussed in Section 3.3). Also, since
the softening of the original individual particles influences the
structure of the group, this determines the size of the formed
galaxy as well. This is the reason for the margin in applying
condition (9), where the lower factor of two is in fact the mass
for which the group is marginally bound.

2.3 Disruption of galaxies in traditional cluster modelling

The cluster member galaxies are modelled by at most a few
hundred particles each, instead of the ~ 10! stars in real
systems. Even the largest simulations to date (e.g. Gelb 1992)
have ‘only’ a few thousand particles per galaxy. This gives
rise to the question whether this introduces undesired dis-
creteness effects. Traditionally one just evolves a distribu-
tion of equal-mass particles and identifies ‘galaxies’ at the
present epoch, letting the N-body integrator sort out their
formation and evolution by itself. These ‘galaxies’ are in fact
dark haloes, since all types of matter are modelled and the
haloes are by far the dominant component. In the follow-
ing we will call the whole system of a dark halo contain-
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ing a spiral/elliptical galaxy, either with or without gas, a
‘galaxy’.

Use of a standard N-body method may seem the best
approach, but there are significant problems when simulating
a cluster of galaxies, even with a very large number of particles.
Simulation set D demonstrates this: galaxies are identified at
z=2 using the method presented in Section 2.2, after which we
investigate what happens to them during the cluster formation.
In order to make visualization possible, we select 39 haloes
with masses in the range 0.9 — 1.1 x 10> M, as identified
at z = 2. The left cube of the top row of Fig. 3 shows the
positions of the particles in those haloes (the full distribution
at that epoch is plotted in the upper left panel of Fig. 2).
The right cube of Fig. 3 displays the final distribution of the
same particles, demonstrating the disruption of many of the
groups identified at z = 2, mostly those within the main cluster
(shown fully in the bottom left panel of Fig. 2). We will argue
in the next two subsections that this disruption is due to either
numerical two-body effects or (physical) tidal disruption.

2.3.1 Two-body disruption

Small N-body groups suffer from relatively fast two-body
relaxation and might therefore evaporate. The time-scale of
evaporation is usually about a hundred times larger than the
relaxation time-scale (Binney & Tremaine 1987, page 526), but
can be shorter than a Hubble time for very small N. This type
of relaxation can be suppressed by softening: this property is
in fact the major reason for using it, along with the desire
to preserve the collisionless nature of the dark matter being
modelled. However, softening also prevents groups becoming
bound tightly on the softening scale, since soft interaction
potentials increase the total energy of the group, enhancing
evaporation again. This effect is similar to ‘soft-core evapora-
tion’, which prevents the formation of compact cores in any
N-body group consisting of soft particles.

Two-body relaxation by itself is not sufficient for the fast
disruption we observe for groups crossing the main cluster.
Still, the disruption might be explained by two-body effects,
with the main difference that the relaxation time should no
longer be governed by the properties of the groups itself, but by
the surrounding cluster. The ‘cold’ group relaxes towards the
‘hot’ cluster conditions, heating up so much that the group no
longer remains bound, and diffuses into the cluster system. We
will first estimate the time-scale for this two-body disruption
process, and then compare it to the tidal disruption time-scale.

First consider a group in the field outside the cluster.
Such an isolated N-body system has a relaxation time ¢, which
is usually expressed in units of the crossing time t. = R/v,
where R is the size of the system and v the rms velocity of its
member particles. So we have t, = n,t., where n; is the number
of crossing times it takes for average velocity changes (Av) due
to interactions to become of the order of the average velocity
v within the group. Relaxation is usually defined in terms of
the velocities squared:

1)2

me= TRy (10)

For a system that is already roughly in equilibrium one can
deduce (e.g. Binney & Tremaine 1987):

Gm
2 o
(Av) ~8(R

v

)ZNlnA, (11)

where In A = In(bpax/bmin) is the Coulomb logarithm, which
contains the ratio of maximum and minimum impact parame-
ters b. For byax one usually takes the size R of the system (see
however Smith 1992). Because of the use of softened potentials
bmin is mostly determined by the softening scale e. Farouki &
Salpeter (1982) found empirically that by, = 4e if it is larger
than the point particle value by, = Gm/v2. For a point mass
system we can derive that A ~ N (e.g. Binney & Tremaine
1987), so we take A = min{N, R/4¢}. Using (9) with R ~ Ry,
and the isotropy approximation v? = 3¢2, we find

(Av)? ~ %vz InA . 12)

Substituting (12) in (10) we see that for the isolated group the
v? terms cancel in the expression for n,, and we find

- N; - NigRig
8 6In Aig 8 6vig In Aig ’
where the index ‘ig’ stands for ‘isolated group’. Such a group

will evaporate on a time-scale a hundred times larger (Binney
& Tremaine 1987, page 491), so it dissolves on a time-scale

NigRig
vigln Ay

(13)

taisig =~ 20

(14)

For typical galaxies in our simulation N~10-50, R~20-50 kpc,
v~200-300 km s7!, and A=~2, and we find that tgs;, is about
a Hubble time.

Consider now a group which has formed at some epoch
and has relaxed to a state in which the particles move at a
typical speed vy, i.e. for which the relaxation time is given
by (13). When it falls into the cluster, where particles move
at a typical speed vy, it will ‘relax’ towards the state of this
cluster through two-body encounters. Finally the particles in
the group will form part of the cluster and the group ceases
to exist as a separate entity. For an estimate of the disruption
time-scale, i.e. the time-scale of the particles relaxing to the
cluster state, we keep vjg in the numerator of (10), since if the
internal kinetic energy is doubled the group will be genuinely
disrupted. However, for the denominator of (10) we need to
substitute (11) with vy, Ng, Ag, and t.q. The disruption time-
scale due to cluster particles is then

vig Ncl
td; = = — .
dis,cl vgl 61n A ltc,cl (15)

Interestingly, because of the larger velocities of the cluster par-
ticles compared to the infalling group particles, equation (15)
is more precise than equation (14) which applies to the group
particles amongst themselves. In the derivation of (14) it is
assumed that the perturbing particles travel on straight trajec-
tories during encounters (see for example Binney & Tremaine
(1987), chapter 4). This is best satisfied by the fast-moving clus-
ter particles. Since v will depend on the distance from the clus-
ter centre, being largest in the centre, the disruption time will
vary according to the orbit within the cluster, but an average
value for v still allows us to estimate typical disruption times.
In order to compare tgisq tO tgisj; We need to measure in equal
units of time. This amounts to replacing t. with ¢, leading to

3
Ldisel = tral = Uﬁljﬂ& cig
g ? Ugl Rig 61n Acl ’ (16)
~ Vo Py N

~ cig -
Uig pot 610 Ag
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Figure 3. Disruption of groups in a standard N-body simulation. Top row: the left cube shows the particles tagged as group members in 39 groups
with masses in the interval 0.9 — 1.1 x 10'2 M, using the local density percolation method at z = 2 on the high-resolution simulation D1 (shown
at the same epoch in the upper left panel of Fig. 2). The right cube shows the same particles at the current epoch, demonstrating that most of the
groups were disrupted at the present epoch. Only groups that did not cross the main cluster survive. Middle row: example of the disruption of a
group formed at z = 4 in the high-resolution simulation (left) and in the low-resolution simulation (middle). The solid line shows the trajectory,
the cross indicates the centre of the cluster at the present epoch. The right panel shows the internal binding energy in units of the initial internal
potential energy of the group for the low-resolution run (open symbols) and high-resolution one (closed). The difference in gradients at ¢/t ~ 0.4,
when the group enters the forming cluster, indicates that two-body encounters with the cluster particles drive the disruption of the group. Bottom
row: as in the middle row, but for a group formed at z =1 that travels around the main cluster. In this case tidal forces dominate the disruption.

For the last substitution we used that p ~ N/R?® by defini-
tion and that v> ~ N/R for an isotropic system roughly in taisi
g __

virial equilibrium. Comparing this time-scale to the disruption = ~
a paring P Ldis,cl v3, Na Ry In A

time-scale (14) for an isolated group, we find a ratio

% Ny RgInAg 0 pa In Aa
Ucl Pig lnAig

(17)
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between the two. For a typical group within a typical cluster
this ratio is about 3, with vg ~ 1500 km s~!, v, ~ 300 km s7%,
Ncl/Nig ~ 300, Rcl/Rig ~ 50, and Acl/Aig =~ 2.

The main point is that, although the relaxation time due
to cluster particles is much longer (a factor of 20 in our con-
figuration) than that due to fellow group particles, the lifetime
of a group is still shorter when it resides in a cluster. This
is because the evaporation time of isolated groups is about a
hundred times .3, while the disruption time of such groups
within a cluster is equal to t.q. The interactions with ‘hot’ clus-
ter particles always increase the velocities of the ‘cold’ group
particles, while the diffusion process underlying evaporation
both increases and decreases velocities, so each particle first
has to reach the high-velocity tail of the Maxwell distribution
before it can leave the group.

Since tg4is5 is about a Hubble time, an average group
falling into a cluster disrupts in about a third of a Hubble
time. Therefore at least some of the groups formed at z = 2
that subsequently fell into the cluster are likely to be disrupted
by two-body interactions with the cluster particles. For our
simulations we have R =~ 4 Mpc and N larger than a few
thousand, so A always depends on e roughly as ~ 1/e. This
can only enlarge the disruption time by a factor of three for
our largest sensible choice for the softening parameter, € = 50
kpc. To take more particles lengthens the disruption time-
scale only by a factor N/InN. This is also true in the case
of softening since more particles need a smaller choice for e,
changing like N=1/3, so In A is proportional (but not equal) to
InN.

In a related paper, Huang, Dubinski & Carlberg (1993)
claim that relaxation in softened systems is linearly propor-
tional to N. However, this is based on taking a constant soft-
ening parameter while varying N over a large range. Therefore
their claim is correct, but a constant ¢ causes strong overlap-
ping of particle profiles for large N, especially for the rather
large value for e they took for their tests. This makes their
models difficult to apply to physical systems. We expect that
for smaller ¢ they would have observed a transition from an
N/InN dependence for small and intermediate N towards a
linear scaling for large N.

In an impressive one million particle cluster simulation
Carlberg (1994) also notices disruption of his galaxies, and
blames this mainly on the two-body disruption process. His
expression for the two-body disruption time-scale, for which he
does not give a derivation, is a factor 16/6 smaller than (15).
Carlberg’s models have about the same size as ours and use
e = 7.8 kpc, so his In A ~ 6. Because of the higher resolution
his galaxies survive somewhat longer, but the inner 500 kpc of
his cluster contains only one identifiable galaxy.

2.3.2  Tidal disruption

We argued that the disruption of galaxies which traverse clus-
ters in N-body simulations might be caused by two-body
disruption, which is a numerical artefact. But we also know
that galaxies within clusters must be limited to some maxi-
mum size because of the mean tidal field. Tidal forces can also
disrupt a galaxy completely if its internal energy is doubled.
In the simplest approximation of point masses with the galaxy
in circular orbit at a distance R from the cluster centre, the

tidal radius is given by

Mgal(rtid)] 173
Mcl(R) ’

Tidal forces will be strongest where the potential gradient is
largest. This will be somewhere near the half-mass radius,
were the cluster has M(R) ~ R, i.e. M(R) = MR/R;. The tidal
radius will not be very small, and, because dark haloes have
M(r) ~ r as well, we find

RhMgal
Ttid ~ R‘ / m . (19)

Typically Ry/rn = 30 and Mga/ M ~ Nga/Na = 1/300, so the
tidal radius is about a third of the distance of the galaxy to
the cluster centre.

In reality most orbits are not circular and the cluster
mass distribution is extended, which increases the tidal radius
somewhat (Saslaw 1985, chapter 51). Taking this into account,
Allen & Richstone (1988) found that even the largest galaxies
will not be tidally truncated in a typical cluster potential. On
the contrary, Merritt (1988) derives significantly smaller tidal
radii. He argues that on the one hand at least part of the
dark halo of a galaxy can be stripped during a cluster cross-
ing without influencing the luminous component, but that on
the other hand some fraction of the haloes will be destroyed,
adding mass to the cluster halo and/or the central dominant
galaxy. Both possibilities are there, and the likelihood of either
one depends on a rather large number of parameters including
the form of the orbits, the phase-space distribution of both
the galaxies and the cluster dark matter, and the amount of
dynamical friction. The latter brings galaxies into the ‘dan-
ger zone’, a broad shell around the cluster core where tidal
forces are strongest. Like numerical two-body disruption, tidal
disruption is able to destroy a galactic halo completely, de-
pending on its ability to restore itself after a core-crossing.
Galaxies can also be partly destroyed and lose orbital energy
(Heisler & White 1990), bringing them towards the very centre
of the cluster.

