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Glassy dynamics of pinned charge-density waves
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Stretched-exponential relaxation behavior observed in a one-dimensional model of pinned
charge-density waves is shown to arise from anomalous deterministic diffusion confined to a closed
portion of phase space. Simulation results and scaling arguments are used to relate the index of the
stretched exponential to the mean-field value of the anomalous-random-walk exponent on directed

percolation clusters.

I. INTRODUCTION

Nonexponential relaxation in random systems, poly-
mers, and glassesl has been an active field of study for
many years. More recently, pinned-charge-density-wave
(CDW) systems have been added? to this list.

A wide variety of mechanisms can be shown to give
rise to either stretched-exponential or algebraic relaxa-
tion patterns.>”® Although it is now well established®
that a scale-invariant distribution of relaxation times un-
derlies these diverse phenomena, one is rarely able to
determine the form of the relevant distribution from a
microscopic theory. The demonstration by Mezard
et al.” of the ultrametric topology of the phase space of
the infinite-range Ising spin glass, with the free energies
of the quasidegenerate states behaving as independent
random variables, has led to a flurry of activity to model
the relaxation of glassy systems in terms of diffusion on
ultrametric spaces, with a hierarchy of relaxation
times.® ~'> More often than not, however, such construc-
tions involve ad hoc assumptions as to the form of the
distributions, and are unable to account for the apparent
universality observed in a broad class of physical sys-
tems. !>

Ogielski'* and Campbell and co-workers 17 have
recently proposed that the stretched-exponential relaxa-
tion observed in short-range Ising spin glasses can be un-
derstood in terms of the random motion performed by
the phase point in Ising phase space, which consists of
the vertices of an N-dimensional hypercube. Without
making any detailed assumption on the distribution of
waiting times or relaxation rates, they are thus able to
avail themselves directly of the scaling results for random
walks on percolation clusters.'®* "2 These authors argue
that in an Ising spin glass, for temperatures below the
Griffiths temperature T, certain edges will be removed
from this hypercubic network due to frustration, and that
as one lowers the temperature even further one ends up,
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at the freezing temperature T, with a percolating cluster
of connected vertices. The stretched exponential arises
naturally as the way in which the asymptotic distribution
of phase points on this closed, fractal hyperspace depends
upon time.

We address ourselves in this paper to the relaxation be-
havior displayed by a classical, one-dimensional many-
body model of randomly pinned CDW’s elaborated by
Pietronero and Strissler.’’ We have performed extensive
simulations on this model to determine the form of the
relaxation patterns in the pinned phase and found a
stretched-exponential dependence of the polarization and
the current upon time, with a fractional power ~1 for
the exponent. We show that the phase space of this mod-
el shows a close resemblance to that of short-range Ising
spin glasses. However, due to the presence of an external
field, the relaxation problem is akin to random walks on
directed percolation clusters.”> We relate the observed
fractional power to the appropriate anomalous-random-
walk dimension. Moreover, we point out that the
diffusive motion arises as a property of the microscopic
equations of motion?! describing the dynamics of the sys-
tem, which may be cast in the form of a coupled-map lat-
tice,> and no additional assumptions on the randomness
of the motion in phase space are necessary.

In Sec. II, we will present the model and motivate the
discussion. In Sec. III, we will present the results of our
numerical simulations together with a discussion of our
findings in terms of waiting time distributions. Section
IV contains scaling arguments and a comparison with
our numerical results, while in Sec. V we discuss our
model within the context of coupled-map lattices and
deterministic diffusion.

II. THE MODEL

The classical one-dimensional model of charge-density
waves (CDW’s) at zero temperature, with pinning due to
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impurities, leads?' to an equation of motion for the

phases ¥; at each impurity site i, i =1, ..., N,
di; —B Vit~ ¥ _ i~ Y
dt Tigy ™1 Fi—ri—
—sin[2m(qr, + ;)] +EQ, . (1)

The r; are the random positions of the impurities, g is the
wave number of the CDW, Q, = 1(r; ., —r,_}), and B and
E are dimensionless constants corresponding to the
diffusive coupling and the external field, respectively.
The strength of the sinusoidal pinning potential has been
uniformly normalized to unity.