So we have the difficulty that both the two-body and the
tidal disruptions have the same net effect and are strongest
near the cluster core. Therefore we expect that the one that
dominates will always be at least enhanced by the other: tidal
forces decrease the density of a group, which shortens the two-
body disruption time-scale (16), while two-body interactions
puff up the group, which increases its size and makes it more
liable to tidal forces. However, we can discriminate between
the two by examining different resolutions, because the numer-
ical disruption depends on the number of particles, while tidal
disruption is independent of resolution. Therefore we com-
pare the high-resolution simulation D1 with its low-resolution
counterpart D2 in order to establish whether a difference in
disruption time-scales between the simulations exists. The low-
resolution simulation D2 is obtained by filtering simylation
D1 with a simple, triangular shaped filter function. One-eighth
of the particles thus remain. The distributions of both sim-
ulations D1 and D2 at z = 2, as well as a close-up of the
end results at z = 0, were shown in Fig. 2. The disruption it-
self was demonstrated in Fig. 3 (top row). We examine several
groups that formed at various redshifts, and which are initially
well isolated and identifiable for both resolutions. We find that
many of the groups that get near or into the cluster can easily
get disrupted within a Hubble time due to either or both of

red % R[ (18)
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the disruption processes. We illustrate this with two extreme
examples, where the first one is destroyed mainly by two-body
disruption, while the second one is disrupted by the tidal field
of the cluster.

The first example is a group that was identified at a
redshift of 4. The time evolution of the particles in that group
is shown for both resolutions in the middle row of Fig. 3.
It is destroyed at about the same time in both models after
it falls into the forming cluster. In the right panel of the
middle row of Fig. 3 we plot the internal binding energy of the
two groups (in units of the initial internal potential energy)
as a function of time. The open symbols represent the low-
resolution run, the filled circles the high-resolution one. The
gradient of the curve is then roughly inversely proportional
to the disruption time-scale. For this group we see that the
low-resolution group disrupts faster than the high-resolution
one, indicating that two-body interactions are the driving force
here. We monitored the component of the force on the particles
of the group directed inwards to the centre of the group, and
indeed found that for this group the tidal forces were generally
too small to cause the disruption. The second example we look
at is a group formed at z = 1 that does not fall into the main
cluster, but travels at a more or less circular orbit around it.
This is the optimal trajectory for tidal disruption, and we see
from monitoring the forces that tidal forces are now strong
enough to cause the observed damage to the group. The same
type of plots as for the first group are shown in the bottom
row of Fig. 3. The disruption time-scales seem to be roughly
equal, although both plots of the internal binding energy as a
function of time are quite noisy.

2.4 Incorporating galaxy formation in N-body cluster
models

The observed disruption of galaxies in standard N-body simu-
lations of clusters makes these types of simulations unsuitable
for cluster modelling. Galaxy formation is probably a dissi-
pational process, resulting in more tightly bound groups as
compared to a purely gravitational collapse. Such groups are
more difficult to break up. Probably only part of the galaxy
is made up of baryonic matter, so dissipational effects should
not be overestimated, but we should certainly not underesti-
mate them: even while it is only the baryonic matter that will
dissipate, this will still deepen the potential well, causing the
non-baryonic matter to close in as well. Numerical codes using
gravitational interactions only are intrinsically dissipationless.
Furthermore, the need to use soft particles weakens the bind-
ing of the group. To preserve the member galaxies during the
cluster evolution without the use of numerical hydrodynamics
(which does that quite well, e.g. Evrard et al. 1994, but requires
much CPU time and has many problems of its own), a group
of particles which can be identified as a (proto-)galaxy at some
epoch will in the simulations be replaced by a single soft par-
ticle with the properties of the original group. The amount
of energy dissipated this way can be linked to the internal
kinetic and potential energy of the galaxy formed. Remember,
we only transform a group found by local density percolation
into a single particle galaxy when the system is roughly in
virial equilibrium, i.e. when condition (9) is satisfied to within
a factor of two.

The position of the new galaxy is simply the centre-of-
mass of the group of particles, and its velocity the mass-
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weighted mean of the velocities. This conserves momentum,
but not energy. Because the velocities are vector summed, the
kinetic energy of the new particle will be less than the sum of
the kinetic energies of the original particles. Therefore the new
density configuration, one large soft particle instead of a col-
lection of smaller soft particles, will have a different potential
energy. The choice of the softening parameter will determine
the potential energy of the galaxy formed, and because of en-
ergy conservation also the amount of internal kinetic energy
of the galaxy, which can be stored in both radial motion and
rotation, and/or be put into the formation of stars and the
heating of gas. It is obvious that there is a lot of freedom in
redistributing the energy. Since the exact physics is difficult to
model on galactic scales in a cluster-scale simulation, we have
to make simplifying assumptions. Note that the exact size of
the galaxy is not the most important issue here: for distant
encounters it is irrelevant, while close encounters cannot be
modelled very precisely anyway because we are forced to use
rather large integration timesteps. It is merely that we need to
keep the galaxies intact, and have their sizes roughly right.

We choose to make the actual distribution of particles
within groups determine the amount of softening for the
newly formed galaxy particle by taking the value of e that
corresponds to the half-mass radius of the group as given by
(B8) for Plummer softening or by (B14) for Hernquist soft-
ening. This produces a spectrum of galaxy sizes. The galaxy
particles are then evolved to the present epoch along with
the remaining loose particles which form the background dark
matter distribution. This means that mergers and tidal effects
are not incorporated, which is an important approximation in
the current modelling. Mergers can be dealt with, either by
using a separate merging criterion, or by applying the galaxy
formation algorithm several times during the evolution. The
latter is glanced at in Section 4.4. Tidal stripping is taken
into account to the extent that not all particles in the outer
parts of haloes are included in the group by the local density
percolation algorithm, and can thus be stripped during the
evolution after the galaxy formation step. This clearly depends
on the choice of the galaxy formation parameters p and s. An
important implication of tidal stripping, which will occur for
at least a fraction of the cluster members, is that the galaxies
will lose orbital energy and sink to the cluster centre (Heisler
& White 1990).

2.5 Resolution issues

To examine the influence of resolution on our galaxy formation
method, we globally compare the high-resolution simulation
D1 with its equivalent low-resolution run D2. We first look at
the high-resolution simulation D1. Due to the larger number
of particles we see many small clumps forming at z = 2, most
of which do not survive the formation of the main cluster. In
the low-resolution simulation D2, many groups form at z = 2
as well, but arguably in a noisier fashion. The final distribution
is of course more discrete than that of D1, but the shape of the
main cluster is not too different, and some of the surrounding
groups can be identified in D1 as well.

Can we identify groups at z = 2 equally well in both
low- and high-resolution simulations? Scatter diagrams of M
against 2.5R,02/G for both D1 and D2 are used to answer this
(see Fig. 4). The high-resolution run D1 performs just a little
better with the group parameters closely following the virial
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line (equation 9), but the low-resolution simulation performs
still quite well. This must be due to the smaller degree of clus-
tering at this epoch, reflected in the far better correspondence
of the particle distribution at z = 2 as compared to the present
epoch (see Fig. 2). At the high-mass end there are about 10
groups with masses above 10'* M, for both D1 and D2, with a
slight difference in their mass spectra, mainly due to shot noise
for D2. Differences in the distribution of group properties will
grow at later times, but are still reasonably small at z = 2.
We conclude that resolution effects are less severe at high and
medium redshifts than at the present epoch.

3 SOFTENING AND GALAXY FORMATION
PARAMETERS

Before testing the actual galaxy formation method we will
discuss the best possible choices for the parameters involved.
The type and amount of softening are treated first, since
these also influence the galaxy formation process. Up to now,
potential softening has only been used for numerical reasons. It
reduces two-body relaxation effects, preserves the collisionless
nature of the dominating dark matter component, and enables
the use of larger integration timesteps because small-scale
potential fluctuations are suppressed. Normally one chooses
the type of softening and its scale such that the numerical
code performs well, but it would be more desirable to put
some observables and physics in this choice. Galaxies form
during the evolution of a cluster, introducing some degree
of discreteness to the system. This should not be artificially
reduced by excessive softening.

In our models we represent galaxies by single ‘soft’ par-
ticles, ie. particles with a density profile. For these galaxy
particles we should choose the type of softening and its scale
such that the softening density profile resembles typical galactic
halo density profiles as closely as possible. Besides the Plummer
type of softening, which is mainly chosen because it behaves
well numerically, we will also consider Hernquist softening,
which might be a better model for the galaxy particles while
being computationally convenient as well. A summary of the
properties of both types of softening is given in Appendix B.

Softening (mostly of the Plummer type) has been used
either in the coexpanding form, ie. a constant multiplied by
the expansion factor a (amongst many others: Efstathiou et
al. 1985; Bertschinger & Gelb 1991; SuSu), or in the constant
form (e.g. Hernquist 1987). Even a combination of the two,
motivated by changing clustering properties in different stages
of the evolution, is adopted in a recent paper by Warren
et al. (1992). The reason for using coexpanding softening is
simply that many N-body codes use coexpanding variables, in
which the Layzer-Irvine cosmic energy equation remains valid
only if the shape of the softened force-law remains fixed in
coexpanding coordinates. This does not imply that the total
physical energy is conserved. In fact, energy is lost and put
into the soft particles which have an internal potential energy
inversely proportional to €(¢) (equations (B11) and (B16)).
We will use the coexpanding softening only for comparison
with other work. One should further note that in calculations
utilizing the PM or P*M methods (Hockney & Eastwood 1981)
the softening is necessarily coexpanding due to the nature of
the numerical method. Use of the treecode or the direct sum
approach (e.g. Aarseth 1963) allows one to retain the freedom
of the softening time dependence.
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Figure 4. The mass M of groups found by the local density percolation
technique as a function of 2.5R,6?%/G at z = 2 for simulations D1 (top)
and D2 (bottom), the latter being the low-resolution version of the
first.

3.1 The softening parameter for background particles

Generally most of the simulation particles sample the invisi-
ble (dark) matter distribution, which is very likely to be the
dominant mass component in clusters (e.g. Fitchett 1990). The
choice for the softening of these particles should be deter-
mined by the nature of the cluster dark matter. However, since
its nature is largely unknown, a choice on numerical grounds
might still be the best option. Different choices for e have been
shown to produce different results with respect to properties of
dark matter haloes (Warren et al. 1992) and group relaxation
times (Farouki & Salpeter 1982; Smith 1992), so this matter
deserves some attention here.

3.1.1 Numerical limits

At the start of an N-body simulation all particles are slightly
displaced from their initial positions on a lattice using the
Zeldovich approximation. At that time the softening should
be less than the spacing of the lattice to prevent strong over-
lapping of the density profiles, so € therefore depends on the
number of particles and the physical size of the simulation.
Use of coexpanding softening removes the second dependence,
and only the initial grid spacing remains to be considered. A
value of at most one fifth of the spacing is often taken (e.g.
Efstathiou et al. 1985, where one should note that their param-
eter n ~ 2.4¢). If clustering is not rapid the particles will form
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a Poisson distribution first (because the grid configuration is
anti-correlated and therefore energetically unfavourable), oth-
erwise they will tend to cluster immediately as described by the
correlation function £(r,t). In the first case the average nearest
neighbour distance for any galaxy is just rF,, as given by (5).
For the case of rapid clustering we have to solve (4) using the
evolving clustering statistic £(r, t). This latter case is applicable
to most of the cluster evolution, and should therefore be used
to get an upper limit on the softening parameter e.

The lower limit on € is constrained numerically by the
global integration timestep during interactions and the desire
to keep the code as collisionless as possible, i.e. deflections dur-
ing close encounters should be minimal. Approximate limiting
criteria derived for these two issues are given in Appendix
A. The best thing to do is to use the first criterion (equation
A4) to constrain the timestep for a choice of €, which should
preferably be larger than the ‘maximum scatter’ value approx-
imated by the second criterion (equation A42), and see if the
experiment is still feasible given the computer time resources.

3.1.2  Clustering of equal-mass soft particles

In order to study the influence of the choice of softening, sev-
eral sets of simulations were run from exactly identical initial
conditions, but with a range of choices for the softening pa-
rameter € for the two types of softening, differing by factors
of 5. This comprises the test sets A, B, and C. The values for
€ for set C were twice those of A and B because the size of
the simulation sphere of set C is twice as large. We added two
e = 100 kpc simulations (A8 and B8) and an ¢ = 200 kpc
simulation (C4) to compare with three corresponding Hern-
quist runs, as described below. Furthermore, both constant
and coexpanding parameters were tested for the two types of
softening. Since Hernquist softening has harder potentials, it
is expected to suffer most from numerical problems at early
times when €'a(t) is really small. Finally, simulations C5 and
C6 were added to compare to large-scale simulations which
usually need to adopt a somewhat large softening parameter.

For the analysis we obtained the two-point correlation
function &(r) for all simulations. It is calculated by counting
pairs within a certain sphere within the simulation volume, and
comparing these with pair counts for a Poissonian distribution
in the same sphere. The two-point correlation function is then
given by

¢(x) =

"~ #Poisson pairs(x)

#data pairs(x) ,,, , (20)

where A is the local density contrast within the sphere and
q is the ratio between the number of Poisson points and the
number of data points. A larger ¢ minimizes the noise in the
determination of &(r) but increases the computation time, so
it can be used to compromise between the two. We will in-
vestigate the two-point function itself in Section 5; here we
just use it to calculate average nearest neighbour distances (by
integrating (4) numerically). These are needed to test criterion
(A4) for the integration timestep, but they are also useful as
a global indication of the amount of clustering. The rms pe-
culiar velocity of the particles is calculated as well, which is
also needed for the timestep criterion. All computed numbers
are listed in Tables 2(a) and 2(b) for Plummer and Hernquist
softening respectively, along with the predicted maximum inte-
gration timestep for the choice f = 1/4 in (44). We also list the
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energy conservation numbers, quantifying how well the sim-
ulation performed numerically. Note that in the simulations
the timestep is less than or equal to 0.1xAt, (as described in
Appendix A), while Aty itself is listed in Table 2. The minimum
softening based on the maximal scatter criterion (42) is about
10 kpc for set A, 2 kpc for set B and 1 kpc for set C. We allow
a maximum change of 10 per cent in Av/v from individual
encounters. Note that for set A the number of interactions will
be less than for sets B and C, since no cluster forms.

The most direct diagnostic for the amount of clustering
on various scales is the power spectrum |62| of the density
fluctuation field 6(x), where d, is the Fourier transform of 4(x).
The root-mean-square density fluctuation is given by s =
(6%(x))"/2. The contribution to ;s from a logarithmic interval
in k is

1/2
bmstt)~ (T) K1 ey

This is what is usually plotted to show the power on a certain
mass scale, since dys(k) is proportional to M /M, the rms mass
fluctuation. To obtain power spectra for our simulated clusters
we first sample the density distribution on a grid (i, j,k):

pig =Y Wlirs —rixl) . (22)

The mass assignment function W (r) is chosen to be a Gaus-
sian with a width of one cell. In fact one applies small-scale
smoothing in order to remove shot noise present in a dis-

ccrete particle distribution. The Fast Fourier Transform of the

sampled data cube is calculated and divided by the Fourier
Transform of W(r), to correct for the effects of the initial
small-scale smoothing. Binning of the absolute wave numbers
gives the square root of the power spectrum, |J|, from which
drms(k) is calculated using (21).

3.1.3  Plummer softening

Looking at the results of the Plummer runs as collected in
Table 2(a), it is clear that a large coexpanding softening pa-
rameter causes a considerable gain of energy, up to 13 per cent.
However, most of the energy gained is due to this coexpan-
sion. Adjustment of the softening parameter will change all
pair interaction potentials and thus the total potential energy
of the system. This is best seen when comparing simulations
A7 and B7 (with a coexpanding softening of 250 kpc) to sim-
ulations A3 and B3 (with constant 250-kpc softening). Besides
this effect, criterion (44) for the integration timestep is mostly
satisfied, except for the ‘hard particle’ (small €) simulations,
notably simulations BO and B4. We just suffer from the use of
hard potentials, which is most severe for B4 because € was even
smaller than 2 kpc (the present-epoch value) for most of the
evolution. Because of the low degree of clustering, simulation
AO performs still well enough, even with a timestep that is too
large according to criterion (A44). But the general conclusion
for all of our simulations A0Q, A4, B0, B4 and CO that employ
particles which are too hard according to the maximal scat-
tering criterion is that most of them indeed suffer from strong
two-body interactions that disturb the collisionless nature of
the dark matter distribution.

With respect to coexpanding softening we can conclude
that it only works reasonably well within a rather narrow
range of e. For set B this is around 10a kpc (with quite a
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Table 2. (a) Global numerical results of the Plummer softening simu-
lations. The unit of time ‘Age’ corresponds to the age of the universe.

sim. € Aty AE/AU v fan Min At oy
no. [kpc [Age] [%] [km/s] [kpc] [Age] [km/s]

A0 2 0.005 04 254 85 2x10~* 548
Al 10 0.005  0.02 254 86 8x10~* 541
A2 50 002 -0.02 233 93 0.007 508
A3 250 0.02 -0.5 164 156 0.018 322
A4 2a 0.005 25 239 125 2x107* 520
A5 10a 0.005 0.3 258 85 7x107* 556
A6  50a 0.02 1.2 230 106 0.009 497
A7 250a 0.02 30 190 142 0.014 411
A8 100  0.02 -0.1 227 95 0.008 507

BO 2 0.005 26 618 65 6x107° 828
B1 10  0.005 0.2 632 61 3x10™* 845
B2 50  0.005 0.1 587 64  0.002 792
B3 250 002 04 416 83  0.004 616

B4 2a 0005 8 596 75 6x1073 800
B5 10a 0005 12 621 62 3x1074 833
B6 50a 0.005 5 584 68  0.002 787

B7 250a 0.005 13 461 104 0.004 641
B8 100 0.005 -0.1 559 68 0.002 761

Co 4 0.005 0.3 832 192 9x107° 1502
C1 20 0.02 0.1 810 194 5x10~* 1475
C2 100  0.02 0.03 758 223 0.005 1402
C3 500 0.02 0.5 394 322 0.015 833
C4 200 0.02 0.1 715 234 0.006 1363
C5 230a 0.02 15 699 259 1284
C6 20a 002 0.6 803 172 1462

Table 2. (b) Global numerical results of the Hernquist softening simu-
lations. The unit of time ‘Age’ corresponds to the age of the universe.

sim. € Aty AE/AU v Tm
no. [kpc] [Agel [%] [km/s] [kpd]

min At o,

[Age] [km/s]

A10 54 001 0.4 248 101 4x10™* 539
All 27 001 18 192 120 0.003 389
Al2 54 001 3.6 179 140 0.006 371
Al13 134 001 8.0 179 204 0.014 223

B10 54 0.005 04 605 82 2x10~* 818
B11 27 0.005 1.0 551 82 9x10~* 765
B12 54 001 30 423 91 0.002 655
Bi13 135 0.01 7.0 261 112 0.008 487
B14 27a 0.005 6.0 542 76 9x10~* 741
B15 54a 0005 10 523 102 0.002 723

C1 1 0.02 0.4 749 227 3x10™* 1436

small timestep), which is about 1/40 of the Poissonian nearest
neighbour distance, or a sixth of the final nearest neighbour
distance. For most constant values of € the energy conservation
is fine, and the timestep guessed on the basis of criterion (A44) is
often even chosen to be too small (except for BO which suffers
from strong two-body encounters). Of course the criterion is
a global one, and will most probably not be satisfied for all
individual particles, especially the ones in very dense groups.
But we can conclude that constant softening (in real space) is
to be preferred over coexpanding softening. Also noteworthy
in the table is the decreasing rms peculiar velocity v and the

total velocity dispersion ¢, within the Abell radius of the
group/cluster as a function of the amount of softening, ie.
more extended particles move slower on average. This is seen
in sets A and B, but most prominently in set C. We will need
to take this into account when studying velocity bias (Section
5.5).

A direct consequence of this is that large-scale structure
simulations that often need to use relatively large softening
will find artificially reduced velocity dispersions for clusters.
For example, Frenk et al. (1990) consider the cumulative distri-
bution of velocity dispersions of a large set of clusters found
in a single cosmological simulation performed using a P*M
code. Because of the large volume of their box, their coex-
panding softening of the P>M force law (shown in Efstathiou
et al. 1985) had to be set to 560a kpc. This corresponds to
e = 230a kpc for a Plummer law. Simulation C5 was run with
this choice of softening. Its o, and v are at least 15 per cent
smaller than those of the less softened simulations CO0, Cl
and C6 (see Table 2). Because the effect is systematic, cluster
velocity dispersions obtained from simulations like those of
Frenk et al. can be corrected using these comparisons between
runs with different amounts of softening.

For a more detailed analysis we examine the various
Fourier modes at the present epoch for each simulation set.
The calculated power spectra are shown in Fig. 5 for set B
and in Fig. 6 for set C. The subset of e chosen for Fig. 5 is
{2,10,50, 250, 10a, 504, 250a} kpc. The upper curves of Fig. 5
show the power spectra as calculated in a cube with a size of
half the diameter of the simulation sphere, as shown in Fig.
1(a). The lower curves ‘zoom in’ on the overdense structures by
taking the cube to be 4 times smaller, with its precise position
shown in Fig. 1(b). Fig. 6 is obtained in a similar fashion.

What is obvious from the power spectra is that there is
no difference on scales larger than 1 Mpc, where the global
potential well of the cluster determines the evolution, and no
difference on scales smaller than 100 kpc, where the discrete-
ness of the density distribution dominates the power spectrum.
So the main differences are on the scales of subclustering, but
differences between 10- and 50-kpc softening are small. The
power on these scales is larger if the particles are harder, which
is most obvious when we zoom in on the overdense system.
Subclustering is absent for very soft particles. These results
show up less prominently in simulation set A. The nearest
neighbour distances, listed in Table 2(a), show the same trend
but reduced to one number, giving a function r,,(€). The main
differences between sets B and C are that the differences in
amplitude for the Fourier modes that do differ substantially
are larger and occur at somewhat larger scales (smaller k). The
clustering changes most with softening in the range 0.3 to 3
Mpc. This is probably just because all ¢ for set C are twice
those of set B.

3.1.4  Hernquist softening ¢

The Hernquist softened potential (B5) is harder than the Plum-
mer potential (B3): when relating the corresponding scale pa-
rameter € and e using (B17) or (B18) it is about twice as deep
in the centre. To take half the basic timestep of the Plummer
runs should roughly give a comparable precision. We reran
a few of the simulations from sets A, B and C with Hern-
quist softening, choosing ¢’ according to equation (B17). The
simulation data and resulting numbers are listed in Table 2(b).
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Figure 5. Final power spectra for the small cluster simulation set B.
The bottom curves are measured in a central cube with a size half the
radius of the simulation sphere, as indicated by the dashed square in
Fig. 1(a). The top curves are obtained from a 4 times smaller cube
around the small overdensity within the dashed square in Fig. 1(b),
and have therefore a larger amplitude but show roughly the same
effects.
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Figure 6. Final power spectra for the broad cluster simulation set
C, which are measured in a central cube with an edge length half
the diameter of the simulation sphere. A range of Plummer softening
values and one Hernquist softening value (¢'=11 kpc) are shown.

The first thing to notice is the increasingly poor energy
conservation for increasing ¢’. Looking at the total energy as
a function of time we see that most of the energy gains/losses
are during the early evolutionary phases. This must be caused
by the stronger overlapping of the soft particle density profiles
as compared to the Plummer particles, since the Hernquist
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profile falls off less steeply than the latter. Furthermore, the
energy non-conservation caused by use of coexpanding soft-
ening is even worse for Hernquist softening (see simulations
B14 and B15).