For simplicity, let us introduce the quenched random
variables ¢, =gr;, 0 <¢; <1, and otherwise take the inter-
vals between the impurity sites to be uniform. The equa-
tion of motion now becomes

dy;
dt

Numerical simulations are to be performed on this set of
equations by taking discrete time steps, t =ndt. What we
have in effect, then, is a set of recurrence relations for the
values ¥;(n) of the phases at the lattices sites i, at time
steps n. These recurrence relations may be expressed as a
set of diffusively coupled one-dimensional maps, or a
coupled-map lattice?>?* for the ¢;. Define

=B({; ;- —2¢;) —sin[2m(¢, + )] HE . (2)

fi(x)=(1—2B&¢t)x — &8¢ sin[2m(¢, +x)]+ES& . (3)
Then,
1,[1,-(71+1)=f,~(1/1,»(n))+381(1/1,-+1(n)+¢i;1(n)) . (4)

The model given by Egs. (2) or (4) exhibits?*?° a “sliding”
and a “pinned” phase for E above or below a threshold
field E,(B), where a dynamic phase transition®® takes
place. Below the threshold, an applied field gives rise to a
polarization,

P(t)=—]1\—,§[‘,t//,-(t), (5)

which, on the average, saturates as t— o to some P,
such that

P, —P(t)~exp(—1th) . (6)
The polarization current,
J(=42U) ™
dt
also exhibits stretched-exponential decay, viz.,
J(t)~exp(—1t#) (8)

with time. For E > E,;, the sustained current shows both
broad- and narrow-band noise.?!

Besides nonexponential relaxation in the pinned phase,
the present system has a number of other properties that
are analogous to those of spin glasses, like hysteresis and
metastability?>?>2¢ as well as strong sample dependence
in quantities such as P, and the threshold field E;, up to

11 523

sample sizes of the order of 10*.

To understand the dynamics of the system represented
by Eq. (4), it is instructive to plot f (x) for different values
of the parameters appearing in Eq. (3). In Fig. 1, we
display two curves corresponding to the symmetric case
of ¢$;=0, E=0 and to E >0; B=1 and 6:=0.1. [Note
that at any given moment, one may replace E in Eq. (3)
with an effective field E 4=FE +B(y;,+¥,_,), where
one has absorbed the coupling.] The first curve exhibits
two attractive fixed points at x; and x,, while the second,
in the presence of a sufficiently large field E, has only one
(upper) attractive fixed point. The stable fixed point at x,
and the unstable fixed point at the origin have disap-
peared via an inverse tangent bifurcation. In the first
case, the dynamical variable x will relax exponentially to
one of these two stable fixed points depending upon the
initial value. If the phase point were to be found in the
basin of attraction of x|, an increase in E that makes the
fixed point x; disappear would cause a transition to take
place to the upper, albeit slightly displaced, stable fixed
point. This transition will proceed extremely slowly, al-
most imperceptibly, at first, while x iterates through the
narrow neck®’ (indicated by the open arrow in Fig. 1),
and then much more rapidly as the maximum is neared.
If the phase point were in the basin of attraction of x,,
this increase in E would result in an exponential relaxa-
tion to the slightly displaced stable fixed point.

An inspection of the motion of the ¢, under the action
of the set of coupled maps in Eq. (4), for a generic set of
{¢;] and random initial conditions shows this scenario to
be typical for fields up to about 10% of E,,. In Fig. 2
different 9,(¢) in a chain of 500 points are plotted against
t (here B=1, 8t=0.01, E =0.5). One sees single abrupt
transitions®>2% between what appear to be two relatively
stable values separated by a step typically of the order of
unity. This prompts us, in the light of the preceding
paragraph, to identify the two basins of attraction of
Sfi(;) with two stable “states” of the variable ;. The
precise location of these basins of attraction is immateri-

f(x)

X] X2
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FIG. 1. Plot of the modified sine map appearing in Eq. (3),
for $=0. The lower curve has E =0 and the upper curve E > 0.
See the text.
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FIG. 2. Trajectories of a number of individual phases ¥, out
of a chain of N =500, against n, the number of time steps 6¢.
B =1,86:t=0.01, and E =0.5.

al. What interests us here is that each dynamical variable
is in one or the other of its allowed states and that the re-
laxation proceeds via transitions that take place over time
scales much shorter than the scale of observation times of
such quantities as the polarization or the current.

The identification of the distinct basins of attraction of
the continuous variable ¥; with discrete states leads to a
“coarse-grained” picture of phase space, where the
infinite-dimensional phase space of a chain of N points is
replaced by the 2V vertices of an N-dimensional hyper-
cube. In the presence of a positive applied field, the tran-
sitions are overwhelmingly from the ‘“lower” to the
“upper” states, so that the edges of the hypercube may be
replaced with diodes pointing in the positive direction. It
should also be clear that because of the random pinning,
some vertices will be permanently removed (some 3, un-
able to make a transition to the next state), while for
higher values of the applied field the concentration of
permanently removed vertices will be correspondingly
lower.

In the next section we will provide numerical evidence
that, for time scales large compared to the transition
times, we may view the relaxation of a pinned CDW in
terms of a random walk of the phase point over a direct-
ed percolation network on the surface of this hypercube,
although in microscopic detail the dynamics is fully
deterministic.

III. NUMERICAL RESULTS

In this section we would like to present quantitative re-
sults on the relaxation behavior of the pinned CDW [Eq.
(4)]. For a fixed value of the coupling strength B [chosen
to have the same magnitude as the coefficient of the pin-
ning term in Eq. (4)], we have explored the dependence of
the scaling behavior on the applied field E. For relatively
small fields we find satisfactory agreement with expecta-
tions based on the picture presented earlier, while
anomalies show up in the neighborhood of the threshold,
where the system starts to depart significantly from the
simplified model for the phase space outlined in the
preceding section.

We have performed extensive simulations of Eq. (4)
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with random initial conditions for ¥;, to compute the po-
larization current,

L&
10=(y > 00 ©

with N typically 10* and the configuration average is tak-
en over up to 100 realizations of the {¢;}. In Fig. 3 we
have plotted our results for several values of the external
field E, with B =1. These curves allow very high-quality
fits to the logarithm of the exponential form in Eq. (6),

InJ(t)=a—bt?, (10)

which requires the simultaneous determination of three

parameters. An alternative is to compute the double
logarithm, that is,
In[InJ(¢,)—1nJ(¢)]=Inb+p Int, an

where the amplitude J (¢,), or equivalently, the offset ¢, is
chosen so as to minimize the deviation from the asymp-
totic stretched-exponential form. Although error bars of
the order of 1% may be achieved for the sets of parame-
ters in Eq. (10) or Eq. (11), the value of the exponent 8
depends sensitively on the choice of the other two. In
Fig. 4, B is plotted as a function of the external field E.
The error bars indicate by how much 3 changes as ¢, is
varied, while the quality of the fit is not affected appreci-
ably.

In spite of the large error bars, certain features may be
discerned from Fig. 4. For fields well below the thresh-
old, B goes to a minimum value around S=1. Just below
the threshold one observes a sharp maximum around E ;.
Above E, there is no decay in the average current.
Right at E,;, a very slow, powerlike decay seems to hold,
but more work needs to be done to determine its func-
tional form. We have computed the power spectrum of
the current at E,;, and find it be fitted by a 1/f law.
Away from the threshold, the noise in the current be-
comes Gaussian. We were able to fit the power spectrum
with £ 7%, 1.8 <$ <2.0.
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FIG. 3. The polarization current in the pinned phase, against
n, the number of time steps, for different values of the external
field, with curves a-g corresponding to E =0.70, 0.65, 0.60,
0.55, 0.50, 0.45, and 0.40, respectively. Each curve is averaged
over up to 100 realizations of the spatial randomness: N =10%,
B =1, and 6¢=0.1. The initial values were chosen randomly.



41 GLASSY DYNAMICS OF PINNED CHARGE-DENSITY WAVES

4.80x10™ . . v .
4.40 H .
4.00 | .
—~ :
W 3.60f l : ]
@ G 3
3.20 f ] 1
Em: Emn
2.80 ) 1 " 1 1
0.15 0.30 0.45 0.60 0.75 0.90
E

FIG. 4. Fits to the stretched-exponential index 3, as a func-
tion of the external field. E,, indicates the threshold field and
E,, the field around which the walk departs significantly from a
hypercubical surface in phase space.