As for the Plummer runs, power spectra were calculated
to examine the amount of clustering on various scales. Fig.
7 shows the power spectra for set B, again taken from the
box indicated in Fig. 1(a). For comparison the corresponding
Plummer softening curves are plotted as well. A general dif-
ference from the Plummer runs is that the large-scale modes
for the Hernquist runs deviate at a much smaller value for de-
creasing € than the Plummer models, for which only e = 250
kpc shows significant deviations on large scales. For the broad
cluster set C the Hernquist simulation C11 is shown amongst
its counterpart Plummer runs in Fig. 6. It is seen that it follows
the curve of C2, which has a Plummer softening length of 100
kpc, instead of the one it is expected to follow (because of
equation (B18)): simulation C1 with e = 20 kpc.

3.2 The softening of galaxy particles
3.2.1 Observed galaxies and dark haloes

Because we can regard soft galaxy particles as particles with
a density profile, we can compare them to real galaxies by
comparing their surface density profiles. One possibility is that
cluster galaxies have mostly been stripped of their haloes. If
so we can directly fit observed surface brightness profiles of
ellipticals to the Plummer and Hernquist surface density model
profiles (B9) and (B12) if we assume a constant mass-to-light
ratio Y = u(R)/I(R), where u is the surface density of the
mass and I the surface brightness. In Appendix C we compare
profiles of observed galaxies to the Plummer and Hernquist
profiles. Also, profiles of interacting galaxies and dark haloes
are discussed there. We summarize the conclusions here.

If we want to model average ellipticals using Plummer
or Hernquist profiles we should take € to be of the order of
10-25 kpc for Plummer softening and 6-8 kpc for Hernquist
softening if we assume that the luminous part makes up the
whole galaxy or that the dark matter distribution is equivalent
to the luminous matter distribution. The Hernquist model fits
best for observed single galaxies, whereas the Plummer model
might provide the best fit for interacting galaxies. Most of
the dark matter is probably dissipationless and its distribution
therefore more extended, so we should use larger softening
parameters. Since observations of dark matter haloes suffer
from many uncertainties, we now look at what has been found
for models of dissipationless galaxies and dark haloes.

3.2.2 Galaxy and dark halo models

What can we predict from theory for the density profiles of
cluster galaxies? Since the relation between the dark and the
luminous matter still is a major question of astrophysics, and
dark haloes are dominating during interactions, we turn our
attention to the expected shapes and sizes of dark haloes.
Dubinski & Carlberg (1991) found isolated dark haloes to be
quite flattened in the CDM cosmogony, with average values of
2:1.4:1 for the axial ratios. This makes them just a little more
flattened than expected from Gaussian random field theory
(i.e. Bardeen et al. 1986), while they are also in contradiction
with shapes of luminous ellipticals deduced from observations
(Franx, Illingworth & de Zeeuw 1991). For the density profile
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Figure 7. A comparison of Plummer and Hernquist softening for the
clustering on various Fourier modes. Shown are final power spectra
for selected simulations from set B, measured in the region indicated
by dashed lines in Fig. 1(a).

Dubinski & Carlberg (1991) found a very good fit to the

triaxial generalization of the Hernquist profile:
(r) _ Mteg 1

P 2nb/ayc]a) rr+ e

(23)

with an average value of 27 + 1 kpc for the geometric mean
r. = e(bc/a?)'? for their set of 14 simulations. Their profiles
do not show a core at all, which is typical for Hernquist profiles.
The mean mass M; was found to be 10'233£023 M which is
the average luminous mass of a giant elliptical. However, this
might as well be the total mass of a normal elliptical including a
surrounding massive dark halo. For our spherical soft particles
we should then use ¢ = 27 kpc for Hernquist softening, or
€ = 50 kpc for Plummer softening when applying (B17). Note
that we do not use the triaxial profile in the code, just the
spherical one.

Other studies examine haloes which form in multitude in
large-scale simulations (Frenk et al. 1988; Gelb 1992; SuSu;
Warren et al. 1992). Only SuSu show half-mass radii of the
haloes they find. Their values have a far larger dispersion
than the numbers from the 14 haloes modelled by Dubin-
ski & Carlberg (1991), which could be due to their isolated
nature, enabling them to reach an equilibrium configuration.
The haloes of SuSu are situated in a large-scale environment
which can significantly distort them. The range of half-mass
radii found by SuSu is R, =~ 6 — 50 kpc for the same cos-
mological scenario as chosen for this paper (unbiased CDM,
Q =1, h = %). One of their major conclusions is that halo
properties depend heavily on the parameters of the grouping
algorithm.

Many theoretical studies have been undertaken to model
interacting galaxies (Barnes & Hernquist 1992 and references
therein), but no consensus on the results exists. Some studies
suggest that cores of galaxies are puffed up, producing a
flatter central surface brightness profile. Tidal forces present
in high-density environments like clusters of galaxies will tend
to do this as well. It is also argued that the outer regions are
loosened up, resulting in roughly an r—* profile (e.g. McGlynn
1990). In short, this suggests a Hernquist model for large r
but a Plummer model for the core. So the choice between

computationally convenient softening types for our purpose
of modelling galaxies by single soft particles is not clear from
this perspective.

Besides numerical models, simple analytical estimates
might be used to examine the influence of typical physical
processes in clusters. Physical mechanisms to inflate galaxies
are grazing encounters and non-destructive tidal fields. Both
puff up the galaxies by increasing their velocity dispersion,
resulting in a larger galaxy of the same mass. However, tidal
forces will most often strip some of the mass that was driven
outwards, and might therefore change the mass more than
the size. Secondary infall of mass (i.e. after the collapse which
formed the galaxy) is certainly an ongoing process in clusters,
increasing the size and/or mass of galaxies. However, this pro-
cess is supposed to be intrinsically modelled in an N-body
simulation, and should not be treated separately. The only
mechanisms that reduce the size and/or mass of galaxies are
evaporation, ram-pressure stripping, and tidal fields. Unfortu-
nately we cannot model shrinking (i.e. evaporating) galaxies
because of the severe numerical problems with particles that
both harden and become more clustered, needing extremely
short integration timesteps.

Because of the vast complexity of the physics of all these
effects, both mass and size changes are neglected in this paper.
In other words, we assume that all possible effects leading one
way or the other more or less cancel out each other. So galaxies
form from an early collapse with no subsequent events, and
retain their size during the subsequent evolution of the cluster
by settling to an (quasi-)equilibrium state. Very important here
is that galaxy formation is likely to be a dissipational process,
making such galaxies quite strongly bound entities. The dark
matter in and around galaxies does not dissipate, and is less
tightly bound, so galaxies could be stripped of part of their
dark haloes when traversing the cluster. The choice for the sizes
and masses of the galaxy should therefore mainly be guided
by the luminous matter distribution, taking into account what
is probably left of the halo. To take a constant physical size for
our soft galaxies automatically conserves total physical energy
as measured by the particles in the simulation.

The simulations by Dubinski & Carlsberg (1991) and
SuSu would suggest values for ¢ that are 2 to 3 times as
large as derived from the luminous part of a galaxy. Larger
ellipticals, found in the cores of clusters (like M87 in Virgo),
will clearly need larger values than normal galaxies. Finally we
have to realize that the numerical limits on softening discussed
earlier for the background particles obviously apply also to the
galaxy particles.

3.3 Galaxy formation parameters p and s

The galaxy formation recipe still contains two ad hoc parame-
ters, the basic percolation length p and the Gaussian smooth-
ing length s, both dimensionless (see equations (6) and .(7)).
For lack of a good physical theory of the galaxy formation,
we try several choices for the two parameters and determine
which combination will do the best job. We consider the val-

ues % and 1 for each parameter, yielding four combinations:

@) € {5 H.¢& .05}

We have to bear in mind that the use of softened parti-
cles implies that the standard virial theorem does not apply.
Because the pair interaction potential is softened, the total
potential energy of the systems will be smaller, and the same
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is true for the kinetic energy. We should use the Clausius Virial
instead, which for Plummer potentials reads

Gmm,
Zm,x, ¥=2T+U+ 22 s (24)

where the rightmost term just represents the energy stored in
the soft particles, T = 5 2 m? is the total kinetic energy and
U = 1>, mi¢! is the total potential energy of the particle dis-
tribution, with the Plummer potential ¢!! given by (B3). This
implies that the larger the softening, the larger 2T +U becomes
because the rightmost term of (24) varies roughly as 1/e. Inter-
estingly, most of the energy gained is put into potential energy.
In fact, an increase of e results in even more extra potential
energy than the amount gained, because the kinetic energy de-
creases. These changes are illustrated in Fig. 8, which shows the
total, kinetic and potential energies for the final distributions
of the simulations as a function of the (non-expanding) soft-
ening parameter adopted. Most of the kinetic energy change
must be in groups, where the softening length matters most.
Groups normally satisfy (9), but this effect means a shift of
M(2.5R,6?/G) to smaller M. On the other hand, softening will
increase the half-mass radii of groups since soft particles clus-
ter less tightly. The latter effect causes a slight shift to larger
masses. Therefore the combined effect is hard to predict, and
we will examine it for several of the simulation sets.

For set B, we plot in Fig. 9 the mass M of the resulting
groups as a function of 2.5R,62/G at z = 2 for four choices of
e with p =1 and s = 1. Only groups with at least 10 particles
are shown, since groups with less members are too noisy
(compare to Fig. 4). Criterion (9) is shown as a straight line.
Before drawing any conclusions on the effect of softening as
discussed, we have to realize that not all of the groups identified
by the grouping algorithm will be in virial equilibrium in the
first place. Apparently the second — enlarging — effect seems to
dominate for small e. However, the first clearly dominates for
large € by significantly decreasing the group velocity dispersion
o. This is confirmed by the global root-mean-square peculiar
velocities listed in Table 2. The /N-noise on the quantities is
evident in the figure, where low-mass groups consisting of only
a few particles scatter heavily around the supposed relation,
but the high-mass groups do well. We conclude that most of
the more massive groups are in virial equilibrium or at least
bound (4GM > 5Ry0?), with a few still collapsing (indicated
by a large velocity dispersion).

We next examine what the choices for p and s imply for
the groups found by the local density percolation technique.
Fig. 10 shows the particles of simulation B1 (e = 10 kpc) that
reside in groups containing at least 10 particles at z = 2 for the
set of (p, s) defined above, and where these particle end up. This
gives us an idea which particles residing in early-formed groups
survive the formation of structures like clusters of galaxies, and
how this depends on the choice for (p,s). A small value for
p will pick out only the cores of groups, and the chance of
survival will increase. Fig. 10 confirms this for groups outside
the main cluster for p = 5 = % A larger p will include less
bound particles around the core as well, yielding more realistic
groups because criterion (9) is more easily satisfied, mainly
resulting from a better coverage of local phase space. By
including more loosely bound particles the chance of survival
for the whole group decreases, as can be seen in Fig. 11 for
the two p = 1 cases. As noted earlier (compare to Fig. 3),
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Figure 8. System binding (E), kinetic (T) and potential (U) energies
(with arbitrary units) as a function of the softening parameter e for
the final distributions of the simulations from set A (open symbols),
B (filled symbols) and C (grey symbols) with constant e.

groups ending up in the cluster are completely disrupted, and
for these the choice of (p,s) does not matter.

The disruption of galaxies should be even more devastat-
ing within clusters. We examined test set C, the broad cluster
model, to investigate this. In the spirit of the previous discus-
sion we plotted scatter diagrams of 2.5R,62/G against M at
z = 2 for simulation C1 together with its Hernquist softening
counterpart C11 (the two are related by equation (B17)). As
for set B, we found that at z = 2 most groups identified by the
local density percolation technique are indeed physical groups.
The scatter plots (not shown) indicate that there is no signif-
icant difference, except that there might be somewhat more
scatter for the Hernquist softening run.

3.4 Upper and lower mass cut-offs

When making galaxies we need to restrict masses to a probable
mass interval. The lower cut-off is determined by the noise
clearly visible at the low-mass end of scatter plots of 2.5R,02/G
against M. Only Fig. 4 shows this noisy part as well; we
omitted it in Fig. 9. One should choose the lower cut-off at
the mass level where the points are not scattered too much
out of the factor-of-two region around the virial line. For the
upper cut-off we should try to find a physical transition scale,
for example the scale above which dissipation is not important
and galaxies are not easily formed. However, since not much
is known on the exact physics of galaxy formation, a number
for such a scale length is difficult to obtain, so we will try to
use observations instead. We could use the bright end of the
average (or joint) cluster luminosity function to estimate the
expected brightness of the brightest galaxy, and link this to
its mass, giving the desired upper mass cut-off. Unfortunately,
there are many uncertainties involved which can change this
value by an order of magnitude, such as the Hubble parameter
ho, the cosmological density parameter Q, the mass-to-light
ratio and the colour of the galaxies.

Instead we use the observed mass of M87, the brightest
cluster elliptical (BCE) of the Virgo cluster, as the maximum
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Figure 9. The mass M of groups of more than 10 particles as found by the local density percolation technique with s=1 and p=% against 2.5Ry02/G
for four choices of e, plotted for the small cluster simulations of set B at z = 2.

allowable single particle mass. This is a few times 10'3 M, with
a factor of two uncertainty (see Appendix C). For other clusters
a mass estimate for their BCE does not exist. However, if the
number of original particles is still quite large for somewhat
smaller galaxy masses, we decide on the basis of the applicable
disruption time whether to replace such a group by a single
particle or model it by the original equal-mass particles. We
expect that in general this situation will only occur for Nig >
10000, which is not the case for most of our present models.
We therefore do set the upper mass cut-off to a few times 1013
M, with the precise value depending on the specific simulation
set and galaxy formation epoch, as will be discussed for each
individual model.

4 GALAXY FORMATION AND CLUSTER

EVOLUTION
4.1 Instant galaxy formation at z=2

We can now test our proposed solution for the numerical dis-
ruption problem with galaxies in clusters, in which we form

galaxies during the cluster evolution by replacing groups by
a single particle at a certain epoch. We adopt a simplification
here, as a first step, by making galaxies ‘instantly’ at a certain
redshift. This approximation will only break down if the pro-
cess is not peaked at all in redshift space. It is really unknown
when the bulk of the galaxies formed (e.g. Rees 1991), but as
a first test we make galaxies instantly at z = 2. This value is
in between the era where most of the quasars are found (e.g.
Schmidt, Schneider & Gunn 1986), and the present epoch,
where galaxies could still be forming. Recent work by Cen &
Ostriker (1992) encourages our choice: they found that — at
least within the CDM scenario — galaxy formation might be
peaked around z =2 — 3.

We use the small cluster simulation Bl from the pre-
vious section, the broad cluster simulation C1, the (similar)
simulation pair D1 and D2, and the very rich cluster sim-
ulation E1. All simulations are run through to the end as
traditionally done, but are also paused to form galaxies, and
resumed with the newly formed galaxies and the remaining
background particles together. In simulation B1 we need 60
particles in a group to constitute the mass of a typical galaxy
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Figure 10. 3D-plots of particles in groups with more than 10 particles, for different choices of the local density percolation parameters for the
small cluster simulation B1. The left hand cubes show their positions at z = 2; the right hand cubes show their present positions.

like our own (with the assumption of a dark halo out to
100 kpc, Hills 1985). Only 7 particles are needed to make
up the galactic mass for Cl. Set D has both of these res-
olutions for similar initial conditions, to test resolution ef-
fects. All parameters as well as some results are listed in
Table 3.

We discuss the small cluster simulation B1 first. In fact
we consider three simulations: B1, which is just the plain
run with equal-mass particles, and Bla and B1b, which have
galaxies formed at z = 2 as described, with (p,s)=(%,1) for
Bla and (p,s)=(1,1) for B1b. Both choices, and in fact almost
any choice, result in one massive galaxy at the centre of the
proto-cluster, which just collapsed at z = 2, as shown in Fig.
11(a). This should correspond to the early formation of a mas-
sive cD galaxy. For the first choice of p the massive galaxy is
retained, with a mass of 4x10'> Mg, which just exceeds our
imposed upper mass limit, but is still possible. For the second
choice of p the particles remain loose, although the would-be
galaxy almost satisfies (9), being marginally bound. We make
this distinction between Bla and B1b in order to examine the
difference this makes. When forming the remaining galaxies,
only groups with a mass larger than 2.4x10!! Mo, ie. con-

sisting of at least 14 unit-mass particles, are selected. This
choice is based on the scatter in Fig. 9. The mass spectra of
the galaxies found are plotted in Fig. 16 (Section 5) for both
Bla and Bl1b, showing that the larger percolation parameter
p results in more massive galaxies.

The galaxies themselves are shown in Fig. 11(b) for Bla
and Fig. 11(c) for B1b. The size of the circles that represent
the individual galaxies is proportional to M'/3, The loose dots
shown are particles which were tagged to reside in groups
by our local density percolation technique, but did not fulfill
the virial criterion (9). We clearly see that this criterion in-
deed removes odd groups for which local density percolation
still suffers from the defects of the ordinary percolation tech-
nique. Figs 11(d) and 11(e) show the resulting initial conditions
for simulations Bla and B1b respectively, which are just the
formed galaxies plus the remaining simulation particles sam-
pling the dark matter. Evolution of these to the present epoch
results in the final matter distributions shown in Figs 12(a) and
12(b), which are to be compared to Fig. 1. It is apparent that
simulations Bla and B1b with galaxies formed at z = 2 have
a less concentrated mass distribution than the cluster with no
early galaxy formation. We will quantify this later in Section 5.
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Figure 10 — continued

When identifying galaxies at the present epoch, we might
argue that the percolation parameters chosen at z = 2 should
be used again at the present epoch. It has to be remarked,
however, that the physical state of the system could differ
significantly, so that different percolation parameters might
be required. Because of the higher degree of clustering, the
average nearest neighbour distance is smaller and identical
percolation parameters will tag more particles as group mem-
bers. Furthermore, identified groups at the present epoch will
on average be more massive than groups identified at higher
redshifts. Despite using the local density in the linking method,
the smooth nature of the dark matter distribution at late times
in the simulation, caused partly by numerical effects and tidal
stripping, will either cause all particles to be linked up as one
large group, or result in no extra groups at all. There is of
course often a large cD galaxy observed in a cluster, but it is
questionable if identification of such a cD galaxy in a model
calculation should be done by the local density percolation
method, considering that cD haloes are huge and smoothly
connect to the surrounding group or cluster (Porter, Schnei-
der & Hoessel 1991; Kemp & Meaburn 1991). The largest
problem is that many of the traversing galaxies, as identified
at z=2, are scooped up as well, while they should remain

separate entities because of their large velocities (dispersions
up to 1500 km s~! have been measured), ensuring their sur-
vival.

We apply local density percolation with the same val-
ues as at z = 2 plus the virial criterion (9), resulting in the
cluster models shown in Figs 12(c) and 12(d). Trying these
very same grouping parameters on the final distribution of
the original plain simulation Bl (see Fig. 1), we end up
with the models displayed in Figs 12(e) and 12(f). The cri-
terion again removes a few odd groups as at z = 2, so the
method itself seems to work well at the present epoch also.
However, Fig. 12 clearly shows the impossibility of identi-
fying new (i.e. recently formed) galaxies within the cluster
at the ends of all three simulations, because all small-scale
structure is destroyed by numerical effects. For B1 we no-
ticed violent relaxation of the collapsing cluster, which re-
sults in a smooth density distribution with a dense core.
Simulations Bla and B1b do not show such a dense core,
but the dark matter distribution is smooth as well. When
inspecting the evolution of this distribution we see no vio-
lent relaxation in these early galaxy formation models, sug-
gesting that galaxy formation might suppress violent relax-
ation.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1995MNRAS.273..295V&amp;db_key=AST

SVNRAS, 2737 S 295V

I'I_

Modelling clusters of galaxies 313

Table 3. Parameters and results of the galaxy formation simulations.

sim. Zform number of p s Myin  Mmax  f gal  Mest/Mrea  Mest/ Mieal Ogal Odark Rumgal Rumdark

no. particles [10'2 Mo]

(Rabell) (Rwrm) [kms™!] [kms™'] [Mpd [Mpd

B1 - 19042 - - - - -
Bla 2 12937 1 1 024 40 032
" BIb 2 13131 1 1 024 11 023
C1 - 18125 - - - - -
Cla 4 15194 1 1 095 20 017
Cib 2 14399 1 1 095 25 o021
Cle 1 13932 1 1 095 35 o024
Cid  4/2/1 118031 5 1 095 72 036
Cl1 - 18125 - - - - -
Clla 2 13234 1 1 095 35 027
D1 - 146654 - - - - -
Dla 4 126769 1 1 051 10 0.14
D1b 2 11907 1 1 051 13 019
D2 - 18405 - - - - -
D2a 4 15893 3 1 095 19 014
D2b 2 14708 4 1 095 13 020
El - 139743 - - - - -
Ela 4 127040 4 095 19 0.12
Elb 2 111004 1 1 095 41 024
Elc 4/2/t 1023807 1 1 095 41 030

- - - 845 - 091
0.78 0.71 527 721 139 200
0.60 0.58 628 756 1.06 1.46
- - - 1474 - 1.87
0.49 0.42 1195 1449 093 260
0.66 0.54 1379 1481 095 256
2.77 228 1609 1367 288 228
1.06 0.90 1291 1375 200 349
- - - 1450
0.74 0.63 1503 1433
- - - 1319 - 275
0.56 0.44 1281 1307 163 344
0.96 0.79 1559 1446 233 258
- - - 1394 - 255
0.52 033 1234 1340 110 345
0.53 0.40 1086 1305 175 392
- - - 2912 - 567
093 0.57 2556 2832 422 651
175 0.98 3127 2833 660  5.68
1.30 0.80 2870 2813 630 593

T number of particles after last galaxy formation step

4.2 The epoch of galaxy formation

When forming galaxies ‘instantly’ at one specific redshift, there
might very well be a dependence of the resulting models on the
formation redshift. We investigate this for the test simulation
C1. The fast collapse of the main overdensity observed for
set B will not occur for simulation C1, because the cluster
was constrained to be broad, implying a longer time-scale for
the collapse. In fact it turns out that it just collapses in two
roughly equal clumps at the end of the run, the first originating
from the centre where the 26 constraint was put, and the other
from the outer regions of the simulation sphere. Such large-
scale merging is inevitable in hierarchical clustering scenarios
like CDM, but for our testing purposes the amount of merging
is reduced artificially for C1 by taking ‘broad’ constraints (as
described in 2.1).

Here we test only one choice for the percolation pa-
rameters: (p,s)=(%,1), also used for simulation Bla. The main
motivation for these values is that we only want to replace the
central part of the halo by a single particle. The outer parts are
thus kept loose to allow for possible tidal stripping. We find
that most of the groups satisfy virial criterion (9), and have
half-mass radii in the range 15-80 kpc, i.e. Plummer softening
parameters in the range 12-60 kpc. This is the expected range
for dark halo sizes, i.e. 2-3 times the extent of the luminous
component (Appendix C).

Galaxies are formed at four different redshifts: z = 4,
z =2,z =1 and z = 0 (the present epoch). The last choice
is included to compare with traditional N-body modelling in
which galaxies are identified in the final distribution. Snapshots
from the standard run Cl1 at these redshifts are shown from
left to right in the top row of Fig. 13. The galaxies found at

the corresponding epochs are displayed in the middle row of
the same figure. These distributions, except that of the present
epoch, are then used as initial conditions for simulations Cla,
C1b and Clc. For simulation C1b the most massive group is
not replaced by a single particle because its mass would be
6x10"3 My, while for simulation Clc the two most massive
groups are not replaced either for the same reason. It should
be noted that the introduction of two very massive particles is
not handled very well by the N-body integrator: in a test run
the two massive particles evolved into a close binary system
causing strong evaporation of the rest of the particles by
slingshots!

The end results are shown in the bottom row of Fig.
13. Identification of galaxies at the present epoch is again
found to be impossible. Experimenting with the percolation
parameters, we found that to take the same parameters as at
z = 2 causes a large fraction of the matter to end up in a
single large group. To take half the values for both p and
s produces almost no extra groups and merges hardly any
existing groups. We again observe that these kinds of galaxy
identification methods do not work at z = 0 within large-scale
overdensities like clusters, because both the dark matter and
the galaxy distribution are very smooth due to the numerical
effects discussed before. However, since velocities are large
(6, > 1000 km s~!) and the intra-cluster medium is hot, we can
also argue that both galaxy formation and merging of single
galaxies (not of subgroups of galaxies!) more or less ceased
within clusters. We can then assume that the distribution found
at the end of the runs can be considered to be the final result.
We will make this assumption and use these distributions for
further analysis, i.e. refrain from identifying galaxies at the
final epoch.
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Figure 11. (a) Distribution of the small cluster simulation Bl at z=2. (b) Groups (indicated by circles) found for p=%, s=1. The dots indicate
particles that were tagged as a group by the percolation algorithm, but whose groups were too far from virial equilibrium to be real. (c) As (b),
but for p=s=1. (d) As (b), but with the remaining loose particles that make up the background dark matter distribution. () As (d), but for p=s=1.