We have already remarked that E,, shows sample-to-
sample dependence. For a given sample it may be unam-
biguously identified as the smallest value of the field for
which the largest Lyapunov exponent of the N-
dimensional iterative map in Eq. (4) is non-negative.?*

For comparison, we have computed the time depen-
dence of the autocorrelation function

g(t)~{r¥(e))—(ris)) , (12)

in terms of the Hamming distance,
N
(P =~ 3 =Y 0T . (13)

It is easy to show that on a unit N-dimensional hyper-
cube,
(ri())= lim {r¥s))=1.
t—
In Fig. 5 we have plotted (7%()) against E. One sees

that for low values of the field where many points on the
chain remain permanently pinned, a comparatively small
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FIG. 5. The normalized Hamming distance [see Eq. (13)] in
phase space, in the limit of a very large number of time steps, as
a function of external field. Random initial conditions were
chosen.
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portion of the whole phase space is explored, while as one
nears the threshold, the concentration of available ver-
tices goes up and more and more of the phase space be-
comes accessible. As one raises the field even further,
however, the limiting value of the Hamming distance
exceeds 1, indicating that the true phase space of the sys-
tem is no longer confined to the surface of the hypercube,
as discussed in Sec. II. Indeed, as can be seen by examin-
ing consecutive ‘‘snapshots” of the coordinates ;, some
sites perform several transitions in this region so that our
model of a hypercubic phase space breaks down. The
value of the field around which this happens, E;,, corre-
sponds to the peak in the exponent 8 observed in Fig. 4.
Above the threshold, the ¥, increase without bound, so
that the phase space ceases to be closed altogether.

The autocorrelation function has the characteristic
stretched-exponential behavior,

q(t)~exp(—t"). (14)

In the range 0.3 < E <0.65 we find 0.58 <y <0.73, which
suggests ¥ ~2f3, as we would expect from Egs. (5)-(8),
(12) and (13). For values of the field not too close to E,
y is consistent with the value of 2.

Before we proceed to outline our understanding of
these findings in terms of scaling laws for random walks,
we would like to mention some results that serve to stress
the utility of such a scaling approach.

It should be clear from the discussion in Sec. II (also
see Fig. 2) that the steplike motion of the ¥; leads to a to-
tal current J(¢), which is very nearly a superposition of
8-function-like peaks.?® Denoting the 7; the waiting time
for i; to make a transition, one may write in a continuum
approximation (for N >>1),

J(~ [8(t —n)P(r)dr,

where 7(t) is the distribution function for the 7. The
difficulty, as in nearly all such cases, is in the analytical
determination of (7).

For the coupled-map lattice (CML) in Egs. (3) and (4),
we find numerically that for uniform pinning (all
¢, =const) P(7) as well as J (¢) decays exponentially. For
random pinning, 7(¢) has the same stretched-exponential
form as J(t). For comparison, we have investigated a
CML with constant pinning but with an added
configurational noise term &t¢;, —0.1<¢; <0.1. This
yields, once more, a stretched-exponential pattern.

By contrast, the dynamics of an ensemble of one-
dimensional maps given by Eq. (3) can be deduced analyt-
ically?® from Pomeau-Manneville-type?’ scaling. Expand-
ing f;(x) around its nearest point of approach to the di-
agonal (see Fig. 1) one sees that the path length or pas-
sage time through this neck, 7, must scale’’ like g; !/
where ¢; is the neck width. One finds that ¢; is linear in
¢;; thus a random distribution of ¢;, —1 <¢; <1 leads to
a scale invariant distribution of relaxation times,
P(1)~773, resulting in a power-law decay of the total
current J (t)~t 3. We have verified this analytical result
with numerical simulations, finding a power of
—2.7+0.1. It is interesting to note that the power-law
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tail found by Hirsch et al.?’ for the path length distribu-
tion in the presence of 8-correlated time-dependent noise,
results in our case from purely ‘“‘configurational” noise in-
dependent of time.

IV. RANDOM WALKS ON CLOSED
FRACTAL SURFACES

Making use of the scaling properties'®?3° of the dis-
tribution function for the position of a random walker,
Flesselles and Botet!” have provided a detailed argument
that on an N-dimensional (N >>1) hypercube at the per-
colation threshold, one has, for asymptotically large
times,

(r¥(o))—(rie

where {(r%(t)) is the mean-square displacement and d,,
the random-walk exponent on a percolation cluster.'®
Together with Egs. (12) and (13), where one should take
Ising spin variables S;(¢) for the 1,(¢), one obtains

)) ~exp(—t %) (15)

q(t)~exp(—t'?),
where the mean-field theory (MFT) value,?’ d,=6 has
been substituted.

Here we would like to give a heuristic argument along
the lines of Campbell’s,'> !¢ which has the advantage that
it does not depend on the precise form of the scaling func-
tion®! for the probability distribution function P(r,t) for
the random walker. Here, r is the ‘“‘arc length” or dis-
placement measured within the (N — 1)-dimensional hy-
persurface. We assume that for time scales large com-
pared to the stepping times but much shorter than those
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gime, @/d,, = 1, in clear contradiction to &=2.