The latter two distributions are used as initial conditions for simulations Bla and B1b respectively.
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Figure 12. (a) Final distribution of the small cluster simulation Bla. (b) As (a), but for for simulation B1b. (c) Galaxies identified in Bla at the
present epoch for (p, s)=(%, 1), after applying virial condition (9) within a factor of two (see text for details). (d) As (c), but for B1b with (p, s)=(1, 1).

(e) As (c), but for the plain run B1 with (p, s)=(%, 1). (f) As (e), but for (p,s)=(1,1).

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1995MNRAS.273..295V&amp;db_key=AST

SVNRAS. 2737 295V

rt

316  E. van Kampen

z=4 galaxy formation z=2 galaxy formation

[Mpc]

1117 '._Il‘lLlllll'Illllvll'l

I
0 -6

—4 -2 —4 -2
[Mpc] [Mpc]

Figure 13. The top row (across both pages) shows from left to right the evolution of the standard N-body simulation C1, forz =4,z =2,z =1
and z = 0. The middle row shows the resulting galaxies and remaining dark matter when using local density percolation plus virial condition (9)
within a factor of two at these redshifts. The bottom row (note the different frame size!) shows the end results of the distributions shown in the
middle row.
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Figure 13 — continued

A first look at these final distributions reveals immediately
that the concentrations of the resulting galaxy distributions
are very different for different formation epochs. The dark
matter distribution is roughly similar for the different runs,

but its most important feature is the lack of a dense core, as
was observed for set B as well. Also note that for the late-
formation model (z = 1) there are relatively many massive
galaxies outside the main cluster, whereas for early galaxy
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formation most massive ones are to be found in the central
parts of the cluster.

4.3 Resolution issues again

We found in Section 2.3 that an increase of the number
of particles does not help very much to preserve groups
of simulation particles within overdensities like clusters of
galaxies. But are our proposed solutions hampered by res-
olution effects? High- and low-resolution set D is used to
try to understand this, i.e. we ask whether simulation sets
D1 and D2 produce statistically the same results. Fig. 14
shows the two resulting galaxy distributions, with and with-
out the dark matter distribution. One gets the impression
of a slightly more compact distribution of galaxies for the
low-resolution simulation D2 (quantified in Section 5.2). We
observe an alignment of both the low- and high-resolution
distributions. Furthermore, when one smooths the distribu-
tion with a Gaussian filter of a few Mpc the overdensi-
ties are very similar with respect to shape, amplitude and
size. The low-resolution simulation lacks the group of galax-
ies which is present in the high-resolution counterpart at
(x,y) = (—3.8,—2.5) Mpc in the bottom left panel of Fig.
14. However, most of that mass is still visible in the top right
panel of Fig. 14 as dark matter plus a somewhat more massive
galaxy. This example illustrates that the detailed distribution
of mass amongst galaxies and dark matter is different for
different resolutions, but that the global distribution is very
similar. Statistical properties should therefore be similar as
well.

44 Continuous galaxy formation and evolution

A logical next step is to make the galaxy formation process
more continuous while still using the relatively simple meth-
ods presented above. This can be done by repeating the galaxy
formation step at several redshifts, creating new galaxies and
allowing the ones formed earlier to gain mass by grouping
them together with surrounding dark matter particles or other
galaxies. The latter option means that we can include merg-
ing, which is certainly an important process during the early
evolutionary stages of a cluster. Simulations Cla and Ela
are used for this purpose. The grouping algorithm is applied
at z = {4,2,0.8,0.25}, resulting in simulations C1d and Elc.
The final distribution of the latter is shown in Fig. 15. Again,
very massive groups are not replaced by single soft parti-
cles. An upper mass limit of 3 x 10!* My, is maintained here.
When comparing these models with the ones for galaxy for-
mation at one specific redshift, we see them to behave as an
intermediate case. Clearly, grouping of particles with differ-
ent masses is more complicated than for equal-mass particles.
Around a massive particle the smoothed density field has a
large amplitude, causing the percolation length to be quite
small and making it difficult to link it to other particles. It
is also more softened, loosening its gravitational grip on its
surroundings.

5 PROPERTIES OF THE RESULTING CLUSTERS

We will present some global results for the model groups and
clusters built, although they need not be representative for
a typical cluster. However, the inclusion of galaxy formation
and preservation enables us to study various effects of cluster
evolution that deserve a closer look.

5.1 Calculating cluster properties

Extraction of cluster properties from model calculations is
clearly much easier than from observations, since for models
the full phase-space information is available and the mass spec-
trum is known. Although a wealth of information is contained
in cluster simulations, some quantities remain ambiguous to
define, like the centre of the cluster, or its mass. We chose
the cluster centre to be the position of the maximum in the
density field smoothed with a Top-Hat filter of 3 Mpc, which
is the Abell radius (Abell 1958). After obtaining the cluster
centre, we can calculate spherically averaged profiles like the
mass density profile and the velocity dispersion profile. In this
paper we restrict ourselves to inspection of global parameters
and overall behaviour of the resulting clusters, and indicate
where the models should be further improved. We will dis-
cuss cluster luminosity functions and total masses in some
detail, and also investigate various biases and mass segrega-
tion.

5.2  Global properties
5.2.1 Luminosity functions

In Fig. 16 we plot the mass functions n(M) that resulted
directly from the formation of galaxies in our models from
the sets B, C, D and E. We see that these mass functions
have a power-law shape, with an indication of an exponential
cut-off at the high-mass end for set E. Recall that we applied
an upper mass cut-off in our galaxy formation recipe, so the
observed mass cut-off is inherent to the models. However, no
shape information was used.

For a constant mass-to-light ratio we can compare the
shapes of our mass functions to observed luminosity functions.
Various forms for the luminosity function n(L) have been fitted
to observed clusters. The Schechter (1976) function is a good
fit for field galaxies as well as for cluster galaxies (Colless 1989)
and has a reasonable physical explanation in a cosmological
context (Press & Schechter 1974; Bond et al. 1991). Another
form is that proposed by Abell (1975), consisting of two power
laws mimicking a break at a certain scale. It only fits well for
clusters of galaxies, which have relatively more bright galaxies
than the field (Rhee 1989).

The Abell function does not fit too well for our models:
the slope is somewhat too shallow, mostly due to the deficiency
of low-mass galaxies. A Schechter function with characteristic
mass M* ~ 9 x 1012 M, and a = —1.25 fits the mass functions
of set E quite well, as shown in Fig. 16. Because set B is a
group, and sets C and D are not typical clusters, these three
sets are not expected to compare well to average observed
clusters. The transition from mass M* to absolute magnitude
Mp, obviously depends on Qo, hy and the mass-to-light ratio
Y. In our Qy =1 and hy = % models the M* found for set E
corresponds to the observed My =~ —21.5 (Felten 1985) for
a constant mass-to-light ratio of 300Y. Because our galaxy
particles include dark haloes, this is a reasonable number (the
brightest Virgo elliptical M87 has probably Y = 750Y, see
Appendix C).

5.2.2  Density and velocity dispersion profiles

In this section we look at the density and velocity disper-
sion profiles of the model clusters, both for the galaxies
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Figure 14. x — y projections of part of the volume of the high-resolution galaxy formation simulation D1b (left column) and its low-resolution
counterpart D2b (right column) at z=0. The top row shows galaxies plus dark matter, the bottom row only the galaxies.

and for the dark matter. They are plotted in Fig. 17 for
sets D1, D2 and E. The density profiles for the galaxies,
represented by dotted lines, and for the dark matter com-
ponent, shown as solid lines, are renormalized according
to their mass fraction. The runs without galaxy formation
are shown as dashed lines. For the density profiles we see
a clear separation of the galaxy and dark matter compo-
nents with respect to the original run without galaxy forma-
tion, where the galaxies cluster most (note that the plots are
logarithmic!). The differences in the velocity dispersion pro-
files of the two components are less clear; it appears that
the galaxy component is slightly colder. The velocity disper-
sions are rather large, especially for set E. This is a known

problem of the unbiased CDM scenario (e.g. Frenk et al.
1990).

5.2.3 Total mass

A truly global property of a cluster is its total mass. However,
it is difficult to define, just like a cluster itself. As in Table 1,
where the global properties of the standard simulation sets are
listed, we will use the Abell radius as well as the more physical
turnaround radius. It is interesting to see to what extent these
masses can be reproduced by the various mass estimators as
used for observed (projected) data, where only the luminous
component is known. We limit ourselves to a comparison of
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Figure 15. Final distribution of the ‘continuous’ galaxy formation
simulation Elc, a very rich cluster.

the total mass, obtained from the 6D phase-space distribution
of galaxies, to the real mass. The virial mass estimator

2Rhm0'2
My = L 25
G | (25)
(e.g. Saslaw 1985) uses the mass-weighted mean harmonic
radius
2
(Zm)
Ry = '—m,m (26)
)
i j<i

and the total velocity dispersion (also weighted with mass)
2

Zmiv?
g, = i .

v Zmi

(27)

Table 3 lists the ratio of estimated mass to real mass obtained
within both the Abell radius and the turnaround radius for
all our galaxy formation cluster models. We see that masses
are mostly underestimated for early galaxy formation, and
overestimated for late galaxy formation (notably simulation
Clc). We consider this result in more detail below.

The results of set D show that the high- and low-resolution
simulations give roughly the same ratios for z = 4 galaxy for-
mation, but disagree for z = 2 galaxy formation. This indicates
that resolution effects become increasingly more important
when the amount of clustering increases. We might solve this
by applying the more continuous galaxy formation approach,
as discussed in Section 4.4.

5.3 Mass segregation

Because we form galaxies within a sea of dark matter early on,
we can search for mass segregation effects, i.e. a difference in
concentration between the dark and luminous matter during
the subsequent evolution. West & Richstone (1988) found that
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Figure 16. Mass functions for the simulation sets B, C, D and E,
renormalized for the simulation volumes, and multiplied by decreasing
factors of 10 for each set for clarity. The dashed line is a Schechter
function with M* =~ 9 x 102 My and a = —1.25. It fits the mass
functions of set E quite well.

the luminous matter, in the form of galaxies, clusters more
strongly than the dark matter, which was represented by 100
times less massive particles. This results in an error in the virial
mass estimate: West & Richstone claim that this could be up
to a factor of 10 too low, and that the segregation is mostly
caused by dynamical friction. This was confirmed by Serna,
Alimi & Scholl (1993) using higher resolution models.

It is, however, likely that the dark matter also settles in
clumps with a mass large enough to reduce the differences
between luminous and dark matter significantly, and therefore
also reduce the effect of dynamical friction on the galaxies.
The amount of mass segregation will therefore depend on the
fluctuation spectrum of the dark matter. A scenario like CDM
will show much less segregation than the West & Richstone
(1988) and Serna et al. (1993) white noise simulations, whereas
hot dark matter (HDM) could show a similar or larger effect
if galaxies form early enough. Generally the mass of a galaxy
particle is about ten times as large as that of a dark matter
particle. However, we assume that our galaxies, once formed,
do not lose mass. If mass loss is significant, our cluster galaxies
might suffer too much dynamical friction. We will search for
mass segregation with this uncertainty in mind.
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Figure 17. Density and velocity dispersion profiles of the final cluster models from the simulations sets D1, D2 and E. For reasons of clarity we
use different normalizations for each set. Dotted lines represent galaxies, solid lines the dark matter distribution. Both are renormalized according
to their mass fraction. Dashed lines denote simulations without galaxy formation.