One way to sidestep the issue of the precise form of the
operator in Eq. (18) is to make the ansatz such that, at
least for large times, we may perform a separation of
variables. Then, with lim,_, ,?(r,t)—p(r), where p(r) is
the density function of the fractal embedded in the
closed, unit (N — 1)-dimensional hypersurface,

Plr,t)=p(r)[1+T(1)O(r)], (19)

where T(t) is a decaying function of time and O(r)
must be periodic. Now T(¢) satisfies dT(¢)/dt
=constD (¢)T(¢t) with the solution T(t)°<exp(—t2/d )
Substitution in (19) immediately resutls in Eq. (15).
analogous argument could be extended to the case where
there is a bias; then p(r) has to be replaced with an ap-
propriately modified asymptotic distribution, which is
again independent of time.

As pointed out in Sec. II, we have to take into account
the fact that, in our model, in the presence of an external
field, the “edges” connecting the vertices of the coarse-
grained phase space act like diodes, allowing passage only
in the positive direction. The phase point now executes a
random walk on this directed percolation network.?%3433
The analog of the Einstein relation for conductivity now
yields

di=2+@'-B,)/v} , (20)

where d/| is defined as the walk exponent associated with

the displacellnent in the “forward” direction, via
sl ..
(r” t))~t ¢, pu' is the conductivity exponent for a

random-resistor-diode network,**~*¢ and B, and vl are

on. which the rela?gatmn natterns are ohserved walks on__ the Ar pi\')romptﬂr and eorrelatinn lenath avnanents for
el ———. ] Lﬁ-*

i
P ]

|

the high-dimensional phase space in question are indistin- directed

1
vergolation.?3%  Substituting the MF I
(]

r |
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such questions as the spatial propagation of noise or spa-
tiotemporal pattern formation. As in previous experi-
ences with nonlinear maps, this endeavor is bound to
come up with unexpected new phenomena.

Deterministic or ‘“chaos-induced” diffusion has been
discussed by Geisel and co-workers*® % and Grossmann
and co-workers*! ~* in the context of one-dimensional
periodic functions [c.f. Eq. (3)] that affect a decomposi-
tion of phase space into cells. Although the trajectory of
the phase point is, in detail, completely deterministic, in
terms of the scaling properties over time scales large
compared to, say, the characteristic time for the accom-
plishment of an individual “step,” it is indistinguishable
from a random walk on a discrete grid that has been laid
over the ‘“true” phase space. In all the cases they have
considered, with the exception of Ref. 43, these authors
have found normal scaling behavior, with d,=2; the
diffusion constant depends upon the parameters of the
map (it should be chaotic) and the amplitude of the exter-
nal noise term, if any.

In our case, the onset of diffusion is made possible by
the inclusion of a constant bias, the external field E, and
the coupling of a large number (N >>1) of degrees of free-
dom. Note that below threshold there is no true chaos,
the system eventually reaches equilibrium at a fixed
point of the N-dimensional map. The inclusion of
configurational randomness in the form of the random
pinning potentials, {¢;}, and the external field E, for
E <E,, push the deterministic diffusion over into the
universality class of random walks on dilute resistor-
diode networks. The high dimensionality of the phase
space considered leads to the MFT value for the anoma-
lous walk exponent, d,ﬂ =3, for the forward displacement.
Since the walk is confined to a closed portion of phase
space, 516
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<r2(oo))—<r2(1)>~exp[—r|2|(short times)] .  (22)

For E>E,, all the ¢; are “unpinned,” so that the
“walk” is no longer over a fractal nor is it confined; how-
ever, it is still directed. The polarization [Eq. (5)] in prin-
ciple increases without bound, according to

Il
iy (23)

P(t)~r“(t)~t
where now??3” dll=1. This immediately leads to an
average current J(¢) which is constant over time.

It should be noted that uniform pinning (setting all ¢,
equal to a constant) leads, below threshold, to an ex-
ponential decay (8=1) of the polarization current with
time. This is indeed what we would expect on the basis
of biased diffusion on a nonfractal, closed space, with
dl=1.

In conclusion, we have shown that the dynamics of
CDW may be understood in terms of anomalous deter-
ministic diffusion arising from an N-dimensional
coupled-map lattice. A dynamic phase transition takes
place at the threshold, where there is a crossover between
two scaling regimes belonging to different universality
classes. The details of this crossover region deserve fur-
ther study.
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