A simple measure of mass segregation is the mean har-
monic radius (26) of the cluster, which has both the disad-
vantage and advantage of being a single quantity. It depends
on the radius within which it is calculated, but can easily be
plotted as a function of time. In Fig. 18(a) we utilize this to
see mass segregation at work for simulations Dla and D2a.
We compare mean harmonic radii for the galaxies (thick lines)
and the dark matter (thin lines) within the cluster turnaround
radius (as obtained for the present epoch: see Table 1) in the
comoving frame. Table 3 lists the present-day harmonic mean
radii for the two mass components for all models run.

We find no significant initial segregation for Cla and
Clb, but there is a rather large inverse initial segregation
for Clc. The latter effect is dominated by the choice not to
replace the largest two concentrations of particles by a single
soft particle (see Section 4.2). Therefore Ry, for the dark
particles is dominated by these remaining concentrations and is
considerably smaller than that for the galaxies. The formation
of galaxies in the Clc model at z=1 is troublesome anyway
because two-body disruption has done much damage already
to groups that should still exist at that time. For Cla and Clb,
the mean harmonic radii separate considerably during the
evolution after the formation epoch, and the final segregation
amounts to a factor of 2.5 at the present epoch. For Clc the
rather large inverse segregation quickly diminishes, but does

not disappear. An increase of the resolution reduces the final
segregation somewhat, as demonstrated by the plots for set D,
but not by a large amount.

For the very rich cluster set E, galaxy formation at z =2
(model E1b) results in the same initial inverse segregation
effect we observed for z = 1 galaxy formation for the much
poorer broad cluster (model Clc). For both these models one
might argue that this formation epoch is just too late, i.e. many
galaxies got disrupted before our instant formation epoch. We
do believe that the segregation effect is real and significant for
the models with galaxy formation before or at z = 2. It causes
a general underestimation of the total mass (see Table 3 for the
corresponding numbers), but the effect we observe is certainly
not as strong as that found by West & Richstone (1988) and
Serna et al. (1993). So indeed our CDM models show less
segregation than their white noise simulations. But we cannot
resolve the issue of mass loss with the present modelling, so
the amount of segregation found should be considered as an
upper limit.

54 Biases in and around clusters

5.4.1 Cluster spatial bias

The observed mass segregation might be of interest on a
cosmological scale, since it produces a bias between galaxies
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Figure 18. (a) Mass segregation for the z = 4 galaxy formation sim-
ulations from set D, expressed by the mass-weighted mean harmonic
radii within the turnaround radius for both the galaxies (thick lines)
and the dark matter (thin lines). (b) Comparison of the two-point cor-
relation functions for galaxies (thick lines) and dark matter (thin lines)
within the turnaround radius around the cluster centre for the z = 4
galaxy formation simulations from D. (c) Pairwise velocity dispersions,
plotted similarly to (b).

a,/(r) [km/s]

and the underlying mass distribution. We have to discriminate
between the different types of spatial bias defined in the litera-
ture. There is the original idea of peak bias, which is of purely
statistical origin and stems from thresholding the density fluc-
tuation field (Kaiser 1984). If this field is Gaussian distributed,
as we assume it to be in the early universe, clustering of peaks
above a certain threshold v times the rms fluctuation oy is
stronger than that of the field itself, as quantified by their
representative two-point correlation functions:

2
Ceal(r) = péau(r) . (28)
0

This is only an approximation; the full expression is more
complicated. We will not discuss the full machinery here, but
refer to Peacock (1992) for an excellent review. To take (28)
as the exact description is called linear bias, fully described by
one quantity b, i.e. Egu(r) = b*Ea(r). In fact, this means that
on = bé—p , (29)
n p

where n represents the number density of galaxies and p the
compound mass density. Finally there is the so-called natural
bias, as proposed by White et al. (1987), which is the difference
in clustering between dark matter and haloes selected on the
basis of their maximum circular velocity. We will not examine
this any further in the present discussion, but just search for
a possible linear bias by examining the difference between
the correlation functions found for the dark matter particles
and for the galaxies. Both were calculated using the method
described in Section 3.1.2.

We search for a possible bias within the turnaround ra-
dius of our cluster models, a region that contributes much to
the small-scale part of the cosmological two-point correlation
function. Fig. 18(b) shows the correlation functions for both
galaxies and dark matter within this radius for the models Dla
and D2a, two similar models with galaxy formation at z = 4
at different resolutions. A clear bias is observed, largest for
early galaxy formation, which is shown in the figure. Within 1
Mpc the bias amounts to a factor of 2 to 3, rendering it an
important effect for the virial mass estimator since it will dom-
inate the mean harmonic radius. There is a slight anti-bias for
the late galaxy formation models (Clc and E1b, not shown),
which explains the overestimation of their total mass using the
virial estimator. Our simulations show a bias that is not linear;
the slope of the correlation function is different for both mass
components. By simulating clusters we have a biased sample
of the universe, but it has been argued that the cosmologi-
cal autocorrelation function is dominated by the contribution
from regions of radius 10 Mpc centred on the cluster (McGill
1991). Still, we might suffer from other systematics, like the
fact that we form galaxies instantly at a relatively early epoch.
If we allow galaxies to form at late times as well, then they
preferentially form outside clusters, thus enhancing our mea-
sured galaxy autocorrelation function at large r. So we need
better modelling to reach a more definite conclusion.

5.4.2  Cluster velocity bias

An important recent issue is the possible existence of velocity
bias (Carlberg, Couchman & Thomas 1990; Bertschinger &
Gelb 1991; Gelb 1992), especially within clusters of galaxies
(Carlberg 1994). If it occurs, it could solve the problem that
the standard CDM model has in generating too large small-
scale pairwise velocity dispersions (seen in standard N-body
models), which are dominated by the contribution from cluster
members. Velocity bias can be expressed in several forms. One
definition is the ratio of the dispersion profile of the galaxies
to that of the dark matter. More frequently used is the ratio of
their pairwise velocity dispersions o (r). The pairwise velocity
dispersion is defined as

a1(x) = {(oy — ()" (30)
(e.g. Gelb 1992), with the relative velocity
o= (v —v;) (xj—x;)/|x; — xi . (31)
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All quantities were obtained while calculating the spatial corre-
lation function &(r). A single-value velocity bias can be found
by comparing central velocity dispersions for both mass com-
ponents. They are listed in Table 3 for all models. The largest
effect is found for simulations Cla and Ela, which had their
galaxies formed at z = 4: both the velocity dispersion and
(< 1 Mpc) for the galaxies are 80-90 per cent that of the
dark matter.

This amount of velocity bias is quite small, however, and
it cannot compensate for the rather large spatial bias in order
to get the virial mass estimate (25) right. The underestimation
of the total mass by the virial estimator is therefore mostly
caused by the spatial clustering bias of dark and luminous
matter. Because of the amount of noise, no firm statement
on the presence of velocity bias in clusters of galaxies can be
made, except for the z = 4 galaxy formation models. Fig. 18(c)
shows that the high/low-resolution simulation pair Dla/D2a
(with galaxies formed at z = 4) shows a bias as well (at both
resolutions), but its significance is hard to address. A severe
problem is the v(e) effect encountered in Section 4: softer
particles have somewhat smaller velocities. Since our galaxy
particles are always softer than the dark matter particles,
this might account for the entire velocity bias effect in our
models!

Important in the comparison of these results to the origi-
nal Carlberg et al. (1990) result is that there is a rather large
statistical effect present in their estimate, as pointed out by
Gelb (1992). In their calculation of the dark matter pairwise
velocity dispersion they included particles tagged as residing
in galaxies, raising the dispersion on small scales. Exclusion
of these particles diminishes the velocity bias, but does not
remove it completely, certainly not on the scale of clusters of
galaxies. Obviously we do not suffer from this statistical effect.
Because we are looking at clusters instead of an average patch
of universe, we find much larger o) than do both Carlberg et
al. and Gelb. For the same reason we cannot directly compare
the shapes of the curves found.

6 CONCLUSIONS

We have shown that standard N-body methods are not well
suited for the study of clusters of galaxies because of the nu-
merical two-body and physical tidal disruption of their mem-
ber galaxies. This results in a smooth distribution of matter at
the present epoch in which it is impossible to identify galaxies.
Such is obviously not desired since observed clusters still con-
tain very many galaxies. The disruption can be prevented by
replacing groups of particles that represent galaxies by single
soft particles at a certain epoch, as a simple approximation to
dissipational galaxy formation. We can then continue to inte-
grate the evolution of these soft galaxy particles along with the
remaining particles, which model the dark matter distribution.

To define groups, we use a local density percolation tech-
nique, which is a much improved version of ordinary perco-
lation. The groups found are replaced by a single particle if
they satisfy the virial equilibrium criterion to within a factor
of two. This freedom is necessary due to numerical noise in
small groups, and because we are dealing with soft particles
for which the Clausius Virial applies. Local density percolation
plus this equilibrium criterion is shown to be very well suited
for the purpose of identifying galaxies.
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The softening parameter of a new galaxy particle is pro-
portional to the half-mass radius of the group it replaces.
This makes the choice of the softening parameter much bet-
ter motivated than by just taking a value that is numerically
convenient. The sizes of our galaxies are reasonable when
comparing them to observations. Unfortunately we are still
forced to base our choice for the softening of the (dominating)
dark matter component on numerical considerations because
we do not know the nature of the dark matter. We find that
the actual choice influences the amount of substructure within
clusters on the scale of 0.1 to 1 Mpc.

Various types of clusters have been built by making galax-
ies ‘instantly’ at a certain redshift. This assumes that the bulk
of galaxy formation takes place at this redshift. An attempt
to identify new galaxies in these models at the present epoch
fails just as it does for standard N-body simulations, because
both the dark matter and the galaxies are again distributed
smoothly. The current method does not incorporate merg-
ing of galaxies. However, this can be done by applying the
group finder several times during the evolution, thus making
the galaxy formation process more continuous. In a first test
with galaxy formation at four different redshifts it is shown
that this gives results that are intermediates of the ‘instant’
galaxy formation models at these redshifts. The group finder
we use in this paper is as yet not really suited for grouping
particles with different masses and sizes, but this can easily be
improved upon. Resolution tests show that low-resolution sim-
ulations give similar results to high-resolution ones if galaxies
are made early enough, which is promising for the continuous
galaxy formation method if we start early enough, so that we
can accept a rather low resolution. This allows us to use a
smaller timestep for the numerical integration, or to run many
different realizations of a class of cluster models.

The mass functions for model set E, the rich clusters, are
in reasonable agreement with observed luminosity functions if
a constant mass-to-light ratio is assumed. The other sets do
not contain ‘typical’ cluster models and therefore have more
deviant mass functions. Virial mass estimates using only the
galaxies are mostiy underestimates because of mass segrega-
tion between luminous and dark matter. When we examine
differences between formation epochs by making galaxies at
z=4,z=2and z = 1, it is found that clusters with galax-
ies that formed at high redshifts have their galaxies presently
more clustered than clusters with galaxies formed at a later
epoch. A clear spatial bias is observed within the turnaround
radius for most of the formation epochs, whereas velocity bias
is only significant (but still small) for z = 4 galaxy formation.
The latter might even be completely artificial due to the effects
of softening.
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APPENDIX A: THE N-BODY SET-UP

4

The numerical code used is a slightly adapted version of the
Barnes & Hut (1986) treecode. Because of the high densities in-
volved in clusters, and because of their geometry (a hierarchy
of clustering), this code is the appropriate choice here. Al-

though the initial conditions are generated in a periodic cube,

we chose to have a perfectly homogeneous universe around
the simulation volume. This prevents possible artificial effects
from having a grid of clusters, as is the case with periodic
boundary conditions. It is necessary to cut a sphere out of the
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initial cube with this choice, because a cube will have its cor-
ners collapse less rapidly than the points in between, causing
an unphysical deformation of the simulation volume. With no
boundary conditions we lack tidal forces from inhomogeneities
around the simulation sphere, so the outer shell of a simula-
tion is not to be trusted and will be neglected in the analysis.
We use,physical instead of comoving coordinates (mostly used
in large-scale structure simulations), because clusters of galax-
ies have turned around against the overall expansion of the
universe. This makes the use of physical coordinates more ap-
propriate, but also necessitates a modification for the choice of
the integration timestep: it needs to change with time during
the expansion phase, in order to be a fraction of the dynamical
timescale, and stay constant thereafter to follow the non-linear
evolution accurately in the high-density regions. In our units,
with to = 1, t is equal to the dynamical timescale, so the fol-
lowing simple functional form is used: At = Min(tAto, t*Ato).
This implies that the transition is to be made at t = ¢*. For all
our cluster models we used t* = 0.1.
The choice of softening is discussed extensively in Section

3 and Appendix C. Because the code should mimic a colli-
sionless fluid, a minimum softening length € has to be adopted
in order to guarantee this as much as possible. The Plummer
force law has its maximum near ¢, and the maximum scat-
tering will therefore occur around that impact parameter. For
such an interaction one can derive
Av  Gm

R~ (41)
If one allows a maximal —AD—” for individual encounters, the
corresponding minimal softening is roughly given by

SO <.
min UZ(M) .
v/ max

(42)

For a given softening parameter (preferably larger than
the minimum value just derived), the numerical performance
of the code can be controlled by the choice for the basic
integration timestep Afo. A guide to this choice is the root-
mean-square peculiar velocity v of the particle distribution
in combination with the average nearest neighbour distance
ran. A criterion could be that an average particle does not
move more than a certain fraction f of the average nearest
neighbour distance, i.e.

At < f’% . (43)

One also would like the particles, when colliding, to trace at
least part of each other’s density profile, i.e. replacing 74 by
the softening parameter € in the above formula if € < ry,. The
criterion then becomes

Min{rn, €}
—,

At < f (44)

Root-mean-square velocities are listed in Table 2, and the
resulting combinations of v and ry, constrain At to values also
listed in Table 2, for the choice f = 1/4. See Section 3.1 for a
discussion of the results.

APPENDIX B: SOFTENED POTENTIALS

In general, an interaction potential is softened if it does not
diverge for r — 0, unlike the Kepler potential ¢(r) ~ 1/r.
The Kepler potential is of course the solution to the Poisson
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equation for a point mass, so the idea is to convolve the density
distribution, a sum of delta functions, by convolving it with a
smoothing kernel W (r,¢):

P (r) = / W(r —r,e)p(r)dr’ (B1)

(definitions from Hernquist & Barnes 1990). The Plummer-
type softening

W(r,e) = 3 i

47 (r2 + €2)52 (B2)

transforms point masses (with mass M) into Plummer mod-

els (Plummer 1911) with a density profile given by p(r) =

MW (r,€) which has a (‘softened’) interaction potential
GM

_(,.2 +e)l2 -

Another type of softening is ‘Hernquist-softening’ (Hernquist

1990), using the smoothing kernel

1 €

2nr(r+€)’

o(r) = (B3)

W(r,e)= (B4)
which again convolves point masses to mass distributions with
density profiles MW (r,€’). The softened potential now is

GM
r+e’

which is conveniently simple! We examine some properties of
these potentials and their density profiles.

First consider the Plummer model again. For isotropic
spherical Plummer models the central velocity dispersion gy is
related to the softening parameter:

P(r) = — (BS)

GM

2 _ —_—
b= - (B6)
The total mass contained within r is

M

M e B7

Pl(r) (1 + %;—)3/2 s ( )
which implies a half-mass radius
Riop = ——— ~ 1.3¢ . (B8)

223 —1

The surface density profile is obtained by integrating the Plum-
mer density profile along the line of sight, resulting in

€2

un(R) = o (89)

where R is the radial distance on the sky. The total potential
energy U is given by

=———. 1
U T (B10)
The total kinetic energy is given by the virial theorem, ie. T =
—U/2, and the isotropic velocity dispersion ¢2 = 2T /M =
—U/M is given by
2 dnGM

T 32 e
which is roughly twice the central velocity dispersion. Aarseth
& Fall (1980) list some more properties of the Plummer model.

(B11)
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The Hernquist model has a more complicated surface
density profile (Hernquist 1990):

(2€? + R)X(R) — 3¢?]

) = 2

(€2 —R?)2 (B12)
. Lo LR, forO<R<¢
with X(R) = o
%i?_c}—;)l—/,‘;;’, foré <R< o0
This follows from the total mass distribution
M
Myq(r) = TT @/ (B13)
with corresponding half-mass radius
Rupg = (1 + +2)€' ~ 241€ . (B14)
The potential energy now is
GM?
U= N (B15)
and therefore the velocity dispersion
GM
2= =
o= (B16)

The two softening parameters can be related in several
ways. One is to demand that the half-mass radii are equal,
which then implies from (B8) and (B14) that

e~ 185¢ . (B17)

Another option is to match the potential energies (or, equiv-
alently, the gravitational radii, or the kinetic energies, or the
velocity dispersions), which gives

e~ 1.77¢ . (B18)

An observation we can make here is that both profiles have
GM

Rh ~ 0.4—6—2'- s (Blg)

as is the case for many simple spherical systems (Spitzer 1969).
We use this relation as a criterion for whether a group of
particles can be considered a galaxy in our simulation.

APPENDIX C: OBSERVED PROFILES VERSUS SOFT
PARTICLE PROFILES

The best-fitting profile for observed galaxies is the de Vau-
couleurs profile

Isv(R) = Lexp(=7.67[(R/R)* — 1) , (C1)

which has I, and R, as fitting parameters. Also used is the
Hubble-Reynolds profile

2
0 ( R ¥ a)2 s
where Iy and a are the parameters to be fitted. The shapes
of both profiles are fixed: the parameters can only rescale R
and I(R) linearly. The same is true for the Plummer profile,
where we relate the mass M to a central surface brightness
I = M/(4n€*Y), assuming a constant mass-to-light ratio Y.
For the Hernquist profile Itq(R) diverges for R — 0, so we

should adopt for example IH9 = Iyy(e) to characterize the
amplitude of I(R).

Inr(R) =1 (€2)

Table C1. Fits for Plummer and Hernquist surface density profiles.

range fitting  IY' € P £ P Y
[kpc] profile [10~°] [kpc] [10%] [107°] [kpc] [10°]

2-15 dv 740 70 379 202 603 11 116
HR 722 69 491 206 578 34 119
5-30 dv 250 123 239 139 736 0.1 167
HR 200 138 391 0.77 1001 34 138
10-50 dV 1.00 184 132 140 732 02 251
HR 067 241 285 -030 1641 2.7 146
2-50 dVv 415 11.1 154.8 173 668 1.6 1.66
HR 334 130 2625 1.04 9.10 276 143

Kormendy (1977) found well-fitting intrinsic relations for
the parameters of both profiles in a sample of normal galaxies:
I, = 1.271 x 10~R;'? and Iy = 9.462 x 10~%a''7, He also
found a good relation between the Hubble-Reynolds (HR)
and the de Vaucouleurs (dV) profiles in the approximate range
a to 20a: Iy = 128.231, and a = 0.093R.. We want to find
a similar relation between the soft particle profile parameters
and the HR and dV profiles in about the same range. The
ellipticals in Kormendy’s sample had de Vaucouleurs radii R,
in the range of 1.0 kpc to 14.1 kpc, so we take R, = 10 kpc
for a bright cluster elliptical. For other values we can roughly
scale the values of ¢ (for the Plummer model) and ¢ (for the
Hernquist model). It will depend on the fitting range in R
which softening parameter fits best to the observed profile, so
we fitted the Plummer and Hernquist laws to both profiles for
a set of fitting ranges. We used non-linear y? fitting to fit log I
against RY4. The results are presented in Table C1, where the
values for I, Iy and a that were used for the fits are obtained
from Kormendy’s relations for our choice R, = 10 kpc.

One example is shown in Fig. C1, where all four mentioned
profiles are plotted, with the Plummer and Hernquist laws
being fits to the de Vaucouleurs law in the range of 5 to 30
kpc (the third row of Table Cl1). What is gained from the
table is the result that a Plummer law does not fit very well
over a large range in radius, so one has to compromise on
which part of the profile to follow best. The core and the
envelope are clearly missing in the Plummer profile for most
of the choices. The Hernquist profile fits better, especially for
the de Vaucouleurs profile, but note that it was designed to
do so (Hernquist 1990)! Plummer softening is most often used
because it has a much larger and therefore softer core, which
is preferable from a numerical point of view, but it seems that
real galaxies are better modelled by the much harder Hernquist
profile. Therefore both types of softening are tested at various
points in this paper to investigate the difference it makes to
the final cluster models.

Finally, the last column of Table C1 reveals that neither
softening parameter fits consistently with respect to the other.
In general /€ is smaller than both relations (B17) and (B18)
suggest. However, for the best fit (lowest x?), being the fit to a
de Vaucouleurs profile over a range of 10 to 50 kpc, we find
this fraction to be significantly higher. The difficult fitting of
the Plummer model is mostly responsible for this behaviour.
Therefore both relations (B17) and (B18) are sufficiently ac-
curate for our purposes.

The actual choice for the galaxy particle softening will
matter most during encounters, so we should also compare
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Figure C1. Two theoretical and two observational luminosity profiles
for elliptical galaxies. The theoretical Plummer and Hernquist profiles
are fitted to a de Vaucouleurs profile over the range 5-30 kpc, as
indicated by the horizontal bar. The Hubble-Reynolds profile is shown
for comparison.

the soft particle profiles with profiles of interacting galaxies.
Two pairs of interacting galaxies imaged by Wright et al
(1990) have profiles that flatten towards the core, which might
be better modelled by a Plummer law than by a Hernquist
model.

There is much evidence for the existence of a substantial
amount of dark matter in galaxies (see for recent reviews
for example de Zeeuw 1992; Ashman 1992) which resides
in haloes surrounding the luminous part of the galaxy. This
could radically change the choice for € as deduced from the
relatively well-observed luminous part. The problem is that
the distribution of this dark matter is largely unknown. If it
follows the luminous matter distribution, e will only increase
with the extra mass as (Mium/Maa)'/>. But if the dark matter
component distribution is more extended than the luminous
one, € will increase even more than that.

We can model spiral galaxies by a spherical model because
they are likely to be embedded in a large massive dark halo,
which is more or less spherical. For some spiral galaxies,
attempts have been made to deduce the shape and total mass
of the dark halo from observations. Caldwell & Ostriker (1981)
fit for the dark halo of our own Galaxy the following simple
spherical profile:
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2

'oH__ (C3)

2 2
r* +rpy

ppH(r) = po

They find rpg = 7.8 kpc and po = 0.014 Mypc=3, claiming
an uncertainty in p(ro) of only a factor of two. This profile
falls off much less rapidly for large r than both the Hernquist
(~ 1/r*) and Plummer (~ 1/r°) laws. However, it is prob-
ably truncated at 30 kpc (Little & Tremaine 1987; Carney
& Latham 1987), crudely compensating for this. For another
typical spiral galaxy, NGC 3198, van Albada et al. (1985)
find a similar dark matter profile, with rpg = 12.8 kpc and
po = 0.0040 Mgpc 3.

Elliptical galaxies lack the gas discs that enable the deter-
mination of dark matter profiles: only the region within two de
Vaucouleurs radii can reliably be used (de Zeeuw 1992). The
mass-to-light ratio in this region is roughly constant, but out-
side neither constant nor varying mass-to-light ratio profiles
can be excluded. However, for giant ellipticals like M87, the
brightest cluster elliptical (BCE) of the Virgo cluster, a dark
matter profile can be obtained from the X-ray distribution. It
is found that M(r) ~ r up to 300 kpc, with a total mass of less
than 3 x 10'* M, (Fabricant & Gorenstein 1983; Stewart et
al. 1984). This implies a mass-to-light ratio of about 750Y .

The dark halo surface density profiles, found by integrat-
ing (C3) along one of the coordinate axes, are much shallower
(i.e. ‘softer’) than any of the luminous profiles:

pou(R) = mpo (cq)

"DH

By + RO
If we want to use soft particles as models for galaxies that
include dark haloes, the shallowness of the observed dark mat-
ter profiles might force us to use a different type of softening
(which should still be computationally convenient). But there
is also evidence for different halo density profiles for galaxies
in clusters as compared to field galaxies (Whitmore, Forbes &
Rubin 1988; see, however, Amram et al. 1993 for contrasting
evidence). Dark haloes might easily be stripped in clusters, so
the choice for the type and amount of softening may still be
guided by the luminous matter distribution. We should also
take note of the many uncertainties involved in the deductions
for ppu(r) discussed above.

This paper has been produced using the Royal Astronomical
Society/Blackwell Science TEX macros.
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